forked from OSchip/llvm-project
417 lines
16 KiB
C++
417 lines
16 KiB
C++
//===- ValueMapper.cpp - Interface shared by lib/Transforms/Utils ---------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines the MapValue function, which is shared by various parts of
|
|
// the lib/Transforms/Utils library.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Transforms/Utils/ValueMapper.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/InlineAsm.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/Metadata.h"
|
|
using namespace llvm;
|
|
|
|
// Out of line method to get vtable etc for class.
|
|
void ValueMapTypeRemapper::anchor() {}
|
|
void ValueMaterializer::anchor() {}
|
|
|
|
Value *llvm::MapValue(const Value *V, ValueToValueMapTy &VM, RemapFlags Flags,
|
|
ValueMapTypeRemapper *TypeMapper,
|
|
ValueMaterializer *Materializer) {
|
|
ValueToValueMapTy::iterator I = VM.find(V);
|
|
|
|
// If the value already exists in the map, use it.
|
|
if (I != VM.end() && I->second) return I->second;
|
|
|
|
// If we have a materializer and it can materialize a value, use that.
|
|
if (Materializer) {
|
|
if (Value *NewV = Materializer->materializeValueFor(const_cast<Value*>(V)))
|
|
return VM[V] = NewV;
|
|
}
|
|
|
|
// Global values do not need to be seeded into the VM if they
|
|
// are using the identity mapping.
|
|
if (isa<GlobalValue>(V))
|
|
return VM[V] = const_cast<Value*>(V);
|
|
|
|
if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
|
|
// Inline asm may need *type* remapping.
|
|
FunctionType *NewTy = IA->getFunctionType();
|
|
if (TypeMapper) {
|
|
NewTy = cast<FunctionType>(TypeMapper->remapType(NewTy));
|
|
|
|
if (NewTy != IA->getFunctionType())
|
|
V = InlineAsm::get(NewTy, IA->getAsmString(), IA->getConstraintString(),
|
|
IA->hasSideEffects(), IA->isAlignStack());
|
|
}
|
|
|
|
return VM[V] = const_cast<Value*>(V);
|
|
}
|
|
|
|
if (const auto *MDV = dyn_cast<MetadataAsValue>(V)) {
|
|
const Metadata *MD = MDV->getMetadata();
|
|
// If this is a module-level metadata and we know that nothing at the module
|
|
// level is changing, then use an identity mapping.
|
|
if (!isa<LocalAsMetadata>(MD) && (Flags & RF_NoModuleLevelChanges))
|
|
return VM[V] = const_cast<Value *>(V);
|
|
|
|
auto *MappedMD = MapMetadata(MD, VM, Flags, TypeMapper, Materializer);
|
|
if (MD == MappedMD || (!MappedMD && (Flags & RF_IgnoreMissingEntries)))
|
|
return VM[V] = const_cast<Value *>(V);
|
|
|
|
// FIXME: This assert crashes during bootstrap, but I think it should be
|
|
// correct. For now, just match behaviour from before the metadata/value
|
|
// split.
|
|
//
|
|
// assert(MappedMD && "Referenced metadata value not in value map");
|
|
return VM[V] = MetadataAsValue::get(V->getContext(), MappedMD);
|
|
}
|
|
|
|
// Okay, this either must be a constant (which may or may not be mappable) or
|
|
// is something that is not in the mapping table.
|
|
Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V));
|
|
if (!C)
|
|
return nullptr;
|
|
|
|
if (BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
|
|
Function *F =
|
|
cast<Function>(MapValue(BA->getFunction(), VM, Flags, TypeMapper, Materializer));
|
|
BasicBlock *BB = cast_or_null<BasicBlock>(MapValue(BA->getBasicBlock(), VM,
|
|
Flags, TypeMapper, Materializer));
|
|
return VM[V] = BlockAddress::get(F, BB ? BB : BA->getBasicBlock());
|
|
}
|
|
|
|
// Otherwise, we have some other constant to remap. Start by checking to see
|
|
// if all operands have an identity remapping.
|
|
unsigned OpNo = 0, NumOperands = C->getNumOperands();
|
|
Value *Mapped = nullptr;
|
|
for (; OpNo != NumOperands; ++OpNo) {
|
|
Value *Op = C->getOperand(OpNo);
|
|
Mapped = MapValue(Op, VM, Flags, TypeMapper, Materializer);
|
|
if (Mapped != C) break;
|
|
}
|
|
|
|
// See if the type mapper wants to remap the type as well.
|
|
Type *NewTy = C->getType();
|
|
if (TypeMapper)
|
|
NewTy = TypeMapper->remapType(NewTy);
|
|
|
|
// If the result type and all operands match up, then just insert an identity
|
|
// mapping.
|
|
if (OpNo == NumOperands && NewTy == C->getType())
|
|
return VM[V] = C;
|
|
|
|
// Okay, we need to create a new constant. We've already processed some or
|
|
// all of the operands, set them all up now.
|
|
SmallVector<Constant*, 8> Ops;
|
|
Ops.reserve(NumOperands);
|
|
for (unsigned j = 0; j != OpNo; ++j)
|
|
Ops.push_back(cast<Constant>(C->getOperand(j)));
|
|
|
|
// If one of the operands mismatch, push it and the other mapped operands.
|
|
if (OpNo != NumOperands) {
|
|
Ops.push_back(cast<Constant>(Mapped));
|
|
|
|
// Map the rest of the operands that aren't processed yet.
|
|
for (++OpNo; OpNo != NumOperands; ++OpNo)
|
|
Ops.push_back(MapValue(cast<Constant>(C->getOperand(OpNo)), VM,
|
|
Flags, TypeMapper, Materializer));
|
|
}
|
|
|
|
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
|
|
return VM[V] = CE->getWithOperands(Ops, NewTy);
|
|
if (isa<ConstantArray>(C))
|
|
return VM[V] = ConstantArray::get(cast<ArrayType>(NewTy), Ops);
|
|
if (isa<ConstantStruct>(C))
|
|
return VM[V] = ConstantStruct::get(cast<StructType>(NewTy), Ops);
|
|
if (isa<ConstantVector>(C))
|
|
return VM[V] = ConstantVector::get(Ops);
|
|
// If this is a no-operand constant, it must be because the type was remapped.
|
|
if (isa<UndefValue>(C))
|
|
return VM[V] = UndefValue::get(NewTy);
|
|
if (isa<ConstantAggregateZero>(C))
|
|
return VM[V] = ConstantAggregateZero::get(NewTy);
|
|
assert(isa<ConstantPointerNull>(C));
|
|
return VM[V] = ConstantPointerNull::get(cast<PointerType>(NewTy));
|
|
}
|
|
|
|
static Metadata *mapToMetadata(ValueToValueMapTy &VM, const Metadata *Key,
|
|
Metadata *Val) {
|
|
VM.MD()[Key].reset(Val);
|
|
return Val;
|
|
}
|
|
|
|
static Metadata *mapToSelf(ValueToValueMapTy &VM, const Metadata *MD) {
|
|
return mapToMetadata(VM, MD, const_cast<Metadata *>(MD));
|
|
}
|
|
|
|
static Metadata *MapMetadataImpl(const Metadata *MD, ValueToValueMapTy &VM,
|
|
RemapFlags Flags,
|
|
ValueMapTypeRemapper *TypeMapper,
|
|
ValueMaterializer *Materializer);
|
|
|
|
static Metadata *mapMetadataOp(Metadata *Op, ValueToValueMapTy &VM,
|
|
RemapFlags Flags,
|
|
ValueMapTypeRemapper *TypeMapper,
|
|
ValueMaterializer *Materializer) {
|
|
if (!Op)
|
|
return nullptr;
|
|
if (Metadata *MappedOp =
|
|
MapMetadataImpl(Op, VM, Flags, TypeMapper, Materializer))
|
|
return MappedOp;
|
|
// Use identity map if MappedOp is null and we can ignore missing entries.
|
|
if (Flags & RF_IgnoreMissingEntries)
|
|
return Op;
|
|
|
|
// FIXME: This assert crashes during bootstrap, but I think it should be
|
|
// correct. For now, just match behaviour from before the metadata/value
|
|
// split.
|
|
//
|
|
// llvm_unreachable("Referenced metadata not in value map!");
|
|
return nullptr;
|
|
}
|
|
|
|
static Metadata *cloneMDTuple(const MDTuple *Node, ValueToValueMapTy &VM,
|
|
RemapFlags Flags,
|
|
ValueMapTypeRemapper *TypeMapper,
|
|
ValueMaterializer *Materializer,
|
|
bool IsDistinct) {
|
|
// Distinct MDTuples have their own code path.
|
|
assert(!IsDistinct && "Unexpected distinct tuple");
|
|
(void)IsDistinct;
|
|
|
|
SmallVector<Metadata *, 4> Elts;
|
|
Elts.reserve(Node->getNumOperands());
|
|
for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I)
|
|
Elts.push_back(mapMetadataOp(Node->getOperand(I), VM, Flags, TypeMapper,
|
|
Materializer));
|
|
|
|
return MDTuple::get(Node->getContext(), Elts);
|
|
}
|
|
|
|
static Metadata *cloneMDLocation(const MDLocation *Node, ValueToValueMapTy &VM,
|
|
RemapFlags Flags,
|
|
ValueMapTypeRemapper *TypeMapper,
|
|
ValueMaterializer *Materializer,
|
|
bool IsDistinct) {
|
|
return (IsDistinct ? MDLocation::getDistinct : MDLocation::get)(
|
|
Node->getContext(), Node->getLine(), Node->getColumn(),
|
|
mapMetadataOp(Node->getScope(), VM, Flags, TypeMapper, Materializer),
|
|
mapMetadataOp(Node->getInlinedAt(), VM, Flags, TypeMapper, Materializer));
|
|
}
|
|
|
|
static Metadata *cloneMDNode(const UniquableMDNode *Node, ValueToValueMapTy &VM,
|
|
RemapFlags Flags, ValueMapTypeRemapper *TypeMapper,
|
|
ValueMaterializer *Materializer, bool IsDistinct) {
|
|
switch (Node->getMetadataID()) {
|
|
default:
|
|
llvm_unreachable("Invalid UniquableMDNode subclass");
|
|
#define HANDLE_UNIQUABLE_LEAF(CLASS) \
|
|
case Metadata::CLASS##Kind: \
|
|
return clone##CLASS(cast<CLASS>(Node), VM, Flags, TypeMapper, \
|
|
Materializer, IsDistinct);
|
|
#include "llvm/IR/Metadata.def"
|
|
}
|
|
}
|
|
|
|
/// \brief Map a distinct MDNode.
|
|
///
|
|
/// Distinct nodes are not uniqued, so they must always recreated.
|
|
static Metadata *mapDistinctNode(const UniquableMDNode *Node,
|
|
ValueToValueMapTy &VM, RemapFlags Flags,
|
|
ValueMapTypeRemapper *TypeMapper,
|
|
ValueMaterializer *Materializer) {
|
|
assert(Node->isDistinct() && "Expected distinct node");
|
|
|
|
// Optimization for MDTuples.
|
|
if (isa<MDTuple>(Node)) {
|
|
// Create the node first so it's available for cyclical references.
|
|
SmallVector<Metadata *, 4> EmptyOps(Node->getNumOperands());
|
|
MDTuple *NewMD = MDTuple::getDistinct(Node->getContext(), EmptyOps);
|
|
mapToMetadata(VM, Node, NewMD);
|
|
|
|
// Fix the operands.
|
|
for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I)
|
|
NewMD->replaceOperandWith(I, mapMetadataOp(Node->getOperand(I), VM, Flags,
|
|
TypeMapper, Materializer));
|
|
|
|
return NewMD;
|
|
}
|
|
|
|
// In general we need a dummy node, since whether the operands are null can
|
|
// affect the size of the node.
|
|
std::unique_ptr<MDNodeFwdDecl> Dummy(
|
|
MDNode::getTemporary(Node->getContext(), None));
|
|
mapToMetadata(VM, Node, Dummy.get());
|
|
Metadata *NewMD = cloneMDNode(Node, VM, Flags, TypeMapper, Materializer,
|
|
/* IsDistinct */ true);
|
|
Dummy->replaceAllUsesWith(NewMD);
|
|
return mapToMetadata(VM, Node, NewMD);
|
|
}
|
|
|
|
/// \brief Check whether a uniqued node needs to be remapped.
|
|
///
|
|
/// Check whether a uniqued node needs to be remapped (due to any operands
|
|
/// changing).
|
|
static bool shouldRemapUniquedNode(const UniquableMDNode *Node,
|
|
ValueToValueMapTy &VM, RemapFlags Flags,
|
|
ValueMapTypeRemapper *TypeMapper,
|
|
ValueMaterializer *Materializer) {
|
|
// Check all operands to see if any need to be remapped.
|
|
for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I) {
|
|
Metadata *Op = Node->getOperand(I);
|
|
if (Op != mapMetadataOp(Op, VM, Flags, TypeMapper, Materializer))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// \brief Map a uniqued MDNode.
|
|
///
|
|
/// Uniqued nodes may not need to be recreated (they may map to themselves).
|
|
static Metadata *mapUniquedNode(const UniquableMDNode *Node,
|
|
ValueToValueMapTy &VM, RemapFlags Flags,
|
|
ValueMapTypeRemapper *TypeMapper,
|
|
ValueMaterializer *Materializer) {
|
|
assert(!Node->isDistinct() && "Expected uniqued node");
|
|
|
|
// Create a dummy node in case we have a metadata cycle.
|
|
MDNodeFwdDecl *Dummy = MDNode::getTemporary(Node->getContext(), None);
|
|
mapToMetadata(VM, Node, Dummy);
|
|
|
|
// Check all operands to see if any need to be remapped.
|
|
if (!shouldRemapUniquedNode(Node, VM, Flags, TypeMapper, Materializer)) {
|
|
// Use an identity mapping.
|
|
mapToSelf(VM, Node);
|
|
MDNode::deleteTemporary(Dummy);
|
|
return const_cast<Metadata *>(static_cast<const Metadata *>(Node));
|
|
}
|
|
|
|
// At least one operand needs remapping.
|
|
Metadata *NewMD = cloneMDNode(Node, VM, Flags, TypeMapper, Materializer,
|
|
/* IsDistinct */ false);
|
|
Dummy->replaceAllUsesWith(NewMD);
|
|
MDNode::deleteTemporary(Dummy);
|
|
return mapToMetadata(VM, Node, NewMD);
|
|
}
|
|
|
|
static Metadata *MapMetadataImpl(const Metadata *MD, ValueToValueMapTy &VM,
|
|
RemapFlags Flags,
|
|
ValueMapTypeRemapper *TypeMapper,
|
|
ValueMaterializer *Materializer) {
|
|
// If the value already exists in the map, use it.
|
|
if (Metadata *NewMD = VM.MD().lookup(MD).get())
|
|
return NewMD;
|
|
|
|
if (isa<MDString>(MD))
|
|
return mapToSelf(VM, MD);
|
|
|
|
if (isa<ConstantAsMetadata>(MD))
|
|
if ((Flags & RF_NoModuleLevelChanges))
|
|
return mapToSelf(VM, MD);
|
|
|
|
if (const auto *VMD = dyn_cast<ValueAsMetadata>(MD)) {
|
|
Value *MappedV =
|
|
MapValue(VMD->getValue(), VM, Flags, TypeMapper, Materializer);
|
|
if (VMD->getValue() == MappedV ||
|
|
(!MappedV && (Flags & RF_IgnoreMissingEntries)))
|
|
return mapToSelf(VM, MD);
|
|
|
|
// FIXME: This assert crashes during bootstrap, but I think it should be
|
|
// correct. For now, just match behaviour from before the metadata/value
|
|
// split.
|
|
//
|
|
// assert(MappedV && "Referenced metadata not in value map!");
|
|
if (MappedV)
|
|
return mapToMetadata(VM, MD, ValueAsMetadata::get(MappedV));
|
|
return nullptr;
|
|
}
|
|
|
|
const UniquableMDNode *Node = cast<UniquableMDNode>(MD);
|
|
assert(Node->isResolved() && "Unexpected unresolved node");
|
|
|
|
// If this is a module-level metadata and we know that nothing at the
|
|
// module level is changing, then use an identity mapping.
|
|
if (Flags & RF_NoModuleLevelChanges)
|
|
return mapToSelf(VM, MD);
|
|
|
|
if (Node->isDistinct())
|
|
return mapDistinctNode(Node, VM, Flags, TypeMapper, Materializer);
|
|
|
|
return mapUniquedNode(Node, VM, Flags, TypeMapper, Materializer);
|
|
}
|
|
|
|
Metadata *llvm::MapMetadata(const Metadata *MD, ValueToValueMapTy &VM,
|
|
RemapFlags Flags, ValueMapTypeRemapper *TypeMapper,
|
|
ValueMaterializer *Materializer) {
|
|
Metadata *NewMD = MapMetadataImpl(MD, VM, Flags, TypeMapper, Materializer);
|
|
if (NewMD && NewMD != MD)
|
|
if (auto *N = dyn_cast<UniquableMDNode>(NewMD))
|
|
N->resolveCycles();
|
|
return NewMD;
|
|
}
|
|
|
|
MDNode *llvm::MapMetadata(const MDNode *MD, ValueToValueMapTy &VM,
|
|
RemapFlags Flags, ValueMapTypeRemapper *TypeMapper,
|
|
ValueMaterializer *Materializer) {
|
|
return cast<MDNode>(MapMetadata(static_cast<const Metadata *>(MD), VM, Flags,
|
|
TypeMapper, Materializer));
|
|
}
|
|
|
|
/// RemapInstruction - Convert the instruction operands from referencing the
|
|
/// current values into those specified by VMap.
|
|
///
|
|
void llvm::RemapInstruction(Instruction *I, ValueToValueMapTy &VMap,
|
|
RemapFlags Flags, ValueMapTypeRemapper *TypeMapper,
|
|
ValueMaterializer *Materializer){
|
|
// Remap operands.
|
|
for (User::op_iterator op = I->op_begin(), E = I->op_end(); op != E; ++op) {
|
|
Value *V = MapValue(*op, VMap, Flags, TypeMapper, Materializer);
|
|
// If we aren't ignoring missing entries, assert that something happened.
|
|
if (V)
|
|
*op = V;
|
|
else
|
|
assert((Flags & RF_IgnoreMissingEntries) &&
|
|
"Referenced value not in value map!");
|
|
}
|
|
|
|
// Remap phi nodes' incoming blocks.
|
|
if (PHINode *PN = dyn_cast<PHINode>(I)) {
|
|
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
|
|
Value *V = MapValue(PN->getIncomingBlock(i), VMap, Flags);
|
|
// If we aren't ignoring missing entries, assert that something happened.
|
|
if (V)
|
|
PN->setIncomingBlock(i, cast<BasicBlock>(V));
|
|
else
|
|
assert((Flags & RF_IgnoreMissingEntries) &&
|
|
"Referenced block not in value map!");
|
|
}
|
|
}
|
|
|
|
// Remap attached metadata.
|
|
SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
|
|
I->getAllMetadata(MDs);
|
|
for (SmallVectorImpl<std::pair<unsigned, MDNode *>>::iterator
|
|
MI = MDs.begin(),
|
|
ME = MDs.end();
|
|
MI != ME; ++MI) {
|
|
MDNode *Old = MI->second;
|
|
MDNode *New = MapMetadata(Old, VMap, Flags, TypeMapper, Materializer);
|
|
if (New != Old)
|
|
I->setMetadata(MI->first, New);
|
|
}
|
|
|
|
// If the instruction's type is being remapped, do so now.
|
|
if (TypeMapper)
|
|
I->mutateType(TypeMapper->remapType(I->getType()));
|
|
}
|