llvm-project/mlir/lib/IR/MLIRContext.cpp

869 lines
30 KiB
C++

//===- MLIRContext.cpp - MLIR Type Classes --------------------------------===//
//
// Copyright 2019 The MLIR Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// =============================================================================
#include "mlir/IR/MLIRContext.h"
#include "AttributeListStorage.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/Attributes.h"
#include "mlir/IR/Identifier.h"
#include "mlir/IR/IntegerSet.h"
#include "mlir/IR/OperationSet.h"
#include "mlir/IR/StandardOps.h"
#include "mlir/IR/Types.h"
#include "mlir/Support/STLExtras.h"
#include "third_party/llvm/llvm/include/llvm/ADT/STLExtras.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/raw_ostream.h"
using namespace mlir;
using namespace llvm;
namespace {
struct FunctionTypeKeyInfo : DenseMapInfo<FunctionType *> {
// Functions are uniqued based on their inputs and results.
using KeyTy = std::pair<ArrayRef<Type *>, ArrayRef<Type *>>;
using DenseMapInfo<FunctionType *>::getHashValue;
using DenseMapInfo<FunctionType *>::isEqual;
static unsigned getHashValue(KeyTy key) {
return hash_combine(
hash_combine_range(key.first.begin(), key.first.end()),
hash_combine_range(key.second.begin(), key.second.end()));
}
static bool isEqual(const KeyTy &lhs, const FunctionType *rhs) {
if (rhs == getEmptyKey() || rhs == getTombstoneKey())
return false;
return lhs == KeyTy(rhs->getInputs(), rhs->getResults());
}
};
struct AffineMapKeyInfo : DenseMapInfo<AffineMap *> {
// Affine maps are uniqued based on their dim/symbol counts and affine
// expressions.
using KeyTy = std::tuple<unsigned, unsigned, ArrayRef<AffineExpr *>,
ArrayRef<AffineExpr *>>;
using DenseMapInfo<AffineMap *>::getHashValue;
using DenseMapInfo<AffineMap *>::isEqual;
static unsigned getHashValue(KeyTy key) {
return hash_combine(
std::get<0>(key), std::get<1>(key),
hash_combine_range(std::get<2>(key).begin(), std::get<2>(key).end()),
hash_combine_range(std::get<3>(key).begin(), std::get<3>(key).end()));
}
static bool isEqual(const KeyTy &lhs, const AffineMap *rhs) {
if (rhs == getEmptyKey() || rhs == getTombstoneKey())
return false;
return lhs == std::make_tuple(rhs->getNumDims(), rhs->getNumSymbols(),
rhs->getResults(), rhs->getRangeSizes());
}
};
struct VectorTypeKeyInfo : DenseMapInfo<VectorType *> {
// Vectors are uniqued based on their element type and shape.
using KeyTy = std::pair<Type *, ArrayRef<unsigned>>;
using DenseMapInfo<VectorType *>::getHashValue;
using DenseMapInfo<VectorType *>::isEqual;
static unsigned getHashValue(KeyTy key) {
return hash_combine(
DenseMapInfo<Type *>::getHashValue(key.first),
hash_combine_range(key.second.begin(), key.second.end()));
}
static bool isEqual(const KeyTy &lhs, const VectorType *rhs) {
if (rhs == getEmptyKey() || rhs == getTombstoneKey())
return false;
return lhs == KeyTy(rhs->getElementType(), rhs->getShape());
}
};
struct RankedTensorTypeKeyInfo : DenseMapInfo<RankedTensorType *> {
// Ranked tensors are uniqued based on their element type and shape.
using KeyTy = std::pair<Type *, ArrayRef<int>>;
using DenseMapInfo<RankedTensorType *>::getHashValue;
using DenseMapInfo<RankedTensorType *>::isEqual;
static unsigned getHashValue(KeyTy key) {
return hash_combine(
DenseMapInfo<Type *>::getHashValue(key.first),
hash_combine_range(key.second.begin(), key.second.end()));
}
static bool isEqual(const KeyTy &lhs, const RankedTensorType *rhs) {
if (rhs == getEmptyKey() || rhs == getTombstoneKey())
return false;
return lhs == KeyTy(rhs->getElementType(), rhs->getShape());
}
};
struct MemRefTypeKeyInfo : DenseMapInfo<MemRefType *> {
// MemRefs are uniqued based on their element type, shape, affine map
// composition, and memory space.
using KeyTy =
std::tuple<Type *, ArrayRef<int>, ArrayRef<AffineMap *>, unsigned>;
using DenseMapInfo<MemRefType *>::getHashValue;
using DenseMapInfo<MemRefType *>::isEqual;
static unsigned getHashValue(KeyTy key) {
return hash_combine(
DenseMapInfo<Type *>::getHashValue(std::get<0>(key)),
hash_combine_range(std::get<1>(key).begin(), std::get<1>(key).end()),
hash_combine_range(std::get<2>(key).begin(), std::get<2>(key).end()),
std::get<3>(key));
}
static bool isEqual(const KeyTy &lhs, const MemRefType *rhs) {
if (rhs == getEmptyKey() || rhs == getTombstoneKey())
return false;
return lhs == std::make_tuple(rhs->getElementType(), rhs->getShape(),
rhs->getAffineMaps(), rhs->getMemorySpace());
}
};
struct ArrayAttrKeyInfo : DenseMapInfo<ArrayAttr *> {
// Array attributes are uniqued based on their elements.
using KeyTy = ArrayRef<Attribute *>;
using DenseMapInfo<ArrayAttr *>::getHashValue;
using DenseMapInfo<ArrayAttr *>::isEqual;
static unsigned getHashValue(KeyTy key) {
return hash_combine_range(key.begin(), key.end());
}
static bool isEqual(const KeyTy &lhs, const ArrayAttr *rhs) {
if (rhs == getEmptyKey() || rhs == getTombstoneKey())
return false;
return lhs == rhs->getValue();
}
};
struct AttributeListKeyInfo : DenseMapInfo<AttributeListStorage *> {
// Array attributes are uniqued based on their elements.
using KeyTy = ArrayRef<NamedAttribute>;
using DenseMapInfo<AttributeListStorage *>::getHashValue;
using DenseMapInfo<AttributeListStorage *>::isEqual;
static unsigned getHashValue(KeyTy key) {
return hash_combine_range(key.begin(), key.end());
}
static bool isEqual(const KeyTy &lhs, const AttributeListStorage *rhs) {
if (rhs == getEmptyKey() || rhs == getTombstoneKey())
return false;
return lhs == rhs->getElements();
}
};
} // end anonymous namespace.
namespace mlir {
/// This is the implementation of the MLIRContext class, using the pImpl idiom.
/// This class is completely private to this file, so everything is public.
class MLIRContextImpl {
public:
/// We put immortal objects into this allocator.
llvm::BumpPtrAllocator allocator;
/// This is the set of all operations that are registered with the system.
OperationSet operationSet;
/// This is the handler to use to report diagnostics, or null if not
/// registered.
MLIRContext::DiagnosticHandlerTy diagnosticHandler;
/// These are identifiers uniqued into this MLIRContext.
llvm::StringMap<char, llvm::BumpPtrAllocator &> identifiers;
// Uniquing table for 'other' types.
OtherType *otherTypes[int(Type::Kind::LAST_OTHER_TYPE) -
int(Type::Kind::FIRST_OTHER_TYPE) + 1] = {nullptr};
// Uniquing table for 'float' types.
FloatType *floatTypes[int(Type::Kind::LAST_FLOATING_POINT_TYPE) -
int(Type::Kind::FIRST_FLOATING_POINT_TYPE) + 1] = {
nullptr};
// Affine map uniquing.
using AffineMapSet = DenseSet<AffineMap *, AffineMapKeyInfo>;
AffineMapSet affineMaps;
// Affine binary op expression uniquing. Figure out uniquing of dimensional
// or symbolic identifiers.
DenseMap<std::tuple<unsigned, AffineExpr *, AffineExpr *>, AffineExpr *>
affineExprs;
// Uniqui'ing of AffineDimExpr, AffineSymbolExpr's by their position.
std::vector<AffineDimExpr *> dimExprs;
std::vector<AffineSymbolExpr *> symbolExprs;
// Uniqui'ing of AffineConstantExpr using constant value as key.
DenseMap<int64_t, AffineConstantExpr *> constExprs;
/// Integer type uniquing.
DenseMap<unsigned, IntegerType *> integers;
/// Function type uniquing.
using FunctionTypeSet = DenseSet<FunctionType *, FunctionTypeKeyInfo>;
FunctionTypeSet functions;
/// Vector type uniquing.
using VectorTypeSet = DenseSet<VectorType *, VectorTypeKeyInfo>;
VectorTypeSet vectors;
/// Ranked tensor type uniquing.
using RankedTensorTypeSet =
DenseSet<RankedTensorType *, RankedTensorTypeKeyInfo>;
RankedTensorTypeSet rankedTensors;
/// Unranked tensor type uniquing.
DenseMap<Type *, UnrankedTensorType *> unrankedTensors;
/// MemRef type uniquing.
using MemRefTypeSet = DenseSet<MemRefType *, MemRefTypeKeyInfo>;
MemRefTypeSet memrefs;
// Attribute uniquing.
BoolAttr *boolAttrs[2] = {nullptr};
DenseMap<int64_t, IntegerAttr *> integerAttrs;
DenseMap<int64_t, FloatAttr *> floatAttrs;
StringMap<StringAttr *> stringAttrs;
using ArrayAttrSet = DenseSet<ArrayAttr *, ArrayAttrKeyInfo>;
ArrayAttrSet arrayAttrs;
DenseMap<AffineMap *, AffineMapAttr *> affineMapAttrs;
DenseMap<Type *, TypeAttr *> typeAttrs;
using AttributeListSet =
DenseSet<AttributeListStorage *, AttributeListKeyInfo>;
AttributeListSet attributeLists;
public:
MLIRContextImpl() : identifiers(allocator) {
registerStandardOperations(operationSet);
}
/// Copy the specified array of elements into memory managed by our bump
/// pointer allocator. This assumes the elements are all PODs.
template <typename T>
ArrayRef<T> copyInto(ArrayRef<T> elements) {
auto result = allocator.Allocate<T>(elements.size());
std::uninitialized_copy(elements.begin(), elements.end(), result);
return ArrayRef<T>(result, elements.size());
}
};
} // end namespace mlir
MLIRContext::MLIRContext() : impl(new MLIRContextImpl()) {}
MLIRContext::~MLIRContext() {}
/// Register an issue handler with this LLVM context. The issue handler is
/// passed location information if present (nullptr if not) along with a
/// message and a boolean that indicates whether this is an error or warning.
void MLIRContext::registerDiagnosticHandler(
const DiagnosticHandlerTy &handler) {
getImpl().diagnosticHandler = handler;
}
/// This emits a diagnostic using the registered issue handle if present, or
/// with the default behavior if not. The MLIR compiler should not generally
/// interact with this, it should use methods on Operation instead.
void MLIRContext::emitDiagnostic(Attribute *location,
const llvm::Twine &message,
DiagnosticKind kind) const {
// If we had a handler registered, emit the diagnostic using it.
auto handler = getImpl().diagnosticHandler;
if (handler && location)
return handler(location, message.str(), kind);
// The default behavior for notes and warnings is to ignore them.
if (kind != DiagnosticKind::Error)
return;
// The default behavior for errors is to emit them to stderr and exit.
llvm::errs() << message.str() << "\n";
llvm::errs().flush();
exit(1);
}
/// Return the operation set associated with the specified MLIRContext object.
OperationSet &OperationSet::get(MLIRContext *context) {
return context->getImpl().operationSet;
}
/// If this operation has a registered operation description in the
/// OperationSet, return it. Otherwise return null.
const AbstractOperation *Operation::getAbstractOperation() const {
return OperationSet::get(getContext()).lookup(getName().str());
}
//===----------------------------------------------------------------------===//
// Identifier uniquing
//===----------------------------------------------------------------------===//
/// Return an identifier for the specified string.
Identifier Identifier::get(StringRef str, const MLIRContext *context) {
assert(!str.empty() && "Cannot create an empty identifier");
assert(str.find('\0') == StringRef::npos &&
"Cannot create an identifier with a nul character");
auto &impl = context->getImpl();
auto it = impl.identifiers.insert({str, char()}).first;
return Identifier(it->getKeyData());
}
//===----------------------------------------------------------------------===//
// Type uniquing
//===----------------------------------------------------------------------===//
IntegerType *IntegerType::get(unsigned width, MLIRContext *context) {
auto &impl = context->getImpl();
auto *&result = impl.integers[width];
if (!result) {
result = impl.allocator.Allocate<IntegerType>();
new (result) IntegerType(width, context);
}
return result;
}
FloatType *FloatType::get(Kind kind, MLIRContext *context) {
assert(kind >= Kind::FIRST_FLOATING_POINT_TYPE &&
kind <= Kind::LAST_FLOATING_POINT_TYPE && "Not an FP type kind");
auto &impl = context->getImpl();
// We normally have these types.
auto *&entry =
impl.floatTypes[(int)kind - int(Kind::FIRST_FLOATING_POINT_TYPE)];
if (entry)
return entry;
// On the first use, we allocate them into the bump pointer.
auto *ptr = impl.allocator.Allocate<FloatType>();
// Initialize the memory using placement new.
new (ptr) FloatType(kind, context);
// Cache and return it.
return entry = ptr;
}
OtherType *OtherType::get(Kind kind, MLIRContext *context) {
assert(kind >= Kind::FIRST_OTHER_TYPE && kind <= Kind::LAST_OTHER_TYPE &&
"Not an 'other' type kind");
auto &impl = context->getImpl();
// We normally have these types.
auto *&entry = impl.otherTypes[(int)kind - int(Kind::FIRST_OTHER_TYPE)];
if (entry)
return entry;
// On the first use, we allocate them into the bump pointer.
auto *ptr = impl.allocator.Allocate<OtherType>();
// Initialize the memory using placement new.
new (ptr) OtherType(kind, context);
// Cache and return it.
return entry = ptr;
}
FunctionType *FunctionType::get(ArrayRef<Type *> inputs,
ArrayRef<Type *> results,
MLIRContext *context) {
auto &impl = context->getImpl();
// Look to see if we already have this function type.
FunctionTypeKeyInfo::KeyTy key(inputs, results);
auto existing = impl.functions.insert_as(nullptr, key);
// If we already have it, return that value.
if (!existing.second)
return *existing.first;
// On the first use, we allocate them into the bump pointer.
auto *result = impl.allocator.Allocate<FunctionType>();
// Copy the inputs and results into the bump pointer.
SmallVector<Type *, 16> types;
types.reserve(inputs.size() + results.size());
types.append(inputs.begin(), inputs.end());
types.append(results.begin(), results.end());
auto typesList = impl.copyInto(ArrayRef<Type *>(types));
// Initialize the memory using placement new.
new (result)
FunctionType(typesList.data(), inputs.size(), results.size(), context);
// Cache and return it.
return *existing.first = result;
}
VectorType *VectorType::get(ArrayRef<unsigned> shape, Type *elementType) {
assert(!shape.empty() && "vector types must have at least one dimension");
assert((isa<FloatType>(elementType) || isa<IntegerType>(elementType)) &&
"vectors elements must be primitives");
auto *context = elementType->getContext();
auto &impl = context->getImpl();
// Look to see if we already have this vector type.
VectorTypeKeyInfo::KeyTy key(elementType, shape);
auto existing = impl.vectors.insert_as(nullptr, key);
// If we already have it, return that value.
if (!existing.second)
return *existing.first;
// On the first use, we allocate them into the bump pointer.
auto *result = impl.allocator.Allocate<VectorType>();
// Copy the shape into the bump pointer.
shape = impl.copyInto(shape);
// Initialize the memory using placement new.
new (result) VectorType(shape, elementType, context);
// Cache and return it.
return *existing.first = result;
}
static bool isValidTensorElementType(Type *type, MLIRContext *context) {
return isa<FloatType>(type) || isa<VectorType>(type) ||
isa<IntegerType>(type) || type == Type::getTFString(context);
}
TensorType::TensorType(Kind kind, Type *elementType, MLIRContext *context)
: Type(kind, context), elementType(elementType) {
assert(isValidTensorElementType(elementType, context));
assert(isa<TensorType>(this));
}
RankedTensorType *RankedTensorType::get(ArrayRef<int> shape,
Type *elementType) {
auto *context = elementType->getContext();
auto &impl = context->getImpl();
// Look to see if we already have this ranked tensor type.
RankedTensorTypeKeyInfo::KeyTy key(elementType, shape);
auto existing = impl.rankedTensors.insert_as(nullptr, key);
// If we already have it, return that value.
if (!existing.second)
return *existing.first;
// On the first use, we allocate them into the bump pointer.
auto *result = impl.allocator.Allocate<RankedTensorType>();
// Copy the shape into the bump pointer.
shape = impl.copyInto(shape);
// Initialize the memory using placement new.
new (result) RankedTensorType(shape, elementType, context);
// Cache and return it.
return *existing.first = result;
}
UnrankedTensorType *UnrankedTensorType::get(Type *elementType) {
auto *context = elementType->getContext();
auto &impl = context->getImpl();
// Look to see if we already have this unranked tensor type.
auto *&result = impl.unrankedTensors[elementType];
// If we already have it, return that value.
if (result)
return result;
// On the first use, we allocate them into the bump pointer.
result = impl.allocator.Allocate<UnrankedTensorType>();
// Initialize the memory using placement new.
new (result) UnrankedTensorType(elementType, context);
return result;
}
MemRefType *MemRefType::get(ArrayRef<int> shape, Type *elementType,
ArrayRef<AffineMap *> affineMapComposition,
unsigned memorySpace) {
auto *context = elementType->getContext();
auto &impl = context->getImpl();
// Look to see if we already have this memref type.
auto key =
std::make_tuple(elementType, shape, affineMapComposition, memorySpace);
auto existing = impl.memrefs.insert_as(nullptr, key);
// If we already have it, return that value.
if (!existing.second)
return *existing.first;
// On the first use, we allocate them into the bump pointer.
auto *result = impl.allocator.Allocate<MemRefType>();
// Copy the shape into the bump pointer.
shape = impl.copyInto(shape);
// Copy the affine map composition into the bump pointer.
// TODO(andydavis) Assert that the structure of the composition is valid.
affineMapComposition =
impl.copyInto(ArrayRef<AffineMap *>(affineMapComposition));
// Initialize the memory using placement new.
new (result) MemRefType(shape, elementType, affineMapComposition, memorySpace,
context);
// Cache and return it.
return *existing.first = result;
}
//===----------------------------------------------------------------------===//
// Attribute uniquing
//===----------------------------------------------------------------------===//
BoolAttr *BoolAttr::get(bool value, MLIRContext *context) {
auto *&result = context->getImpl().boolAttrs[value];
if (result)
return result;
result = context->getImpl().allocator.Allocate<BoolAttr>();
new (result) BoolAttr(value);
return result;
}
IntegerAttr *IntegerAttr::get(int64_t value, MLIRContext *context) {
auto *&result = context->getImpl().integerAttrs[value];
if (result)
return result;
result = context->getImpl().allocator.Allocate<IntegerAttr>();
new (result) IntegerAttr(value);
return result;
}
FloatAttr *FloatAttr::get(double value, MLIRContext *context) {
// We hash based on the bit representation of the double to ensure we don't
// merge things like -0.0 and 0.0 in the hash comparison.
union {
double floatValue;
int64_t intValue;
};
floatValue = value;
auto *&result = context->getImpl().floatAttrs[intValue];
if (result)
return result;
result = context->getImpl().allocator.Allocate<FloatAttr>();
new (result) FloatAttr(value);
return result;
}
StringAttr *StringAttr::get(StringRef bytes, MLIRContext *context) {
auto it = context->getImpl().stringAttrs.insert({bytes, nullptr}).first;
if (it->second)
return it->second;
auto result = context->getImpl().allocator.Allocate<StringAttr>();
new (result) StringAttr(it->first());
it->second = result;
return result;
}
ArrayAttr *ArrayAttr::get(ArrayRef<Attribute *> value, MLIRContext *context) {
auto &impl = context->getImpl();
// Look to see if we already have this.
auto existing = impl.arrayAttrs.insert_as(nullptr, value);
// If we already have it, return that value.
if (!existing.second)
return *existing.first;
// On the first use, we allocate them into the bump pointer.
auto *result = impl.allocator.Allocate<ArrayAttr>();
// Copy the elements into the bump pointer.
value = impl.copyInto(value);
// Initialize the memory using placement new.
new (result) ArrayAttr(value);
// Cache and return it.
return *existing.first = result;
}
AffineMapAttr *AffineMapAttr::get(AffineMap *value, MLIRContext *context) {
auto *&result = context->getImpl().affineMapAttrs[value];
if (result)
return result;
result = context->getImpl().allocator.Allocate<AffineMapAttr>();
new (result) AffineMapAttr(value);
return result;
}
TypeAttr *TypeAttr::get(Type *type, MLIRContext *context) {
auto *&result = context->getImpl().typeAttrs[type];
if (result)
return result;
result = context->getImpl().allocator.Allocate<TypeAttr>();
new (result) TypeAttr(type);
return result;
}
/// Perform a three-way comparison between the names of the specified
/// NamedAttributes.
static int compareNamedAttributes(const NamedAttribute *lhs,
const NamedAttribute *rhs) {
return lhs->first.str().compare(rhs->first.str());
}
/// Given a list of NamedAttribute's, canonicalize the list (sorting
/// by name) and return the unique'd result. Note that the empty list is
/// represented with a null pointer.
AttributeListStorage *AttributeListStorage::get(ArrayRef<NamedAttribute> attrs,
MLIRContext *context) {
// We need to sort the element list to canonicalize it, but we also don't want
// to do a ton of work in the super common case where the element list is
// already sorted.
SmallVector<NamedAttribute, 8> storage;
switch (attrs.size()) {
case 0:
// An empty list is represented with a null pointer.
return nullptr;
case 1:
// A single element is already sorted.
break;
case 2:
// Don't invoke a general sort for two element case.
if (attrs[0].first.str() > attrs[1].first.str()) {
storage.push_back(attrs[1]);
storage.push_back(attrs[0]);
attrs = storage;
}
break;
default:
// Check to see they are sorted already.
bool isSorted = true;
for (unsigned i = 0, e = attrs.size() - 1; i != e; ++i) {
if (attrs[i].first.str() > attrs[i + 1].first.str()) {
isSorted = false;
break;
}
}
// If not, do a general sort.
if (!isSorted) {
storage.append(attrs.begin(), attrs.end());
llvm::array_pod_sort(storage.begin(), storage.end(),
compareNamedAttributes);
attrs = storage;
}
}
// Ok, now that we've canonicalized our attributes, unique them.
auto &impl = context->getImpl();
// Look to see if we already have this.
auto existing = impl.attributeLists.insert_as(nullptr, attrs);
// If we already have it, return that value.
if (!existing.second)
return *existing.first;
// Otherwise, allocate a new AttributeListStorage, unique it and return it.
auto byteSize =
AttributeListStorage::totalSizeToAlloc<NamedAttribute>(attrs.size());
auto rawMem = impl.allocator.Allocate(byteSize, alignof(NamedAttribute));
// Placement initialize the AggregateSymbolicValue.
auto result = ::new (rawMem) AttributeListStorage(attrs.size());
std::uninitialized_copy(attrs.begin(), attrs.end(),
result->getTrailingObjects<NamedAttribute>());
return *existing.first = result;
}
//===----------------------------------------------------------------------===//
// AffineMap and AffineExpr uniquing
//===----------------------------------------------------------------------===//
AffineMap *AffineMap::get(unsigned dimCount, unsigned symbolCount,
ArrayRef<AffineExpr *> results,
ArrayRef<AffineExpr *> rangeSizes,
MLIRContext *context) {
// The number of results can't be zero.
assert(!results.empty());
assert(rangeSizes.empty() || results.size() == rangeSizes.size());
auto &impl = context->getImpl();
// Check if we already have this affine map.
auto key = std::make_tuple(dimCount, symbolCount, results, rangeSizes);
auto existing = impl.affineMaps.insert_as(nullptr, key);
// If we already have it, return that value.
if (!existing.second)
return *existing.first;
// On the first use, we allocate them into the bump pointer.
auto *res = impl.allocator.Allocate<AffineMap>();
// Copy the results and range sizes into the bump pointer.
results = impl.copyInto(ArrayRef<AffineExpr *>(results));
rangeSizes = impl.copyInto(ArrayRef<AffineExpr *>(rangeSizes));
// Initialize the memory using placement new.
new (res) AffineMap(dimCount, symbolCount, results.size(), results.data(),
rangeSizes.empty() ? nullptr : rangeSizes.data());
// Cache and return it.
return *existing.first = res;
}
/// Return a binary affine op expression with the specified op type and
/// operands: if it doesn't exist, create it and store it; if it is already
/// present, return from the list. The stored expressions are unique: they are
/// constructed and stored in a simplified/canonicalized form. The result after
/// simplification could be any form of affine expression.
AffineExpr *AffineBinaryOpExpr::get(AffineExpr::Kind kind, AffineExpr *lhs,
AffineExpr *rhs, MLIRContext *context) {
auto &impl = context->getImpl();
// Check if we already have this affine expression, and return it if we do.
auto keyValue = std::make_tuple((unsigned)kind, lhs, rhs);
auto cached = impl.affineExprs.find(keyValue);
if (cached != impl.affineExprs.end())
return cached->second;
// Simplify the expression if possible.
AffineExpr *simplified;
switch (kind) {
case Kind::Add:
simplified = AffineBinaryOpExpr::simplifyAdd(lhs, rhs, context);
break;
case Kind::Mul:
simplified = AffineBinaryOpExpr::simplifyMul(lhs, rhs, context);
break;
case Kind::FloorDiv:
simplified = AffineBinaryOpExpr::simplifyFloorDiv(lhs, rhs, context);
break;
case Kind::CeilDiv:
simplified = AffineBinaryOpExpr::simplifyCeilDiv(lhs, rhs, context);
break;
case Kind::Mod:
simplified = AffineBinaryOpExpr::simplifyMod(lhs, rhs, context);
break;
default:
llvm_unreachable("unexpected binary affine expr");
}
// The simplified one would have already been cached; just return it.
if (simplified)
return simplified;
// An expression with these operands will already be in the
// simplified/canonical form. Create and store it.
auto *result = impl.allocator.Allocate<AffineBinaryOpExpr>();
// Initialize the memory using placement new.
new (result) AffineBinaryOpExpr(kind, lhs, rhs);
bool inserted = impl.affineExprs.insert({keyValue, result}).second;
assert(inserted && "the expression shouldn't already exist in the map");
(void)inserted;
return result;
}
AffineDimExpr *AffineDimExpr::get(unsigned position, MLIRContext *context) {
auto &impl = context->getImpl();
// Check if we need to resize.
if (position >= impl.dimExprs.size())
impl.dimExprs.resize(position + 1, nullptr);
auto *&result = impl.dimExprs[position];
if (result)
return result;
result = impl.allocator.Allocate<AffineDimExpr>();
// Initialize the memory using placement new.
new (result) AffineDimExpr(position);
return result;
}
AffineSymbolExpr *AffineSymbolExpr::get(unsigned position,
MLIRContext *context) {
auto &impl = context->getImpl();
// Check if we need to resize.
if (position >= impl.symbolExprs.size())
impl.symbolExprs.resize(position + 1, nullptr);
auto *&result = impl.symbolExprs[position];
if (result)
return result;
result = impl.allocator.Allocate<AffineSymbolExpr>();
// Initialize the memory using placement new.
new (result) AffineSymbolExpr(position);
return result;
}
AffineConstantExpr *AffineConstantExpr::get(int64_t constant,
MLIRContext *context) {
auto &impl = context->getImpl();
auto *&result = impl.constExprs[constant];
if (result)
return result;
result = impl.allocator.Allocate<AffineConstantExpr>();
// Initialize the memory using placement new.
new (result) AffineConstantExpr(constant);
return result;
}
//===----------------------------------------------------------------------===//
// Integer Sets: these are allocated into the bump pointer, and are immutable.
// But they aren't uniqued like AffineMap's; there isn't an advantage to.
//===----------------------------------------------------------------------===//
IntegerSet *IntegerSet::get(unsigned dimCount, unsigned symbolCount,
ArrayRef<AffineExpr *> constraints,
ArrayRef<bool> eqFlags, MLIRContext *context) {
assert(eqFlags.size() == constraints.size());
auto &impl = context->getImpl();
// Allocate them into the bump pointer.
auto *res = impl.allocator.Allocate<IntegerSet>();
// Copy the equalities and inequalities into the bump pointer.
constraints = impl.copyInto(ArrayRef<AffineExpr *>(constraints));
eqFlags = impl.copyInto(ArrayRef<bool>(eqFlags));
// Initialize the memory using placement new.
return new (res) IntegerSet(dimCount, symbolCount, constraints.size(),
constraints.data(), eqFlags.data());
}