forked from OSchip/llvm-project
1791 lines
64 KiB
C++
1791 lines
64 KiB
C++
//===- GlobalISelEmitter.cpp - Generate an instruction selector -----------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
/// \file
|
|
/// This tablegen backend emits code for use by the GlobalISel instruction
|
|
/// selector. See include/llvm/CodeGen/TargetGlobalISel.td.
|
|
///
|
|
/// This file analyzes the patterns recognized by the SelectionDAGISel tablegen
|
|
/// backend, filters out the ones that are unsupported, maps
|
|
/// SelectionDAG-specific constructs to their GlobalISel counterpart
|
|
/// (when applicable: MVT to LLT; SDNode to generic Instruction).
|
|
///
|
|
/// Not all patterns are supported: pass the tablegen invocation
|
|
/// "-warn-on-skipped-patterns" to emit a warning when a pattern is skipped,
|
|
/// as well as why.
|
|
///
|
|
/// The generated file defines a single method:
|
|
/// bool <Target>InstructionSelector::selectImpl(MachineInstr &I) const;
|
|
/// intended to be used in InstructionSelector::select as the first-step
|
|
/// selector for the patterns that don't require complex C++.
|
|
///
|
|
/// FIXME: We'll probably want to eventually define a base
|
|
/// "TargetGenInstructionSelector" class.
|
|
///
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "CodeGenDAGPatterns.h"
|
|
#include "SubtargetFeatureInfo.h"
|
|
#include "llvm/ADT/Optional.h"
|
|
#include "llvm/ADT/SmallSet.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/CodeGen/MachineValueType.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Error.h"
|
|
#include "llvm/Support/LowLevelTypeImpl.h"
|
|
#include "llvm/Support/ScopedPrinter.h"
|
|
#include "llvm/TableGen/Error.h"
|
|
#include "llvm/TableGen/Record.h"
|
|
#include "llvm/TableGen/TableGenBackend.h"
|
|
#include <string>
|
|
#include <numeric>
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "gisel-emitter"
|
|
|
|
STATISTIC(NumPatternTotal, "Total number of patterns");
|
|
STATISTIC(NumPatternImported, "Number of patterns imported from SelectionDAG");
|
|
STATISTIC(NumPatternImportsSkipped, "Number of SelectionDAG imports skipped");
|
|
STATISTIC(NumPatternEmitted, "Number of patterns emitted");
|
|
|
|
cl::OptionCategory GlobalISelEmitterCat("Options for -gen-global-isel");
|
|
|
|
static cl::opt<bool> WarnOnSkippedPatterns(
|
|
"warn-on-skipped-patterns",
|
|
cl::desc("Explain why a pattern was skipped for inclusion "
|
|
"in the GlobalISel selector"),
|
|
cl::init(false), cl::cat(GlobalISelEmitterCat));
|
|
|
|
namespace {
|
|
//===- Helper functions ---------------------------------------------------===//
|
|
|
|
/// This class stands in for LLT wherever we want to tablegen-erate an
|
|
/// equivalent at compiler run-time.
|
|
class LLTCodeGen {
|
|
private:
|
|
LLT Ty;
|
|
|
|
public:
|
|
LLTCodeGen(const LLT &Ty) : Ty(Ty) {}
|
|
|
|
void emitCxxConstructorCall(raw_ostream &OS) const {
|
|
if (Ty.isScalar()) {
|
|
OS << "LLT::scalar(" << Ty.getSizeInBits() << ")";
|
|
return;
|
|
}
|
|
if (Ty.isVector()) {
|
|
OS << "LLT::vector(" << Ty.getNumElements() << ", " << Ty.getScalarSizeInBits()
|
|
<< ")";
|
|
return;
|
|
}
|
|
llvm_unreachable("Unhandled LLT");
|
|
}
|
|
|
|
const LLT &get() const { return Ty; }
|
|
};
|
|
|
|
class InstructionMatcher;
|
|
/// Convert an MVT to an equivalent LLT if possible, or the invalid LLT() for
|
|
/// MVTs that don't map cleanly to an LLT (e.g., iPTR, *any, ...).
|
|
static Optional<LLTCodeGen> MVTToLLT(MVT::SimpleValueType SVT) {
|
|
MVT VT(SVT);
|
|
if (VT.isVector() && VT.getVectorNumElements() != 1)
|
|
return LLTCodeGen(LLT::vector(VT.getVectorNumElements(), VT.getScalarSizeInBits()));
|
|
if (VT.isInteger() || VT.isFloatingPoint())
|
|
return LLTCodeGen(LLT::scalar(VT.getSizeInBits()));
|
|
return None;
|
|
}
|
|
|
|
static std::string explainPredicates(const TreePatternNode *N) {
|
|
std::string Explanation = "";
|
|
StringRef Separator = "";
|
|
for (const auto &P : N->getPredicateFns()) {
|
|
Explanation +=
|
|
(Separator + P.getOrigPatFragRecord()->getRecord()->getName()).str();
|
|
if (P.isAlwaysTrue())
|
|
Explanation += " always-true";
|
|
if (P.isImmediatePattern())
|
|
Explanation += " immediate";
|
|
}
|
|
return Explanation;
|
|
}
|
|
|
|
std::string explainOperator(Record *Operator) {
|
|
if (Operator->isSubClassOf("SDNode"))
|
|
return " (" + Operator->getValueAsString("Opcode") + ")";
|
|
|
|
if (Operator->isSubClassOf("Intrinsic"))
|
|
return (" (Operator is an Intrinsic, " + Operator->getName() + ")").str();
|
|
|
|
return " (Operator not understood)";
|
|
}
|
|
|
|
/// Helper function to let the emitter report skip reason error messages.
|
|
static Error failedImport(const Twine &Reason) {
|
|
return make_error<StringError>(Reason, inconvertibleErrorCode());
|
|
}
|
|
|
|
static Error isTrivialOperatorNode(const TreePatternNode *N) {
|
|
std::string Explanation = "";
|
|
std::string Separator = "";
|
|
if (N->isLeaf()) {
|
|
Explanation = "Is a leaf";
|
|
Separator = ", ";
|
|
}
|
|
|
|
if (N->hasAnyPredicate()) {
|
|
Explanation = Separator + "Has a predicate (" + explainPredicates(N) + ")";
|
|
Separator = ", ";
|
|
}
|
|
|
|
if (N->getTransformFn()) {
|
|
Explanation += Separator + "Has a transform function";
|
|
Separator = ", ";
|
|
}
|
|
|
|
if (!N->isLeaf() && !N->hasAnyPredicate() && !N->getTransformFn())
|
|
return Error::success();
|
|
|
|
return failedImport(Explanation);
|
|
}
|
|
|
|
//===- Matchers -----------------------------------------------------------===//
|
|
|
|
class OperandMatcher;
|
|
class MatchAction;
|
|
|
|
/// Generates code to check that a match rule matches.
|
|
class RuleMatcher {
|
|
/// A list of matchers that all need to succeed for the current rule to match.
|
|
/// FIXME: This currently supports a single match position but could be
|
|
/// extended to support multiple positions to support div/rem fusion or
|
|
/// load-multiple instructions.
|
|
std::vector<std::unique_ptr<InstructionMatcher>> Matchers;
|
|
|
|
/// A list of actions that need to be taken when all predicates in this rule
|
|
/// have succeeded.
|
|
std::vector<std::unique_ptr<MatchAction>> Actions;
|
|
|
|
/// A map of instruction matchers to the local variables created by
|
|
/// emitCxxCaptureStmts().
|
|
std::map<const InstructionMatcher *, std::string> InsnVariableNames;
|
|
|
|
/// ID for the next instruction variable defined with defineInsnVar()
|
|
unsigned NextInsnVarID;
|
|
|
|
std::vector<Record *> RequiredFeatures;
|
|
|
|
public:
|
|
RuleMatcher()
|
|
: Matchers(), Actions(), InsnVariableNames(), NextInsnVarID(0) {}
|
|
RuleMatcher(RuleMatcher &&Other) = default;
|
|
RuleMatcher &operator=(RuleMatcher &&Other) = default;
|
|
|
|
InstructionMatcher &addInstructionMatcher();
|
|
void addRequiredFeature(Record *Feature);
|
|
|
|
template <class Kind, class... Args> Kind &addAction(Args &&... args);
|
|
|
|
std::string defineInsnVar(raw_ostream &OS, const InstructionMatcher &Matcher,
|
|
StringRef Value);
|
|
StringRef getInsnVarName(const InstructionMatcher &InsnMatcher) const;
|
|
|
|
void emitCxxCapturedInsnList(raw_ostream &OS);
|
|
void emitCxxCaptureStmts(raw_ostream &OS, StringRef Expr);
|
|
|
|
void emit(raw_ostream &OS, SubtargetFeatureInfoMap SubtargetFeatures);
|
|
|
|
/// Compare the priority of this object and B.
|
|
///
|
|
/// Returns true if this object is more important than B.
|
|
bool isHigherPriorityThan(const RuleMatcher &B) const;
|
|
|
|
/// Report the maximum number of temporary operands needed by the rule
|
|
/// matcher.
|
|
unsigned countRendererFns() const;
|
|
|
|
// FIXME: Remove this as soon as possible
|
|
InstructionMatcher &insnmatcher_front() const { return *Matchers.front(); }
|
|
};
|
|
|
|
template <class PredicateTy> class PredicateListMatcher {
|
|
private:
|
|
typedef std::vector<std::unique_ptr<PredicateTy>> PredicateVec;
|
|
PredicateVec Predicates;
|
|
|
|
public:
|
|
/// Construct a new operand predicate and add it to the matcher.
|
|
template <class Kind, class... Args>
|
|
Kind &addPredicate(Args&&... args) {
|
|
Predicates.emplace_back(
|
|
llvm::make_unique<Kind>(std::forward<Args>(args)...));
|
|
return *static_cast<Kind *>(Predicates.back().get());
|
|
}
|
|
|
|
typename PredicateVec::const_iterator predicates_begin() const { return Predicates.begin(); }
|
|
typename PredicateVec::const_iterator predicates_end() const { return Predicates.end(); }
|
|
iterator_range<typename PredicateVec::const_iterator> predicates() const {
|
|
return make_range(predicates_begin(), predicates_end());
|
|
}
|
|
typename PredicateVec::size_type predicates_size() const { return Predicates.size(); }
|
|
|
|
/// Emit a C++ expression that tests whether all the predicates are met.
|
|
template <class... Args>
|
|
void emitCxxPredicateListExpr(raw_ostream &OS, Args &&... args) const {
|
|
if (Predicates.empty()) {
|
|
OS << "true";
|
|
return;
|
|
}
|
|
|
|
StringRef Separator = "";
|
|
for (const auto &Predicate : predicates()) {
|
|
OS << Separator << "(";
|
|
Predicate->emitCxxPredicateExpr(OS, std::forward<Args>(args)...);
|
|
OS << ")";
|
|
Separator = " &&\n";
|
|
}
|
|
}
|
|
};
|
|
|
|
/// Generates code to check a predicate of an operand.
|
|
///
|
|
/// Typical predicates include:
|
|
/// * Operand is a particular register.
|
|
/// * Operand is assigned a particular register bank.
|
|
/// * Operand is an MBB.
|
|
class OperandPredicateMatcher {
|
|
public:
|
|
/// This enum is used for RTTI and also defines the priority that is given to
|
|
/// the predicate when generating the matcher code. Kinds with higher priority
|
|
/// must be tested first.
|
|
///
|
|
/// The relative priority of OPM_LLT, OPM_RegBank, and OPM_MBB do not matter
|
|
/// but OPM_Int must have priority over OPM_RegBank since constant integers
|
|
/// are represented by a virtual register defined by a G_CONSTANT instruction.
|
|
enum PredicateKind {
|
|
OPM_ComplexPattern,
|
|
OPM_Instruction,
|
|
OPM_Int,
|
|
OPM_LLT,
|
|
OPM_RegBank,
|
|
OPM_MBB,
|
|
};
|
|
|
|
protected:
|
|
PredicateKind Kind;
|
|
|
|
public:
|
|
OperandPredicateMatcher(PredicateKind Kind) : Kind(Kind) {}
|
|
virtual ~OperandPredicateMatcher() {}
|
|
|
|
PredicateKind getKind() const { return Kind; }
|
|
|
|
/// Return the OperandMatcher for the specified operand or nullptr if there
|
|
/// isn't one by that name in this operand predicate matcher.
|
|
///
|
|
/// InstructionOperandMatcher is the only subclass that can return non-null
|
|
/// for this.
|
|
virtual Optional<const OperandMatcher *>
|
|
getOptionalOperand(StringRef SymbolicName) const {
|
|
assert(!SymbolicName.empty() && "Cannot lookup unnamed operand");
|
|
return None;
|
|
}
|
|
|
|
/// Emit C++ statements to capture instructions into local variables.
|
|
///
|
|
/// Only InstructionOperandMatcher needs to do anything for this method.
|
|
virtual void emitCxxCaptureStmts(raw_ostream &OS, RuleMatcher &Rule,
|
|
StringRef Expr) const {}
|
|
|
|
/// Emit a C++ expression that checks the predicate for the given operand.
|
|
virtual void emitCxxPredicateExpr(raw_ostream &OS, RuleMatcher &Rule,
|
|
StringRef OperandExpr) const = 0;
|
|
|
|
/// Compare the priority of this object and B.
|
|
///
|
|
/// Returns true if this object is more important than B.
|
|
virtual bool isHigherPriorityThan(const OperandPredicateMatcher &B) const {
|
|
return Kind < B.Kind;
|
|
};
|
|
|
|
/// Report the maximum number of temporary operands needed by the predicate
|
|
/// matcher.
|
|
virtual unsigned countRendererFns() const { return 0; }
|
|
};
|
|
|
|
/// Generates code to check that an operand is a particular LLT.
|
|
class LLTOperandMatcher : public OperandPredicateMatcher {
|
|
protected:
|
|
LLTCodeGen Ty;
|
|
|
|
public:
|
|
LLTOperandMatcher(const LLTCodeGen &Ty)
|
|
: OperandPredicateMatcher(OPM_LLT), Ty(Ty) {}
|
|
|
|
static bool classof(const OperandPredicateMatcher *P) {
|
|
return P->getKind() == OPM_LLT;
|
|
}
|
|
|
|
void emitCxxPredicateExpr(raw_ostream &OS, RuleMatcher &Rule,
|
|
StringRef OperandExpr) const override {
|
|
OS << "MRI.getType(" << OperandExpr << ".getReg()) == (";
|
|
Ty.emitCxxConstructorCall(OS);
|
|
OS << ")";
|
|
}
|
|
};
|
|
|
|
/// Generates code to check that an operand is a particular target constant.
|
|
class ComplexPatternOperandMatcher : public OperandPredicateMatcher {
|
|
protected:
|
|
const OperandMatcher &Operand;
|
|
const Record &TheDef;
|
|
|
|
unsigned getAllocatedTemporariesBaseID() const;
|
|
|
|
public:
|
|
ComplexPatternOperandMatcher(const OperandMatcher &Operand,
|
|
const Record &TheDef)
|
|
: OperandPredicateMatcher(OPM_ComplexPattern), Operand(Operand),
|
|
TheDef(TheDef) {}
|
|
|
|
static bool classof(const OperandPredicateMatcher *P) {
|
|
return P->getKind() == OPM_ComplexPattern;
|
|
}
|
|
|
|
void emitCxxPredicateExpr(raw_ostream &OS, RuleMatcher &Rule,
|
|
StringRef OperandExpr) const override {
|
|
unsigned ID = getAllocatedTemporariesBaseID();
|
|
OS << "(Renderer" << ID << " = " << TheDef.getValueAsString("MatcherFn")
|
|
<< "(" << OperandExpr << "))";
|
|
}
|
|
|
|
unsigned countRendererFns() const override {
|
|
return 1;
|
|
}
|
|
};
|
|
|
|
/// Generates code to check that an operand is in a particular register bank.
|
|
class RegisterBankOperandMatcher : public OperandPredicateMatcher {
|
|
protected:
|
|
const CodeGenRegisterClass &RC;
|
|
|
|
public:
|
|
RegisterBankOperandMatcher(const CodeGenRegisterClass &RC)
|
|
: OperandPredicateMatcher(OPM_RegBank), RC(RC) {}
|
|
|
|
static bool classof(const OperandPredicateMatcher *P) {
|
|
return P->getKind() == OPM_RegBank;
|
|
}
|
|
|
|
void emitCxxPredicateExpr(raw_ostream &OS, RuleMatcher &Rule,
|
|
StringRef OperandExpr) const override {
|
|
OS << "(&RBI.getRegBankFromRegClass(" << RC.getQualifiedName()
|
|
<< "RegClass) == RBI.getRegBank(" << OperandExpr
|
|
<< ".getReg(), MRI, TRI))";
|
|
}
|
|
};
|
|
|
|
/// Generates code to check that an operand is a basic block.
|
|
class MBBOperandMatcher : public OperandPredicateMatcher {
|
|
public:
|
|
MBBOperandMatcher() : OperandPredicateMatcher(OPM_MBB) {}
|
|
|
|
static bool classof(const OperandPredicateMatcher *P) {
|
|
return P->getKind() == OPM_MBB;
|
|
}
|
|
|
|
void emitCxxPredicateExpr(raw_ostream &OS, RuleMatcher &Rule,
|
|
StringRef OperandExpr) const override {
|
|
OS << OperandExpr << ".isMBB()";
|
|
}
|
|
};
|
|
|
|
/// Generates code to check that an operand is a particular int.
|
|
class IntOperandMatcher : public OperandPredicateMatcher {
|
|
protected:
|
|
int64_t Value;
|
|
|
|
public:
|
|
IntOperandMatcher(int64_t Value)
|
|
: OperandPredicateMatcher(OPM_Int), Value(Value) {}
|
|
|
|
static bool classof(const OperandPredicateMatcher *P) {
|
|
return P->getKind() == OPM_Int;
|
|
}
|
|
|
|
void emitCxxPredicateExpr(raw_ostream &OS, RuleMatcher &Rule,
|
|
StringRef OperandExpr) const override {
|
|
OS << "isOperandImmEqual(" << OperandExpr << ", " << Value << ", MRI)";
|
|
}
|
|
};
|
|
|
|
/// Generates code to check that a set of predicates match for a particular
|
|
/// operand.
|
|
class OperandMatcher : public PredicateListMatcher<OperandPredicateMatcher> {
|
|
protected:
|
|
InstructionMatcher &Insn;
|
|
unsigned OpIdx;
|
|
std::string SymbolicName;
|
|
|
|
/// The index of the first temporary variable allocated to this operand. The
|
|
/// number of allocated temporaries can be found with
|
|
/// countRendererFns().
|
|
unsigned AllocatedTemporariesBaseID;
|
|
|
|
public:
|
|
OperandMatcher(InstructionMatcher &Insn, unsigned OpIdx,
|
|
const std::string &SymbolicName,
|
|
unsigned AllocatedTemporariesBaseID)
|
|
: Insn(Insn), OpIdx(OpIdx), SymbolicName(SymbolicName),
|
|
AllocatedTemporariesBaseID(AllocatedTemporariesBaseID) {}
|
|
|
|
bool hasSymbolicName() const { return !SymbolicName.empty(); }
|
|
const StringRef getSymbolicName() const { return SymbolicName; }
|
|
void setSymbolicName(StringRef Name) {
|
|
assert(SymbolicName.empty() && "Operand already has a symbolic name");
|
|
SymbolicName = Name;
|
|
}
|
|
unsigned getOperandIndex() const { return OpIdx; }
|
|
|
|
std::string getOperandExpr(StringRef InsnVarName) const {
|
|
return (InsnVarName + ".getOperand(" + llvm::to_string(OpIdx) + ")").str();
|
|
}
|
|
|
|
Optional<const OperandMatcher *>
|
|
getOptionalOperand(StringRef DesiredSymbolicName) const {
|
|
assert(!DesiredSymbolicName.empty() && "Cannot lookup unnamed operand");
|
|
if (DesiredSymbolicName == SymbolicName)
|
|
return this;
|
|
for (const auto &OP : predicates()) {
|
|
const auto &MaybeOperand = OP->getOptionalOperand(DesiredSymbolicName);
|
|
if (MaybeOperand.hasValue())
|
|
return MaybeOperand.getValue();
|
|
}
|
|
return None;
|
|
}
|
|
|
|
InstructionMatcher &getInstructionMatcher() const { return Insn; }
|
|
|
|
/// Emit C++ statements to capture instructions into local variables.
|
|
void emitCxxCaptureStmts(raw_ostream &OS, RuleMatcher &Rule,
|
|
StringRef OperandExpr) const {
|
|
for (const auto &Predicate : predicates())
|
|
Predicate->emitCxxCaptureStmts(OS, Rule, OperandExpr);
|
|
}
|
|
|
|
/// Emit a C++ expression that tests whether the instruction named in
|
|
/// InsnVarName matches all the predicate and all the operands.
|
|
void emitCxxPredicateExpr(raw_ostream &OS, RuleMatcher &Rule,
|
|
StringRef InsnVarName) const {
|
|
OS << "(/* ";
|
|
if (SymbolicName.empty())
|
|
OS << "Operand " << OpIdx;
|
|
else
|
|
OS << SymbolicName;
|
|
OS << " */ ";
|
|
emitCxxPredicateListExpr(OS, Rule, getOperandExpr(InsnVarName));
|
|
OS << ")";
|
|
}
|
|
|
|
/// Compare the priority of this object and B.
|
|
///
|
|
/// Returns true if this object is more important than B.
|
|
bool isHigherPriorityThan(const OperandMatcher &B) const {
|
|
// Operand matchers involving more predicates have higher priority.
|
|
if (predicates_size() > B.predicates_size())
|
|
return true;
|
|
if (predicates_size() < B.predicates_size())
|
|
return false;
|
|
|
|
// This assumes that predicates are added in a consistent order.
|
|
for (const auto &Predicate : zip(predicates(), B.predicates())) {
|
|
if (std::get<0>(Predicate)->isHigherPriorityThan(*std::get<1>(Predicate)))
|
|
return true;
|
|
if (std::get<1>(Predicate)->isHigherPriorityThan(*std::get<0>(Predicate)))
|
|
return false;
|
|
}
|
|
|
|
return false;
|
|
};
|
|
|
|
/// Report the maximum number of temporary operands needed by the operand
|
|
/// matcher.
|
|
unsigned countRendererFns() const {
|
|
return std::accumulate(
|
|
predicates().begin(), predicates().end(), 0,
|
|
[](unsigned A,
|
|
const std::unique_ptr<OperandPredicateMatcher> &Predicate) {
|
|
return A + Predicate->countRendererFns();
|
|
});
|
|
}
|
|
|
|
unsigned getAllocatedTemporariesBaseID() const {
|
|
return AllocatedTemporariesBaseID;
|
|
}
|
|
};
|
|
|
|
unsigned ComplexPatternOperandMatcher::getAllocatedTemporariesBaseID() const {
|
|
return Operand.getAllocatedTemporariesBaseID();
|
|
}
|
|
|
|
/// Generates code to check a predicate on an instruction.
|
|
///
|
|
/// Typical predicates include:
|
|
/// * The opcode of the instruction is a particular value.
|
|
/// * The nsw/nuw flag is/isn't set.
|
|
class InstructionPredicateMatcher {
|
|
protected:
|
|
/// This enum is used for RTTI and also defines the priority that is given to
|
|
/// the predicate when generating the matcher code. Kinds with higher priority
|
|
/// must be tested first.
|
|
enum PredicateKind {
|
|
IPM_Opcode,
|
|
};
|
|
|
|
PredicateKind Kind;
|
|
|
|
public:
|
|
InstructionPredicateMatcher(PredicateKind Kind) : Kind(Kind) {}
|
|
virtual ~InstructionPredicateMatcher() {}
|
|
|
|
PredicateKind getKind() const { return Kind; }
|
|
|
|
/// Emit a C++ expression that tests whether the instruction named in
|
|
/// InsnVarName matches the predicate.
|
|
virtual void emitCxxPredicateExpr(raw_ostream &OS, RuleMatcher &Rule,
|
|
StringRef InsnVarName) const = 0;
|
|
|
|
/// Compare the priority of this object and B.
|
|
///
|
|
/// Returns true if this object is more important than B.
|
|
virtual bool isHigherPriorityThan(const InstructionPredicateMatcher &B) const {
|
|
return Kind < B.Kind;
|
|
};
|
|
|
|
/// Report the maximum number of temporary operands needed by the predicate
|
|
/// matcher.
|
|
virtual unsigned countRendererFns() const { return 0; }
|
|
};
|
|
|
|
/// Generates code to check the opcode of an instruction.
|
|
class InstructionOpcodeMatcher : public InstructionPredicateMatcher {
|
|
protected:
|
|
const CodeGenInstruction *I;
|
|
|
|
public:
|
|
InstructionOpcodeMatcher(const CodeGenInstruction *I)
|
|
: InstructionPredicateMatcher(IPM_Opcode), I(I) {}
|
|
|
|
static bool classof(const InstructionPredicateMatcher *P) {
|
|
return P->getKind() == IPM_Opcode;
|
|
}
|
|
|
|
void emitCxxPredicateExpr(raw_ostream &OS, RuleMatcher &Rule,
|
|
StringRef InsnVarName) const override {
|
|
OS << InsnVarName << ".getOpcode() == " << I->Namespace
|
|
<< "::" << I->TheDef->getName();
|
|
}
|
|
|
|
/// Compare the priority of this object and B.
|
|
///
|
|
/// Returns true if this object is more important than B.
|
|
bool isHigherPriorityThan(const InstructionPredicateMatcher &B) const override {
|
|
if (InstructionPredicateMatcher::isHigherPriorityThan(B))
|
|
return true;
|
|
if (B.InstructionPredicateMatcher::isHigherPriorityThan(*this))
|
|
return false;
|
|
|
|
// Prioritize opcodes for cosmetic reasons in the generated source. Although
|
|
// this is cosmetic at the moment, we may want to drive a similar ordering
|
|
// using instruction frequency information to improve compile time.
|
|
if (const InstructionOpcodeMatcher *BO =
|
|
dyn_cast<InstructionOpcodeMatcher>(&B))
|
|
return I->TheDef->getName() < BO->I->TheDef->getName();
|
|
|
|
return false;
|
|
};
|
|
};
|
|
|
|
/// Generates code to check that a set of predicates and operands match for a
|
|
/// particular instruction.
|
|
///
|
|
/// Typical predicates include:
|
|
/// * Has a specific opcode.
|
|
/// * Has an nsw/nuw flag or doesn't.
|
|
class InstructionMatcher
|
|
: public PredicateListMatcher<InstructionPredicateMatcher> {
|
|
protected:
|
|
typedef std::vector<std::unique_ptr<OperandMatcher>> OperandVec;
|
|
|
|
/// The operands to match. All rendered operands must be present even if the
|
|
/// condition is always true.
|
|
OperandVec Operands;
|
|
|
|
public:
|
|
/// Add an operand to the matcher.
|
|
OperandMatcher &addOperand(unsigned OpIdx, const std::string &SymbolicName,
|
|
unsigned AllocatedTemporariesBaseID) {
|
|
Operands.emplace_back(new OperandMatcher(*this, OpIdx, SymbolicName,
|
|
AllocatedTemporariesBaseID));
|
|
return *Operands.back();
|
|
}
|
|
|
|
OperandMatcher &getOperand(unsigned OpIdx) {
|
|
auto I = std::find_if(Operands.begin(), Operands.end(),
|
|
[&OpIdx](const std::unique_ptr<OperandMatcher> &X) {
|
|
return X->getOperandIndex() == OpIdx;
|
|
});
|
|
if (I != Operands.end())
|
|
return **I;
|
|
llvm_unreachable("Failed to lookup operand");
|
|
}
|
|
|
|
Optional<const OperandMatcher *>
|
|
getOptionalOperand(StringRef SymbolicName) const {
|
|
assert(!SymbolicName.empty() && "Cannot lookup unnamed operand");
|
|
for (const auto &Operand : Operands) {
|
|
const auto &OM = Operand->getOptionalOperand(SymbolicName);
|
|
if (OM.hasValue())
|
|
return OM.getValue();
|
|
}
|
|
return None;
|
|
}
|
|
|
|
const OperandMatcher &getOperand(StringRef SymbolicName) const {
|
|
Optional<const OperandMatcher *>OM = getOptionalOperand(SymbolicName);
|
|
if (OM.hasValue())
|
|
return *OM.getValue();
|
|
llvm_unreachable("Failed to lookup operand");
|
|
}
|
|
|
|
unsigned getNumOperands() const { return Operands.size(); }
|
|
OperandVec::iterator operands_begin() { return Operands.begin(); }
|
|
OperandVec::iterator operands_end() { return Operands.end(); }
|
|
iterator_range<OperandVec::iterator> operands() {
|
|
return make_range(operands_begin(), operands_end());
|
|
}
|
|
OperandVec::const_iterator operands_begin() const { return Operands.begin(); }
|
|
OperandVec::const_iterator operands_end() const { return Operands.end(); }
|
|
iterator_range<OperandVec::const_iterator> operands() const {
|
|
return make_range(operands_begin(), operands_end());
|
|
}
|
|
|
|
/// Emit C++ statements to check the shape of the match and capture
|
|
/// instructions into local variables.
|
|
void emitCxxCaptureStmts(raw_ostream &OS, RuleMatcher &Rule, StringRef Expr) {
|
|
OS << "if (" << Expr << ".getNumOperands() < " << getNumOperands() << ")\n"
|
|
<< " return false;\n";
|
|
for (const auto &Operand : Operands) {
|
|
Operand->emitCxxCaptureStmts(OS, Rule, Operand->getOperandExpr(Expr));
|
|
}
|
|
}
|
|
|
|
/// Emit a C++ expression that tests whether the instruction named in
|
|
/// InsnVarName matches all the predicates and all the operands.
|
|
void emitCxxPredicateExpr(raw_ostream &OS, RuleMatcher &Rule,
|
|
StringRef InsnVarName) const {
|
|
emitCxxPredicateListExpr(OS, Rule, InsnVarName);
|
|
for (const auto &Operand : Operands) {
|
|
OS << " &&\n(";
|
|
Operand->emitCxxPredicateExpr(OS, Rule, InsnVarName);
|
|
OS << ")";
|
|
}
|
|
}
|
|
|
|
/// Compare the priority of this object and B.
|
|
///
|
|
/// Returns true if this object is more important than B.
|
|
bool isHigherPriorityThan(const InstructionMatcher &B) const {
|
|
// Instruction matchers involving more operands have higher priority.
|
|
if (Operands.size() > B.Operands.size())
|
|
return true;
|
|
if (Operands.size() < B.Operands.size())
|
|
return false;
|
|
|
|
for (const auto &Predicate : zip(predicates(), B.predicates())) {
|
|
if (std::get<0>(Predicate)->isHigherPriorityThan(*std::get<1>(Predicate)))
|
|
return true;
|
|
if (std::get<1>(Predicate)->isHigherPriorityThan(*std::get<0>(Predicate)))
|
|
return false;
|
|
}
|
|
|
|
for (const auto &Operand : zip(Operands, B.Operands)) {
|
|
if (std::get<0>(Operand)->isHigherPriorityThan(*std::get<1>(Operand)))
|
|
return true;
|
|
if (std::get<1>(Operand)->isHigherPriorityThan(*std::get<0>(Operand)))
|
|
return false;
|
|
}
|
|
|
|
return false;
|
|
};
|
|
|
|
/// Report the maximum number of temporary operands needed by the instruction
|
|
/// matcher.
|
|
unsigned countRendererFns() const {
|
|
return std::accumulate(predicates().begin(), predicates().end(), 0,
|
|
[](unsigned A,
|
|
const std::unique_ptr<InstructionPredicateMatcher>
|
|
&Predicate) {
|
|
return A + Predicate->countRendererFns();
|
|
}) +
|
|
std::accumulate(
|
|
Operands.begin(), Operands.end(), 0,
|
|
[](unsigned A, const std::unique_ptr<OperandMatcher> &Operand) {
|
|
return A + Operand->countRendererFns();
|
|
});
|
|
}
|
|
};
|
|
|
|
/// Generates code to check that the operand is a register defined by an
|
|
/// instruction that matches the given instruction matcher.
|
|
///
|
|
/// For example, the pattern:
|
|
/// (set $dst, (G_MUL (G_ADD $src1, $src2), $src3))
|
|
/// would use an InstructionOperandMatcher for operand 1 of the G_MUL to match
|
|
/// the:
|
|
/// (G_ADD $src1, $src2)
|
|
/// subpattern.
|
|
class InstructionOperandMatcher : public OperandPredicateMatcher {
|
|
protected:
|
|
std::unique_ptr<InstructionMatcher> InsnMatcher;
|
|
|
|
public:
|
|
InstructionOperandMatcher()
|
|
: OperandPredicateMatcher(OPM_Instruction),
|
|
InsnMatcher(new InstructionMatcher()) {}
|
|
|
|
static bool classof(const OperandPredicateMatcher *P) {
|
|
return P->getKind() == OPM_Instruction;
|
|
}
|
|
|
|
InstructionMatcher &getInsnMatcher() const { return *InsnMatcher; }
|
|
|
|
Optional<const OperandMatcher *>
|
|
getOptionalOperand(StringRef SymbolicName) const override {
|
|
assert(!SymbolicName.empty() && "Cannot lookup unnamed operand");
|
|
return InsnMatcher->getOptionalOperand(SymbolicName);
|
|
}
|
|
|
|
void emitCxxCaptureStmts(raw_ostream &OS, RuleMatcher &Rule,
|
|
StringRef OperandExpr) const override {
|
|
OS << "if (!" << OperandExpr + ".isReg())\n"
|
|
<< " return false;\n";
|
|
std::string InsnVarName = Rule.defineInsnVar(
|
|
OS, *InsnMatcher,
|
|
("*MRI.getVRegDef(" + OperandExpr + ".getReg())").str());
|
|
InsnMatcher->emitCxxCaptureStmts(OS, Rule, InsnVarName);
|
|
}
|
|
|
|
void emitCxxPredicateExpr(raw_ostream &OS, RuleMatcher &Rule,
|
|
StringRef OperandExpr) const override {
|
|
OperandExpr = Rule.getInsnVarName(*InsnMatcher);
|
|
OS << "(";
|
|
InsnMatcher->emitCxxPredicateExpr(OS, Rule, OperandExpr);
|
|
OS << ")\n";
|
|
}
|
|
};
|
|
|
|
//===- Actions ------------------------------------------------------------===//
|
|
class OperandRenderer {
|
|
public:
|
|
enum RendererKind { OR_Copy, OR_Imm, OR_Register, OR_ComplexPattern };
|
|
|
|
protected:
|
|
RendererKind Kind;
|
|
|
|
public:
|
|
OperandRenderer(RendererKind Kind) : Kind(Kind) {}
|
|
virtual ~OperandRenderer() {}
|
|
|
|
RendererKind getKind() const { return Kind; }
|
|
|
|
virtual void emitCxxRenderStmts(raw_ostream &OS, RuleMatcher &Rule) const = 0;
|
|
};
|
|
|
|
/// A CopyRenderer emits code to copy a single operand from an existing
|
|
/// instruction to the one being built.
|
|
class CopyRenderer : public OperandRenderer {
|
|
protected:
|
|
/// The matcher for the instruction that this operand is copied from.
|
|
/// This provides the facility for looking up an a operand by it's name so
|
|
/// that it can be used as a source for the instruction being built.
|
|
const InstructionMatcher &Matched;
|
|
/// The name of the operand.
|
|
const StringRef SymbolicName;
|
|
|
|
public:
|
|
CopyRenderer(const InstructionMatcher &Matched, StringRef SymbolicName)
|
|
: OperandRenderer(OR_Copy), Matched(Matched), SymbolicName(SymbolicName) {
|
|
}
|
|
|
|
static bool classof(const OperandRenderer *R) {
|
|
return R->getKind() == OR_Copy;
|
|
}
|
|
|
|
const StringRef getSymbolicName() const { return SymbolicName; }
|
|
|
|
void emitCxxRenderStmts(raw_ostream &OS, RuleMatcher &Rule) const override {
|
|
const OperandMatcher &Operand = Matched.getOperand(SymbolicName);
|
|
StringRef InsnVarName =
|
|
Rule.getInsnVarName(Operand.getInstructionMatcher());
|
|
std::string OperandExpr = Operand.getOperandExpr(InsnVarName);
|
|
OS << " MIB.add(" << OperandExpr << "/*" << SymbolicName << "*/);\n";
|
|
}
|
|
};
|
|
|
|
/// Adds a specific physical register to the instruction being built.
|
|
/// This is typically useful for WZR/XZR on AArch64.
|
|
class AddRegisterRenderer : public OperandRenderer {
|
|
protected:
|
|
const Record *RegisterDef;
|
|
|
|
public:
|
|
AddRegisterRenderer(const Record *RegisterDef)
|
|
: OperandRenderer(OR_Register), RegisterDef(RegisterDef) {}
|
|
|
|
static bool classof(const OperandRenderer *R) {
|
|
return R->getKind() == OR_Register;
|
|
}
|
|
|
|
void emitCxxRenderStmts(raw_ostream &OS, RuleMatcher &Rule) const override {
|
|
OS << " MIB.addReg(" << RegisterDef->getValueAsString("Namespace")
|
|
<< "::" << RegisterDef->getName() << ");\n";
|
|
}
|
|
};
|
|
|
|
/// Adds a specific immediate to the instruction being built.
|
|
class ImmRenderer : public OperandRenderer {
|
|
protected:
|
|
int64_t Imm;
|
|
|
|
public:
|
|
ImmRenderer(int64_t Imm)
|
|
: OperandRenderer(OR_Imm), Imm(Imm) {}
|
|
|
|
static bool classof(const OperandRenderer *R) {
|
|
return R->getKind() == OR_Imm;
|
|
}
|
|
|
|
void emitCxxRenderStmts(raw_ostream &OS, RuleMatcher &Rule) const override {
|
|
OS << " MIB.addImm(" << Imm << ");\n";
|
|
}
|
|
};
|
|
|
|
/// Adds operands by calling a renderer function supplied by the ComplexPattern
|
|
/// matcher function.
|
|
class RenderComplexPatternOperand : public OperandRenderer {
|
|
private:
|
|
const Record &TheDef;
|
|
/// The name of the operand.
|
|
const StringRef SymbolicName;
|
|
/// The renderer number. This must be unique within a rule since it's used to
|
|
/// identify a temporary variable to hold the renderer function.
|
|
unsigned RendererID;
|
|
|
|
unsigned getNumOperands() const {
|
|
return TheDef.getValueAsDag("Operands")->getNumArgs();
|
|
}
|
|
|
|
public:
|
|
RenderComplexPatternOperand(const Record &TheDef, StringRef SymbolicName,
|
|
unsigned RendererID)
|
|
: OperandRenderer(OR_ComplexPattern), TheDef(TheDef),
|
|
SymbolicName(SymbolicName), RendererID(RendererID) {}
|
|
|
|
static bool classof(const OperandRenderer *R) {
|
|
return R->getKind() == OR_ComplexPattern;
|
|
}
|
|
|
|
void emitCxxRenderStmts(raw_ostream &OS, RuleMatcher &Rule) const override {
|
|
OS << "Renderer" << RendererID << "(MIB);\n";
|
|
}
|
|
};
|
|
|
|
/// An action taken when all Matcher predicates succeeded for a parent rule.
|
|
///
|
|
/// Typical actions include:
|
|
/// * Changing the opcode of an instruction.
|
|
/// * Adding an operand to an instruction.
|
|
class MatchAction {
|
|
public:
|
|
virtual ~MatchAction() {}
|
|
|
|
/// Emit the C++ statements to implement the action.
|
|
///
|
|
/// \param RecycleVarName If given, it's an instruction to recycle. The
|
|
/// requirements on the instruction vary from action to
|
|
/// action.
|
|
virtual void emitCxxActionStmts(raw_ostream &OS, RuleMatcher &Rule,
|
|
StringRef RecycleVarName) const = 0;
|
|
};
|
|
|
|
/// Generates a comment describing the matched rule being acted upon.
|
|
class DebugCommentAction : public MatchAction {
|
|
private:
|
|
const PatternToMatch &P;
|
|
|
|
public:
|
|
DebugCommentAction(const PatternToMatch &P) : P(P) {}
|
|
|
|
void emitCxxActionStmts(raw_ostream &OS, RuleMatcher &Rule,
|
|
StringRef RecycleVarName) const override {
|
|
OS << "// " << *P.getSrcPattern() << " => " << *P.getDstPattern() << "\n";
|
|
}
|
|
};
|
|
|
|
/// Generates code to build an instruction or mutate an existing instruction
|
|
/// into the desired instruction when this is possible.
|
|
class BuildMIAction : public MatchAction {
|
|
private:
|
|
const CodeGenInstruction *I;
|
|
const InstructionMatcher &Matched;
|
|
std::vector<std::unique_ptr<OperandRenderer>> OperandRenderers;
|
|
|
|
/// True if the instruction can be built solely by mutating the opcode.
|
|
bool canMutate() const {
|
|
if (OperandRenderers.size() != Matched.getNumOperands())
|
|
return false;
|
|
|
|
for (const auto &Renderer : enumerate(OperandRenderers)) {
|
|
if (const auto *Copy = dyn_cast<CopyRenderer>(&*Renderer.value())) {
|
|
const OperandMatcher &OM = Matched.getOperand(Copy->getSymbolicName());
|
|
if (&Matched != &OM.getInstructionMatcher() ||
|
|
OM.getOperandIndex() != Renderer.index())
|
|
return false;
|
|
} else
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
public:
|
|
BuildMIAction(const CodeGenInstruction *I, const InstructionMatcher &Matched)
|
|
: I(I), Matched(Matched) {}
|
|
|
|
template <class Kind, class... Args>
|
|
Kind &addRenderer(Args&&... args) {
|
|
OperandRenderers.emplace_back(
|
|
llvm::make_unique<Kind>(std::forward<Args>(args)...));
|
|
return *static_cast<Kind *>(OperandRenderers.back().get());
|
|
}
|
|
|
|
void emitCxxActionStmts(raw_ostream &OS, RuleMatcher &Rule,
|
|
StringRef RecycleVarName) const override {
|
|
if (canMutate()) {
|
|
OS << " " << RecycleVarName << ".setDesc(TII.get(" << I->Namespace
|
|
<< "::" << I->TheDef->getName() << "));\n";
|
|
|
|
if (!I->ImplicitDefs.empty() || !I->ImplicitUses.empty()) {
|
|
OS << " auto MIB = MachineInstrBuilder(MF, &" << RecycleVarName
|
|
<< ");\n";
|
|
|
|
for (auto Def : I->ImplicitDefs) {
|
|
auto Namespace = Def->getValueAsString("Namespace");
|
|
OS << " MIB.addDef(" << Namespace << "::" << Def->getName()
|
|
<< ", RegState::Implicit);\n";
|
|
}
|
|
for (auto Use : I->ImplicitUses) {
|
|
auto Namespace = Use->getValueAsString("Namespace");
|
|
OS << " MIB.addUse(" << Namespace << "::" << Use->getName()
|
|
<< ", RegState::Implicit);\n";
|
|
}
|
|
}
|
|
|
|
OS << " MachineInstr &NewI = " << RecycleVarName << ";\n";
|
|
return;
|
|
}
|
|
|
|
// TODO: Simple permutation looks like it could be almost as common as
|
|
// mutation due to commutative operations.
|
|
|
|
OS << "MachineInstrBuilder MIB = BuildMI(*I.getParent(), I, "
|
|
"I.getDebugLoc(), TII.get("
|
|
<< I->Namespace << "::" << I->TheDef->getName() << "));\n";
|
|
for (const auto &Renderer : OperandRenderers)
|
|
Renderer->emitCxxRenderStmts(OS, Rule);
|
|
OS << " for (const auto *FromMI : ";
|
|
Rule.emitCxxCapturedInsnList(OS);
|
|
OS << ")\n";
|
|
OS << " for (const auto &MMO : FromMI->memoperands())\n";
|
|
OS << " MIB.addMemOperand(MMO);\n";
|
|
OS << " " << RecycleVarName << ".eraseFromParent();\n";
|
|
OS << " MachineInstr &NewI = *MIB;\n";
|
|
}
|
|
};
|
|
|
|
InstructionMatcher &RuleMatcher::addInstructionMatcher() {
|
|
Matchers.emplace_back(new InstructionMatcher());
|
|
return *Matchers.back();
|
|
}
|
|
|
|
void RuleMatcher::addRequiredFeature(Record *Feature) {
|
|
RequiredFeatures.push_back(Feature);
|
|
}
|
|
|
|
template <class Kind, class... Args>
|
|
Kind &RuleMatcher::addAction(Args &&... args) {
|
|
Actions.emplace_back(llvm::make_unique<Kind>(std::forward<Args>(args)...));
|
|
return *static_cast<Kind *>(Actions.back().get());
|
|
}
|
|
|
|
std::string RuleMatcher::defineInsnVar(raw_ostream &OS,
|
|
const InstructionMatcher &Matcher,
|
|
StringRef Value) {
|
|
std::string InsnVarName = "MI" + llvm::to_string(NextInsnVarID++);
|
|
OS << "MachineInstr &" << InsnVarName << " = " << Value << ";\n";
|
|
InsnVariableNames[&Matcher] = InsnVarName;
|
|
return InsnVarName;
|
|
}
|
|
|
|
StringRef RuleMatcher::getInsnVarName(const InstructionMatcher &InsnMatcher) const {
|
|
const auto &I = InsnVariableNames.find(&InsnMatcher);
|
|
if (I != InsnVariableNames.end())
|
|
return I->second;
|
|
llvm_unreachable("Matched Insn was not captured in a local variable");
|
|
}
|
|
|
|
/// Emit a C++ initializer_list containing references to every matched instruction.
|
|
void RuleMatcher::emitCxxCapturedInsnList(raw_ostream &OS) {
|
|
SmallVector<StringRef, 2> Names;
|
|
for (const auto &Pair : InsnVariableNames)
|
|
Names.push_back(Pair.second);
|
|
std::sort(Names.begin(), Names.end());
|
|
|
|
OS << "{";
|
|
for (const auto &Name : Names)
|
|
OS << "&" << Name << ", ";
|
|
OS << "}";
|
|
}
|
|
|
|
/// Emit C++ statements to check the shape of the match and capture
|
|
/// instructions into local variables.
|
|
void RuleMatcher::emitCxxCaptureStmts(raw_ostream &OS, StringRef Expr) {
|
|
assert(Matchers.size() == 1 && "Cannot handle multi-root matchers yet");
|
|
std::string InsnVarName = defineInsnVar(OS, *Matchers.front(), Expr);
|
|
Matchers.front()->emitCxxCaptureStmts(OS, *this, InsnVarName);
|
|
}
|
|
|
|
void RuleMatcher::emit(raw_ostream &OS,
|
|
SubtargetFeatureInfoMap SubtargetFeatures) {
|
|
if (Matchers.empty())
|
|
llvm_unreachable("Unexpected empty matcher!");
|
|
|
|
// The representation supports rules that require multiple roots such as:
|
|
// %ptr(p0) = ...
|
|
// %elt0(s32) = G_LOAD %ptr
|
|
// %1(p0) = G_ADD %ptr, 4
|
|
// %elt1(s32) = G_LOAD p0 %1
|
|
// which could be usefully folded into:
|
|
// %ptr(p0) = ...
|
|
// %elt0(s32), %elt1(s32) = TGT_LOAD_PAIR %ptr
|
|
// on some targets but we don't need to make use of that yet.
|
|
assert(Matchers.size() == 1 && "Cannot handle multi-root matchers yet");
|
|
|
|
OS << "if (";
|
|
OS << "[&]() {\n";
|
|
if (!RequiredFeatures.empty()) {
|
|
OS << " PredicateBitset ExpectedFeatures = {";
|
|
StringRef Separator = "";
|
|
for (const auto &Predicate : RequiredFeatures) {
|
|
const auto &I = SubtargetFeatures.find(Predicate);
|
|
assert(I != SubtargetFeatures.end() && "Didn't import predicate?");
|
|
OS << Separator << I->second.getEnumBitName();
|
|
Separator = ", ";
|
|
}
|
|
OS << "};\n";
|
|
OS << "if ((AvailableFeatures & ExpectedFeatures) != ExpectedFeatures)\n"
|
|
<< " return false;\n";
|
|
}
|
|
|
|
emitCxxCaptureStmts(OS, "I");
|
|
|
|
OS << " if (";
|
|
Matchers.front()->emitCxxPredicateExpr(OS, *this,
|
|
getInsnVarName(*Matchers.front()));
|
|
OS << ") {\n";
|
|
|
|
// We must also check if it's safe to fold the matched instructions.
|
|
if (InsnVariableNames.size() >= 2) {
|
|
for (const auto &Pair : InsnVariableNames) {
|
|
// Skip the root node since it isn't moving anywhere. Everything else is
|
|
// sinking to meet it.
|
|
if (Pair.first == Matchers.front().get())
|
|
continue;
|
|
|
|
// Reject the difficult cases until we have a more accurate check.
|
|
OS << " if (!isObviouslySafeToFold(" << Pair.second
|
|
<< ")) return false;\n";
|
|
|
|
// FIXME: Emit checks to determine it's _actually_ safe to fold and/or
|
|
// account for unsafe cases.
|
|
//
|
|
// Example:
|
|
// MI1--> %0 = ...
|
|
// %1 = ... %0
|
|
// MI0--> %2 = ... %0
|
|
// It's not safe to erase MI1. We currently handle this by not
|
|
// erasing %0 (even when it's dead).
|
|
//
|
|
// Example:
|
|
// MI1--> %0 = load volatile @a
|
|
// %1 = load volatile @a
|
|
// MI0--> %2 = ... %0
|
|
// It's not safe to sink %0's def past %1. We currently handle
|
|
// this by rejecting all loads.
|
|
//
|
|
// Example:
|
|
// MI1--> %0 = load @a
|
|
// %1 = store @a
|
|
// MI0--> %2 = ... %0
|
|
// It's not safe to sink %0's def past %1. We currently handle
|
|
// this by rejecting all loads.
|
|
//
|
|
// Example:
|
|
// G_CONDBR %cond, @BB1
|
|
// BB0:
|
|
// MI1--> %0 = load @a
|
|
// G_BR @BB1
|
|
// BB1:
|
|
// MI0--> %2 = ... %0
|
|
// It's not always safe to sink %0 across control flow. In this
|
|
// case it may introduce a memory fault. We currentl handle this
|
|
// by rejecting all loads.
|
|
}
|
|
}
|
|
|
|
for (const auto &MA : Actions) {
|
|
MA->emitCxxActionStmts(OS, *this, "I");
|
|
}
|
|
|
|
OS << " constrainSelectedInstRegOperands(NewI, TII, TRI, RBI);\n";
|
|
OS << " return true;\n";
|
|
OS << " }\n";
|
|
OS << " return false;\n";
|
|
OS << " }()) { return true; }\n\n";
|
|
}
|
|
|
|
bool RuleMatcher::isHigherPriorityThan(const RuleMatcher &B) const {
|
|
// Rules involving more match roots have higher priority.
|
|
if (Matchers.size() > B.Matchers.size())
|
|
return true;
|
|
if (Matchers.size() < B.Matchers.size())
|
|
return false;
|
|
|
|
for (const auto &Matcher : zip(Matchers, B.Matchers)) {
|
|
if (std::get<0>(Matcher)->isHigherPriorityThan(*std::get<1>(Matcher)))
|
|
return true;
|
|
if (std::get<1>(Matcher)->isHigherPriorityThan(*std::get<0>(Matcher)))
|
|
return false;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
unsigned RuleMatcher::countRendererFns() const {
|
|
return std::accumulate(
|
|
Matchers.begin(), Matchers.end(), 0,
|
|
[](unsigned A, const std::unique_ptr<InstructionMatcher> &Matcher) {
|
|
return A + Matcher->countRendererFns();
|
|
});
|
|
}
|
|
|
|
//===- GlobalISelEmitter class --------------------------------------------===//
|
|
|
|
class GlobalISelEmitter {
|
|
public:
|
|
explicit GlobalISelEmitter(RecordKeeper &RK);
|
|
void run(raw_ostream &OS);
|
|
|
|
private:
|
|
const RecordKeeper &RK;
|
|
const CodeGenDAGPatterns CGP;
|
|
const CodeGenTarget &Target;
|
|
|
|
/// Keep track of the equivalence between SDNodes and Instruction.
|
|
/// This is defined using 'GINodeEquiv' in the target description.
|
|
DenseMap<Record *, const CodeGenInstruction *> NodeEquivs;
|
|
|
|
/// Keep track of the equivalence between ComplexPattern's and
|
|
/// GIComplexOperandMatcher. Map entries are specified by subclassing
|
|
/// GIComplexPatternEquiv.
|
|
DenseMap<const Record *, const Record *> ComplexPatternEquivs;
|
|
|
|
// Map of predicates to their subtarget features.
|
|
SubtargetFeatureInfoMap SubtargetFeatures;
|
|
|
|
void gatherNodeEquivs();
|
|
const CodeGenInstruction *findNodeEquiv(Record *N) const;
|
|
|
|
Error importRulePredicates(RuleMatcher &M, ArrayRef<Init *> Predicates);
|
|
Expected<InstructionMatcher &>
|
|
createAndImportSelDAGMatcher(InstructionMatcher &InsnMatcher,
|
|
const TreePatternNode *Src) const;
|
|
Error importChildMatcher(InstructionMatcher &InsnMatcher,
|
|
TreePatternNode *SrcChild, unsigned OpIdx,
|
|
unsigned &TempOpIdx) const;
|
|
Expected<BuildMIAction &> createAndImportInstructionRenderer(
|
|
RuleMatcher &M, const TreePatternNode *Dst,
|
|
const InstructionMatcher &InsnMatcher) const;
|
|
Error importExplicitUseRenderer(BuildMIAction &DstMIBuilder,
|
|
TreePatternNode *DstChild,
|
|
const InstructionMatcher &InsnMatcher) const;
|
|
Error
|
|
importImplicitDefRenderers(BuildMIAction &DstMIBuilder,
|
|
const std::vector<Record *> &ImplicitDefs) const;
|
|
|
|
/// Analyze pattern \p P, returning a matcher for it if possible.
|
|
/// Otherwise, return an Error explaining why we don't support it.
|
|
Expected<RuleMatcher> runOnPattern(const PatternToMatch &P);
|
|
|
|
void declareSubtargetFeature(Record *Predicate);
|
|
};
|
|
|
|
void GlobalISelEmitter::gatherNodeEquivs() {
|
|
assert(NodeEquivs.empty());
|
|
for (Record *Equiv : RK.getAllDerivedDefinitions("GINodeEquiv"))
|
|
NodeEquivs[Equiv->getValueAsDef("Node")] =
|
|
&Target.getInstruction(Equiv->getValueAsDef("I"));
|
|
|
|
assert(ComplexPatternEquivs.empty());
|
|
for (Record *Equiv : RK.getAllDerivedDefinitions("GIComplexPatternEquiv")) {
|
|
Record *SelDAGEquiv = Equiv->getValueAsDef("SelDAGEquivalent");
|
|
if (!SelDAGEquiv)
|
|
continue;
|
|
ComplexPatternEquivs[SelDAGEquiv] = Equiv;
|
|
}
|
|
}
|
|
|
|
const CodeGenInstruction *GlobalISelEmitter::findNodeEquiv(Record *N) const {
|
|
return NodeEquivs.lookup(N);
|
|
}
|
|
|
|
GlobalISelEmitter::GlobalISelEmitter(RecordKeeper &RK)
|
|
: RK(RK), CGP(RK), Target(CGP.getTargetInfo()) {}
|
|
|
|
//===- Emitter ------------------------------------------------------------===//
|
|
|
|
Error
|
|
GlobalISelEmitter::importRulePredicates(RuleMatcher &M,
|
|
ArrayRef<Init *> Predicates) {
|
|
for (const Init *Predicate : Predicates) {
|
|
const DefInit *PredicateDef = static_cast<const DefInit *>(Predicate);
|
|
declareSubtargetFeature(PredicateDef->getDef());
|
|
M.addRequiredFeature(PredicateDef->getDef());
|
|
}
|
|
|
|
return Error::success();
|
|
}
|
|
|
|
Expected<InstructionMatcher &> GlobalISelEmitter::createAndImportSelDAGMatcher(
|
|
InstructionMatcher &InsnMatcher, const TreePatternNode *Src) const {
|
|
// Start with the defined operands (i.e., the results of the root operator).
|
|
if (Src->getExtTypes().size() > 1)
|
|
return failedImport("Src pattern has multiple results");
|
|
|
|
auto SrcGIOrNull = findNodeEquiv(Src->getOperator());
|
|
if (!SrcGIOrNull)
|
|
return failedImport("Pattern operator lacks an equivalent Instruction" +
|
|
explainOperator(Src->getOperator()));
|
|
auto &SrcGI = *SrcGIOrNull;
|
|
|
|
// The operators look good: match the opcode and mutate it to the new one.
|
|
InsnMatcher.addPredicate<InstructionOpcodeMatcher>(&SrcGI);
|
|
|
|
unsigned OpIdx = 0;
|
|
unsigned TempOpIdx = 0;
|
|
for (const EEVT::TypeSet &Ty : Src->getExtTypes()) {
|
|
auto OpTyOrNone = MVTToLLT(Ty.getConcrete());
|
|
|
|
if (!OpTyOrNone)
|
|
return failedImport(
|
|
"Result of Src pattern operator has an unsupported type");
|
|
|
|
// Results don't have a name unless they are the root node. The caller will
|
|
// set the name if appropriate.
|
|
OperandMatcher &OM = InsnMatcher.addOperand(OpIdx++, "", TempOpIdx);
|
|
OM.addPredicate<LLTOperandMatcher>(*OpTyOrNone);
|
|
}
|
|
|
|
// Match the used operands (i.e. the children of the operator).
|
|
for (unsigned i = 0, e = Src->getNumChildren(); i != e; ++i) {
|
|
if (auto Error = importChildMatcher(InsnMatcher, Src->getChild(i), OpIdx++,
|
|
TempOpIdx))
|
|
return std::move(Error);
|
|
}
|
|
|
|
return InsnMatcher;
|
|
}
|
|
|
|
Error GlobalISelEmitter::importChildMatcher(InstructionMatcher &InsnMatcher,
|
|
TreePatternNode *SrcChild,
|
|
unsigned OpIdx,
|
|
unsigned &TempOpIdx) const {
|
|
OperandMatcher &OM =
|
|
InsnMatcher.addOperand(OpIdx, SrcChild->getName(), TempOpIdx);
|
|
|
|
if (SrcChild->hasAnyPredicate())
|
|
return failedImport("Src pattern child has predicate (" +
|
|
explainPredicates(SrcChild) + ")");
|
|
|
|
ArrayRef<EEVT::TypeSet> ChildTypes = SrcChild->getExtTypes();
|
|
if (ChildTypes.size() != 1)
|
|
return failedImport("Src pattern child has multiple results");
|
|
|
|
// Check MBB's before the type check since they are not a known type.
|
|
if (!SrcChild->isLeaf()) {
|
|
if (SrcChild->getOperator()->isSubClassOf("SDNode")) {
|
|
auto &ChildSDNI = CGP.getSDNodeInfo(SrcChild->getOperator());
|
|
if (ChildSDNI.getSDClassName() == "BasicBlockSDNode") {
|
|
OM.addPredicate<MBBOperandMatcher>();
|
|
return Error::success();
|
|
}
|
|
}
|
|
}
|
|
|
|
auto OpTyOrNone = MVTToLLT(ChildTypes.front().getConcrete());
|
|
if (!OpTyOrNone)
|
|
return failedImport("Src operand has an unsupported type");
|
|
OM.addPredicate<LLTOperandMatcher>(*OpTyOrNone);
|
|
|
|
// Check for nested instructions.
|
|
if (!SrcChild->isLeaf()) {
|
|
// Map the node to a gMIR instruction.
|
|
InstructionOperandMatcher &InsnOperand =
|
|
OM.addPredicate<InstructionOperandMatcher>();
|
|
auto InsnMatcherOrError =
|
|
createAndImportSelDAGMatcher(InsnOperand.getInsnMatcher(), SrcChild);
|
|
if (auto Error = InsnMatcherOrError.takeError())
|
|
return Error;
|
|
|
|
return Error::success();
|
|
}
|
|
|
|
// Check for constant immediates.
|
|
if (auto *ChildInt = dyn_cast<IntInit>(SrcChild->getLeafValue())) {
|
|
OM.addPredicate<IntOperandMatcher>(ChildInt->getValue());
|
|
return Error::success();
|
|
}
|
|
|
|
// Check for def's like register classes or ComplexPattern's.
|
|
if (auto *ChildDefInit = dyn_cast<DefInit>(SrcChild->getLeafValue())) {
|
|
auto *ChildRec = ChildDefInit->getDef();
|
|
|
|
// Check for register classes.
|
|
if (ChildRec->isSubClassOf("RegisterClass")) {
|
|
OM.addPredicate<RegisterBankOperandMatcher>(
|
|
Target.getRegisterClass(ChildRec));
|
|
return Error::success();
|
|
}
|
|
|
|
if (ChildRec->isSubClassOf("RegisterOperand")) {
|
|
OM.addPredicate<RegisterBankOperandMatcher>(
|
|
Target.getRegisterClass(ChildRec->getValueAsDef("RegClass")));
|
|
return Error::success();
|
|
}
|
|
|
|
// Check for ComplexPattern's.
|
|
if (ChildRec->isSubClassOf("ComplexPattern")) {
|
|
const auto &ComplexPattern = ComplexPatternEquivs.find(ChildRec);
|
|
if (ComplexPattern == ComplexPatternEquivs.end())
|
|
return failedImport("SelectionDAG ComplexPattern (" +
|
|
ChildRec->getName() + ") not mapped to GlobalISel");
|
|
|
|
OM.addPredicate<ComplexPatternOperandMatcher>(OM,
|
|
*ComplexPattern->second);
|
|
TempOpIdx++;
|
|
return Error::success();
|
|
}
|
|
|
|
if (ChildRec->isSubClassOf("ImmLeaf")) {
|
|
return failedImport(
|
|
"Src pattern child def is an unsupported tablegen class (ImmLeaf)");
|
|
}
|
|
|
|
return failedImport(
|
|
"Src pattern child def is an unsupported tablegen class");
|
|
}
|
|
|
|
return failedImport("Src pattern child is an unsupported kind");
|
|
}
|
|
|
|
Error GlobalISelEmitter::importExplicitUseRenderer(
|
|
BuildMIAction &DstMIBuilder, TreePatternNode *DstChild,
|
|
const InstructionMatcher &InsnMatcher) const {
|
|
// The only non-leaf child we accept is 'bb': it's an operator because
|
|
// BasicBlockSDNode isn't inline, but in MI it's just another operand.
|
|
if (!DstChild->isLeaf()) {
|
|
if (DstChild->getOperator()->isSubClassOf("SDNode")) {
|
|
auto &ChildSDNI = CGP.getSDNodeInfo(DstChild->getOperator());
|
|
if (ChildSDNI.getSDClassName() == "BasicBlockSDNode") {
|
|
DstMIBuilder.addRenderer<CopyRenderer>(InsnMatcher,
|
|
DstChild->getName());
|
|
return Error::success();
|
|
}
|
|
}
|
|
return failedImport("Dst pattern child isn't a leaf node or an MBB");
|
|
}
|
|
|
|
// Otherwise, we're looking for a bog-standard RegisterClass operand.
|
|
if (DstChild->hasAnyPredicate())
|
|
return failedImport("Dst pattern child has predicate (" +
|
|
explainPredicates(DstChild) + ")");
|
|
|
|
if (auto *ChildDefInit = dyn_cast<DefInit>(DstChild->getLeafValue())) {
|
|
auto *ChildRec = ChildDefInit->getDef();
|
|
|
|
ArrayRef<EEVT::TypeSet> ChildTypes = DstChild->getExtTypes();
|
|
if (ChildTypes.size() != 1)
|
|
return failedImport("Dst pattern child has multiple results");
|
|
|
|
auto OpTyOrNone = MVTToLLT(ChildTypes.front().getConcrete());
|
|
if (!OpTyOrNone)
|
|
return failedImport("Dst operand has an unsupported type");
|
|
|
|
if (ChildRec->isSubClassOf("Register")) {
|
|
DstMIBuilder.addRenderer<AddRegisterRenderer>(ChildRec);
|
|
return Error::success();
|
|
}
|
|
|
|
if (ChildRec->isSubClassOf("RegisterClass") ||
|
|
ChildRec->isSubClassOf("RegisterOperand")) {
|
|
DstMIBuilder.addRenderer<CopyRenderer>(InsnMatcher, DstChild->getName());
|
|
return Error::success();
|
|
}
|
|
|
|
if (ChildRec->isSubClassOf("ComplexPattern")) {
|
|
const auto &ComplexPattern = ComplexPatternEquivs.find(ChildRec);
|
|
if (ComplexPattern == ComplexPatternEquivs.end())
|
|
return failedImport(
|
|
"SelectionDAG ComplexPattern not mapped to GlobalISel");
|
|
|
|
const OperandMatcher &OM = InsnMatcher.getOperand(DstChild->getName());
|
|
DstMIBuilder.addRenderer<RenderComplexPatternOperand>(
|
|
*ComplexPattern->second, DstChild->getName(),
|
|
OM.getAllocatedTemporariesBaseID());
|
|
return Error::success();
|
|
}
|
|
|
|
if (ChildRec->isSubClassOf("SDNodeXForm"))
|
|
return failedImport("Dst pattern child def is an unsupported tablegen "
|
|
"class (SDNodeXForm)");
|
|
|
|
return failedImport(
|
|
"Dst pattern child def is an unsupported tablegen class");
|
|
}
|
|
|
|
return failedImport("Dst pattern child is an unsupported kind");
|
|
}
|
|
|
|
Expected<BuildMIAction &> GlobalISelEmitter::createAndImportInstructionRenderer(
|
|
RuleMatcher &M, const TreePatternNode *Dst,
|
|
const InstructionMatcher &InsnMatcher) const {
|
|
Record *DstOp = Dst->getOperator();
|
|
if (!DstOp->isSubClassOf("Instruction")) {
|
|
if (DstOp->isSubClassOf("ValueType"))
|
|
return failedImport(
|
|
"Pattern operator isn't an instruction (it's a ValueType)");
|
|
return failedImport("Pattern operator isn't an instruction");
|
|
}
|
|
auto &DstI = Target.getInstruction(DstOp);
|
|
|
|
auto &DstMIBuilder = M.addAction<BuildMIAction>(&DstI, InsnMatcher);
|
|
|
|
// Render the explicit defs.
|
|
for (unsigned I = 0; I < DstI.Operands.NumDefs; ++I) {
|
|
const auto &DstIOperand = DstI.Operands[I];
|
|
DstMIBuilder.addRenderer<CopyRenderer>(InsnMatcher, DstIOperand.Name);
|
|
}
|
|
|
|
// Figure out which operands need defaults inserted. Operands that subclass
|
|
// OperandWithDefaultOps are considered from left to right until we have
|
|
// enough operands to render the instruction.
|
|
SmallSet<unsigned, 2> DefaultOperands;
|
|
unsigned DstINumUses = DstI.Operands.size() - DstI.Operands.NumDefs;
|
|
unsigned NumDefaultOperands = 0;
|
|
for (unsigned I = 0; I < DstINumUses &&
|
|
DstINumUses > Dst->getNumChildren() + NumDefaultOperands;
|
|
++I) {
|
|
const auto &DstIOperand = DstI.Operands[DstI.Operands.NumDefs + I];
|
|
if (DstIOperand.Rec->isSubClassOf("OperandWithDefaultOps")) {
|
|
DefaultOperands.insert(I);
|
|
NumDefaultOperands +=
|
|
DstIOperand.Rec->getValueAsDag("DefaultOps")->getNumArgs();
|
|
}
|
|
}
|
|
if (DstINumUses > Dst->getNumChildren() + DefaultOperands.size())
|
|
return failedImport("Insufficient operands supplied and default ops "
|
|
"couldn't make up the shortfall");
|
|
if (DstINumUses < Dst->getNumChildren() + DefaultOperands.size())
|
|
return failedImport("Too many operands supplied");
|
|
|
|
// Render the explicit uses.
|
|
unsigned Child = 0;
|
|
for (unsigned I = 0; I != DstINumUses; ++I) {
|
|
// If we need to insert default ops here, then do so.
|
|
if (DefaultOperands.count(I)) {
|
|
const auto &DstIOperand = DstI.Operands[DstI.Operands.NumDefs + I];
|
|
|
|
DagInit *DefaultOps = DstIOperand.Rec->getValueAsDag("DefaultOps");
|
|
for (const auto *DefaultOp : DefaultOps->args()) {
|
|
// Look through ValueType operators.
|
|
if (const DagInit *DefaultDagOp = dyn_cast<DagInit>(DefaultOp)) {
|
|
if (const DefInit *DefaultDagOperator =
|
|
dyn_cast<DefInit>(DefaultDagOp->getOperator())) {
|
|
if (DefaultDagOperator->getDef()->isSubClassOf("ValueType"))
|
|
DefaultOp = DefaultDagOp->getArg(0);
|
|
}
|
|
}
|
|
|
|
if (const DefInit *DefaultDefOp = dyn_cast<DefInit>(DefaultOp)) {
|
|
DstMIBuilder.addRenderer<AddRegisterRenderer>(DefaultDefOp->getDef());
|
|
continue;
|
|
}
|
|
|
|
if (const IntInit *DefaultIntOp = dyn_cast<IntInit>(DefaultOp)) {
|
|
DstMIBuilder.addRenderer<ImmRenderer>(DefaultIntOp->getValue());
|
|
continue;
|
|
}
|
|
|
|
return failedImport("Could not add default op");
|
|
}
|
|
|
|
continue;
|
|
}
|
|
|
|
if (auto Error = importExplicitUseRenderer(
|
|
DstMIBuilder, Dst->getChild(Child), InsnMatcher))
|
|
return std::move(Error);
|
|
++Child;
|
|
}
|
|
|
|
return DstMIBuilder;
|
|
}
|
|
|
|
Error GlobalISelEmitter::importImplicitDefRenderers(
|
|
BuildMIAction &DstMIBuilder,
|
|
const std::vector<Record *> &ImplicitDefs) const {
|
|
if (!ImplicitDefs.empty())
|
|
return failedImport("Pattern defines a physical register");
|
|
return Error::success();
|
|
}
|
|
|
|
Expected<RuleMatcher> GlobalISelEmitter::runOnPattern(const PatternToMatch &P) {
|
|
// Keep track of the matchers and actions to emit.
|
|
RuleMatcher M;
|
|
M.addAction<DebugCommentAction>(P);
|
|
|
|
if (auto Error = importRulePredicates(M, P.getPredicates()->getValues()))
|
|
return std::move(Error);
|
|
|
|
// Next, analyze the pattern operators.
|
|
TreePatternNode *Src = P.getSrcPattern();
|
|
TreePatternNode *Dst = P.getDstPattern();
|
|
|
|
// If the root of either pattern isn't a simple operator, ignore it.
|
|
if (auto Err = isTrivialOperatorNode(Dst))
|
|
return failedImport("Dst pattern root isn't a trivial operator (" +
|
|
toString(std::move(Err)) + ")");
|
|
if (auto Err = isTrivialOperatorNode(Src))
|
|
return failedImport("Src pattern root isn't a trivial operator (" +
|
|
toString(std::move(Err)) + ")");
|
|
|
|
// Start with the defined operands (i.e., the results of the root operator).
|
|
Record *DstOp = Dst->getOperator();
|
|
if (!DstOp->isSubClassOf("Instruction"))
|
|
return failedImport("Pattern operator isn't an instruction");
|
|
|
|
auto &DstI = Target.getInstruction(DstOp);
|
|
if (DstI.Operands.NumDefs != Src->getExtTypes().size())
|
|
return failedImport("Src pattern results and dst MI defs are different (" +
|
|
to_string(Src->getExtTypes().size()) + " def(s) vs " +
|
|
to_string(DstI.Operands.NumDefs) + " def(s))");
|
|
|
|
InstructionMatcher &InsnMatcherTemp = M.addInstructionMatcher();
|
|
auto InsnMatcherOrError = createAndImportSelDAGMatcher(InsnMatcherTemp, Src);
|
|
if (auto Error = InsnMatcherOrError.takeError())
|
|
return std::move(Error);
|
|
InstructionMatcher &InsnMatcher = InsnMatcherOrError.get();
|
|
|
|
// The root of the match also has constraints on the register bank so that it
|
|
// matches the result instruction.
|
|
unsigned OpIdx = 0;
|
|
for (const EEVT::TypeSet &Ty : Src->getExtTypes()) {
|
|
(void)Ty;
|
|
|
|
const auto &DstIOperand = DstI.Operands[OpIdx];
|
|
Record *DstIOpRec = DstIOperand.Rec;
|
|
if (DstIOpRec->isSubClassOf("RegisterOperand"))
|
|
DstIOpRec = DstIOpRec->getValueAsDef("RegClass");
|
|
if (!DstIOpRec->isSubClassOf("RegisterClass"))
|
|
return failedImport("Dst MI def isn't a register class");
|
|
|
|
OperandMatcher &OM = InsnMatcher.getOperand(OpIdx);
|
|
OM.setSymbolicName(DstIOperand.Name);
|
|
OM.addPredicate<RegisterBankOperandMatcher>(
|
|
Target.getRegisterClass(DstIOpRec));
|
|
++OpIdx;
|
|
}
|
|
|
|
auto DstMIBuilderOrError =
|
|
createAndImportInstructionRenderer(M, Dst, InsnMatcher);
|
|
if (auto Error = DstMIBuilderOrError.takeError())
|
|
return std::move(Error);
|
|
BuildMIAction &DstMIBuilder = DstMIBuilderOrError.get();
|
|
|
|
// Render the implicit defs.
|
|
// These are only added to the root of the result.
|
|
if (auto Error = importImplicitDefRenderers(DstMIBuilder, P.getDstRegs()))
|
|
return std::move(Error);
|
|
|
|
// We're done with this pattern! It's eligible for GISel emission; return it.
|
|
++NumPatternImported;
|
|
return std::move(M);
|
|
}
|
|
|
|
void GlobalISelEmitter::run(raw_ostream &OS) {
|
|
// Track the GINodeEquiv definitions.
|
|
gatherNodeEquivs();
|
|
|
|
emitSourceFileHeader(("Global Instruction Selector for the " +
|
|
Target.getName() + " target").str(), OS);
|
|
std::vector<RuleMatcher> Rules;
|
|
// Look through the SelectionDAG patterns we found, possibly emitting some.
|
|
for (const PatternToMatch &Pat : CGP.ptms()) {
|
|
++NumPatternTotal;
|
|
auto MatcherOrErr = runOnPattern(Pat);
|
|
|
|
// The pattern analysis can fail, indicating an unsupported pattern.
|
|
// Report that if we've been asked to do so.
|
|
if (auto Err = MatcherOrErr.takeError()) {
|
|
if (WarnOnSkippedPatterns) {
|
|
PrintWarning(Pat.getSrcRecord()->getLoc(),
|
|
"Skipped pattern: " + toString(std::move(Err)));
|
|
} else {
|
|
consumeError(std::move(Err));
|
|
}
|
|
++NumPatternImportsSkipped;
|
|
continue;
|
|
}
|
|
|
|
Rules.push_back(std::move(MatcherOrErr.get()));
|
|
}
|
|
|
|
std::stable_sort(Rules.begin(), Rules.end(),
|
|
[&](const RuleMatcher &A, const RuleMatcher &B) {
|
|
if (A.isHigherPriorityThan(B)) {
|
|
assert(!B.isHigherPriorityThan(A) && "Cannot be more important "
|
|
"and less important at "
|
|
"the same time");
|
|
return true;
|
|
}
|
|
return false;
|
|
});
|
|
|
|
unsigned MaxTemporaries = 0;
|
|
for (const auto &Rule : Rules)
|
|
MaxTemporaries = std::max(MaxTemporaries, Rule.countRendererFns());
|
|
|
|
OS << "#ifdef GET_GLOBALISEL_PREDICATE_BITSET\n"
|
|
<< "const unsigned MAX_SUBTARGET_PREDICATES = " << SubtargetFeatures.size()
|
|
<< ";\n"
|
|
<< "using PredicateBitset = "
|
|
"llvm::PredicateBitsetImpl<MAX_SUBTARGET_PREDICATES>;\n"
|
|
<< "#endif // ifdef GET_GLOBALISEL_PREDICATE_BITSET\n\n";
|
|
|
|
OS << "#ifdef GET_GLOBALISEL_TEMPORARIES_DECL\n";
|
|
for (unsigned I = 0; I < MaxTemporaries; ++I)
|
|
OS << " mutable ComplexRendererFn Renderer" << I << ";\n";
|
|
OS << "#endif // ifdef GET_GLOBALISEL_TEMPORARIES_DECL\n\n";
|
|
|
|
OS << "#ifdef GET_GLOBALISEL_TEMPORARIES_INIT\n";
|
|
for (unsigned I = 0; I < MaxTemporaries; ++I)
|
|
OS << ", Renderer" << I << "(nullptr)\n";
|
|
OS << "#endif // ifdef GET_GLOBALISEL_TEMPORARIES_INIT\n\n";
|
|
|
|
OS << "#ifdef GET_GLOBALISEL_IMPL\n";
|
|
SubtargetFeatureInfo::emitSubtargetFeatureBitEnumeration(SubtargetFeatures,
|
|
OS);
|
|
|
|
// Separate subtarget features by how often they must be recomputed.
|
|
SubtargetFeatureInfoMap ModuleFeatures;
|
|
std::copy_if(SubtargetFeatures.begin(), SubtargetFeatures.end(),
|
|
std::inserter(ModuleFeatures, ModuleFeatures.end()),
|
|
[](const SubtargetFeatureInfoMap::value_type &X) {
|
|
return !X.second.mustRecomputePerFunction();
|
|
});
|
|
SubtargetFeatureInfoMap FunctionFeatures;
|
|
std::copy_if(SubtargetFeatures.begin(), SubtargetFeatures.end(),
|
|
std::inserter(FunctionFeatures, FunctionFeatures.end()),
|
|
[](const SubtargetFeatureInfoMap::value_type &X) {
|
|
return X.second.mustRecomputePerFunction();
|
|
});
|
|
|
|
SubtargetFeatureInfo::emitComputeAvailableFeatures(
|
|
Target.getName(), "InstructionSelector", "computeAvailableModuleFeatures",
|
|
ModuleFeatures, OS);
|
|
SubtargetFeatureInfo::emitComputeAvailableFeatures(
|
|
Target.getName(), "InstructionSelector",
|
|
"computeAvailableFunctionFeatures", FunctionFeatures, OS,
|
|
"const MachineFunction *MF");
|
|
|
|
OS << "bool " << Target.getName()
|
|
<< "InstructionSelector::selectImpl(MachineInstr &I) const {\n"
|
|
<< " MachineFunction &MF = *I.getParent()->getParent();\n"
|
|
<< " const MachineRegisterInfo &MRI = MF.getRegInfo();\n"
|
|
<< " // FIXME: This should be computed on a per-function basis rather than per-insn.\n"
|
|
<< " AvailableFunctionFeatures = computeAvailableFunctionFeatures(&STI, &MF);\n"
|
|
<< " const PredicateBitset AvailableFeatures = getAvailableFeatures();\n";
|
|
|
|
for (auto &Rule : Rules) {
|
|
Rule.emit(OS, SubtargetFeatures);
|
|
++NumPatternEmitted;
|
|
}
|
|
|
|
OS << " return false;\n"
|
|
<< "}\n"
|
|
<< "#endif // ifdef GET_GLOBALISEL_IMPL\n";
|
|
|
|
OS << "#ifdef GET_GLOBALISEL_PREDICATES_DECL\n"
|
|
<< "PredicateBitset AvailableModuleFeatures;\n"
|
|
<< "mutable PredicateBitset AvailableFunctionFeatures;\n"
|
|
<< "PredicateBitset getAvailableFeatures() const {\n"
|
|
<< " return AvailableModuleFeatures | AvailableFunctionFeatures;\n"
|
|
<< "}\n"
|
|
<< "PredicateBitset\n"
|
|
<< "computeAvailableModuleFeatures(const " << Target.getName()
|
|
<< "Subtarget *Subtarget) const;\n"
|
|
<< "PredicateBitset\n"
|
|
<< "computeAvailableFunctionFeatures(const " << Target.getName()
|
|
<< "Subtarget *Subtarget,\n"
|
|
<< " const MachineFunction *MF) const;\n"
|
|
<< "#endif // ifdef GET_GLOBALISEL_PREDICATES_DECL\n";
|
|
|
|
OS << "#ifdef GET_GLOBALISEL_PREDICATES_INIT\n"
|
|
<< "AvailableModuleFeatures(computeAvailableModuleFeatures(&STI)),\n"
|
|
<< "AvailableFunctionFeatures()\n"
|
|
<< "#endif // ifdef GET_GLOBALISEL_PREDICATES_INIT\n";
|
|
}
|
|
|
|
void GlobalISelEmitter::declareSubtargetFeature(Record *Predicate) {
|
|
if (SubtargetFeatures.count(Predicate) == 0)
|
|
SubtargetFeatures.emplace(
|
|
Predicate, SubtargetFeatureInfo(Predicate, SubtargetFeatures.size()));
|
|
}
|
|
|
|
} // end anonymous namespace
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace llvm {
|
|
void EmitGlobalISel(RecordKeeper &RK, raw_ostream &OS) {
|
|
GlobalISelEmitter(RK).run(OS);
|
|
}
|
|
} // End llvm namespace
|