llvm-project/clang-tools-extra/clangd/unittests/TweakTests.cpp

2640 lines
68 KiB
C++

//===-- TweakTests.cpp ------------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "Annotations.h"
#include "SourceCode.h"
#include "TestFS.h"
#include "TestTU.h"
#include "TweakTesting.h"
#include "refactor/Tweak.h"
#include "clang/AST/Expr.h"
#include "clang/Basic/Diagnostic.h"
#include "clang/Basic/DiagnosticIDs.h"
#include "clang/Basic/DiagnosticOptions.h"
#include "clang/Basic/FileManager.h"
#include "clang/Basic/FileSystemOptions.h"
#include "clang/Basic/LLVM.h"
#include "clang/Basic/SourceLocation.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Rewrite/Core/Rewriter.h"
#include "clang/Tooling/Core/Replacement.h"
#include "llvm/ADT/IntrusiveRefCntPtr.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/VirtualFileSystem.h"
#include "llvm/Testing/Support/Error.h"
#include "gmock/gmock-matchers.h"
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include <cassert>
#include <string>
#include <utility>
#include <vector>
using ::testing::AllOf;
using ::testing::ElementsAre;
using ::testing::HasSubstr;
using ::testing::StartsWith;
namespace clang {
namespace clangd {
namespace {
MATCHER_P2(FileWithContents, FileName, Contents, "") {
return arg.first() == FileName && arg.second == Contents;
}
TEST(FileEdits, AbsolutePath) {
auto RelPaths = {"a.h", "foo.cpp", "test/test.cpp"};
llvm::IntrusiveRefCntPtr<llvm::vfs::InMemoryFileSystem> MemFS(
new llvm::vfs::InMemoryFileSystem);
MemFS->setCurrentWorkingDirectory(testRoot());
for (auto Path : RelPaths)
MemFS->addFile(Path, 0, llvm::MemoryBuffer::getMemBuffer("", Path));
FileManager FM(FileSystemOptions(), MemFS);
DiagnosticsEngine DE(new DiagnosticIDs, new DiagnosticOptions);
SourceManager SM(DE, FM);
for (auto Path : RelPaths) {
auto FID = SM.createFileID(*FM.getFile(Path), SourceLocation(),
clang::SrcMgr::C_User);
auto Res = Tweak::Effect::fileEdit(SM, FID, tooling::Replacements());
ASSERT_THAT_EXPECTED(Res, llvm::Succeeded());
EXPECT_EQ(Res->first, testPath(Path));
}
}
TWEAK_TEST(SwapIfBranches);
TEST_F(SwapIfBranchesTest, Test) {
Context = Function;
EXPECT_EQ(apply("^if (true) {return;} else {(void)0;}"),
"if (true) {(void)0;} else {return;}");
EXPECT_EQ(apply("^if (/*error-ok*/) {return;} else {(void)0;}"),
"if (/*error-ok*/) {(void)0;} else {return;}")
<< "broken condition";
EXPECT_AVAILABLE("^i^f^^(^t^r^u^e^) { return; } ^e^l^s^e^ { return; }");
EXPECT_UNAVAILABLE("if (true) {^return ^;^ } else { ^return^;^ }");
// Available in subexpressions of the condition;
EXPECT_THAT("if(2 + [[2]] + 2) { return; } else {return;}", isAvailable());
// But not as part of the branches.
EXPECT_THAT("if(2 + 2 + 2) { [[return]]; } else { return; }",
Not(isAvailable()));
// Range covers the "else" token, so available.
EXPECT_THAT("if(2 + 2 + 2) { return[[; } else {return;]]}", isAvailable());
// Not available in compound statements in condition.
EXPECT_THAT("if([]{return [[true]];}()) { return; } else { return; }",
Not(isAvailable()));
// Not available if both sides aren't braced.
EXPECT_THAT("^if (1) return; else { return; }", Not(isAvailable()));
// Only one if statement is supported!
EXPECT_THAT("[[if(1){}else{}if(2){}else{}]]", Not(isAvailable()));
}
TWEAK_TEST(RawStringLiteral);
TEST_F(RawStringLiteralTest, Test) {
Context = Expression;
EXPECT_AVAILABLE(R"cpp(^"^f^o^o^\^n^")cpp");
EXPECT_AVAILABLE(R"cpp(R"(multi )" ^"token " "str\ning")cpp");
EXPECT_UNAVAILABLE(R"cpp(^"f^o^o^o")cpp"); // no chars need escaping
EXPECT_UNAVAILABLE(R"cpp(R"(multi )" ^"token " u8"str\ning")cpp"); // nonascii
EXPECT_UNAVAILABLE(R"cpp(^R^"^(^multi )" "token " "str\ning")cpp"); // raw
EXPECT_UNAVAILABLE(R"cpp(^"token\n" __FILE__)cpp"); // chunk is macro
EXPECT_UNAVAILABLE(R"cpp(^"a\r\n";)cpp"); // forbidden escape char
const char *Input = R"cpp(R"(multi
token)" "\nst^ring\n" "literal")cpp";
const char *Output = R"cpp(R"(multi
token
string
literal)")cpp";
EXPECT_EQ(apply(Input), Output);
}
TWEAK_TEST(ObjCLocalizeStringLiteral);
TEST_F(ObjCLocalizeStringLiteralTest, Test) {
ExtraArgs.push_back("-x");
ExtraArgs.push_back("objective-c");
// Ensure the action can be initiated in the string literal.
EXPECT_AVAILABLE(R"(id x = ^[[@[[^"^t^est^"]]]];)");
// Ensure that the action can't be initiated in other places.
EXPECT_UNAVAILABLE(R"([[i^d ^[[x]] ^= @"test";^]])");
// Ensure that the action is not available for regular C strings.
EXPECT_UNAVAILABLE(R"(const char * x= "^test";)");
const char *Input = R"(id x = [[@"test"]];)";
const char *Output = R"(id x = NSLocalizedString(@"test", @"");)";
EXPECT_EQ(apply(Input), Output);
}
TWEAK_TEST(DumpAST);
TEST_F(DumpASTTest, Test) {
EXPECT_AVAILABLE("^int f^oo() { re^turn 2 ^+ 2; }");
EXPECT_UNAVAILABLE("/*c^omment*/ int foo() { return 2 ^ + 2; }");
EXPECT_THAT(apply("int x = 2 ^+ 2;"),
AllOf(StartsWith("message:"), HasSubstr("BinaryOperator"),
HasSubstr("'+'"), HasSubstr("|-IntegerLiteral"),
HasSubstr("<col:9> 'int' 2\n`-IntegerLiteral"),
HasSubstr("<col:13> 'int' 2")));
}
TWEAK_TEST(DumpSymbol);
TEST_F(DumpSymbolTest, Test) {
std::string ID = R"("id":"CA2EBE44A1D76D2A")";
std::string USR = R"("usr":"c:@F@foo#")";
EXPECT_THAT(apply("void f^oo();"),
AllOf(StartsWith("message:"), testing::HasSubstr(ID),
testing::HasSubstr(USR)));
}
TWEAK_TEST(ShowSelectionTree);
TEST_F(ShowSelectionTreeTest, Test) {
EXPECT_AVAILABLE("^int f^oo() { re^turn 2 ^+ 2; }");
EXPECT_AVAILABLE("/*c^omment*/ int foo() { return 2 ^ + 2; }");
const char *Output = R"(message:
TranslationUnitDecl
VarDecl int x = fcall(2 + 2)
.CallExpr fcall(2 + 2)
ImplicitCastExpr fcall
.DeclRefExpr fcall
.BinaryOperator 2 + 2
*IntegerLiteral 2
)";
EXPECT_EQ(apply("int fcall(int); int x = fca[[ll(2 +]]2);"), Output);
}
TWEAK_TEST(DumpRecordLayout);
TEST_F(DumpRecordLayoutTest, Test) {
EXPECT_AVAILABLE("^s^truct ^X ^{ int x; ^};");
EXPECT_THAT("struct X { int ^a; };", Not(isAvailable()));
EXPECT_THAT("struct ^X;", Not(isAvailable()));
EXPECT_THAT("template <typename T> struct ^X { T t; };", Not(isAvailable()));
EXPECT_THAT("enum ^X {};", Not(isAvailable()));
EXPECT_THAT(apply("struct ^X { int x; int y; };"),
AllOf(StartsWith("message:"), HasSubstr("0 | int x")));
}
TWEAK_TEST(ExtractVariable);
TEST_F(ExtractVariableTest, Test) {
const char *AvailableCases = R"cpp(
int xyz(int a = 1) {
struct T {
int bar(int a = 1);
int z;
} t;
// return statement
return [[[[t.b[[a]]r]](t.z)]];
}
void f() {
int a = [[5 +]] [[4 * [[[[xyz]]()]]]];
// multivariable initialization
if(1)
int x = [[1]], y = [[a + 1]], a = [[1]], z = a + 1;
// if without else
if([[1]])
a = [[1]];
// if with else
if(a < [[3]])
if(a == [[4]])
a = [[5]];
else
a = [[5]];
else if (a < [[4]])
a = [[4]];
else
a = [[5]];
// for loop
for(a = [[1]]; a > [[[[3]] + [[4]]]]; a++)
a = [[2]];
// while
while(a < [[1]])
a = [[1]];
// do while
do
a = [[1]];
while(a < [[3]]);
}
)cpp";
EXPECT_AVAILABLE(AvailableCases);
ExtraArgs = {"-xc"};
const char *AvailableButC = R"cpp(
void foo() {
int x = [[1]];
})cpp";
EXPECT_UNAVAILABLE(AvailableButC);
ExtraArgs = {};
const char *NoCrashCases = R"cpp(
// error-ok: broken code, but shouldn't crash
template<typename T, typename ...Args>
struct Test<T, Args...> {
Test(const T &v) :val[[(^]]) {}
T val;
};
)cpp";
EXPECT_UNAVAILABLE(NoCrashCases);
const char *UnavailableCases = R"cpp(
int xyz(int a = [[1]]) {
struct T {
int bar(int a = [[1]]);
int z = [[1]];
} t;
return [[t]].bar([[[[t]].z]]);
}
void v() { return; }
// function default argument
void f(int b = [[1]]) {
// empty selection
int a = ^1 ^+ ^2;
// void expressions
auto i = new int, j = new int;
[[[[delete i]], delete j]];
[[v]]();
// if
if(1)
int x = 1, y = a + 1, a = 1, z = [[a + 1]];
if(int a = 1)
if([[a + 1]] == 4)
a = [[[[a]] +]] 1;
// for loop
for(int a = 1, b = 2, c = 3; a > [[b + c]]; [[a++]])
a = [[a + 1]];
// lambda
auto lamb = [&[[a]], &[[b]]](int r = [[1]]) {return 1;};
// assignment
xyz([[a = 5]]);
xyz([[a *= 5]]);
// Variable DeclRefExpr
a = [[b]];
// statement expression
[[xyz()]];
while (a)
[[++a]];
// label statement
goto label;
label:
a = [[1]];
}
)cpp";
EXPECT_UNAVAILABLE(UnavailableCases);
// vector of pairs of input and output strings
const std::vector<std::pair<std::string, std::string>>
InputOutputs = {
// extraction from variable declaration/assignment
{R"cpp(void varDecl() {
int a = 5 * (4 + (3 [[- 1)]]);
})cpp",
R"cpp(void varDecl() {
auto dummy = (3 - 1); int a = 5 * (4 + dummy);
})cpp"},
// FIXME: extraction from switch case
/*{R"cpp(void f(int a) {
if(1)
while(a < 1)
switch (1) {
case 1:
a = [[1 + 2]];
break;
default:
break;
}
})cpp",
R"cpp(void f(int a) {
auto dummy = 1 + 2; if(1)
while(a < 1)
switch (1) {
case 1:
a = dummy;
break;
default:
break;
}
})cpp"},*/
// Macros
{R"cpp(#define PLUS(x) x++
void f(int a) {
int y = PLUS([[1+a]]);
})cpp",
/*FIXME: It should be extracted like this.
R"cpp(#define PLUS(x) x++
void f(int a) {
auto dummy = 1+a; int y = PLUS(dummy);
})cpp"},*/
R"cpp(#define PLUS(x) x++
void f(int a) {
auto dummy = PLUS(1+a); int y = dummy;
})cpp"},
// ensure InsertionPoint isn't inside a macro
{R"cpp(#define LOOP(x) while (1) {a = x;}
void f(int a) {
if(1)
LOOP(5 + [[3]])
})cpp",
R"cpp(#define LOOP(x) while (1) {a = x;}
void f(int a) {
auto dummy = 3; if(1)
LOOP(5 + dummy)
})cpp"},
{R"cpp(#define LOOP(x) do {x;} while(1);
void f(int a) {
if(1)
LOOP(5 + [[3]])
})cpp",
R"cpp(#define LOOP(x) do {x;} while(1);
void f(int a) {
auto dummy = 3; if(1)
LOOP(5 + dummy)
})cpp"},
// attribute testing
{R"cpp(void f(int a) {
[ [gsl::suppress("type")] ] for (;;) a = [[1]];
})cpp",
R"cpp(void f(int a) {
auto dummy = 1; [ [gsl::suppress("type")] ] for (;;) a = dummy;
})cpp"},
// MemberExpr
{R"cpp(class T {
T f() {
return [[T().f()]].f();
}
};)cpp",
R"cpp(class T {
T f() {
auto dummy = T().f(); return dummy.f();
}
};)cpp"},
// Function DeclRefExpr
{R"cpp(int f() {
return [[f]]();
})cpp",
R"cpp(int f() {
auto dummy = f(); return dummy;
})cpp"},
// FIXME: Wrong result for \[\[clang::uninitialized\]\] int b = [[1]];
// since the attr is inside the DeclStmt and the bounds of
// DeclStmt don't cover the attribute.
// Binary subexpressions
{R"cpp(void f() {
int x = 1 + [[2 + 3 + 4]] + 5;
})cpp",
R"cpp(void f() {
auto dummy = 2 + 3 + 4; int x = 1 + dummy + 5;
})cpp"},
{R"cpp(void f() {
int x = [[1 + 2 + 3]] + 4 + 5;
})cpp",
R"cpp(void f() {
auto dummy = 1 + 2 + 3; int x = dummy + 4 + 5;
})cpp"},
{R"cpp(void f() {
int x = 1 + 2 + [[3 + 4 + 5]];
})cpp",
R"cpp(void f() {
auto dummy = 3 + 4 + 5; int x = 1 + 2 + dummy;
})cpp"},
// Non-associative operations have no special support
{R"cpp(void f() {
int x = 1 - [[2 - 3 - 4]] - 5;
})cpp",
R"cpp(void f() {
auto dummy = 1 - 2 - 3 - 4; int x = dummy - 5;
})cpp"},
// A mix of associative operators isn't associative.
{R"cpp(void f() {
int x = 0 + 1 * [[2 + 3]] * 4 + 5;
})cpp",
R"cpp(void f() {
auto dummy = 1 * 2 + 3 * 4; int x = 0 + dummy + 5;
})cpp"},
// Overloaded operators are supported, we assume associativity
// as if they were built-in.
{R"cpp(struct S {
S(int);
};
S operator+(S, S);
void f() {
S x = S(1) + [[S(2) + S(3) + S(4)]] + S(5);
})cpp",
R"cpp(struct S {
S(int);
};
S operator+(S, S);
void f() {
auto dummy = S(2) + S(3) + S(4); S x = S(1) + dummy + S(5);
})cpp"},
// Don't try to analyze across macro boundaries
// FIXME: it'd be nice to do this someday (in a safe way)
{R"cpp(#define ECHO(X) X
void f() {
int x = 1 + [[ECHO(2 + 3) + 4]] + 5;
})cpp",
R"cpp(#define ECHO(X) X
void f() {
auto dummy = 1 + ECHO(2 + 3) + 4; int x = dummy + 5;
})cpp"},
{R"cpp(#define ECHO(X) X
void f() {
int x = 1 + [[ECHO(2) + ECHO(3) + 4]] + 5;
})cpp",
R"cpp(#define ECHO(X) X
void f() {
auto dummy = 1 + ECHO(2) + ECHO(3) + 4; int x = dummy + 5;
})cpp"},
};
for (const auto &IO : InputOutputs) {
EXPECT_EQ(IO.second, apply(IO.first)) << IO.first;
}
}
TWEAK_TEST(AnnotateHighlightings);
TEST_F(AnnotateHighlightingsTest, Test) {
EXPECT_AVAILABLE("^vo^id^ ^f(^) {^}^"); // available everywhere.
EXPECT_AVAILABLE("[[int a; int b;]]");
EXPECT_EQ("void /* entity.name.function.cpp */f() {}", apply("void ^f() {}"));
EXPECT_EQ(apply("[[void f1(); void f2();]]"),
"void /* entity.name.function.cpp */f1(); "
"void /* entity.name.function.cpp */f2();");
EXPECT_EQ(apply("void f1(); void f2() {^}"),
"void f1(); "
"void /* entity.name.function.cpp */f2() {}");
}
TWEAK_TEST(ExpandMacro);
TEST_F(ExpandMacroTest, Test) {
Header = R"cpp(
// error-ok: not real c++, just token manipulation
#define FOO 1 2 3
#define FUNC(X) X+X+X
#define EMPTY
#define EMPTY_FN(X)
)cpp";
// Available on macro names, not available anywhere else.
EXPECT_AVAILABLE("^F^O^O^ BAR ^F^O^O^");
EXPECT_AVAILABLE("^F^U^N^C^(1)");
EXPECT_UNAVAILABLE("^#^d^efine^ ^XY^Z 1 ^2 ^3^");
EXPECT_UNAVAILABLE("FOO ^B^A^R^ FOO ^");
EXPECT_UNAVAILABLE("FUNC(^1^)^");
// Works as expected on object-like macros.
EXPECT_EQ(apply("^FOO BAR FOO"), "1 2 3 BAR FOO");
EXPECT_EQ(apply("FOO BAR ^FOO"), "FOO BAR 1 2 3");
// And function-like macros.
EXPECT_EQ(apply("F^UNC(2)"), "2 + 2 + 2");
// Works on empty macros.
EXPECT_EQ(apply("int a ^EMPTY;"), "int a ;");
EXPECT_EQ(apply("int a ^EMPTY_FN(1 2 3);"), "int a ;");
EXPECT_EQ(apply("int a = 123 ^EMPTY EMPTY_FN(1);"),
"int a = 123 EMPTY_FN(1);");
EXPECT_EQ(apply("int a = 123 ^EMPTY_FN(1) EMPTY;"), "int a = 123 EMPTY;");
EXPECT_EQ(apply("int a = 123 EMPTY_FN(1) ^EMPTY;"),
"int a = 123 EMPTY_FN(1) ;");
}
TWEAK_TEST(ExpandAutoType);
TEST_F(ExpandAutoTypeTest, Test) {
Header = R"cpp(
namespace ns {
struct Class {
struct Nested {};
};
void Func();
}
inline namespace inl_ns {
namespace {
struct Visible {};
}
}
)cpp";
EXPECT_AVAILABLE("^a^u^t^o^ i = 0;");
EXPECT_UNAVAILABLE("auto ^i^ ^=^ ^0^;^");
// check primitive type
EXPECT_EQ(apply("[[auto]] i = 0;"), "int i = 0;");
EXPECT_EQ(apply("au^to i = 0;"), "int i = 0;");
// check classes and namespaces
EXPECT_EQ(apply("^auto C = ns::Class::Nested();"),
"ns::Class::Nested C = ns::Class::Nested();");
// check that namespaces are shortened
EXPECT_EQ(apply("namespace ns { void f() { ^auto C = Class(); } }"),
"namespace ns { void f() { Class C = Class(); } }");
// undefined functions should not be replaced
EXPECT_THAT(apply("au^to x = doesnt_exist(); // error-ok"),
StartsWith("fail: Could not deduce type for 'auto' type"));
// function pointers should not be replaced
EXPECT_THAT(apply("au^to x = &ns::Func;"),
StartsWith("fail: Could not expand type of function pointer"));
// lambda types are not replaced
EXPECT_THAT(apply("au^to x = []{};"),
StartsWith("fail: Could not expand type of lambda expression"));
// inline namespaces
EXPECT_EQ(apply("au^to x = inl_ns::Visible();"),
"Visible x = inl_ns::Visible();");
// local class
EXPECT_EQ(apply("namespace x { void y() { struct S{}; ^auto z = S(); } }"),
"namespace x { void y() { struct S{}; S z = S(); } }");
// replace array types
EXPECT_EQ(apply(R"cpp(au^to x = "test";)cpp"),
R"cpp(const char * x = "test";)cpp");
EXPECT_UNAVAILABLE("dec^ltype(au^to) x = 10;");
// FIXME: Auto-completion in a template requires disabling delayed template
// parsing.
ExtraArgs.push_back("-fno-delayed-template-parsing");
// unknown types in a template should not be replaced
EXPECT_THAT(apply("template <typename T> void x() { ^auto y = T::z(); }"),
StartsWith("fail: Could not deduce type for 'auto' type"));
}
TWEAK_TEST(ExtractFunction);
TEST_F(ExtractFunctionTest, FunctionTest) {
Context = Function;
// Root statements should have common parent.
EXPECT_EQ(apply("for(;;) [[1+2; 1+2;]]"), "unavailable");
// Expressions aren't extracted.
EXPECT_EQ(apply("int x = 0; [[x++;]]"), "unavailable");
// We don't support extraction from lambdas.
EXPECT_EQ(apply("auto lam = [](){ [[int x;]] }; "), "unavailable");
// Partial statements aren't extracted.
EXPECT_THAT(apply("int [[x = 0]];"), "unavailable");
// Ensure that end of Zone and Beginning of PostZone being adjacent doesn't
// lead to break being included in the extraction zone.
EXPECT_THAT(apply("for(;;) { [[int x;]]break; }"), HasSubstr("extracted"));
// FIXME: ExtractFunction should be unavailable inside loop construct
// initializer/condition.
EXPECT_THAT(apply(" for([[int i = 0;]];);"), HasSubstr("extracted"));
// Don't extract because needs hoisting.
EXPECT_THAT(apply(" [[int a = 5;]] a++; "), StartsWith("fail"));
// Extract certain return
EXPECT_THAT(apply(" if(true) [[{ return; }]] "), HasSubstr("extracted"));
// Don't extract uncertain return
EXPECT_THAT(apply(" if(true) [[if (false) return;]] "), StartsWith("fail"));
}
TEST_F(ExtractFunctionTest, FileTest) {
// Check all parameters are in order
std::string ParameterCheckInput = R"cpp(
struct Foo {
int x;
};
void f(int a) {
int b;
int *ptr = &a;
Foo foo;
[[a += foo.x + b;
*ptr++;]]
})cpp";
std::string ParameterCheckOutput = R"cpp(
struct Foo {
int x;
};
void extracted(int &a, int &b, int * &ptr, Foo &foo) {
a += foo.x + b;
*ptr++;
}
void f(int a) {
int b;
int *ptr = &a;
Foo foo;
extracted(a, b, ptr, foo);
})cpp";
EXPECT_EQ(apply(ParameterCheckInput), ParameterCheckOutput);
// Check const qualifier
std::string ConstCheckInput = R"cpp(
void f(const int c) {
[[while(c) {}]]
})cpp";
std::string ConstCheckOutput = R"cpp(
void extracted(const int &c) {
while(c) {}
}
void f(const int c) {
extracted(c);
})cpp";
EXPECT_EQ(apply(ConstCheckInput), ConstCheckOutput);
// Don't extract when we need to make a function as a parameter.
EXPECT_THAT(apply("void f() { [[int a; f();]] }"), StartsWith("fail"));
// We don't extract from methods for now since they may involve multi-file
// edits
std::string MethodFailInput = R"cpp(
class T {
void f() {
[[int x;]]
}
};
)cpp";
EXPECT_EQ(apply(MethodFailInput), "unavailable");
// We don't extract from templated functions for now as templates are hard
// to deal with.
std::string TemplateFailInput = R"cpp(
template<typename T>
void f() {
[[int x;]]
}
)cpp";
EXPECT_EQ(apply(TemplateFailInput), "unavailable");
std::string MacroInput = R"cpp(
#define F(BODY) void f() { BODY }
F ([[int x = 0;]])
)cpp";
std::string MacroOutput = R"cpp(
#define F(BODY) void f() { BODY }
void extracted() {
int x = 0;
}
F (extracted();)
)cpp";
EXPECT_EQ(apply(MacroInput), MacroOutput);
// Shouldn't crash.
EXPECT_EQ(apply("void f([[int a]]);"), "unavailable");
// Don't extract if we select the entire function body (CompoundStmt).
std::string CompoundFailInput = R"cpp(
void f() [[{
int a;
}]]
)cpp";
EXPECT_EQ(apply(CompoundFailInput), "unavailable");
}
TEST_F(ExtractFunctionTest, ControlFlow) {
Context = Function;
// We should be able to extract break/continue with a parent loop/switch.
EXPECT_THAT(apply(" [[for(;;) if(1) break;]] "), HasSubstr("extracted"));
EXPECT_THAT(apply(" for(;;) [[while(1) break;]] "), HasSubstr("extracted"));
EXPECT_THAT(apply(" [[switch(1) { break; }]]"), HasSubstr("extracted"));
EXPECT_THAT(apply(" [[while(1) switch(1) { continue; }]]"),
HasSubstr("extracted"));
// Don't extract break and continue without a loop/switch parent.
EXPECT_THAT(apply(" for(;;) [[if(1) continue;]] "), StartsWith("fail"));
EXPECT_THAT(apply(" while(1) [[if(1) break;]] "), StartsWith("fail"));
EXPECT_THAT(apply(" switch(1) { [[break;]] }"), StartsWith("fail"));
EXPECT_THAT(apply(" for(;;) { [[while(1) break; break;]] }"),
StartsWith("fail"));
}
TEST_F(ExtractFunctionTest, ExistingReturnStatement) {
Context = File;
const char* Before = R"cpp(
bool lucky(int N);
int getNum(bool Superstitious, int Min, int Max) {
if (Superstitious) [[{
for (int I = Min; I <= Max; ++I)
if (lucky(I))
return I;
return -1;
}]] else {
return (Min + Max) / 2;
}
}
)cpp";
// FIXME: min/max should be by value.
// FIXME: avoid emitting redundant braces
const char* After = R"cpp(
bool lucky(int N);
int extracted(int &Min, int &Max) {
{
for (int I = Min; I <= Max; ++I)
if (lucky(I))
return I;
return -1;
}
}
int getNum(bool Superstitious, int Min, int Max) {
if (Superstitious) return extracted(Min, Max); else {
return (Min + Max) / 2;
}
}
)cpp";
EXPECT_EQ(apply(Before), After);
}
TWEAK_TEST(RemoveUsingNamespace);
TEST_F(RemoveUsingNamespaceTest, All) {
std::pair<llvm::StringRef /*Input*/, llvm::StringRef /*Expected*/> Cases[] = {
{// Remove all occurrences of ns. Qualify only unqualified.
R"cpp(
namespace ns1 { struct vector {}; }
namespace ns2 { struct map {}; }
using namespace n^s1;
using namespace ns2;
using namespace ns1;
int main() {
ns1::vector v1;
vector v2;
map m1;
}
)cpp",
R"cpp(
namespace ns1 { struct vector {}; }
namespace ns2 { struct map {}; }
using namespace ns2;
int main() {
ns1::vector v1;
ns1::vector v2;
map m1;
}
)cpp"},
{// Ident to be qualified is a macro arg.
R"cpp(
#define DECLARE(x, y) x y
namespace ns { struct vector {}; }
using namespace n^s;
int main() {
DECLARE(ns::vector, v1);
DECLARE(vector, v2);
}
)cpp",
R"cpp(
#define DECLARE(x, y) x y
namespace ns { struct vector {}; }
int main() {
DECLARE(ns::vector, v1);
DECLARE(ns::vector, v2);
}
)cpp"},
{// Nested namespace: Fully qualify ident from inner ns.
R"cpp(
namespace aa { namespace bb { struct map {}; }}
using namespace aa::b^b;
int main() {
map m;
}
)cpp",
R"cpp(
namespace aa { namespace bb { struct map {}; }}
int main() {
aa::bb::map m;
}
)cpp"},
{// Nested namespace: Fully qualify ident from inner ns.
R"cpp(
namespace aa { namespace bb { struct map {}; }}
using namespace a^a;
int main() {
bb::map m;
}
)cpp",
R"cpp(
namespace aa { namespace bb { struct map {}; }}
int main() {
aa::bb::map m;
}
)cpp"},
{// Typedef.
R"cpp(
namespace aa { namespace bb { struct map {}; }}
using namespace a^a;
typedef bb::map map;
int main() { map M; }
)cpp",
R"cpp(
namespace aa { namespace bb { struct map {}; }}
typedef aa::bb::map map;
int main() { map M; }
)cpp"},
{// FIXME: Nested namespaces: Not aware of using ns decl of outer ns.
R"cpp(
namespace aa { namespace bb { struct map {}; }}
using name[[space aa::b]]b;
using namespace aa;
int main() {
map m;
}
)cpp",
R"cpp(
namespace aa { namespace bb { struct map {}; }}
using namespace aa;
int main() {
aa::bb::map m;
}
)cpp"},
{// Does not qualify ident from inner namespace.
R"cpp(
namespace aa { namespace bb { struct map {}; }}
using namespace aa::bb;
using namespace a^a;
int main() {
map m;
}
)cpp",
R"cpp(
namespace aa { namespace bb { struct map {}; }}
using namespace aa::bb;
int main() {
map m;
}
)cpp"},
{// Available only for top level namespace decl.
R"cpp(
namespace aa {
namespace bb { struct map {}; }
using namespace b^b;
}
int main() { aa::map m; }
)cpp",
"unavailable"},
{// FIXME: Unavailable for namespaces containing using-namespace decl.
R"cpp(
namespace aa {
namespace bb { struct map {}; }
using namespace bb;
}
using namespace a^a;
int main() {
map m;
}
)cpp",
"unavailable"},
{R"cpp(
namespace a::b { struct Foo {}; }
using namespace a;
using namespace a::[[b]];
using namespace b;
int main() { Foo F;}
)cpp",
R"cpp(
namespace a::b { struct Foo {}; }
using namespace a;
int main() { a::b::Foo F;}
)cpp"},
{R"cpp(
namespace a::b { struct Foo {}; }
using namespace a;
using namespace a::b;
using namespace [[b]];
int main() { Foo F;}
)cpp",
R"cpp(
namespace a::b { struct Foo {}; }
using namespace a;
int main() { b::Foo F;}
)cpp"},
{// Enumerators.
R"cpp(
namespace tokens {
enum Token {
comma, identifier, numeric
};
}
using namespace tok^ens;
int main() {
auto x = comma;
}
)cpp",
R"cpp(
namespace tokens {
enum Token {
comma, identifier, numeric
};
}
int main() {
auto x = tokens::comma;
}
)cpp"},
{// inline namespaces.
R"cpp(
namespace std { inline namespace ns1 { inline namespace ns2 { struct vector {}; }}}
using namespace st^d;
int main() {
vector V;
}
)cpp",
R"cpp(
namespace std { inline namespace ns1 { inline namespace ns2 { struct vector {}; }}}
int main() {
std::vector V;
}
)cpp"}};
for (auto C : Cases)
EXPECT_EQ(C.second, apply(C.first)) << C.first;
}
TWEAK_TEST(DefineInline);
TEST_F(DefineInlineTest, TriggersOnFunctionDecl) {
// Basic check for function body and signature.
EXPECT_AVAILABLE(R"cpp(
class Bar {
void baz();
};
[[void [[Bar::[[b^a^z]]]]() [[{
return;
}]]]]
void foo();
[[void [[f^o^o]]() [[{
return;
}]]]]
)cpp");
EXPECT_UNAVAILABLE(R"cpp(
// Not a definition
vo^i[[d^ ^f]]^oo();
[[vo^id ]]foo[[()]] {[[
[[(void)(5+3);
return;]]
}]]
// Definition with no body.
class Bar { Bar() = def^ault; };
)cpp");
}
TEST_F(DefineInlineTest, NoForwardDecl) {
Header = "void bar();";
EXPECT_UNAVAILABLE(R"cpp(
void bar() {
return;
}
// FIXME: Generate a decl in the header.
void fo^o() {
return;
})cpp");
}
TEST_F(DefineInlineTest, ReferencedDecls) {
EXPECT_AVAILABLE(R"cpp(
void bar();
void foo(int test);
void fo^o(int baz) {
int x = 10;
bar();
})cpp");
// Internal symbol usage.
Header = "void foo(int test);";
EXPECT_UNAVAILABLE(R"cpp(
void bar();
void fo^o(int baz) {
int x = 10;
bar();
})cpp");
// Becomes available after making symbol visible.
Header = "void bar();" + Header;
EXPECT_AVAILABLE(R"cpp(
void fo^o(int baz) {
int x = 10;
bar();
})cpp");
// FIXME: Move declaration below bar to make it visible.
Header.clear();
EXPECT_UNAVAILABLE(R"cpp(
void foo();
void bar();
void fo^o() {
bar();
})cpp");
// Order doesn't matter within a class.
EXPECT_AVAILABLE(R"cpp(
class Bar {
void foo();
void bar();
};
void Bar::fo^o() {
bar();
})cpp");
// FIXME: Perform include insertion to make symbol visible.
ExtraFiles["a.h"] = "void bar();";
Header = "void foo(int test);";
EXPECT_UNAVAILABLE(R"cpp(
#include "a.h"
void fo^o(int baz) {
int x = 10;
bar();
})cpp");
}
TEST_F(DefineInlineTest, TemplateSpec) {
EXPECT_UNAVAILABLE(R"cpp(
template <typename T> void foo();
template<> void foo<char>();
template<> void f^oo<int>() {
})cpp");
EXPECT_UNAVAILABLE(R"cpp(
template <typename T> void foo();
template<> void f^oo<int>() {
})cpp");
EXPECT_UNAVAILABLE(R"cpp(
template <typename T> struct Foo { void foo(); };
template <typename T> void Foo<T>::f^oo() {
})cpp");
EXPECT_AVAILABLE(R"cpp(
template <typename T> void foo();
void bar();
template <> void foo<int>();
template<> void f^oo<int>() {
bar();
})cpp");
}
TEST_F(DefineInlineTest, CheckForCanonDecl) {
EXPECT_UNAVAILABLE(R"cpp(
void foo();
void bar() {}
void f^oo() {
// This bar normally refers to the definition just above, but it is not
// visible from the forward declaration of foo.
bar();
})cpp");
// Make it available with a forward decl.
EXPECT_AVAILABLE(R"cpp(
void bar();
void foo();
void bar() {}
void f^oo() {
bar();
})cpp");
}
TEST_F(DefineInlineTest, UsingShadowDecls) {
// Template body is not parsed until instantiation time on windows, which
// results in arbitrary failures as function body becomes NULL.
ExtraArgs.push_back("-fno-delayed-template-parsing");
EXPECT_UNAVAILABLE(R"cpp(
namespace ns1 { void foo(int); }
namespace ns2 { void foo(int*); }
template <typename T>
void bar();
using ns1::foo;
using ns2::foo;
template <typename T>
void b^ar() {
foo(T());
})cpp");
}
TEST_F(DefineInlineTest, TransformNestedNamespaces) {
auto Test = R"cpp(
namespace a {
void bar();
namespace b {
void baz();
namespace c {
void aux();
}
}
}
void foo();
using namespace a;
using namespace b;
using namespace c;
void f^oo() {
bar();
a::bar();
baz();
b::baz();
a::b::baz();
aux();
c::aux();
b::c::aux();
a::b::c::aux();
})cpp";
auto Expected = R"cpp(
namespace a {
void bar();
namespace b {
void baz();
namespace c {
void aux();
}
}
}
void foo(){
a::bar();
a::bar();
a::b::baz();
a::b::baz();
a::b::baz();
a::b::c::aux();
a::b::c::aux();
a::b::c::aux();
a::b::c::aux();
}
using namespace a;
using namespace b;
using namespace c;
)cpp";
EXPECT_EQ(apply(Test), Expected);
}
TEST_F(DefineInlineTest, TransformUsings) {
auto Test = R"cpp(
namespace a { namespace b { namespace c { void aux(); } } }
void foo();
void f^oo() {
using namespace a;
using namespace b;
using namespace c;
using c::aux;
namespace d = c;
})cpp";
auto Expected = R"cpp(
namespace a { namespace b { namespace c { void aux(); } } }
void foo(){
using namespace a;
using namespace a::b;
using namespace a::b::c;
using a::b::c::aux;
namespace d = a::b::c;
}
)cpp";
EXPECT_EQ(apply(Test), Expected);
}
TEST_F(DefineInlineTest, TransformDecls) {
auto Test = R"cpp(
void foo();
void f^oo() {
class Foo {
public:
void foo();
int x;
};
enum En { Zero, One };
En x = Zero;
enum class EnClass { Zero, One };
EnClass y = EnClass::Zero;
})cpp";
auto Expected = R"cpp(
void foo(){
class Foo {
public:
void foo();
int x;
};
enum En { Zero, One };
En x = Zero;
enum class EnClass { Zero, One };
EnClass y = EnClass::Zero;
}
)cpp";
EXPECT_EQ(apply(Test), Expected);
}
TEST_F(DefineInlineTest, TransformTemplDecls) {
auto Test = R"cpp(
namespace a {
template <typename T> class Bar {
public:
void bar();
};
template <typename T> T bar;
template <typename T> void aux() {}
}
void foo();
using namespace a;
void f^oo() {
bar<Bar<int>>.bar();
aux<Bar<int>>();
})cpp";
auto Expected = R"cpp(
namespace a {
template <typename T> class Bar {
public:
void bar();
};
template <typename T> T bar;
template <typename T> void aux() {}
}
void foo(){
a::bar<a::Bar<int>>.bar();
a::aux<a::Bar<int>>();
}
using namespace a;
)cpp";
EXPECT_EQ(apply(Test), Expected);
}
TEST_F(DefineInlineTest, TransformMembers) {
auto Test = R"cpp(
class Foo {
void foo();
};
void Foo::f^oo() {
return;
})cpp";
auto Expected = R"cpp(
class Foo {
void foo(){
return;
}
};
)cpp";
EXPECT_EQ(apply(Test), Expected);
ExtraFiles["a.h"] = R"cpp(
class Foo {
void foo();
};)cpp";
llvm::StringMap<std::string> EditedFiles;
Test = R"cpp(
#include "a.h"
void Foo::f^oo() {
return;
})cpp";
Expected = R"cpp(
#include "a.h"
)cpp";
EXPECT_EQ(apply(Test, &EditedFiles), Expected);
Expected = R"cpp(
class Foo {
void foo(){
return;
}
};)cpp";
EXPECT_THAT(EditedFiles,
ElementsAre(FileWithContents(testPath("a.h"), Expected)));
}
TEST_F(DefineInlineTest, TransformDependentTypes) {
auto Test = R"cpp(
namespace a {
template <typename T> class Bar {};
}
template <typename T>
void foo();
using namespace a;
template <typename T>
void f^oo() {
Bar<T> B;
Bar<Bar<T>> q;
})cpp";
auto Expected = R"cpp(
namespace a {
template <typename T> class Bar {};
}
template <typename T>
void foo(){
a::Bar<T> B;
a::Bar<a::Bar<T>> q;
}
using namespace a;
)cpp";
// Template body is not parsed until instantiation time on windows, which
// results in arbitrary failures as function body becomes NULL.
ExtraArgs.push_back("-fno-delayed-template-parsing");
EXPECT_EQ(apply(Test), Expected);
}
TEST_F(DefineInlineTest, TransformFunctionTempls) {
// Check we select correct specialization decl.
std::pair<llvm::StringRef, llvm::StringRef> Cases[] = {
{R"cpp(
template <typename T>
void foo(T p);
template <>
void foo<int>(int p);
template <>
void foo<char>(char p);
template <>
void fo^o<int>(int p) {
return;
})cpp",
R"cpp(
template <typename T>
void foo(T p);
template <>
void foo<int>(int p){
return;
}
template <>
void foo<char>(char p);
)cpp"},
{// Make sure we are not selecting the first specialization all the time.
R"cpp(
template <typename T>
void foo(T p);
template <>
void foo<int>(int p);
template <>
void foo<char>(char p);
template <>
void fo^o<char>(char p) {
return;
})cpp",
R"cpp(
template <typename T>
void foo(T p);
template <>
void foo<int>(int p);
template <>
void foo<char>(char p){
return;
}
)cpp"},
{R"cpp(
template <typename T>
void foo(T p);
template <>
void foo<int>(int p);
template <typename T>
void fo^o(T p) {
return;
})cpp",
R"cpp(
template <typename T>
void foo(T p){
return;
}
template <>
void foo<int>(int p);
)cpp"},
};
// Template body is not parsed until instantiation time on windows, which
// results in arbitrary failures as function body becomes NULL.
ExtraArgs.push_back("-fno-delayed-template-parsing");
for (const auto &Case : Cases)
EXPECT_EQ(apply(Case.first), Case.second) << Case.first;
}
TEST_F(DefineInlineTest, TransformTypeLocs) {
auto Test = R"cpp(
namespace a {
template <typename T> class Bar {
public:
template <typename Q> class Baz {};
};
class Foo{};
}
void foo();
using namespace a;
void f^oo() {
Bar<int> B;
Foo foo;
a::Bar<Bar<int>>::Baz<Bar<int>> q;
})cpp";
auto Expected = R"cpp(
namespace a {
template <typename T> class Bar {
public:
template <typename Q> class Baz {};
};
class Foo{};
}
void foo(){
a::Bar<int> B;
a::Foo foo;
a::Bar<a::Bar<int>>::Baz<a::Bar<int>> q;
}
using namespace a;
)cpp";
EXPECT_EQ(apply(Test), Expected);
}
TEST_F(DefineInlineTest, TransformDeclRefs) {
auto Test = R"cpp(
namespace a {
template <typename T> class Bar {
public:
void foo();
static void bar();
int x;
static int y;
};
void bar();
void test();
}
void foo();
using namespace a;
void f^oo() {
a::Bar<int> B;
B.foo();
a::bar();
Bar<Bar<int>>::bar();
a::Bar<int>::bar();
B.x = Bar<int>::y;
Bar<int>::y = 3;
bar();
a::test();
})cpp";
auto Expected = R"cpp(
namespace a {
template <typename T> class Bar {
public:
void foo();
static void bar();
int x;
static int y;
};
void bar();
void test();
}
void foo(){
a::Bar<int> B;
B.foo();
a::bar();
a::Bar<a::Bar<int>>::bar();
a::Bar<int>::bar();
B.x = a::Bar<int>::y;
a::Bar<int>::y = 3;
a::bar();
a::test();
}
using namespace a;
)cpp";
EXPECT_EQ(apply(Test), Expected);
}
TEST_F(DefineInlineTest, StaticMembers) {
auto Test = R"cpp(
namespace ns { class X { static void foo(); void bar(); }; }
void ns::X::b^ar() {
foo();
})cpp";
auto Expected = R"cpp(
namespace ns { class X { static void foo(); void bar(){
foo();
} }; }
)cpp";
EXPECT_EQ(apply(Test), Expected);
}
TEST_F(DefineInlineTest, TransformParamNames) {
std::pair<llvm::StringRef, llvm::StringRef> Cases[] = {
{R"cpp(
void foo(int, bool b, int T\
est);
void ^foo(int f, bool x, int z) {})cpp",
R"cpp(
void foo(int f, bool x, int z){}
)cpp"},
{R"cpp(
#define PARAM int Z
void foo(PARAM);
void ^foo(int X) {})cpp",
"fail: Cant rename parameter inside macro body."},
{R"cpp(
#define TYPE int
#define PARAM TYPE Z
#define BODY(x) 5 * (x) + 2
template <int P>
void foo(PARAM, TYPE Q, TYPE, TYPE W = BODY(P));
template <int x>
void ^foo(int Z, int b, int c, int d) {})cpp",
R"cpp(
#define TYPE int
#define PARAM TYPE Z
#define BODY(x) 5 * (x) + 2
template <int x>
void foo(PARAM, TYPE b, TYPE c, TYPE d = BODY(x)){}
)cpp"},
};
ExtraArgs.push_back("-fno-delayed-template-parsing");
for (const auto &Case : Cases)
EXPECT_EQ(apply(Case.first), Case.second) << Case.first;
}
TEST_F(DefineInlineTest, TransformTemplParamNames) {
auto Test = R"cpp(
struct Foo {
struct Bar {
template <class, class X,
template<typename> class, template<typename> class Y,
int, int Z>
void foo(X, Y<X>, int W = 5 * Z + 2);
};
};
template <class T, class U,
template<typename> class V, template<typename> class W,
int X, int Y>
void Foo::Bar::f^oo(U, W<U>, int Q) {})cpp";
auto Expected = R"cpp(
struct Foo {
struct Bar {
template <class T, class U,
template<typename> class V, template<typename> class W,
int X, int Y>
void foo(U, W<U>, int Q = 5 * Y + 2){}
};
};
)cpp";
ExtraArgs.push_back("-fno-delayed-template-parsing");
EXPECT_EQ(apply(Test), Expected);
}
TEST_F(DefineInlineTest, TransformInlineNamespaces) {
auto Test = R"cpp(
namespace a { inline namespace b { namespace { struct Foo{}; } } }
void foo();
using namespace a;
void ^foo() {Foo foo;})cpp";
auto Expected = R"cpp(
namespace a { inline namespace b { namespace { struct Foo{}; } } }
void foo(){a::Foo foo;}
using namespace a;
)cpp";
EXPECT_EQ(apply(Test), Expected);
}
TEST_F(DefineInlineTest, TokensBeforeSemicolon) {
std::pair<llvm::StringRef, llvm::StringRef> Cases[] = {
{R"cpp(
void foo() /*Comment -_-*/ /*Com 2*/ ;
void fo^o() { return ; })cpp",
R"cpp(
void foo() /*Comment -_-*/ /*Com 2*/ { return ; }
)cpp"},
{R"cpp(
void foo();
void fo^o() { return ; })cpp",
R"cpp(
void foo(){ return ; }
)cpp"},
{R"cpp(
#define SEMI ;
void foo() SEMI
void fo^o() { return ; })cpp",
"fail: Couldn't find semicolon for target declaration."},
};
for (const auto &Case : Cases)
EXPECT_EQ(apply(Case.first), Case.second) << Case.first;
}
TEST_F(DefineInlineTest, HandleMacros) {
EXPECT_UNAVAILABLE(R"cpp(
#define BODY { return; }
void foo();
void f^oo()BODY)cpp");
EXPECT_UNAVAILABLE(R"cpp(
#define BODY void foo(){ return; }
void foo();
[[BODY]])cpp");
std::pair<llvm::StringRef, llvm::StringRef> Cases[] = {
// We don't qualify declarations coming from macros.
{R"cpp(
#define BODY Foo
namespace a { class Foo{}; }
void foo();
using namespace a;
void f^oo(){BODY();})cpp",
R"cpp(
#define BODY Foo
namespace a { class Foo{}; }
void foo(){BODY();}
using namespace a;
)cpp"},
// Macro is not visible at declaration location, but we proceed.
{R"cpp(
void foo();
#define BODY return;
void f^oo(){BODY})cpp",
R"cpp(
void foo(){BODY}
#define BODY return;
)cpp"},
{R"cpp(
#define TARGET void foo()
TARGET;
void f^oo(){ return; })cpp",
R"cpp(
#define TARGET void foo()
TARGET{ return; }
)cpp"},
{R"cpp(
#define TARGET foo
void TARGET();
void f^oo(){ return; })cpp",
R"cpp(
#define TARGET foo
void TARGET(){ return; }
)cpp"},
};
for (const auto &Case : Cases)
EXPECT_EQ(apply(Case.first), Case.second) << Case.first;
}
TEST_F(DefineInlineTest, DropCommonNameSpecifiers) {
struct {
llvm::StringRef Test;
llvm::StringRef Expected;
} Cases[] = {
{R"cpp(
namespace a { namespace b { void aux(); } }
namespace ns1 {
void foo();
namespace qq { void test(); }
namespace ns2 {
void bar();
namespace ns3 { void baz(); }
}
}
using namespace a;
using namespace a::b;
using namespace ns1::qq;
void ns1::ns2::ns3::b^az() {
foo();
bar();
baz();
ns1::ns2::ns3::baz();
aux();
test();
})cpp",
R"cpp(
namespace a { namespace b { void aux(); } }
namespace ns1 {
void foo();
namespace qq { void test(); }
namespace ns2 {
void bar();
namespace ns3 { void baz(){
foo();
bar();
baz();
ns1::ns2::ns3::baz();
a::b::aux();
qq::test();
} }
}
}
using namespace a;
using namespace a::b;
using namespace ns1::qq;
)cpp"},
{R"cpp(
namespace ns1 {
namespace qq { struct Foo { struct Bar {}; }; using B = Foo::Bar; }
namespace ns2 { void baz(); }
}
using namespace ns1::qq;
void ns1::ns2::b^az() { Foo f; B b; })cpp",
R"cpp(
namespace ns1 {
namespace qq { struct Foo { struct Bar {}; }; using B = Foo::Bar; }
namespace ns2 { void baz(){ qq::Foo f; qq::B b; } }
}
using namespace ns1::qq;
)cpp"},
{R"cpp(
namespace ns1 {
namespace qq {
template<class T> struct Foo { template <class U> struct Bar {}; };
template<class T, class U>
using B = typename Foo<T>::template Bar<U>;
}
namespace ns2 { void baz(); }
}
using namespace ns1::qq;
void ns1::ns2::b^az() { B<int, bool> b; })cpp",
R"cpp(
namespace ns1 {
namespace qq {
template<class T> struct Foo { template <class U> struct Bar {}; };
template<class T, class U>
using B = typename Foo<T>::template Bar<U>;
}
namespace ns2 { void baz(){ qq::B<int, bool> b; } }
}
using namespace ns1::qq;
)cpp"},
};
for (const auto &Case : Cases)
EXPECT_EQ(apply(Case.Test), Case.Expected) << Case.Test;
}
TEST_F(DefineInlineTest, QualifyWithUsingDirectives) {
llvm::StringRef Test = R"cpp(
namespace a {
void bar();
namespace b { struct Foo{}; void aux(); }
namespace c { void cux(); }
}
using namespace a;
using X = b::Foo;
void foo();
using namespace b;
using namespace c;
void ^foo() {
cux();
bar();
X x;
aux();
using namespace c;
// FIXME: The last reference to cux() in body of foo should not be
// qualified, since there is a using directive inside the function body.
cux();
})cpp";
llvm::StringRef Expected = R"cpp(
namespace a {
void bar();
namespace b { struct Foo{}; void aux(); }
namespace c { void cux(); }
}
using namespace a;
using X = b::Foo;
void foo(){
c::cux();
bar();
X x;
b::aux();
using namespace c;
// FIXME: The last reference to cux() in body of foo should not be
// qualified, since there is a using directive inside the function body.
c::cux();
}
using namespace b;
using namespace c;
)cpp";
EXPECT_EQ(apply(Test), Expected) << Test;
}
TEST_F(DefineInlineTest, AddInline) {
ExtraArgs.push_back("-fno-delayed-template-parsing");
llvm::StringMap<std::string> EditedFiles;
ExtraFiles["a.h"] = "void foo();";
apply(R"cpp(#include "a.h"
void fo^o() {})cpp",
&EditedFiles);
EXPECT_THAT(EditedFiles, testing::ElementsAre(FileWithContents(
testPath("a.h"), "inline void foo(){}")));
// Check we put inline before cv-qualifiers.
ExtraFiles["a.h"] = "const int foo();";
apply(R"cpp(#include "a.h"
const int fo^o() {})cpp",
&EditedFiles);
EXPECT_THAT(EditedFiles, testing::ElementsAre(FileWithContents(
testPath("a.h"), "inline const int foo(){}")));
// No double inline.
ExtraFiles["a.h"] = "inline void foo();";
apply(R"cpp(#include "a.h"
inline void fo^o() {})cpp",
&EditedFiles);
EXPECT_THAT(EditedFiles, testing::ElementsAre(FileWithContents(
testPath("a.h"), "inline void foo(){}")));
// Constexprs don't need "inline".
ExtraFiles["a.h"] = "constexpr void foo();";
apply(R"cpp(#include "a.h"
constexpr void fo^o() {})cpp",
&EditedFiles);
EXPECT_THAT(EditedFiles, testing::ElementsAre(FileWithContents(
testPath("a.h"), "constexpr void foo(){}")));
// Class members don't need "inline".
ExtraFiles["a.h"] = "struct Foo { void foo(); };";
apply(R"cpp(#include "a.h"
void Foo::fo^o() {})cpp",
&EditedFiles);
EXPECT_THAT(EditedFiles,
testing::ElementsAre(FileWithContents(
testPath("a.h"), "struct Foo { void foo(){} };")));
// Function template doesn't need to be "inline"d.
ExtraFiles["a.h"] = "template <typename T> void foo();";
apply(R"cpp(#include "a.h"
template <typename T>
void fo^o() {})cpp",
&EditedFiles);
EXPECT_THAT(EditedFiles,
testing::ElementsAre(FileWithContents(
testPath("a.h"), "template <typename T> void foo(){}")));
// Specializations needs to be marked "inline".
ExtraFiles["a.h"] = R"cpp(
template <typename T> void foo();
template <> void foo<int>();)cpp";
apply(R"cpp(#include "a.h"
template <>
void fo^o<int>() {})cpp",
&EditedFiles);
EXPECT_THAT(EditedFiles,
testing::ElementsAre(FileWithContents(testPath("a.h"),
R"cpp(
template <typename T> void foo();
template <> inline void foo<int>(){})cpp")));
}
TWEAK_TEST(DefineOutline);
TEST_F(DefineOutlineTest, TriggersOnFunctionDecl) {
FileName = "Test.cpp";
// Not available unless in a header file.
EXPECT_UNAVAILABLE(R"cpp(
[[void [[f^o^o]]() [[{
return;
}]]]])cpp");
FileName = "Test.hpp";
// Not available unless function name or fully body is selected.
EXPECT_UNAVAILABLE(R"cpp(
// Not a definition
vo^i[[d^ ^f]]^oo();
[[vo^id ]]foo[[()]] {[[
[[(void)(5+3);
return;]]
}]])cpp");
// Available even if there are no implementation files.
EXPECT_AVAILABLE(R"cpp(
[[void [[f^o^o]]() [[{
return;
}]]]])cpp");
// Not available for out-of-line methods.
EXPECT_UNAVAILABLE(R"cpp(
class Bar {
void baz();
};
[[void [[Bar::[[b^a^z]]]]() [[{
return;
}]]]])cpp");
// Basic check for function body and signature.
EXPECT_AVAILABLE(R"cpp(
class Bar {
[[void [[f^o^o^]]() [[{ return; }]]]]
};
void foo();
[[void [[f^o^o]]() [[{
return;
}]]]])cpp");
// Not available on defaulted/deleted members.
EXPECT_UNAVAILABLE(R"cpp(
class Foo {
Fo^o() = default;
F^oo(const Foo&) = delete;
};)cpp");
// Not available within templated classes, as it is hard to spell class name
// out-of-line in such cases.
EXPECT_UNAVAILABLE(R"cpp(
template <typename> struct Foo { void fo^o(){} };
)cpp");
}
TEST_F(DefineOutlineTest, FailsWithoutSource) {
FileName = "Test.hpp";
llvm::StringRef Test = "void fo^o() { return; }";
llvm::StringRef Expected =
"fail: Couldn't find a suitable implementation file.";
EXPECT_EQ(apply(Test), Expected);
}
TEST_F(DefineOutlineTest, ApplyTest) {
llvm::StringMap<std::string> EditedFiles;
ExtraFiles["Test.cpp"] = "";
FileName = "Test.hpp";
// Template body is not parsed until instantiation time on windows, which
// results in arbitrary failures as function body becomes NULL.
ExtraArgs.push_back("-fno-delayed-template-parsing");
struct {
llvm::StringRef Test;
llvm::StringRef ExpectedHeader;
llvm::StringRef ExpectedSource;
} Cases[] = {
// Simple check
{
"void fo^o() { return; }",
"void foo() ;",
"void foo() { return; }",
},
// Templated function.
{
"template <typename T> void fo^o(T, T x) { return; }",
"template <typename T> void foo(T, T x) ;",
"template <typename T> void foo(T, T x) { return; }",
},
{
"template <typename> void fo^o() { return; }",
"template <typename> void foo() ;",
"template <typename> void foo() { return; }",
},
// Template specialization.
{
R"cpp(
template <typename> void foo();
template <> void fo^o<int>() { return; })cpp",
R"cpp(
template <typename> void foo();
template <> void foo<int>() ;)cpp",
"template <> void foo<int>() { return; }",
},
// Default args.
{
"void fo^o(int x, int y = 5, int = 2, int (*foo)(int) = nullptr) {}",
"void foo(int x, int y = 5, int = 2, int (*foo)(int) = nullptr) ;",
"void foo(int x, int y , int , int (*foo)(int) ) {}",
},
// Ctor initializers.
{
R"cpp(
class Foo {
int y = 2;
F^oo(int z) __attribute__((weak)) : bar(2){}
int bar;
int z = 2;
};)cpp",
R"cpp(
class Foo {
int y = 2;
Foo(int z) __attribute__((weak)) ;
int bar;
int z = 2;
};)cpp",
"Foo::Foo(int z) __attribute__((weak)) : bar(2){}\n",
},
// Virt specifiers.
{
R"cpp(
struct A {
virtual void f^oo() {}
};)cpp",
R"cpp(
struct A {
virtual void foo() ;
};)cpp",
" void A::foo() {}\n",
},
{
R"cpp(
struct A {
virtual virtual void virtual f^oo() {}
};)cpp",
R"cpp(
struct A {
virtual virtual void virtual foo() ;
};)cpp",
" void A::foo() {}\n",
},
{
R"cpp(
struct A {
virtual void foo() = 0;
};
struct B : A {
void fo^o() override {}
};)cpp",
R"cpp(
struct A {
virtual void foo() = 0;
};
struct B : A {
void foo() override ;
};)cpp",
"void B::foo() {}\n",
},
{
R"cpp(
struct A {
virtual void foo() = 0;
};
struct B : A {
void fo^o() final {}
};)cpp",
R"cpp(
struct A {
virtual void foo() = 0;
};
struct B : A {
void foo() final ;
};)cpp",
"void B::foo() {}\n",
},
{
R"cpp(
struct A {
virtual void foo() = 0;
};
struct B : A {
void fo^o() final override {}
};)cpp",
R"cpp(
struct A {
virtual void foo() = 0;
};
struct B : A {
void foo() final override ;
};)cpp",
"void B::foo() {}\n",
},
};
for (const auto &Case : Cases) {
SCOPED_TRACE(Case.Test);
EXPECT_EQ(apply(Case.Test, &EditedFiles), Case.ExpectedHeader);
EXPECT_THAT(EditedFiles, testing::ElementsAre(FileWithContents(
testPath("Test.cpp"), Case.ExpectedSource)));
}
}
TEST_F(DefineOutlineTest, HandleMacros) {
llvm::StringMap<std::string> EditedFiles;
ExtraFiles["Test.cpp"] = "";
FileName = "Test.hpp";
ExtraArgs.push_back("-DVIRTUAL=virtual");
ExtraArgs.push_back("-DOVER=override");
struct {
llvm::StringRef Test;
llvm::StringRef ExpectedHeader;
llvm::StringRef ExpectedSource;
} Cases[] = {
{R"cpp(
#define BODY { return; }
void f^oo()BODY)cpp",
R"cpp(
#define BODY { return; }
void foo();)cpp",
"void foo()BODY"},
{R"cpp(
#define BODY return;
void f^oo(){BODY})cpp",
R"cpp(
#define BODY return;
void foo();)cpp",
"void foo(){BODY}"},
{R"cpp(
#define TARGET void foo()
[[TARGET]]{ return; })cpp",
R"cpp(
#define TARGET void foo()
TARGET;)cpp",
"TARGET{ return; }"},
{R"cpp(
#define TARGET foo
void [[TARGET]](){ return; })cpp",
R"cpp(
#define TARGET foo
void TARGET();)cpp",
"void TARGET(){ return; }"},
{R"cpp(#define VIRT virtual
struct A {
VIRT void f^oo() {}
};)cpp",
R"cpp(#define VIRT virtual
struct A {
VIRT void foo() ;
};)cpp",
" void A::foo() {}\n"},
{R"cpp(
struct A {
VIRTUAL void f^oo() {}
};)cpp",
R"cpp(
struct A {
VIRTUAL void foo() ;
};)cpp",
" void A::foo() {}\n"},
{R"cpp(
struct A {
virtual void foo() = 0;
};
struct B : A {
void fo^o() OVER {}
};)cpp",
R"cpp(
struct A {
virtual void foo() = 0;
};
struct B : A {
void foo() OVER ;
};)cpp",
"void B::foo() {}\n"},
{R"cpp(#define STUPID_MACRO(X) virtual
struct A {
STUPID_MACRO(sizeof sizeof int) void f^oo() {}
};)cpp",
R"cpp(#define STUPID_MACRO(X) virtual
struct A {
STUPID_MACRO(sizeof sizeof int) void foo() ;
};)cpp",
" void A::foo() {}\n"},
};
for (const auto &Case : Cases) {
SCOPED_TRACE(Case.Test);
EXPECT_EQ(apply(Case.Test, &EditedFiles), Case.ExpectedHeader);
EXPECT_THAT(EditedFiles, testing::ElementsAre(FileWithContents(
testPath("Test.cpp"), Case.ExpectedSource)));
}
}
TEST_F(DefineOutlineTest, QualifyReturnValue) {
FileName = "Test.hpp";
ExtraFiles["Test.cpp"] = "";
struct {
llvm::StringRef Test;
llvm::StringRef ExpectedHeader;
llvm::StringRef ExpectedSource;
} Cases[] = {
{R"cpp(
namespace a { class Foo{}; }
using namespace a;
Foo fo^o() { return {}; })cpp",
R"cpp(
namespace a { class Foo{}; }
using namespace a;
Foo foo() ;)cpp",
"a::Foo foo() { return {}; }"},
{R"cpp(
namespace a {
class Foo {
class Bar {};
Bar fo^o() { return {}; }
};
})cpp",
R"cpp(
namespace a {
class Foo {
class Bar {};
Bar foo() ;
};
})cpp",
"a::Foo::Bar a::Foo::foo() { return {}; }\n"},
{R"cpp(
class Foo {};
Foo fo^o() { return {}; })cpp",
R"cpp(
class Foo {};
Foo foo() ;)cpp",
"Foo foo() { return {}; }"},
};
llvm::StringMap<std::string> EditedFiles;
for (auto &Case : Cases) {
apply(Case.Test, &EditedFiles);
EXPECT_EQ(apply(Case.Test, &EditedFiles), Case.ExpectedHeader);
EXPECT_THAT(EditedFiles, testing::ElementsAre(FileWithContents(
testPath("Test.cpp"), Case.ExpectedSource)));
}
}
TEST_F(DefineOutlineTest, QualifyFunctionName) {
FileName = "Test.hpp";
struct {
llvm::StringRef TestHeader;
llvm::StringRef TestSource;
llvm::StringRef ExpectedHeader;
llvm::StringRef ExpectedSource;
} Cases[] = {
{
R"cpp(
namespace a {
namespace b {
class Foo {
void fo^o() {}
};
}
})cpp",
"",
R"cpp(
namespace a {
namespace b {
class Foo {
void foo() ;
};
}
})cpp",
"void a::b::Foo::foo() {}\n",
},
{
"namespace a { namespace b { void f^oo() {} } }",
"namespace a{}",
"namespace a { namespace b { void foo() ; } }",
"namespace a{void b::foo() {} }",
},
{
"namespace a { namespace b { void f^oo() {} } }",
"using namespace a;",
"namespace a { namespace b { void foo() ; } }",
// FIXME: Take using namespace directives in the source file into
// account. This can be spelled as b::foo instead.
"using namespace a;void a::b::foo() {} ",
},
};
llvm::StringMap<std::string> EditedFiles;
for (auto &Case : Cases) {
ExtraFiles["Test.cpp"] = std::string(Case.TestSource);
EXPECT_EQ(apply(Case.TestHeader, &EditedFiles), Case.ExpectedHeader);
EXPECT_THAT(EditedFiles, testing::ElementsAre(FileWithContents(
testPath("Test.cpp"), Case.ExpectedSource)))
<< Case.TestHeader;
}
}
TEST_F(DefineOutlineTest, FailsMacroSpecifier) {
FileName = "Test.hpp";
ExtraFiles["Test.cpp"] = "";
ExtraArgs.push_back("-DFINALOVER=final override");
std::pair<StringRef, StringRef> Cases[] = {
{
R"cpp(
#define VIRT virtual void
struct A {
VIRT fo^o() {}
};)cpp",
"fail: define outline: Can't move out of line as function has a "
"macro `virtual` specifier."},
{
R"cpp(
#define OVERFINAL final override
struct A {
virtual void foo() {}
};
struct B : A {
void fo^o() OVERFINAL {}
};)cpp",
"fail: define outline: Can't move out of line as function has a "
"macro `override` specifier.\ndefine outline: Can't move out of line "
"as function has a macro `final` specifier."},
{
R"cpp(
struct A {
virtual void foo() {}
};
struct B : A {
void fo^o() FINALOVER {}
};)cpp",
"fail: define outline: Can't move out of line as function has a "
"macro `override` specifier.\ndefine outline: Can't move out of line "
"as function has a macro `final` specifier."},
};
for (const auto &Case : Cases) {
EXPECT_EQ(apply(Case.first), Case.second);
}
}
TWEAK_TEST(AddUsing);
TEST_F(AddUsingTest, Prepare) {
const std::string Header = R"cpp(
#define NS(name) one::two::name
namespace one {
void oo() {}
namespace two {
enum ee {};
void ff() {}
class cc {
public:
struct st {};
static void mm() {}
};
}
})cpp";
EXPECT_AVAILABLE(Header + "void fun() { o^n^e^:^:^t^w^o^:^:^f^f(); }");
EXPECT_AVAILABLE(Header + "void fun() { o^n^e^::^o^o(); }");
EXPECT_AVAILABLE(Header + "void fun() { o^n^e^:^:^t^w^o^:^:^e^e E; }");
EXPECT_AVAILABLE(Header + "void fun() { o^n^e^:^:^t^w^o:^:^c^c C; }");
EXPECT_UNAVAILABLE(Header +
"void fun() { o^n^e^:^:^t^w^o^:^:^c^c^:^:^m^m(); }");
EXPECT_UNAVAILABLE(Header +
"void fun() { o^n^e^:^:^t^w^o^:^:^c^c^:^:^s^t inst; }");
EXPECT_UNAVAILABLE(Header +
"void fun() { o^n^e^:^:^t^w^o^:^:^c^c^:^:^s^t inst; }");
EXPECT_UNAVAILABLE(Header + "void fun() { N^S(c^c) inst; }");
}
TEST_F(AddUsingTest, Apply) {
FileName = "test.cpp";
struct {
llvm::StringRef TestSource;
llvm::StringRef ExpectedSource;
} Cases[]{{
// Function, no other using, namespace.
R"cpp(
#include "test.hpp"
namespace {
void fun() {
^o^n^e^:^:^t^w^o^:^:^f^f();
}
})cpp",
R"cpp(
#include "test.hpp"
namespace {using one::two::ff;
void fun() {
ff();
}
})cpp",
},
// Type, no other using, namespace.
{
R"cpp(
#include "test.hpp"
namespace {
void fun() {
::on^e::t^wo::c^c inst;
}
})cpp",
R"cpp(
#include "test.hpp"
namespace {using ::one::two::cc;
void fun() {
cc inst;
}
})cpp",
},
// Type, no other using, no namespace.
{
R"cpp(
#include "test.hpp"
void fun() {
on^e::t^wo::e^e inst;
})cpp",
R"cpp(
#include "test.hpp"
using one::two::ee;
void fun() {
ee inst;
})cpp"},
// Function, other usings.
{
R"cpp(
#include "test.hpp"
using one::two::cc;
using one::two::ee;
namespace {
void fun() {
one::two::f^f();
}
})cpp",
R"cpp(
#include "test.hpp"
using one::two::cc;
using one::two::ff;using one::two::ee;
namespace {
void fun() {
ff();
}
})cpp",
},
// Function, other usings inside namespace.
{
R"cpp(
#include "test.hpp"
using one::two::cc;
namespace {
using one::two::ff;
void fun() {
o^ne::o^o();
}
})cpp",
R"cpp(
#include "test.hpp"
using one::two::cc;
namespace {
using one::oo;using one::two::ff;
void fun() {
oo();
}
})cpp"},
// Using comes after cursor.
{
R"cpp(
#include "test.hpp"
namespace {
void fun() {
one::t^wo::ff();
}
using one::two::cc;
})cpp",
R"cpp(
#include "test.hpp"
namespace {using one::two::ff;
void fun() {
ff();
}
using one::two::cc;
})cpp"},
// Pointer type.
{R"cpp(
#include "test.hpp"
void fun() {
one::two::c^c *p;
})cpp",
R"cpp(
#include "test.hpp"
using one::two::cc;
void fun() {
cc *p;
})cpp"},
// Namespace declared via macro.
{R"cpp(
#include "test.hpp"
#define NS_BEGIN(name) namespace name {
NS_BEGIN(foo)
void fun() {
one::two::f^f();
}
})cpp",
R"cpp(
#include "test.hpp"
#define NS_BEGIN(name) namespace name {
using one::two::ff;
NS_BEGIN(foo)
void fun() {
ff();
}
})cpp"},
// Inside macro argument.
{R"cpp(
#include "test.hpp"
#define CALL(name) name()
void fun() {
CALL(one::t^wo::ff);
})cpp",
R"cpp(
#include "test.hpp"
#define CALL(name) name()
using one::two::ff;
void fun() {
CALL(ff);
})cpp"}};
llvm::StringMap<std::string> EditedFiles;
for (const auto &Case : Cases) {
for (const auto &SubCase : expandCases(Case.TestSource)) {
ExtraFiles["test.hpp"] = R"cpp(
namespace one {
void oo() {}
namespace two {
enum ee {};
void ff() {}
class cc {
public:
struct st { struct nested {}; };
static void mm() {}
};
}
})cpp";
EXPECT_EQ(apply(SubCase, &EditedFiles), Case.ExpectedSource);
}
}
}
} // namespace
} // namespace clangd
} // namespace clang