llvm-project/lldb/source/Target/CPPLanguageRuntime.cpp

387 lines
12 KiB
C++

//===-- CPPLanguageRuntime.cpp -------------------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "lldb/Target/CPPLanguageRuntime.h"
#include <string.h>
#include "lldb/Core/PluginManager.h"
#include "lldb/Core/UniqueCStringMap.h"
#include "lldb/Target/ExecutionContext.h"
using namespace lldb;
using namespace lldb_private;
class CPPRuntimeEquivalents
{
public:
CPPRuntimeEquivalents ()
{
m_impl.Append(ConstString("std::basic_string<char, std::char_traits<char>, std::allocator<char> >").AsCString(), ConstString("basic_string<char>"));
// these two (with a prefixed std::) occur when c++stdlib string class occurs as a template argument in some STL container
m_impl.Append(ConstString("std::basic_string<char, std::char_traits<char>, std::allocator<char> >").AsCString(), ConstString("std::basic_string<char>"));
m_impl.Sort();
}
void
Add (ConstString& type_name,
ConstString& type_equivalent)
{
m_impl.Insert(type_name.AsCString(), type_equivalent);
}
uint32_t
FindExactMatches (ConstString& type_name,
std::vector<ConstString>& equivalents)
{
uint32_t count = 0;
for (ImplData match = m_impl.FindFirstValueForName(type_name.AsCString());
match != NULL;
match = m_impl.FindNextValueForName(match))
{
equivalents.push_back(match->value);
count++;
}
return count;
}
// partial matches can occur when a name with equivalents is a template argument.
// e.g. we may have "class Foo" be a match for "struct Bar". if we have a typename
// such as "class Templatized<class Foo, Anything>" we want this to be replaced with
// "class Templatized<struct Bar, Anything>". Since partial matching is time consuming
// once we get a partial match, we add it to the exact matches list for faster retrieval
uint32_t
FindPartialMatches (ConstString& type_name,
std::vector<ConstString>& equivalents)
{
uint32_t count = 0;
const char* type_name_cstr = type_name.AsCString();
size_t items_count = m_impl.GetSize();
for (size_t item = 0; item < items_count; item++)
{
const char* key_cstr = m_impl.GetCStringAtIndex(item);
if ( strstr(type_name_cstr,key_cstr) )
{
count += AppendReplacements(type_name_cstr,
key_cstr,
equivalents);
}
}
return count;
}
private:
std::string& replace (std::string& target,
std::string& pattern,
std::string& with)
{
size_t pos;
size_t pattern_len = pattern.size();
while ( (pos = target.find(pattern)) != std::string::npos )
target.replace(pos, pattern_len, with);
return target;
}
uint32_t
AppendReplacements (const char* original,
const char *matching_key,
std::vector<ConstString>& equivalents)
{
std::string matching_key_str(matching_key);
ConstString original_const(original);
uint32_t count = 0;
for (ImplData match = m_impl.FindFirstValueForName(matching_key);
match != NULL;
match = m_impl.FindNextValueForName(match))
{
std::string target(original);
std::string equiv_class(match->value.AsCString());
replace (target, matching_key_str, equiv_class);
ConstString target_const(target.c_str());
// you will most probably want to leave this off since it might make this map grow indefinitely
#ifdef ENABLE_CPP_EQUIVALENTS_MAP_TO_GROW
Add(original_const, target_const);
#endif
equivalents.push_back(target_const);
count++;
}
return count;
}
typedef UniqueCStringMap<ConstString> Impl;
typedef const Impl::Entry* ImplData;
Impl m_impl;
};
static CPPRuntimeEquivalents&
GetEquivalentsMap ()
{
static CPPRuntimeEquivalents g_equivalents_map;
return g_equivalents_map;
}
//----------------------------------------------------------------------
// Destructor
//----------------------------------------------------------------------
CPPLanguageRuntime::~CPPLanguageRuntime()
{
}
CPPLanguageRuntime::CPPLanguageRuntime (Process *process) :
LanguageRuntime (process)
{
}
bool
CPPLanguageRuntime::GetObjectDescription (Stream &str, ValueObject &object)
{
// C++ has no generic way to do this.
return false;
}
bool
CPPLanguageRuntime::GetObjectDescription (Stream &str, Value &value, ExecutionContextScope *exe_scope)
{
// C++ has no generic way to do this.
return false;
}
bool
CPPLanguageRuntime::IsCPPMangledName (const char *name)
{
// FIXME, we should really run through all the known C++ Language plugins and ask each one if
// this is a C++ mangled name, but we can put that off till there is actually more than one
// we care about.
if (name && name[0] == '_' && name[1] == 'Z')
return true;
else
return false;
}
bool
CPPLanguageRuntime::StripNamespacesFromVariableName (const char *name, const char *&base_name_start, const char *&base_name_end)
{
if (base_name_end == NULL)
base_name_end = name + strlen (name);
const char *last_colon = strrchr (name, ':');
if (last_colon == NULL)
{
base_name_start = name;
return true;
}
// Can't have a C++ name that begins with a single ':', nor contains an internal single ':'
if (last_colon == name)
return false;
else if (last_colon[-1] != ':')
return false;
else
{
// FIXME: should check if there is
base_name_start = last_colon + 1;
return true;
}
}
uint32_t
CPPLanguageRuntime::FindEquivalentNames(ConstString type_name, std::vector<ConstString>& equivalents)
{
uint32_t count = GetEquivalentsMap().FindExactMatches(type_name, equivalents);
bool might_have_partials=
( count == 0 ) // if we have a full name match just use it
&& (strchr(type_name.AsCString(), '<') != NULL // we should only have partial matches when templates are involved, check that we have
&& strchr(type_name.AsCString(), '>') != NULL); // angle brackets in the type_name before trying to scan for partial matches
if ( might_have_partials )
count = GetEquivalentsMap().FindPartialMatches(type_name, equivalents);
return count;
}
void
CPPLanguageRuntime::MethodName::Clear()
{
m_full.Clear();
m_basename = llvm::StringRef();
m_context = llvm::StringRef();
m_arguments = llvm::StringRef();
m_qualifiers = llvm::StringRef();
m_type = eTypeInvalid;
m_parsed = false;
m_parse_error = false;
}
bool
ReverseFindMatchingChars (const llvm::StringRef &s,
const llvm::StringRef &left_right_chars,
size_t &left_pos,
size_t &right_pos,
size_t pos = llvm::StringRef::npos)
{
assert (left_right_chars.size() == 2);
left_pos = llvm::StringRef::npos;
const char left_char = left_right_chars[0];
const char right_char = left_right_chars[1];
pos = s.find_last_of(left_right_chars, pos);
if (pos == llvm::StringRef::npos || s[pos] == left_char)
return false;
right_pos = pos;
uint32_t depth = 1;
while (pos > 0 && depth > 0)
{
pos = s.find_last_of(left_right_chars, pos);
if (pos == llvm::StringRef::npos)
return false;
if (s[pos] == left_char)
{
if (--depth == 0)
{
left_pos = pos;
return left_pos < right_pos;
}
}
else if (s[pos] == right_char)
{
++depth;
}
}
return false;
}
void
CPPLanguageRuntime::MethodName::Parse()
{
if (!m_parsed && m_full)
{
// ConstString mangled;
// m_full.GetMangledCounterpart(mangled);
// printf ("\n parsing = '%s'\n", m_full.GetCString());
// if (mangled)
// printf (" mangled = '%s'\n", mangled.GetCString());
m_parse_error = false;
m_parsed = true;
llvm::StringRef full (m_full.GetCString());
size_t arg_start, arg_end;
llvm::StringRef parens("()", 2);
if (ReverseFindMatchingChars (full, parens, arg_start, arg_end))
{
m_arguments = full.substr(arg_start, arg_end - arg_start + 1);
if (arg_end + 1 < full.size())
m_qualifiers = full.substr(arg_end + 1);
if (arg_start > 0)
{
size_t basename_end = arg_start;
size_t context_end = llvm::StringRef::npos;
if (basename_end > 0 && full[basename_end-1] == '>')
{
// TODO: handle template junk...
// Templated function
size_t template_start, template_end;
llvm::StringRef lt_gt("<>", 2);
if (ReverseFindMatchingChars (full, lt_gt, template_start, template_end, basename_end))
context_end = full.rfind(':', template_start);
}
if (context_end == llvm::StringRef::npos)
context_end = full.rfind(':', basename_end);
if (context_end == llvm::StringRef::npos)
m_basename = full.substr(0, basename_end);
else
{
m_context = full.substr(0, context_end - 1);
const size_t basename_begin = context_end + 1;
m_basename = full.substr(basename_begin, basename_end - basename_begin);
}
m_type = eTypeUnknownMethod;
}
else
{
m_parse_error = true;
return;
}
// if (!m_context.empty())
// printf (" context = '%s'\n", m_context.str().c_str());
// if (m_basename)
// printf (" basename = '%s'\n", m_basename.GetCString());
// if (!m_arguments.empty())
// printf (" arguments = '%s'\n", m_arguments.str().c_str());
// if (!m_qualifiers.empty())
// printf ("qualifiers = '%s'\n", m_qualifiers.str().c_str());
}
else
{
m_parse_error = true;
// printf ("error: didn't find matching parens for arguments\n");
}
}
}
llvm::StringRef
CPPLanguageRuntime::MethodName::GetBasename ()
{
if (!m_parsed)
Parse();
return m_basename;
}
llvm::StringRef
CPPLanguageRuntime::MethodName::GetContext ()
{
if (!m_parsed)
Parse();
return m_context;
}
llvm::StringRef
CPPLanguageRuntime::MethodName::GetArguments ()
{
if (!m_parsed)
Parse();
return m_arguments;
}
llvm::StringRef
CPPLanguageRuntime::MethodName::GetQualifiers ()
{
if (!m_parsed)
Parse();
return m_qualifiers;
}