forked from OSchip/llvm-project
2947 lines
97 KiB
C++
2947 lines
97 KiB
C++
//===- AArch64InstrInfo.cpp - AArch64 Instruction Information -------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file contains the AArch64 implementation of the TargetInstrInfo class.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "AArch64InstrInfo.h"
|
|
#include "AArch64MachineCombinerPattern.h"
|
|
#include "AArch64Subtarget.h"
|
|
#include "MCTargetDesc/AArch64AddressingModes.h"
|
|
#include "llvm/CodeGen/MachineFrameInfo.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineMemOperand.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/PseudoSourceValue.h"
|
|
#include "llvm/MC/MCInst.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/TargetRegistry.h"
|
|
|
|
using namespace llvm;
|
|
|
|
#define GET_INSTRINFO_CTOR_DTOR
|
|
#include "AArch64GenInstrInfo.inc"
|
|
|
|
AArch64InstrInfo::AArch64InstrInfo(const AArch64Subtarget &STI)
|
|
: AArch64GenInstrInfo(AArch64::ADJCALLSTACKDOWN, AArch64::ADJCALLSTACKUP),
|
|
RI(STI.getTargetTriple()), Subtarget(STI) {}
|
|
|
|
/// GetInstSize - Return the number of bytes of code the specified
|
|
/// instruction may be. This returns the maximum number of bytes.
|
|
unsigned AArch64InstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const {
|
|
const MachineBasicBlock &MBB = *MI->getParent();
|
|
const MachineFunction *MF = MBB.getParent();
|
|
const MCAsmInfo *MAI = MF->getTarget().getMCAsmInfo();
|
|
|
|
if (MI->getOpcode() == AArch64::INLINEASM)
|
|
return getInlineAsmLength(MI->getOperand(0).getSymbolName(), *MAI);
|
|
|
|
const MCInstrDesc &Desc = MI->getDesc();
|
|
switch (Desc.getOpcode()) {
|
|
default:
|
|
// Anything not explicitly designated otherwise is a nomal 4-byte insn.
|
|
return 4;
|
|
case TargetOpcode::DBG_VALUE:
|
|
case TargetOpcode::EH_LABEL:
|
|
case TargetOpcode::IMPLICIT_DEF:
|
|
case TargetOpcode::KILL:
|
|
return 0;
|
|
}
|
|
|
|
llvm_unreachable("GetInstSizeInBytes()- Unable to determin insn size");
|
|
}
|
|
|
|
static void parseCondBranch(MachineInstr *LastInst, MachineBasicBlock *&Target,
|
|
SmallVectorImpl<MachineOperand> &Cond) {
|
|
// Block ends with fall-through condbranch.
|
|
switch (LastInst->getOpcode()) {
|
|
default:
|
|
llvm_unreachable("Unknown branch instruction?");
|
|
case AArch64::Bcc:
|
|
Target = LastInst->getOperand(1).getMBB();
|
|
Cond.push_back(LastInst->getOperand(0));
|
|
break;
|
|
case AArch64::CBZW:
|
|
case AArch64::CBZX:
|
|
case AArch64::CBNZW:
|
|
case AArch64::CBNZX:
|
|
Target = LastInst->getOperand(1).getMBB();
|
|
Cond.push_back(MachineOperand::CreateImm(-1));
|
|
Cond.push_back(MachineOperand::CreateImm(LastInst->getOpcode()));
|
|
Cond.push_back(LastInst->getOperand(0));
|
|
break;
|
|
case AArch64::TBZW:
|
|
case AArch64::TBZX:
|
|
case AArch64::TBNZW:
|
|
case AArch64::TBNZX:
|
|
Target = LastInst->getOperand(2).getMBB();
|
|
Cond.push_back(MachineOperand::CreateImm(-1));
|
|
Cond.push_back(MachineOperand::CreateImm(LastInst->getOpcode()));
|
|
Cond.push_back(LastInst->getOperand(0));
|
|
Cond.push_back(LastInst->getOperand(1));
|
|
}
|
|
}
|
|
|
|
// Branch analysis.
|
|
bool AArch64InstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
|
|
MachineBasicBlock *&TBB,
|
|
MachineBasicBlock *&FBB,
|
|
SmallVectorImpl<MachineOperand> &Cond,
|
|
bool AllowModify) const {
|
|
// If the block has no terminators, it just falls into the block after it.
|
|
MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
|
|
if (I == MBB.end())
|
|
return false;
|
|
|
|
if (!isUnpredicatedTerminator(I))
|
|
return false;
|
|
|
|
// Get the last instruction in the block.
|
|
MachineInstr *LastInst = I;
|
|
|
|
// If there is only one terminator instruction, process it.
|
|
unsigned LastOpc = LastInst->getOpcode();
|
|
if (I == MBB.begin() || !isUnpredicatedTerminator(--I)) {
|
|
if (isUncondBranchOpcode(LastOpc)) {
|
|
TBB = LastInst->getOperand(0).getMBB();
|
|
return false;
|
|
}
|
|
if (isCondBranchOpcode(LastOpc)) {
|
|
// Block ends with fall-through condbranch.
|
|
parseCondBranch(LastInst, TBB, Cond);
|
|
return false;
|
|
}
|
|
return true; // Can't handle indirect branch.
|
|
}
|
|
|
|
// Get the instruction before it if it is a terminator.
|
|
MachineInstr *SecondLastInst = I;
|
|
unsigned SecondLastOpc = SecondLastInst->getOpcode();
|
|
|
|
// If AllowModify is true and the block ends with two or more unconditional
|
|
// branches, delete all but the first unconditional branch.
|
|
if (AllowModify && isUncondBranchOpcode(LastOpc)) {
|
|
while (isUncondBranchOpcode(SecondLastOpc)) {
|
|
LastInst->eraseFromParent();
|
|
LastInst = SecondLastInst;
|
|
LastOpc = LastInst->getOpcode();
|
|
if (I == MBB.begin() || !isUnpredicatedTerminator(--I)) {
|
|
// Return now the only terminator is an unconditional branch.
|
|
TBB = LastInst->getOperand(0).getMBB();
|
|
return false;
|
|
} else {
|
|
SecondLastInst = I;
|
|
SecondLastOpc = SecondLastInst->getOpcode();
|
|
}
|
|
}
|
|
}
|
|
|
|
// If there are three terminators, we don't know what sort of block this is.
|
|
if (SecondLastInst && I != MBB.begin() && isUnpredicatedTerminator(--I))
|
|
return true;
|
|
|
|
// If the block ends with a B and a Bcc, handle it.
|
|
if (isCondBranchOpcode(SecondLastOpc) && isUncondBranchOpcode(LastOpc)) {
|
|
parseCondBranch(SecondLastInst, TBB, Cond);
|
|
FBB = LastInst->getOperand(0).getMBB();
|
|
return false;
|
|
}
|
|
|
|
// If the block ends with two unconditional branches, handle it. The second
|
|
// one is not executed, so remove it.
|
|
if (isUncondBranchOpcode(SecondLastOpc) && isUncondBranchOpcode(LastOpc)) {
|
|
TBB = SecondLastInst->getOperand(0).getMBB();
|
|
I = LastInst;
|
|
if (AllowModify)
|
|
I->eraseFromParent();
|
|
return false;
|
|
}
|
|
|
|
// ...likewise if it ends with an indirect branch followed by an unconditional
|
|
// branch.
|
|
if (isIndirectBranchOpcode(SecondLastOpc) && isUncondBranchOpcode(LastOpc)) {
|
|
I = LastInst;
|
|
if (AllowModify)
|
|
I->eraseFromParent();
|
|
return true;
|
|
}
|
|
|
|
// Otherwise, can't handle this.
|
|
return true;
|
|
}
|
|
|
|
bool AArch64InstrInfo::ReverseBranchCondition(
|
|
SmallVectorImpl<MachineOperand> &Cond) const {
|
|
if (Cond[0].getImm() != -1) {
|
|
// Regular Bcc
|
|
AArch64CC::CondCode CC = (AArch64CC::CondCode)(int)Cond[0].getImm();
|
|
Cond[0].setImm(AArch64CC::getInvertedCondCode(CC));
|
|
} else {
|
|
// Folded compare-and-branch
|
|
switch (Cond[1].getImm()) {
|
|
default:
|
|
llvm_unreachable("Unknown conditional branch!");
|
|
case AArch64::CBZW:
|
|
Cond[1].setImm(AArch64::CBNZW);
|
|
break;
|
|
case AArch64::CBNZW:
|
|
Cond[1].setImm(AArch64::CBZW);
|
|
break;
|
|
case AArch64::CBZX:
|
|
Cond[1].setImm(AArch64::CBNZX);
|
|
break;
|
|
case AArch64::CBNZX:
|
|
Cond[1].setImm(AArch64::CBZX);
|
|
break;
|
|
case AArch64::TBZW:
|
|
Cond[1].setImm(AArch64::TBNZW);
|
|
break;
|
|
case AArch64::TBNZW:
|
|
Cond[1].setImm(AArch64::TBZW);
|
|
break;
|
|
case AArch64::TBZX:
|
|
Cond[1].setImm(AArch64::TBNZX);
|
|
break;
|
|
case AArch64::TBNZX:
|
|
Cond[1].setImm(AArch64::TBZX);
|
|
break;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
unsigned AArch64InstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
|
|
MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
|
|
if (I == MBB.end())
|
|
return 0;
|
|
|
|
if (!isUncondBranchOpcode(I->getOpcode()) &&
|
|
!isCondBranchOpcode(I->getOpcode()))
|
|
return 0;
|
|
|
|
// Remove the branch.
|
|
I->eraseFromParent();
|
|
|
|
I = MBB.end();
|
|
|
|
if (I == MBB.begin())
|
|
return 1;
|
|
--I;
|
|
if (!isCondBranchOpcode(I->getOpcode()))
|
|
return 1;
|
|
|
|
// Remove the branch.
|
|
I->eraseFromParent();
|
|
return 2;
|
|
}
|
|
|
|
void AArch64InstrInfo::instantiateCondBranch(
|
|
MachineBasicBlock &MBB, DebugLoc DL, MachineBasicBlock *TBB,
|
|
ArrayRef<MachineOperand> Cond) const {
|
|
if (Cond[0].getImm() != -1) {
|
|
// Regular Bcc
|
|
BuildMI(&MBB, DL, get(AArch64::Bcc)).addImm(Cond[0].getImm()).addMBB(TBB);
|
|
} else {
|
|
// Folded compare-and-branch
|
|
// Note that we use addOperand instead of addReg to keep the flags.
|
|
const MachineInstrBuilder MIB =
|
|
BuildMI(&MBB, DL, get(Cond[1].getImm())).addOperand(Cond[2]);
|
|
if (Cond.size() > 3)
|
|
MIB.addImm(Cond[3].getImm());
|
|
MIB.addMBB(TBB);
|
|
}
|
|
}
|
|
|
|
unsigned AArch64InstrInfo::InsertBranch(
|
|
MachineBasicBlock &MBB, MachineBasicBlock *TBB, MachineBasicBlock *FBB,
|
|
ArrayRef<MachineOperand> Cond, DebugLoc DL) const {
|
|
// Shouldn't be a fall through.
|
|
assert(TBB && "InsertBranch must not be told to insert a fallthrough");
|
|
|
|
if (!FBB) {
|
|
if (Cond.empty()) // Unconditional branch?
|
|
BuildMI(&MBB, DL, get(AArch64::B)).addMBB(TBB);
|
|
else
|
|
instantiateCondBranch(MBB, DL, TBB, Cond);
|
|
return 1;
|
|
}
|
|
|
|
// Two-way conditional branch.
|
|
instantiateCondBranch(MBB, DL, TBB, Cond);
|
|
BuildMI(&MBB, DL, get(AArch64::B)).addMBB(FBB);
|
|
return 2;
|
|
}
|
|
|
|
// Find the original register that VReg is copied from.
|
|
static unsigned removeCopies(const MachineRegisterInfo &MRI, unsigned VReg) {
|
|
while (TargetRegisterInfo::isVirtualRegister(VReg)) {
|
|
const MachineInstr *DefMI = MRI.getVRegDef(VReg);
|
|
if (!DefMI->isFullCopy())
|
|
return VReg;
|
|
VReg = DefMI->getOperand(1).getReg();
|
|
}
|
|
return VReg;
|
|
}
|
|
|
|
// Determine if VReg is defined by an instruction that can be folded into a
|
|
// csel instruction. If so, return the folded opcode, and the replacement
|
|
// register.
|
|
static unsigned canFoldIntoCSel(const MachineRegisterInfo &MRI, unsigned VReg,
|
|
unsigned *NewVReg = nullptr) {
|
|
VReg = removeCopies(MRI, VReg);
|
|
if (!TargetRegisterInfo::isVirtualRegister(VReg))
|
|
return 0;
|
|
|
|
bool Is64Bit = AArch64::GPR64allRegClass.hasSubClassEq(MRI.getRegClass(VReg));
|
|
const MachineInstr *DefMI = MRI.getVRegDef(VReg);
|
|
unsigned Opc = 0;
|
|
unsigned SrcOpNum = 0;
|
|
switch (DefMI->getOpcode()) {
|
|
case AArch64::ADDSXri:
|
|
case AArch64::ADDSWri:
|
|
// if NZCV is used, do not fold.
|
|
if (DefMI->findRegisterDefOperandIdx(AArch64::NZCV, true) == -1)
|
|
return 0;
|
|
// fall-through to ADDXri and ADDWri.
|
|
case AArch64::ADDXri:
|
|
case AArch64::ADDWri:
|
|
// add x, 1 -> csinc.
|
|
if (!DefMI->getOperand(2).isImm() || DefMI->getOperand(2).getImm() != 1 ||
|
|
DefMI->getOperand(3).getImm() != 0)
|
|
return 0;
|
|
SrcOpNum = 1;
|
|
Opc = Is64Bit ? AArch64::CSINCXr : AArch64::CSINCWr;
|
|
break;
|
|
|
|
case AArch64::ORNXrr:
|
|
case AArch64::ORNWrr: {
|
|
// not x -> csinv, represented as orn dst, xzr, src.
|
|
unsigned ZReg = removeCopies(MRI, DefMI->getOperand(1).getReg());
|
|
if (ZReg != AArch64::XZR && ZReg != AArch64::WZR)
|
|
return 0;
|
|
SrcOpNum = 2;
|
|
Opc = Is64Bit ? AArch64::CSINVXr : AArch64::CSINVWr;
|
|
break;
|
|
}
|
|
|
|
case AArch64::SUBSXrr:
|
|
case AArch64::SUBSWrr:
|
|
// if NZCV is used, do not fold.
|
|
if (DefMI->findRegisterDefOperandIdx(AArch64::NZCV, true) == -1)
|
|
return 0;
|
|
// fall-through to SUBXrr and SUBWrr.
|
|
case AArch64::SUBXrr:
|
|
case AArch64::SUBWrr: {
|
|
// neg x -> csneg, represented as sub dst, xzr, src.
|
|
unsigned ZReg = removeCopies(MRI, DefMI->getOperand(1).getReg());
|
|
if (ZReg != AArch64::XZR && ZReg != AArch64::WZR)
|
|
return 0;
|
|
SrcOpNum = 2;
|
|
Opc = Is64Bit ? AArch64::CSNEGXr : AArch64::CSNEGWr;
|
|
break;
|
|
}
|
|
default:
|
|
return 0;
|
|
}
|
|
assert(Opc && SrcOpNum && "Missing parameters");
|
|
|
|
if (NewVReg)
|
|
*NewVReg = DefMI->getOperand(SrcOpNum).getReg();
|
|
return Opc;
|
|
}
|
|
|
|
bool AArch64InstrInfo::canInsertSelect(
|
|
const MachineBasicBlock &MBB, ArrayRef<MachineOperand> Cond,
|
|
unsigned TrueReg, unsigned FalseReg, int &CondCycles, int &TrueCycles,
|
|
int &FalseCycles) const {
|
|
// Check register classes.
|
|
const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
|
|
const TargetRegisterClass *RC =
|
|
RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
|
|
if (!RC)
|
|
return false;
|
|
|
|
// Expanding cbz/tbz requires an extra cycle of latency on the condition.
|
|
unsigned ExtraCondLat = Cond.size() != 1;
|
|
|
|
// GPRs are handled by csel.
|
|
// FIXME: Fold in x+1, -x, and ~x when applicable.
|
|
if (AArch64::GPR64allRegClass.hasSubClassEq(RC) ||
|
|
AArch64::GPR32allRegClass.hasSubClassEq(RC)) {
|
|
// Single-cycle csel, csinc, csinv, and csneg.
|
|
CondCycles = 1 + ExtraCondLat;
|
|
TrueCycles = FalseCycles = 1;
|
|
if (canFoldIntoCSel(MRI, TrueReg))
|
|
TrueCycles = 0;
|
|
else if (canFoldIntoCSel(MRI, FalseReg))
|
|
FalseCycles = 0;
|
|
return true;
|
|
}
|
|
|
|
// Scalar floating point is handled by fcsel.
|
|
// FIXME: Form fabs, fmin, and fmax when applicable.
|
|
if (AArch64::FPR64RegClass.hasSubClassEq(RC) ||
|
|
AArch64::FPR32RegClass.hasSubClassEq(RC)) {
|
|
CondCycles = 5 + ExtraCondLat;
|
|
TrueCycles = FalseCycles = 2;
|
|
return true;
|
|
}
|
|
|
|
// Can't do vectors.
|
|
return false;
|
|
}
|
|
|
|
void AArch64InstrInfo::insertSelect(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator I, DebugLoc DL,
|
|
unsigned DstReg,
|
|
ArrayRef<MachineOperand> Cond,
|
|
unsigned TrueReg, unsigned FalseReg) const {
|
|
MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
|
|
|
|
// Parse the condition code, see parseCondBranch() above.
|
|
AArch64CC::CondCode CC;
|
|
switch (Cond.size()) {
|
|
default:
|
|
llvm_unreachable("Unknown condition opcode in Cond");
|
|
case 1: // b.cc
|
|
CC = AArch64CC::CondCode(Cond[0].getImm());
|
|
break;
|
|
case 3: { // cbz/cbnz
|
|
// We must insert a compare against 0.
|
|
bool Is64Bit;
|
|
switch (Cond[1].getImm()) {
|
|
default:
|
|
llvm_unreachable("Unknown branch opcode in Cond");
|
|
case AArch64::CBZW:
|
|
Is64Bit = 0;
|
|
CC = AArch64CC::EQ;
|
|
break;
|
|
case AArch64::CBZX:
|
|
Is64Bit = 1;
|
|
CC = AArch64CC::EQ;
|
|
break;
|
|
case AArch64::CBNZW:
|
|
Is64Bit = 0;
|
|
CC = AArch64CC::NE;
|
|
break;
|
|
case AArch64::CBNZX:
|
|
Is64Bit = 1;
|
|
CC = AArch64CC::NE;
|
|
break;
|
|
}
|
|
unsigned SrcReg = Cond[2].getReg();
|
|
if (Is64Bit) {
|
|
// cmp reg, #0 is actually subs xzr, reg, #0.
|
|
MRI.constrainRegClass(SrcReg, &AArch64::GPR64spRegClass);
|
|
BuildMI(MBB, I, DL, get(AArch64::SUBSXri), AArch64::XZR)
|
|
.addReg(SrcReg)
|
|
.addImm(0)
|
|
.addImm(0);
|
|
} else {
|
|
MRI.constrainRegClass(SrcReg, &AArch64::GPR32spRegClass);
|
|
BuildMI(MBB, I, DL, get(AArch64::SUBSWri), AArch64::WZR)
|
|
.addReg(SrcReg)
|
|
.addImm(0)
|
|
.addImm(0);
|
|
}
|
|
break;
|
|
}
|
|
case 4: { // tbz/tbnz
|
|
// We must insert a tst instruction.
|
|
switch (Cond[1].getImm()) {
|
|
default:
|
|
llvm_unreachable("Unknown branch opcode in Cond");
|
|
case AArch64::TBZW:
|
|
case AArch64::TBZX:
|
|
CC = AArch64CC::EQ;
|
|
break;
|
|
case AArch64::TBNZW:
|
|
case AArch64::TBNZX:
|
|
CC = AArch64CC::NE;
|
|
break;
|
|
}
|
|
// cmp reg, #foo is actually ands xzr, reg, #1<<foo.
|
|
if (Cond[1].getImm() == AArch64::TBZW || Cond[1].getImm() == AArch64::TBNZW)
|
|
BuildMI(MBB, I, DL, get(AArch64::ANDSWri), AArch64::WZR)
|
|
.addReg(Cond[2].getReg())
|
|
.addImm(
|
|
AArch64_AM::encodeLogicalImmediate(1ull << Cond[3].getImm(), 32));
|
|
else
|
|
BuildMI(MBB, I, DL, get(AArch64::ANDSXri), AArch64::XZR)
|
|
.addReg(Cond[2].getReg())
|
|
.addImm(
|
|
AArch64_AM::encodeLogicalImmediate(1ull << Cond[3].getImm(), 64));
|
|
break;
|
|
}
|
|
}
|
|
|
|
unsigned Opc = 0;
|
|
const TargetRegisterClass *RC = nullptr;
|
|
bool TryFold = false;
|
|
if (MRI.constrainRegClass(DstReg, &AArch64::GPR64RegClass)) {
|
|
RC = &AArch64::GPR64RegClass;
|
|
Opc = AArch64::CSELXr;
|
|
TryFold = true;
|
|
} else if (MRI.constrainRegClass(DstReg, &AArch64::GPR32RegClass)) {
|
|
RC = &AArch64::GPR32RegClass;
|
|
Opc = AArch64::CSELWr;
|
|
TryFold = true;
|
|
} else if (MRI.constrainRegClass(DstReg, &AArch64::FPR64RegClass)) {
|
|
RC = &AArch64::FPR64RegClass;
|
|
Opc = AArch64::FCSELDrrr;
|
|
} else if (MRI.constrainRegClass(DstReg, &AArch64::FPR32RegClass)) {
|
|
RC = &AArch64::FPR32RegClass;
|
|
Opc = AArch64::FCSELSrrr;
|
|
}
|
|
assert(RC && "Unsupported regclass");
|
|
|
|
// Try folding simple instructions into the csel.
|
|
if (TryFold) {
|
|
unsigned NewVReg = 0;
|
|
unsigned FoldedOpc = canFoldIntoCSel(MRI, TrueReg, &NewVReg);
|
|
if (FoldedOpc) {
|
|
// The folded opcodes csinc, csinc and csneg apply the operation to
|
|
// FalseReg, so we need to invert the condition.
|
|
CC = AArch64CC::getInvertedCondCode(CC);
|
|
TrueReg = FalseReg;
|
|
} else
|
|
FoldedOpc = canFoldIntoCSel(MRI, FalseReg, &NewVReg);
|
|
|
|
// Fold the operation. Leave any dead instructions for DCE to clean up.
|
|
if (FoldedOpc) {
|
|
FalseReg = NewVReg;
|
|
Opc = FoldedOpc;
|
|
// The extends the live range of NewVReg.
|
|
MRI.clearKillFlags(NewVReg);
|
|
}
|
|
}
|
|
|
|
// Pull all virtual register into the appropriate class.
|
|
MRI.constrainRegClass(TrueReg, RC);
|
|
MRI.constrainRegClass(FalseReg, RC);
|
|
|
|
// Insert the csel.
|
|
BuildMI(MBB, I, DL, get(Opc), DstReg).addReg(TrueReg).addReg(FalseReg).addImm(
|
|
CC);
|
|
}
|
|
|
|
// FIXME: this implementation should be micro-architecture dependent, so a
|
|
// micro-architecture target hook should be introduced here in future.
|
|
bool AArch64InstrInfo::isAsCheapAsAMove(const MachineInstr *MI) const {
|
|
if (!Subtarget.isCortexA57() && !Subtarget.isCortexA53())
|
|
return MI->isAsCheapAsAMove();
|
|
|
|
switch (MI->getOpcode()) {
|
|
default:
|
|
return false;
|
|
|
|
// add/sub on register without shift
|
|
case AArch64::ADDWri:
|
|
case AArch64::ADDXri:
|
|
case AArch64::SUBWri:
|
|
case AArch64::SUBXri:
|
|
return (MI->getOperand(3).getImm() == 0);
|
|
|
|
// logical ops on immediate
|
|
case AArch64::ANDWri:
|
|
case AArch64::ANDXri:
|
|
case AArch64::EORWri:
|
|
case AArch64::EORXri:
|
|
case AArch64::ORRWri:
|
|
case AArch64::ORRXri:
|
|
return true;
|
|
|
|
// logical ops on register without shift
|
|
case AArch64::ANDWrr:
|
|
case AArch64::ANDXrr:
|
|
case AArch64::BICWrr:
|
|
case AArch64::BICXrr:
|
|
case AArch64::EONWrr:
|
|
case AArch64::EONXrr:
|
|
case AArch64::EORWrr:
|
|
case AArch64::EORXrr:
|
|
case AArch64::ORNWrr:
|
|
case AArch64::ORNXrr:
|
|
case AArch64::ORRWrr:
|
|
case AArch64::ORRXrr:
|
|
return true;
|
|
}
|
|
|
|
llvm_unreachable("Unknown opcode to check as cheap as a move!");
|
|
}
|
|
|
|
bool AArch64InstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
|
|
unsigned &SrcReg, unsigned &DstReg,
|
|
unsigned &SubIdx) const {
|
|
switch (MI.getOpcode()) {
|
|
default:
|
|
return false;
|
|
case AArch64::SBFMXri: // aka sxtw
|
|
case AArch64::UBFMXri: // aka uxtw
|
|
// Check for the 32 -> 64 bit extension case, these instructions can do
|
|
// much more.
|
|
if (MI.getOperand(2).getImm() != 0 || MI.getOperand(3).getImm() != 31)
|
|
return false;
|
|
// This is a signed or unsigned 32 -> 64 bit extension.
|
|
SrcReg = MI.getOperand(1).getReg();
|
|
DstReg = MI.getOperand(0).getReg();
|
|
SubIdx = AArch64::sub_32;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
bool
|
|
AArch64InstrInfo::areMemAccessesTriviallyDisjoint(MachineInstr *MIa,
|
|
MachineInstr *MIb,
|
|
AliasAnalysis *AA) const {
|
|
const TargetRegisterInfo *TRI = &getRegisterInfo();
|
|
unsigned BaseRegA = 0, BaseRegB = 0;
|
|
int OffsetA = 0, OffsetB = 0;
|
|
int WidthA = 0, WidthB = 0;
|
|
|
|
assert(MIa && MIa->mayLoadOrStore() && "MIa must be a load or store.");
|
|
assert(MIb && MIb->mayLoadOrStore() && "MIb must be a load or store.");
|
|
|
|
if (MIa->hasUnmodeledSideEffects() || MIb->hasUnmodeledSideEffects() ||
|
|
MIa->hasOrderedMemoryRef() || MIb->hasOrderedMemoryRef())
|
|
return false;
|
|
|
|
// Retrieve the base register, offset from the base register and width. Width
|
|
// is the size of memory that is being loaded/stored (e.g. 1, 2, 4, 8). If
|
|
// base registers are identical, and the offset of a lower memory access +
|
|
// the width doesn't overlap the offset of a higher memory access,
|
|
// then the memory accesses are different.
|
|
if (getMemOpBaseRegImmOfsWidth(MIa, BaseRegA, OffsetA, WidthA, TRI) &&
|
|
getMemOpBaseRegImmOfsWidth(MIb, BaseRegB, OffsetB, WidthB, TRI)) {
|
|
if (BaseRegA == BaseRegB) {
|
|
int LowOffset = OffsetA < OffsetB ? OffsetA : OffsetB;
|
|
int HighOffset = OffsetA < OffsetB ? OffsetB : OffsetA;
|
|
int LowWidth = (LowOffset == OffsetA) ? WidthA : WidthB;
|
|
if (LowOffset + LowWidth <= HighOffset)
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// analyzeCompare - For a comparison instruction, return the source registers
|
|
/// in SrcReg and SrcReg2, and the value it compares against in CmpValue.
|
|
/// Return true if the comparison instruction can be analyzed.
|
|
bool AArch64InstrInfo::analyzeCompare(const MachineInstr *MI, unsigned &SrcReg,
|
|
unsigned &SrcReg2, int &CmpMask,
|
|
int &CmpValue) const {
|
|
switch (MI->getOpcode()) {
|
|
default:
|
|
break;
|
|
case AArch64::SUBSWrr:
|
|
case AArch64::SUBSWrs:
|
|
case AArch64::SUBSWrx:
|
|
case AArch64::SUBSXrr:
|
|
case AArch64::SUBSXrs:
|
|
case AArch64::SUBSXrx:
|
|
case AArch64::ADDSWrr:
|
|
case AArch64::ADDSWrs:
|
|
case AArch64::ADDSWrx:
|
|
case AArch64::ADDSXrr:
|
|
case AArch64::ADDSXrs:
|
|
case AArch64::ADDSXrx:
|
|
// Replace SUBSWrr with SUBWrr if NZCV is not used.
|
|
SrcReg = MI->getOperand(1).getReg();
|
|
SrcReg2 = MI->getOperand(2).getReg();
|
|
CmpMask = ~0;
|
|
CmpValue = 0;
|
|
return true;
|
|
case AArch64::SUBSWri:
|
|
case AArch64::ADDSWri:
|
|
case AArch64::SUBSXri:
|
|
case AArch64::ADDSXri:
|
|
SrcReg = MI->getOperand(1).getReg();
|
|
SrcReg2 = 0;
|
|
CmpMask = ~0;
|
|
// FIXME: In order to convert CmpValue to 0 or 1
|
|
CmpValue = (MI->getOperand(2).getImm() != 0);
|
|
return true;
|
|
case AArch64::ANDSWri:
|
|
case AArch64::ANDSXri:
|
|
// ANDS does not use the same encoding scheme as the others xxxS
|
|
// instructions.
|
|
SrcReg = MI->getOperand(1).getReg();
|
|
SrcReg2 = 0;
|
|
CmpMask = ~0;
|
|
// FIXME:The return val type of decodeLogicalImmediate is uint64_t,
|
|
// while the type of CmpValue is int. When converting uint64_t to int,
|
|
// the high 32 bits of uint64_t will be lost.
|
|
// In fact it causes a bug in spec2006-483.xalancbmk
|
|
// CmpValue is only used to compare with zero in OptimizeCompareInstr
|
|
CmpValue = (AArch64_AM::decodeLogicalImmediate(
|
|
MI->getOperand(2).getImm(),
|
|
MI->getOpcode() == AArch64::ANDSWri ? 32 : 64) != 0);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool UpdateOperandRegClass(MachineInstr *Instr) {
|
|
MachineBasicBlock *MBB = Instr->getParent();
|
|
assert(MBB && "Can't get MachineBasicBlock here");
|
|
MachineFunction *MF = MBB->getParent();
|
|
assert(MF && "Can't get MachineFunction here");
|
|
const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
|
|
const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
|
|
MachineRegisterInfo *MRI = &MF->getRegInfo();
|
|
|
|
for (unsigned OpIdx = 0, EndIdx = Instr->getNumOperands(); OpIdx < EndIdx;
|
|
++OpIdx) {
|
|
MachineOperand &MO = Instr->getOperand(OpIdx);
|
|
const TargetRegisterClass *OpRegCstraints =
|
|
Instr->getRegClassConstraint(OpIdx, TII, TRI);
|
|
|
|
// If there's no constraint, there's nothing to do.
|
|
if (!OpRegCstraints)
|
|
continue;
|
|
// If the operand is a frame index, there's nothing to do here.
|
|
// A frame index operand will resolve correctly during PEI.
|
|
if (MO.isFI())
|
|
continue;
|
|
|
|
assert(MO.isReg() &&
|
|
"Operand has register constraints without being a register!");
|
|
|
|
unsigned Reg = MO.getReg();
|
|
if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
|
|
if (!OpRegCstraints->contains(Reg))
|
|
return false;
|
|
} else if (!OpRegCstraints->hasSubClassEq(MRI->getRegClass(Reg)) &&
|
|
!MRI->constrainRegClass(Reg, OpRegCstraints))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/// \brief Return the opcode that does not set flags when possible - otherwise
|
|
/// return the original opcode. The caller is responsible to do the actual
|
|
/// substitution and legality checking.
|
|
static unsigned convertFlagSettingOpcode(const MachineInstr *MI) {
|
|
// Don't convert all compare instructions, because for some the zero register
|
|
// encoding becomes the sp register.
|
|
bool MIDefinesZeroReg = false;
|
|
if (MI->definesRegister(AArch64::WZR) || MI->definesRegister(AArch64::XZR))
|
|
MIDefinesZeroReg = true;
|
|
|
|
switch (MI->getOpcode()) {
|
|
default:
|
|
return MI->getOpcode();
|
|
case AArch64::ADDSWrr:
|
|
return AArch64::ADDWrr;
|
|
case AArch64::ADDSWri:
|
|
return MIDefinesZeroReg ? AArch64::ADDSWri : AArch64::ADDWri;
|
|
case AArch64::ADDSWrs:
|
|
return MIDefinesZeroReg ? AArch64::ADDSWrs : AArch64::ADDWrs;
|
|
case AArch64::ADDSWrx:
|
|
return AArch64::ADDWrx;
|
|
case AArch64::ADDSXrr:
|
|
return AArch64::ADDXrr;
|
|
case AArch64::ADDSXri:
|
|
return MIDefinesZeroReg ? AArch64::ADDSXri : AArch64::ADDXri;
|
|
case AArch64::ADDSXrs:
|
|
return MIDefinesZeroReg ? AArch64::ADDSXrs : AArch64::ADDXrs;
|
|
case AArch64::ADDSXrx:
|
|
return AArch64::ADDXrx;
|
|
case AArch64::SUBSWrr:
|
|
return AArch64::SUBWrr;
|
|
case AArch64::SUBSWri:
|
|
return MIDefinesZeroReg ? AArch64::SUBSWri : AArch64::SUBWri;
|
|
case AArch64::SUBSWrs:
|
|
return MIDefinesZeroReg ? AArch64::SUBSWrs : AArch64::SUBWrs;
|
|
case AArch64::SUBSWrx:
|
|
return AArch64::SUBWrx;
|
|
case AArch64::SUBSXrr:
|
|
return AArch64::SUBXrr;
|
|
case AArch64::SUBSXri:
|
|
return MIDefinesZeroReg ? AArch64::SUBSXri : AArch64::SUBXri;
|
|
case AArch64::SUBSXrs:
|
|
return MIDefinesZeroReg ? AArch64::SUBSXrs : AArch64::SUBXrs;
|
|
case AArch64::SUBSXrx:
|
|
return AArch64::SUBXrx;
|
|
}
|
|
}
|
|
|
|
/// True when condition code could be modified on the instruction
|
|
/// trace starting at from and ending at to.
|
|
static bool modifiesConditionCode(MachineInstr *From, MachineInstr *To,
|
|
const bool CheckOnlyCCWrites,
|
|
const TargetRegisterInfo *TRI) {
|
|
// We iterate backward starting \p To until we hit \p From
|
|
MachineBasicBlock::iterator I = To, E = From, B = To->getParent()->begin();
|
|
|
|
// Early exit if To is at the beginning of the BB.
|
|
if (I == B)
|
|
return true;
|
|
|
|
// Check whether the definition of SrcReg is in the same basic block as
|
|
// Compare. If not, assume the condition code gets modified on some path.
|
|
if (To->getParent() != From->getParent())
|
|
return true;
|
|
|
|
// Check that NZCV isn't set on the trace.
|
|
for (--I; I != E; --I) {
|
|
const MachineInstr &Instr = *I;
|
|
|
|
if (Instr.modifiesRegister(AArch64::NZCV, TRI) ||
|
|
(!CheckOnlyCCWrites && Instr.readsRegister(AArch64::NZCV, TRI)))
|
|
// This instruction modifies or uses NZCV after the one we want to
|
|
// change.
|
|
return true;
|
|
if (I == B)
|
|
// We currently don't allow the instruction trace to cross basic
|
|
// block boundaries
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
/// optimizeCompareInstr - Convert the instruction supplying the argument to the
|
|
/// comparison into one that sets the zero bit in the flags register.
|
|
bool AArch64InstrInfo::optimizeCompareInstr(
|
|
MachineInstr *CmpInstr, unsigned SrcReg, unsigned SrcReg2, int CmpMask,
|
|
int CmpValue, const MachineRegisterInfo *MRI) const {
|
|
|
|
// Replace SUBSWrr with SUBWrr if NZCV is not used.
|
|
int Cmp_NZCV = CmpInstr->findRegisterDefOperandIdx(AArch64::NZCV, true);
|
|
if (Cmp_NZCV != -1) {
|
|
if (CmpInstr->definesRegister(AArch64::WZR) ||
|
|
CmpInstr->definesRegister(AArch64::XZR)) {
|
|
CmpInstr->eraseFromParent();
|
|
return true;
|
|
}
|
|
unsigned Opc = CmpInstr->getOpcode();
|
|
unsigned NewOpc = convertFlagSettingOpcode(CmpInstr);
|
|
if (NewOpc == Opc)
|
|
return false;
|
|
const MCInstrDesc &MCID = get(NewOpc);
|
|
CmpInstr->setDesc(MCID);
|
|
CmpInstr->RemoveOperand(Cmp_NZCV);
|
|
bool succeeded = UpdateOperandRegClass(CmpInstr);
|
|
(void)succeeded;
|
|
assert(succeeded && "Some operands reg class are incompatible!");
|
|
return true;
|
|
}
|
|
|
|
// Continue only if we have a "ri" where immediate is zero.
|
|
// FIXME:CmpValue has already been converted to 0 or 1 in analyzeCompare
|
|
// function.
|
|
assert((CmpValue == 0 || CmpValue == 1) && "CmpValue must be 0 or 1!");
|
|
if (CmpValue != 0 || SrcReg2 != 0)
|
|
return false;
|
|
|
|
// CmpInstr is a Compare instruction if destination register is not used.
|
|
if (!MRI->use_nodbg_empty(CmpInstr->getOperand(0).getReg()))
|
|
return false;
|
|
|
|
// Get the unique definition of SrcReg.
|
|
MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
|
|
if (!MI)
|
|
return false;
|
|
|
|
bool CheckOnlyCCWrites = false;
|
|
const TargetRegisterInfo *TRI = &getRegisterInfo();
|
|
if (modifiesConditionCode(MI, CmpInstr, CheckOnlyCCWrites, TRI))
|
|
return false;
|
|
|
|
unsigned NewOpc = MI->getOpcode();
|
|
switch (MI->getOpcode()) {
|
|
default:
|
|
return false;
|
|
case AArch64::ADDSWrr:
|
|
case AArch64::ADDSWri:
|
|
case AArch64::ADDSXrr:
|
|
case AArch64::ADDSXri:
|
|
case AArch64::SUBSWrr:
|
|
case AArch64::SUBSWri:
|
|
case AArch64::SUBSXrr:
|
|
case AArch64::SUBSXri:
|
|
break;
|
|
case AArch64::ADDWrr: NewOpc = AArch64::ADDSWrr; break;
|
|
case AArch64::ADDWri: NewOpc = AArch64::ADDSWri; break;
|
|
case AArch64::ADDXrr: NewOpc = AArch64::ADDSXrr; break;
|
|
case AArch64::ADDXri: NewOpc = AArch64::ADDSXri; break;
|
|
case AArch64::ADCWr: NewOpc = AArch64::ADCSWr; break;
|
|
case AArch64::ADCXr: NewOpc = AArch64::ADCSXr; break;
|
|
case AArch64::SUBWrr: NewOpc = AArch64::SUBSWrr; break;
|
|
case AArch64::SUBWri: NewOpc = AArch64::SUBSWri; break;
|
|
case AArch64::SUBXrr: NewOpc = AArch64::SUBSXrr; break;
|
|
case AArch64::SUBXri: NewOpc = AArch64::SUBSXri; break;
|
|
case AArch64::SBCWr: NewOpc = AArch64::SBCSWr; break;
|
|
case AArch64::SBCXr: NewOpc = AArch64::SBCSXr; break;
|
|
case AArch64::ANDWri: NewOpc = AArch64::ANDSWri; break;
|
|
case AArch64::ANDXri: NewOpc = AArch64::ANDSXri; break;
|
|
}
|
|
|
|
// Scan forward for the use of NZCV.
|
|
// When checking against MI: if it's a conditional code requires
|
|
// checking of V bit, then this is not safe to do.
|
|
// It is safe to remove CmpInstr if NZCV is redefined or killed.
|
|
// If we are done with the basic block, we need to check whether NZCV is
|
|
// live-out.
|
|
bool IsSafe = false;
|
|
for (MachineBasicBlock::iterator I = CmpInstr,
|
|
E = CmpInstr->getParent()->end();
|
|
!IsSafe && ++I != E;) {
|
|
const MachineInstr &Instr = *I;
|
|
for (unsigned IO = 0, EO = Instr.getNumOperands(); !IsSafe && IO != EO;
|
|
++IO) {
|
|
const MachineOperand &MO = Instr.getOperand(IO);
|
|
if (MO.isRegMask() && MO.clobbersPhysReg(AArch64::NZCV)) {
|
|
IsSafe = true;
|
|
break;
|
|
}
|
|
if (!MO.isReg() || MO.getReg() != AArch64::NZCV)
|
|
continue;
|
|
if (MO.isDef()) {
|
|
IsSafe = true;
|
|
break;
|
|
}
|
|
|
|
// Decode the condition code.
|
|
unsigned Opc = Instr.getOpcode();
|
|
AArch64CC::CondCode CC;
|
|
switch (Opc) {
|
|
default:
|
|
return false;
|
|
case AArch64::Bcc:
|
|
CC = (AArch64CC::CondCode)Instr.getOperand(IO - 2).getImm();
|
|
break;
|
|
case AArch64::CSINVWr:
|
|
case AArch64::CSINVXr:
|
|
case AArch64::CSINCWr:
|
|
case AArch64::CSINCXr:
|
|
case AArch64::CSELWr:
|
|
case AArch64::CSELXr:
|
|
case AArch64::CSNEGWr:
|
|
case AArch64::CSNEGXr:
|
|
case AArch64::FCSELSrrr:
|
|
case AArch64::FCSELDrrr:
|
|
CC = (AArch64CC::CondCode)Instr.getOperand(IO - 1).getImm();
|
|
break;
|
|
}
|
|
|
|
// It is not safe to remove Compare instruction if Overflow(V) is used.
|
|
switch (CC) {
|
|
default:
|
|
// NZCV can be used multiple times, we should continue.
|
|
break;
|
|
case AArch64CC::VS:
|
|
case AArch64CC::VC:
|
|
case AArch64CC::GE:
|
|
case AArch64CC::LT:
|
|
case AArch64CC::GT:
|
|
case AArch64CC::LE:
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
// If NZCV is not killed nor re-defined, we should check whether it is
|
|
// live-out. If it is live-out, do not optimize.
|
|
if (!IsSafe) {
|
|
MachineBasicBlock *ParentBlock = CmpInstr->getParent();
|
|
for (auto *MBB : ParentBlock->successors())
|
|
if (MBB->isLiveIn(AArch64::NZCV))
|
|
return false;
|
|
}
|
|
|
|
// Update the instruction to set NZCV.
|
|
MI->setDesc(get(NewOpc));
|
|
CmpInstr->eraseFromParent();
|
|
bool succeeded = UpdateOperandRegClass(MI);
|
|
(void)succeeded;
|
|
assert(succeeded && "Some operands reg class are incompatible!");
|
|
MI->addRegisterDefined(AArch64::NZCV, TRI);
|
|
return true;
|
|
}
|
|
|
|
bool
|
|
AArch64InstrInfo::expandPostRAPseudo(MachineBasicBlock::iterator MI) const {
|
|
if (MI->getOpcode() != TargetOpcode::LOAD_STACK_GUARD)
|
|
return false;
|
|
|
|
MachineBasicBlock &MBB = *MI->getParent();
|
|
DebugLoc DL = MI->getDebugLoc();
|
|
unsigned Reg = MI->getOperand(0).getReg();
|
|
const GlobalValue *GV =
|
|
cast<GlobalValue>((*MI->memoperands_begin())->getValue());
|
|
const TargetMachine &TM = MBB.getParent()->getTarget();
|
|
unsigned char OpFlags = Subtarget.ClassifyGlobalReference(GV, TM);
|
|
const unsigned char MO_NC = AArch64II::MO_NC;
|
|
|
|
if ((OpFlags & AArch64II::MO_GOT) != 0) {
|
|
BuildMI(MBB, MI, DL, get(AArch64::LOADgot), Reg)
|
|
.addGlobalAddress(GV, 0, AArch64II::MO_GOT);
|
|
BuildMI(MBB, MI, DL, get(AArch64::LDRXui), Reg)
|
|
.addReg(Reg, RegState::Kill).addImm(0)
|
|
.addMemOperand(*MI->memoperands_begin());
|
|
} else if (TM.getCodeModel() == CodeModel::Large) {
|
|
BuildMI(MBB, MI, DL, get(AArch64::MOVZXi), Reg)
|
|
.addGlobalAddress(GV, 0, AArch64II::MO_G3).addImm(48);
|
|
BuildMI(MBB, MI, DL, get(AArch64::MOVKXi), Reg)
|
|
.addReg(Reg, RegState::Kill)
|
|
.addGlobalAddress(GV, 0, AArch64II::MO_G2 | MO_NC).addImm(32);
|
|
BuildMI(MBB, MI, DL, get(AArch64::MOVKXi), Reg)
|
|
.addReg(Reg, RegState::Kill)
|
|
.addGlobalAddress(GV, 0, AArch64II::MO_G1 | MO_NC).addImm(16);
|
|
BuildMI(MBB, MI, DL, get(AArch64::MOVKXi), Reg)
|
|
.addReg(Reg, RegState::Kill)
|
|
.addGlobalAddress(GV, 0, AArch64II::MO_G0 | MO_NC).addImm(0);
|
|
BuildMI(MBB, MI, DL, get(AArch64::LDRXui), Reg)
|
|
.addReg(Reg, RegState::Kill).addImm(0)
|
|
.addMemOperand(*MI->memoperands_begin());
|
|
} else {
|
|
BuildMI(MBB, MI, DL, get(AArch64::ADRP), Reg)
|
|
.addGlobalAddress(GV, 0, OpFlags | AArch64II::MO_PAGE);
|
|
unsigned char LoFlags = OpFlags | AArch64II::MO_PAGEOFF | MO_NC;
|
|
BuildMI(MBB, MI, DL, get(AArch64::LDRXui), Reg)
|
|
.addReg(Reg, RegState::Kill)
|
|
.addGlobalAddress(GV, 0, LoFlags)
|
|
.addMemOperand(*MI->memoperands_begin());
|
|
}
|
|
|
|
MBB.erase(MI);
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Return true if this is this instruction has a non-zero immediate
|
|
bool AArch64InstrInfo::hasShiftedReg(const MachineInstr *MI) const {
|
|
switch (MI->getOpcode()) {
|
|
default:
|
|
break;
|
|
case AArch64::ADDSWrs:
|
|
case AArch64::ADDSXrs:
|
|
case AArch64::ADDWrs:
|
|
case AArch64::ADDXrs:
|
|
case AArch64::ANDSWrs:
|
|
case AArch64::ANDSXrs:
|
|
case AArch64::ANDWrs:
|
|
case AArch64::ANDXrs:
|
|
case AArch64::BICSWrs:
|
|
case AArch64::BICSXrs:
|
|
case AArch64::BICWrs:
|
|
case AArch64::BICXrs:
|
|
case AArch64::CRC32Brr:
|
|
case AArch64::CRC32CBrr:
|
|
case AArch64::CRC32CHrr:
|
|
case AArch64::CRC32CWrr:
|
|
case AArch64::CRC32CXrr:
|
|
case AArch64::CRC32Hrr:
|
|
case AArch64::CRC32Wrr:
|
|
case AArch64::CRC32Xrr:
|
|
case AArch64::EONWrs:
|
|
case AArch64::EONXrs:
|
|
case AArch64::EORWrs:
|
|
case AArch64::EORXrs:
|
|
case AArch64::ORNWrs:
|
|
case AArch64::ORNXrs:
|
|
case AArch64::ORRWrs:
|
|
case AArch64::ORRXrs:
|
|
case AArch64::SUBSWrs:
|
|
case AArch64::SUBSXrs:
|
|
case AArch64::SUBWrs:
|
|
case AArch64::SUBXrs:
|
|
if (MI->getOperand(3).isImm()) {
|
|
unsigned val = MI->getOperand(3).getImm();
|
|
return (val != 0);
|
|
}
|
|
break;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// Return true if this is this instruction has a non-zero immediate
|
|
bool AArch64InstrInfo::hasExtendedReg(const MachineInstr *MI) const {
|
|
switch (MI->getOpcode()) {
|
|
default:
|
|
break;
|
|
case AArch64::ADDSWrx:
|
|
case AArch64::ADDSXrx:
|
|
case AArch64::ADDSXrx64:
|
|
case AArch64::ADDWrx:
|
|
case AArch64::ADDXrx:
|
|
case AArch64::ADDXrx64:
|
|
case AArch64::SUBSWrx:
|
|
case AArch64::SUBSXrx:
|
|
case AArch64::SUBSXrx64:
|
|
case AArch64::SUBWrx:
|
|
case AArch64::SUBXrx:
|
|
case AArch64::SUBXrx64:
|
|
if (MI->getOperand(3).isImm()) {
|
|
unsigned val = MI->getOperand(3).getImm();
|
|
return (val != 0);
|
|
}
|
|
break;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
// Return true if this instruction simply sets its single destination register
|
|
// to zero. This is equivalent to a register rename of the zero-register.
|
|
bool AArch64InstrInfo::isGPRZero(const MachineInstr *MI) const {
|
|
switch (MI->getOpcode()) {
|
|
default:
|
|
break;
|
|
case AArch64::MOVZWi:
|
|
case AArch64::MOVZXi: // movz Rd, #0 (LSL #0)
|
|
if (MI->getOperand(1).isImm() && MI->getOperand(1).getImm() == 0) {
|
|
assert(MI->getDesc().getNumOperands() == 3 &&
|
|
MI->getOperand(2).getImm() == 0 && "invalid MOVZi operands");
|
|
return true;
|
|
}
|
|
break;
|
|
case AArch64::ANDWri: // and Rd, Rzr, #imm
|
|
return MI->getOperand(1).getReg() == AArch64::WZR;
|
|
case AArch64::ANDXri:
|
|
return MI->getOperand(1).getReg() == AArch64::XZR;
|
|
case TargetOpcode::COPY:
|
|
return MI->getOperand(1).getReg() == AArch64::WZR;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Return true if this instruction simply renames a general register without
|
|
// modifying bits.
|
|
bool AArch64InstrInfo::isGPRCopy(const MachineInstr *MI) const {
|
|
switch (MI->getOpcode()) {
|
|
default:
|
|
break;
|
|
case TargetOpcode::COPY: {
|
|
// GPR32 copies will by lowered to ORRXrs
|
|
unsigned DstReg = MI->getOperand(0).getReg();
|
|
return (AArch64::GPR32RegClass.contains(DstReg) ||
|
|
AArch64::GPR64RegClass.contains(DstReg));
|
|
}
|
|
case AArch64::ORRXrs: // orr Xd, Xzr, Xm (LSL #0)
|
|
if (MI->getOperand(1).getReg() == AArch64::XZR) {
|
|
assert(MI->getDesc().getNumOperands() == 4 &&
|
|
MI->getOperand(3).getImm() == 0 && "invalid ORRrs operands");
|
|
return true;
|
|
}
|
|
break;
|
|
case AArch64::ADDXri: // add Xd, Xn, #0 (LSL #0)
|
|
if (MI->getOperand(2).getImm() == 0) {
|
|
assert(MI->getDesc().getNumOperands() == 4 &&
|
|
MI->getOperand(3).getImm() == 0 && "invalid ADDXri operands");
|
|
return true;
|
|
}
|
|
break;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Return true if this instruction simply renames a general register without
|
|
// modifying bits.
|
|
bool AArch64InstrInfo::isFPRCopy(const MachineInstr *MI) const {
|
|
switch (MI->getOpcode()) {
|
|
default:
|
|
break;
|
|
case TargetOpcode::COPY: {
|
|
// FPR64 copies will by lowered to ORR.16b
|
|
unsigned DstReg = MI->getOperand(0).getReg();
|
|
return (AArch64::FPR64RegClass.contains(DstReg) ||
|
|
AArch64::FPR128RegClass.contains(DstReg));
|
|
}
|
|
case AArch64::ORRv16i8:
|
|
if (MI->getOperand(1).getReg() == MI->getOperand(2).getReg()) {
|
|
assert(MI->getDesc().getNumOperands() == 3 && MI->getOperand(0).isReg() &&
|
|
"invalid ORRv16i8 operands");
|
|
return true;
|
|
}
|
|
break;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
unsigned AArch64InstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
|
|
int &FrameIndex) const {
|
|
switch (MI->getOpcode()) {
|
|
default:
|
|
break;
|
|
case AArch64::LDRWui:
|
|
case AArch64::LDRXui:
|
|
case AArch64::LDRBui:
|
|
case AArch64::LDRHui:
|
|
case AArch64::LDRSui:
|
|
case AArch64::LDRDui:
|
|
case AArch64::LDRQui:
|
|
if (MI->getOperand(0).getSubReg() == 0 && MI->getOperand(1).isFI() &&
|
|
MI->getOperand(2).isImm() && MI->getOperand(2).getImm() == 0) {
|
|
FrameIndex = MI->getOperand(1).getIndex();
|
|
return MI->getOperand(0).getReg();
|
|
}
|
|
break;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
unsigned AArch64InstrInfo::isStoreToStackSlot(const MachineInstr *MI,
|
|
int &FrameIndex) const {
|
|
switch (MI->getOpcode()) {
|
|
default:
|
|
break;
|
|
case AArch64::STRWui:
|
|
case AArch64::STRXui:
|
|
case AArch64::STRBui:
|
|
case AArch64::STRHui:
|
|
case AArch64::STRSui:
|
|
case AArch64::STRDui:
|
|
case AArch64::STRQui:
|
|
if (MI->getOperand(0).getSubReg() == 0 && MI->getOperand(1).isFI() &&
|
|
MI->getOperand(2).isImm() && MI->getOperand(2).getImm() == 0) {
|
|
FrameIndex = MI->getOperand(1).getIndex();
|
|
return MI->getOperand(0).getReg();
|
|
}
|
|
break;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/// Return true if this is load/store scales or extends its register offset.
|
|
/// This refers to scaling a dynamic index as opposed to scaled immediates.
|
|
/// MI should be a memory op that allows scaled addressing.
|
|
bool AArch64InstrInfo::isScaledAddr(const MachineInstr *MI) const {
|
|
switch (MI->getOpcode()) {
|
|
default:
|
|
break;
|
|
case AArch64::LDRBBroW:
|
|
case AArch64::LDRBroW:
|
|
case AArch64::LDRDroW:
|
|
case AArch64::LDRHHroW:
|
|
case AArch64::LDRHroW:
|
|
case AArch64::LDRQroW:
|
|
case AArch64::LDRSBWroW:
|
|
case AArch64::LDRSBXroW:
|
|
case AArch64::LDRSHWroW:
|
|
case AArch64::LDRSHXroW:
|
|
case AArch64::LDRSWroW:
|
|
case AArch64::LDRSroW:
|
|
case AArch64::LDRWroW:
|
|
case AArch64::LDRXroW:
|
|
case AArch64::STRBBroW:
|
|
case AArch64::STRBroW:
|
|
case AArch64::STRDroW:
|
|
case AArch64::STRHHroW:
|
|
case AArch64::STRHroW:
|
|
case AArch64::STRQroW:
|
|
case AArch64::STRSroW:
|
|
case AArch64::STRWroW:
|
|
case AArch64::STRXroW:
|
|
case AArch64::LDRBBroX:
|
|
case AArch64::LDRBroX:
|
|
case AArch64::LDRDroX:
|
|
case AArch64::LDRHHroX:
|
|
case AArch64::LDRHroX:
|
|
case AArch64::LDRQroX:
|
|
case AArch64::LDRSBWroX:
|
|
case AArch64::LDRSBXroX:
|
|
case AArch64::LDRSHWroX:
|
|
case AArch64::LDRSHXroX:
|
|
case AArch64::LDRSWroX:
|
|
case AArch64::LDRSroX:
|
|
case AArch64::LDRWroX:
|
|
case AArch64::LDRXroX:
|
|
case AArch64::STRBBroX:
|
|
case AArch64::STRBroX:
|
|
case AArch64::STRDroX:
|
|
case AArch64::STRHHroX:
|
|
case AArch64::STRHroX:
|
|
case AArch64::STRQroX:
|
|
case AArch64::STRSroX:
|
|
case AArch64::STRWroX:
|
|
case AArch64::STRXroX:
|
|
|
|
unsigned Val = MI->getOperand(3).getImm();
|
|
AArch64_AM::ShiftExtendType ExtType = AArch64_AM::getMemExtendType(Val);
|
|
return (ExtType != AArch64_AM::UXTX) || AArch64_AM::getMemDoShift(Val);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// Check all MachineMemOperands for a hint to suppress pairing.
|
|
bool AArch64InstrInfo::isLdStPairSuppressed(const MachineInstr *MI) const {
|
|
assert(MOSuppressPair < (1 << MachineMemOperand::MOTargetNumBits) &&
|
|
"Too many target MO flags");
|
|
for (auto *MM : MI->memoperands()) {
|
|
if (MM->getFlags() &
|
|
(MOSuppressPair << MachineMemOperand::MOTargetStartBit)) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// Set a flag on the first MachineMemOperand to suppress pairing.
|
|
void AArch64InstrInfo::suppressLdStPair(MachineInstr *MI) const {
|
|
if (MI->memoperands_empty())
|
|
return;
|
|
|
|
assert(MOSuppressPair < (1 << MachineMemOperand::MOTargetNumBits) &&
|
|
"Too many target MO flags");
|
|
(*MI->memoperands_begin())
|
|
->setFlags(MOSuppressPair << MachineMemOperand::MOTargetStartBit);
|
|
}
|
|
|
|
bool
|
|
AArch64InstrInfo::getMemOpBaseRegImmOfs(MachineInstr *LdSt, unsigned &BaseReg,
|
|
unsigned &Offset,
|
|
const TargetRegisterInfo *TRI) const {
|
|
switch (LdSt->getOpcode()) {
|
|
default:
|
|
return false;
|
|
case AArch64::STRSui:
|
|
case AArch64::STRDui:
|
|
case AArch64::STRQui:
|
|
case AArch64::STRXui:
|
|
case AArch64::STRWui:
|
|
case AArch64::LDRSui:
|
|
case AArch64::LDRDui:
|
|
case AArch64::LDRQui:
|
|
case AArch64::LDRXui:
|
|
case AArch64::LDRWui:
|
|
if (!LdSt->getOperand(1).isReg() || !LdSt->getOperand(2).isImm())
|
|
return false;
|
|
BaseReg = LdSt->getOperand(1).getReg();
|
|
MachineFunction &MF = *LdSt->getParent()->getParent();
|
|
unsigned Width = getRegClass(LdSt->getDesc(), 0, TRI, MF)->getSize();
|
|
Offset = LdSt->getOperand(2).getImm() * Width;
|
|
return true;
|
|
};
|
|
}
|
|
|
|
bool AArch64InstrInfo::getMemOpBaseRegImmOfsWidth(
|
|
MachineInstr *LdSt, unsigned &BaseReg, int &Offset, int &Width,
|
|
const TargetRegisterInfo *TRI) const {
|
|
// Handle only loads/stores with base register followed by immediate offset.
|
|
if (LdSt->getNumOperands() != 3)
|
|
return false;
|
|
if (!LdSt->getOperand(1).isReg() || !LdSt->getOperand(2).isImm())
|
|
return false;
|
|
|
|
// Offset is calculated as the immediate operand multiplied by the scaling factor.
|
|
// Unscaled instructions have scaling factor set to 1.
|
|
int Scale = 0;
|
|
switch (LdSt->getOpcode()) {
|
|
default:
|
|
return false;
|
|
case AArch64::LDURQi:
|
|
case AArch64::STURQi:
|
|
Width = 16;
|
|
Scale = 1;
|
|
break;
|
|
case AArch64::LDURXi:
|
|
case AArch64::LDURDi:
|
|
case AArch64::STURXi:
|
|
case AArch64::STURDi:
|
|
Width = 8;
|
|
Scale = 1;
|
|
break;
|
|
case AArch64::LDURWi:
|
|
case AArch64::LDURSi:
|
|
case AArch64::LDURSWi:
|
|
case AArch64::STURWi:
|
|
case AArch64::STURSi:
|
|
Width = 4;
|
|
Scale = 1;
|
|
break;
|
|
case AArch64::LDURHi:
|
|
case AArch64::LDURHHi:
|
|
case AArch64::LDURSHXi:
|
|
case AArch64::LDURSHWi:
|
|
case AArch64::STURHi:
|
|
case AArch64::STURHHi:
|
|
Width = 2;
|
|
Scale = 1;
|
|
break;
|
|
case AArch64::LDURBi:
|
|
case AArch64::LDURBBi:
|
|
case AArch64::LDURSBXi:
|
|
case AArch64::LDURSBWi:
|
|
case AArch64::STURBi:
|
|
case AArch64::STURBBi:
|
|
Width = 1;
|
|
Scale = 1;
|
|
break;
|
|
case AArch64::LDRXui:
|
|
case AArch64::STRXui:
|
|
Scale = Width = 8;
|
|
break;
|
|
case AArch64::LDRWui:
|
|
case AArch64::STRWui:
|
|
Scale = Width = 4;
|
|
break;
|
|
case AArch64::LDRBui:
|
|
case AArch64::STRBui:
|
|
Scale = Width = 1;
|
|
break;
|
|
case AArch64::LDRHui:
|
|
case AArch64::STRHui:
|
|
Scale = Width = 2;
|
|
break;
|
|
case AArch64::LDRSui:
|
|
case AArch64::STRSui:
|
|
Scale = Width = 4;
|
|
break;
|
|
case AArch64::LDRDui:
|
|
case AArch64::STRDui:
|
|
Scale = Width = 8;
|
|
break;
|
|
case AArch64::LDRQui:
|
|
case AArch64::STRQui:
|
|
Scale = Width = 16;
|
|
break;
|
|
case AArch64::LDRBBui:
|
|
case AArch64::STRBBui:
|
|
Scale = Width = 1;
|
|
break;
|
|
case AArch64::LDRHHui:
|
|
case AArch64::STRHHui:
|
|
Scale = Width = 2;
|
|
break;
|
|
};
|
|
|
|
BaseReg = LdSt->getOperand(1).getReg();
|
|
Offset = LdSt->getOperand(2).getImm() * Scale;
|
|
return true;
|
|
}
|
|
|
|
/// Detect opportunities for ldp/stp formation.
|
|
///
|
|
/// Only called for LdSt for which getMemOpBaseRegImmOfs returns true.
|
|
bool AArch64InstrInfo::shouldClusterLoads(MachineInstr *FirstLdSt,
|
|
MachineInstr *SecondLdSt,
|
|
unsigned NumLoads) const {
|
|
// Only cluster up to a single pair.
|
|
if (NumLoads > 1)
|
|
return false;
|
|
if (FirstLdSt->getOpcode() != SecondLdSt->getOpcode())
|
|
return false;
|
|
// getMemOpBaseRegImmOfs guarantees that oper 2 isImm.
|
|
unsigned Ofs1 = FirstLdSt->getOperand(2).getImm();
|
|
// Allow 6 bits of positive range.
|
|
if (Ofs1 > 64)
|
|
return false;
|
|
// The caller should already have ordered First/SecondLdSt by offset.
|
|
unsigned Ofs2 = SecondLdSt->getOperand(2).getImm();
|
|
return Ofs1 + 1 == Ofs2;
|
|
}
|
|
|
|
bool AArch64InstrInfo::shouldScheduleAdjacent(MachineInstr *First,
|
|
MachineInstr *Second) const {
|
|
// Cyclone can fuse CMN, CMP followed by Bcc.
|
|
|
|
// FIXME: B0 can also fuse:
|
|
// AND, BIC, ORN, ORR, or EOR (optional S) followed by Bcc or CBZ or CBNZ.
|
|
if (Second->getOpcode() != AArch64::Bcc)
|
|
return false;
|
|
switch (First->getOpcode()) {
|
|
default:
|
|
return false;
|
|
case AArch64::SUBSWri:
|
|
case AArch64::ADDSWri:
|
|
case AArch64::ANDSWri:
|
|
case AArch64::SUBSXri:
|
|
case AArch64::ADDSXri:
|
|
case AArch64::ANDSXri:
|
|
return true;
|
|
}
|
|
}
|
|
|
|
MachineInstr *AArch64InstrInfo::emitFrameIndexDebugValue(
|
|
MachineFunction &MF, int FrameIx, uint64_t Offset, const MDNode *Var,
|
|
const MDNode *Expr, DebugLoc DL) const {
|
|
MachineInstrBuilder MIB = BuildMI(MF, DL, get(AArch64::DBG_VALUE))
|
|
.addFrameIndex(FrameIx)
|
|
.addImm(0)
|
|
.addImm(Offset)
|
|
.addMetadata(Var)
|
|
.addMetadata(Expr);
|
|
return &*MIB;
|
|
}
|
|
|
|
static const MachineInstrBuilder &AddSubReg(const MachineInstrBuilder &MIB,
|
|
unsigned Reg, unsigned SubIdx,
|
|
unsigned State,
|
|
const TargetRegisterInfo *TRI) {
|
|
if (!SubIdx)
|
|
return MIB.addReg(Reg, State);
|
|
|
|
if (TargetRegisterInfo::isPhysicalRegister(Reg))
|
|
return MIB.addReg(TRI->getSubReg(Reg, SubIdx), State);
|
|
return MIB.addReg(Reg, State, SubIdx);
|
|
}
|
|
|
|
static bool forwardCopyWillClobberTuple(unsigned DestReg, unsigned SrcReg,
|
|
unsigned NumRegs) {
|
|
// We really want the positive remainder mod 32 here, that happens to be
|
|
// easily obtainable with a mask.
|
|
return ((DestReg - SrcReg) & 0x1f) < NumRegs;
|
|
}
|
|
|
|
void AArch64InstrInfo::copyPhysRegTuple(
|
|
MachineBasicBlock &MBB, MachineBasicBlock::iterator I, DebugLoc DL,
|
|
unsigned DestReg, unsigned SrcReg, bool KillSrc, unsigned Opcode,
|
|
llvm::ArrayRef<unsigned> Indices) const {
|
|
assert(Subtarget.hasNEON() &&
|
|
"Unexpected register copy without NEON");
|
|
const TargetRegisterInfo *TRI = &getRegisterInfo();
|
|
uint16_t DestEncoding = TRI->getEncodingValue(DestReg);
|
|
uint16_t SrcEncoding = TRI->getEncodingValue(SrcReg);
|
|
unsigned NumRegs = Indices.size();
|
|
|
|
int SubReg = 0, End = NumRegs, Incr = 1;
|
|
if (forwardCopyWillClobberTuple(DestEncoding, SrcEncoding, NumRegs)) {
|
|
SubReg = NumRegs - 1;
|
|
End = -1;
|
|
Incr = -1;
|
|
}
|
|
|
|
for (; SubReg != End; SubReg += Incr) {
|
|
const MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(Opcode));
|
|
AddSubReg(MIB, DestReg, Indices[SubReg], RegState::Define, TRI);
|
|
AddSubReg(MIB, SrcReg, Indices[SubReg], 0, TRI);
|
|
AddSubReg(MIB, SrcReg, Indices[SubReg], getKillRegState(KillSrc), TRI);
|
|
}
|
|
}
|
|
|
|
void AArch64InstrInfo::copyPhysReg(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator I, DebugLoc DL,
|
|
unsigned DestReg, unsigned SrcReg,
|
|
bool KillSrc) const {
|
|
if (AArch64::GPR32spRegClass.contains(DestReg) &&
|
|
(AArch64::GPR32spRegClass.contains(SrcReg) || SrcReg == AArch64::WZR)) {
|
|
const TargetRegisterInfo *TRI = &getRegisterInfo();
|
|
|
|
if (DestReg == AArch64::WSP || SrcReg == AArch64::WSP) {
|
|
// If either operand is WSP, expand to ADD #0.
|
|
if (Subtarget.hasZeroCycleRegMove()) {
|
|
// Cyclone recognizes "ADD Xd, Xn, #0" as a zero-cycle register move.
|
|
unsigned DestRegX = TRI->getMatchingSuperReg(DestReg, AArch64::sub_32,
|
|
&AArch64::GPR64spRegClass);
|
|
unsigned SrcRegX = TRI->getMatchingSuperReg(SrcReg, AArch64::sub_32,
|
|
&AArch64::GPR64spRegClass);
|
|
// This instruction is reading and writing X registers. This may upset
|
|
// the register scavenger and machine verifier, so we need to indicate
|
|
// that we are reading an undefined value from SrcRegX, but a proper
|
|
// value from SrcReg.
|
|
BuildMI(MBB, I, DL, get(AArch64::ADDXri), DestRegX)
|
|
.addReg(SrcRegX, RegState::Undef)
|
|
.addImm(0)
|
|
.addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0))
|
|
.addReg(SrcReg, RegState::Implicit | getKillRegState(KillSrc));
|
|
} else {
|
|
BuildMI(MBB, I, DL, get(AArch64::ADDWri), DestReg)
|
|
.addReg(SrcReg, getKillRegState(KillSrc))
|
|
.addImm(0)
|
|
.addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0));
|
|
}
|
|
} else if (SrcReg == AArch64::WZR && Subtarget.hasZeroCycleZeroing()) {
|
|
BuildMI(MBB, I, DL, get(AArch64::MOVZWi), DestReg).addImm(0).addImm(
|
|
AArch64_AM::getShifterImm(AArch64_AM::LSL, 0));
|
|
} else {
|
|
if (Subtarget.hasZeroCycleRegMove()) {
|
|
// Cyclone recognizes "ORR Xd, XZR, Xm" as a zero-cycle register move.
|
|
unsigned DestRegX = TRI->getMatchingSuperReg(DestReg, AArch64::sub_32,
|
|
&AArch64::GPR64spRegClass);
|
|
unsigned SrcRegX = TRI->getMatchingSuperReg(SrcReg, AArch64::sub_32,
|
|
&AArch64::GPR64spRegClass);
|
|
// This instruction is reading and writing X registers. This may upset
|
|
// the register scavenger and machine verifier, so we need to indicate
|
|
// that we are reading an undefined value from SrcRegX, but a proper
|
|
// value from SrcReg.
|
|
BuildMI(MBB, I, DL, get(AArch64::ORRXrr), DestRegX)
|
|
.addReg(AArch64::XZR)
|
|
.addReg(SrcRegX, RegState::Undef)
|
|
.addReg(SrcReg, RegState::Implicit | getKillRegState(KillSrc));
|
|
} else {
|
|
// Otherwise, expand to ORR WZR.
|
|
BuildMI(MBB, I, DL, get(AArch64::ORRWrr), DestReg)
|
|
.addReg(AArch64::WZR)
|
|
.addReg(SrcReg, getKillRegState(KillSrc));
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (AArch64::GPR64spRegClass.contains(DestReg) &&
|
|
(AArch64::GPR64spRegClass.contains(SrcReg) || SrcReg == AArch64::XZR)) {
|
|
if (DestReg == AArch64::SP || SrcReg == AArch64::SP) {
|
|
// If either operand is SP, expand to ADD #0.
|
|
BuildMI(MBB, I, DL, get(AArch64::ADDXri), DestReg)
|
|
.addReg(SrcReg, getKillRegState(KillSrc))
|
|
.addImm(0)
|
|
.addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0));
|
|
} else if (SrcReg == AArch64::XZR && Subtarget.hasZeroCycleZeroing()) {
|
|
BuildMI(MBB, I, DL, get(AArch64::MOVZXi), DestReg).addImm(0).addImm(
|
|
AArch64_AM::getShifterImm(AArch64_AM::LSL, 0));
|
|
} else {
|
|
// Otherwise, expand to ORR XZR.
|
|
BuildMI(MBB, I, DL, get(AArch64::ORRXrr), DestReg)
|
|
.addReg(AArch64::XZR)
|
|
.addReg(SrcReg, getKillRegState(KillSrc));
|
|
}
|
|
return;
|
|
}
|
|
|
|
// Copy a DDDD register quad by copying the individual sub-registers.
|
|
if (AArch64::DDDDRegClass.contains(DestReg) &&
|
|
AArch64::DDDDRegClass.contains(SrcReg)) {
|
|
static const unsigned Indices[] = { AArch64::dsub0, AArch64::dsub1,
|
|
AArch64::dsub2, AArch64::dsub3 };
|
|
copyPhysRegTuple(MBB, I, DL, DestReg, SrcReg, KillSrc, AArch64::ORRv8i8,
|
|
Indices);
|
|
return;
|
|
}
|
|
|
|
// Copy a DDD register triple by copying the individual sub-registers.
|
|
if (AArch64::DDDRegClass.contains(DestReg) &&
|
|
AArch64::DDDRegClass.contains(SrcReg)) {
|
|
static const unsigned Indices[] = { AArch64::dsub0, AArch64::dsub1,
|
|
AArch64::dsub2 };
|
|
copyPhysRegTuple(MBB, I, DL, DestReg, SrcReg, KillSrc, AArch64::ORRv8i8,
|
|
Indices);
|
|
return;
|
|
}
|
|
|
|
// Copy a DD register pair by copying the individual sub-registers.
|
|
if (AArch64::DDRegClass.contains(DestReg) &&
|
|
AArch64::DDRegClass.contains(SrcReg)) {
|
|
static const unsigned Indices[] = { AArch64::dsub0, AArch64::dsub1 };
|
|
copyPhysRegTuple(MBB, I, DL, DestReg, SrcReg, KillSrc, AArch64::ORRv8i8,
|
|
Indices);
|
|
return;
|
|
}
|
|
|
|
// Copy a QQQQ register quad by copying the individual sub-registers.
|
|
if (AArch64::QQQQRegClass.contains(DestReg) &&
|
|
AArch64::QQQQRegClass.contains(SrcReg)) {
|
|
static const unsigned Indices[] = { AArch64::qsub0, AArch64::qsub1,
|
|
AArch64::qsub2, AArch64::qsub3 };
|
|
copyPhysRegTuple(MBB, I, DL, DestReg, SrcReg, KillSrc, AArch64::ORRv16i8,
|
|
Indices);
|
|
return;
|
|
}
|
|
|
|
// Copy a QQQ register triple by copying the individual sub-registers.
|
|
if (AArch64::QQQRegClass.contains(DestReg) &&
|
|
AArch64::QQQRegClass.contains(SrcReg)) {
|
|
static const unsigned Indices[] = { AArch64::qsub0, AArch64::qsub1,
|
|
AArch64::qsub2 };
|
|
copyPhysRegTuple(MBB, I, DL, DestReg, SrcReg, KillSrc, AArch64::ORRv16i8,
|
|
Indices);
|
|
return;
|
|
}
|
|
|
|
// Copy a QQ register pair by copying the individual sub-registers.
|
|
if (AArch64::QQRegClass.contains(DestReg) &&
|
|
AArch64::QQRegClass.contains(SrcReg)) {
|
|
static const unsigned Indices[] = { AArch64::qsub0, AArch64::qsub1 };
|
|
copyPhysRegTuple(MBB, I, DL, DestReg, SrcReg, KillSrc, AArch64::ORRv16i8,
|
|
Indices);
|
|
return;
|
|
}
|
|
|
|
if (AArch64::FPR128RegClass.contains(DestReg) &&
|
|
AArch64::FPR128RegClass.contains(SrcReg)) {
|
|
if(Subtarget.hasNEON()) {
|
|
BuildMI(MBB, I, DL, get(AArch64::ORRv16i8), DestReg)
|
|
.addReg(SrcReg)
|
|
.addReg(SrcReg, getKillRegState(KillSrc));
|
|
} else {
|
|
BuildMI(MBB, I, DL, get(AArch64::STRQpre))
|
|
.addReg(AArch64::SP, RegState::Define)
|
|
.addReg(SrcReg, getKillRegState(KillSrc))
|
|
.addReg(AArch64::SP)
|
|
.addImm(-16);
|
|
BuildMI(MBB, I, DL, get(AArch64::LDRQpre))
|
|
.addReg(AArch64::SP, RegState::Define)
|
|
.addReg(DestReg, RegState::Define)
|
|
.addReg(AArch64::SP)
|
|
.addImm(16);
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (AArch64::FPR64RegClass.contains(DestReg) &&
|
|
AArch64::FPR64RegClass.contains(SrcReg)) {
|
|
if(Subtarget.hasNEON()) {
|
|
DestReg = RI.getMatchingSuperReg(DestReg, AArch64::dsub,
|
|
&AArch64::FPR128RegClass);
|
|
SrcReg = RI.getMatchingSuperReg(SrcReg, AArch64::dsub,
|
|
&AArch64::FPR128RegClass);
|
|
BuildMI(MBB, I, DL, get(AArch64::ORRv16i8), DestReg)
|
|
.addReg(SrcReg)
|
|
.addReg(SrcReg, getKillRegState(KillSrc));
|
|
} else {
|
|
BuildMI(MBB, I, DL, get(AArch64::FMOVDr), DestReg)
|
|
.addReg(SrcReg, getKillRegState(KillSrc));
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (AArch64::FPR32RegClass.contains(DestReg) &&
|
|
AArch64::FPR32RegClass.contains(SrcReg)) {
|
|
if(Subtarget.hasNEON()) {
|
|
DestReg = RI.getMatchingSuperReg(DestReg, AArch64::ssub,
|
|
&AArch64::FPR128RegClass);
|
|
SrcReg = RI.getMatchingSuperReg(SrcReg, AArch64::ssub,
|
|
&AArch64::FPR128RegClass);
|
|
BuildMI(MBB, I, DL, get(AArch64::ORRv16i8), DestReg)
|
|
.addReg(SrcReg)
|
|
.addReg(SrcReg, getKillRegState(KillSrc));
|
|
} else {
|
|
BuildMI(MBB, I, DL, get(AArch64::FMOVSr), DestReg)
|
|
.addReg(SrcReg, getKillRegState(KillSrc));
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (AArch64::FPR16RegClass.contains(DestReg) &&
|
|
AArch64::FPR16RegClass.contains(SrcReg)) {
|
|
if(Subtarget.hasNEON()) {
|
|
DestReg = RI.getMatchingSuperReg(DestReg, AArch64::hsub,
|
|
&AArch64::FPR128RegClass);
|
|
SrcReg = RI.getMatchingSuperReg(SrcReg, AArch64::hsub,
|
|
&AArch64::FPR128RegClass);
|
|
BuildMI(MBB, I, DL, get(AArch64::ORRv16i8), DestReg)
|
|
.addReg(SrcReg)
|
|
.addReg(SrcReg, getKillRegState(KillSrc));
|
|
} else {
|
|
DestReg = RI.getMatchingSuperReg(DestReg, AArch64::hsub,
|
|
&AArch64::FPR32RegClass);
|
|
SrcReg = RI.getMatchingSuperReg(SrcReg, AArch64::hsub,
|
|
&AArch64::FPR32RegClass);
|
|
BuildMI(MBB, I, DL, get(AArch64::FMOVSr), DestReg)
|
|
.addReg(SrcReg, getKillRegState(KillSrc));
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (AArch64::FPR8RegClass.contains(DestReg) &&
|
|
AArch64::FPR8RegClass.contains(SrcReg)) {
|
|
if(Subtarget.hasNEON()) {
|
|
DestReg = RI.getMatchingSuperReg(DestReg, AArch64::bsub,
|
|
&AArch64::FPR128RegClass);
|
|
SrcReg = RI.getMatchingSuperReg(SrcReg, AArch64::bsub,
|
|
&AArch64::FPR128RegClass);
|
|
BuildMI(MBB, I, DL, get(AArch64::ORRv16i8), DestReg)
|
|
.addReg(SrcReg)
|
|
.addReg(SrcReg, getKillRegState(KillSrc));
|
|
} else {
|
|
DestReg = RI.getMatchingSuperReg(DestReg, AArch64::bsub,
|
|
&AArch64::FPR32RegClass);
|
|
SrcReg = RI.getMatchingSuperReg(SrcReg, AArch64::bsub,
|
|
&AArch64::FPR32RegClass);
|
|
BuildMI(MBB, I, DL, get(AArch64::FMOVSr), DestReg)
|
|
.addReg(SrcReg, getKillRegState(KillSrc));
|
|
}
|
|
return;
|
|
}
|
|
|
|
// Copies between GPR64 and FPR64.
|
|
if (AArch64::FPR64RegClass.contains(DestReg) &&
|
|
AArch64::GPR64RegClass.contains(SrcReg)) {
|
|
BuildMI(MBB, I, DL, get(AArch64::FMOVXDr), DestReg)
|
|
.addReg(SrcReg, getKillRegState(KillSrc));
|
|
return;
|
|
}
|
|
if (AArch64::GPR64RegClass.contains(DestReg) &&
|
|
AArch64::FPR64RegClass.contains(SrcReg)) {
|
|
BuildMI(MBB, I, DL, get(AArch64::FMOVDXr), DestReg)
|
|
.addReg(SrcReg, getKillRegState(KillSrc));
|
|
return;
|
|
}
|
|
// Copies between GPR32 and FPR32.
|
|
if (AArch64::FPR32RegClass.contains(DestReg) &&
|
|
AArch64::GPR32RegClass.contains(SrcReg)) {
|
|
BuildMI(MBB, I, DL, get(AArch64::FMOVWSr), DestReg)
|
|
.addReg(SrcReg, getKillRegState(KillSrc));
|
|
return;
|
|
}
|
|
if (AArch64::GPR32RegClass.contains(DestReg) &&
|
|
AArch64::FPR32RegClass.contains(SrcReg)) {
|
|
BuildMI(MBB, I, DL, get(AArch64::FMOVSWr), DestReg)
|
|
.addReg(SrcReg, getKillRegState(KillSrc));
|
|
return;
|
|
}
|
|
|
|
if (DestReg == AArch64::NZCV) {
|
|
assert(AArch64::GPR64RegClass.contains(SrcReg) && "Invalid NZCV copy");
|
|
BuildMI(MBB, I, DL, get(AArch64::MSR))
|
|
.addImm(AArch64SysReg::NZCV)
|
|
.addReg(SrcReg, getKillRegState(KillSrc))
|
|
.addReg(AArch64::NZCV, RegState::Implicit | RegState::Define);
|
|
return;
|
|
}
|
|
|
|
if (SrcReg == AArch64::NZCV) {
|
|
assert(AArch64::GPR64RegClass.contains(DestReg) && "Invalid NZCV copy");
|
|
BuildMI(MBB, I, DL, get(AArch64::MRS))
|
|
.addReg(DestReg)
|
|
.addImm(AArch64SysReg::NZCV)
|
|
.addReg(AArch64::NZCV, RegState::Implicit | getKillRegState(KillSrc));
|
|
return;
|
|
}
|
|
|
|
llvm_unreachable("unimplemented reg-to-reg copy");
|
|
}
|
|
|
|
void AArch64InstrInfo::storeRegToStackSlot(
|
|
MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, unsigned SrcReg,
|
|
bool isKill, int FI, const TargetRegisterClass *RC,
|
|
const TargetRegisterInfo *TRI) const {
|
|
DebugLoc DL;
|
|
if (MBBI != MBB.end())
|
|
DL = MBBI->getDebugLoc();
|
|
MachineFunction &MF = *MBB.getParent();
|
|
MachineFrameInfo &MFI = *MF.getFrameInfo();
|
|
unsigned Align = MFI.getObjectAlignment(FI);
|
|
|
|
MachinePointerInfo PtrInfo(PseudoSourceValue::getFixedStack(FI));
|
|
MachineMemOperand *MMO = MF.getMachineMemOperand(
|
|
PtrInfo, MachineMemOperand::MOStore, MFI.getObjectSize(FI), Align);
|
|
unsigned Opc = 0;
|
|
bool Offset = true;
|
|
switch (RC->getSize()) {
|
|
case 1:
|
|
if (AArch64::FPR8RegClass.hasSubClassEq(RC))
|
|
Opc = AArch64::STRBui;
|
|
break;
|
|
case 2:
|
|
if (AArch64::FPR16RegClass.hasSubClassEq(RC))
|
|
Opc = AArch64::STRHui;
|
|
break;
|
|
case 4:
|
|
if (AArch64::GPR32allRegClass.hasSubClassEq(RC)) {
|
|
Opc = AArch64::STRWui;
|
|
if (TargetRegisterInfo::isVirtualRegister(SrcReg))
|
|
MF.getRegInfo().constrainRegClass(SrcReg, &AArch64::GPR32RegClass);
|
|
else
|
|
assert(SrcReg != AArch64::WSP);
|
|
} else if (AArch64::FPR32RegClass.hasSubClassEq(RC))
|
|
Opc = AArch64::STRSui;
|
|
break;
|
|
case 8:
|
|
if (AArch64::GPR64allRegClass.hasSubClassEq(RC)) {
|
|
Opc = AArch64::STRXui;
|
|
if (TargetRegisterInfo::isVirtualRegister(SrcReg))
|
|
MF.getRegInfo().constrainRegClass(SrcReg, &AArch64::GPR64RegClass);
|
|
else
|
|
assert(SrcReg != AArch64::SP);
|
|
} else if (AArch64::FPR64RegClass.hasSubClassEq(RC))
|
|
Opc = AArch64::STRDui;
|
|
break;
|
|
case 16:
|
|
if (AArch64::FPR128RegClass.hasSubClassEq(RC))
|
|
Opc = AArch64::STRQui;
|
|
else if (AArch64::DDRegClass.hasSubClassEq(RC)) {
|
|
assert(Subtarget.hasNEON() &&
|
|
"Unexpected register store without NEON");
|
|
Opc = AArch64::ST1Twov1d, Offset = false;
|
|
}
|
|
break;
|
|
case 24:
|
|
if (AArch64::DDDRegClass.hasSubClassEq(RC)) {
|
|
assert(Subtarget.hasNEON() &&
|
|
"Unexpected register store without NEON");
|
|
Opc = AArch64::ST1Threev1d, Offset = false;
|
|
}
|
|
break;
|
|
case 32:
|
|
if (AArch64::DDDDRegClass.hasSubClassEq(RC)) {
|
|
assert(Subtarget.hasNEON() &&
|
|
"Unexpected register store without NEON");
|
|
Opc = AArch64::ST1Fourv1d, Offset = false;
|
|
} else if (AArch64::QQRegClass.hasSubClassEq(RC)) {
|
|
assert(Subtarget.hasNEON() &&
|
|
"Unexpected register store without NEON");
|
|
Opc = AArch64::ST1Twov2d, Offset = false;
|
|
}
|
|
break;
|
|
case 48:
|
|
if (AArch64::QQQRegClass.hasSubClassEq(RC)) {
|
|
assert(Subtarget.hasNEON() &&
|
|
"Unexpected register store without NEON");
|
|
Opc = AArch64::ST1Threev2d, Offset = false;
|
|
}
|
|
break;
|
|
case 64:
|
|
if (AArch64::QQQQRegClass.hasSubClassEq(RC)) {
|
|
assert(Subtarget.hasNEON() &&
|
|
"Unexpected register store without NEON");
|
|
Opc = AArch64::ST1Fourv2d, Offset = false;
|
|
}
|
|
break;
|
|
}
|
|
assert(Opc && "Unknown register class");
|
|
|
|
const MachineInstrBuilder MI = BuildMI(MBB, MBBI, DL, get(Opc))
|
|
.addReg(SrcReg, getKillRegState(isKill))
|
|
.addFrameIndex(FI);
|
|
|
|
if (Offset)
|
|
MI.addImm(0);
|
|
MI.addMemOperand(MMO);
|
|
}
|
|
|
|
void AArch64InstrInfo::loadRegFromStackSlot(
|
|
MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, unsigned DestReg,
|
|
int FI, const TargetRegisterClass *RC,
|
|
const TargetRegisterInfo *TRI) const {
|
|
DebugLoc DL;
|
|
if (MBBI != MBB.end())
|
|
DL = MBBI->getDebugLoc();
|
|
MachineFunction &MF = *MBB.getParent();
|
|
MachineFrameInfo &MFI = *MF.getFrameInfo();
|
|
unsigned Align = MFI.getObjectAlignment(FI);
|
|
MachinePointerInfo PtrInfo(PseudoSourceValue::getFixedStack(FI));
|
|
MachineMemOperand *MMO = MF.getMachineMemOperand(
|
|
PtrInfo, MachineMemOperand::MOLoad, MFI.getObjectSize(FI), Align);
|
|
|
|
unsigned Opc = 0;
|
|
bool Offset = true;
|
|
switch (RC->getSize()) {
|
|
case 1:
|
|
if (AArch64::FPR8RegClass.hasSubClassEq(RC))
|
|
Opc = AArch64::LDRBui;
|
|
break;
|
|
case 2:
|
|
if (AArch64::FPR16RegClass.hasSubClassEq(RC))
|
|
Opc = AArch64::LDRHui;
|
|
break;
|
|
case 4:
|
|
if (AArch64::GPR32allRegClass.hasSubClassEq(RC)) {
|
|
Opc = AArch64::LDRWui;
|
|
if (TargetRegisterInfo::isVirtualRegister(DestReg))
|
|
MF.getRegInfo().constrainRegClass(DestReg, &AArch64::GPR32RegClass);
|
|
else
|
|
assert(DestReg != AArch64::WSP);
|
|
} else if (AArch64::FPR32RegClass.hasSubClassEq(RC))
|
|
Opc = AArch64::LDRSui;
|
|
break;
|
|
case 8:
|
|
if (AArch64::GPR64allRegClass.hasSubClassEq(RC)) {
|
|
Opc = AArch64::LDRXui;
|
|
if (TargetRegisterInfo::isVirtualRegister(DestReg))
|
|
MF.getRegInfo().constrainRegClass(DestReg, &AArch64::GPR64RegClass);
|
|
else
|
|
assert(DestReg != AArch64::SP);
|
|
} else if (AArch64::FPR64RegClass.hasSubClassEq(RC))
|
|
Opc = AArch64::LDRDui;
|
|
break;
|
|
case 16:
|
|
if (AArch64::FPR128RegClass.hasSubClassEq(RC))
|
|
Opc = AArch64::LDRQui;
|
|
else if (AArch64::DDRegClass.hasSubClassEq(RC)) {
|
|
assert(Subtarget.hasNEON() &&
|
|
"Unexpected register load without NEON");
|
|
Opc = AArch64::LD1Twov1d, Offset = false;
|
|
}
|
|
break;
|
|
case 24:
|
|
if (AArch64::DDDRegClass.hasSubClassEq(RC)) {
|
|
assert(Subtarget.hasNEON() &&
|
|
"Unexpected register load without NEON");
|
|
Opc = AArch64::LD1Threev1d, Offset = false;
|
|
}
|
|
break;
|
|
case 32:
|
|
if (AArch64::DDDDRegClass.hasSubClassEq(RC)) {
|
|
assert(Subtarget.hasNEON() &&
|
|
"Unexpected register load without NEON");
|
|
Opc = AArch64::LD1Fourv1d, Offset = false;
|
|
} else if (AArch64::QQRegClass.hasSubClassEq(RC)) {
|
|
assert(Subtarget.hasNEON() &&
|
|
"Unexpected register load without NEON");
|
|
Opc = AArch64::LD1Twov2d, Offset = false;
|
|
}
|
|
break;
|
|
case 48:
|
|
if (AArch64::QQQRegClass.hasSubClassEq(RC)) {
|
|
assert(Subtarget.hasNEON() &&
|
|
"Unexpected register load without NEON");
|
|
Opc = AArch64::LD1Threev2d, Offset = false;
|
|
}
|
|
break;
|
|
case 64:
|
|
if (AArch64::QQQQRegClass.hasSubClassEq(RC)) {
|
|
assert(Subtarget.hasNEON() &&
|
|
"Unexpected register load without NEON");
|
|
Opc = AArch64::LD1Fourv2d, Offset = false;
|
|
}
|
|
break;
|
|
}
|
|
assert(Opc && "Unknown register class");
|
|
|
|
const MachineInstrBuilder MI = BuildMI(MBB, MBBI, DL, get(Opc))
|
|
.addReg(DestReg, getDefRegState(true))
|
|
.addFrameIndex(FI);
|
|
if (Offset)
|
|
MI.addImm(0);
|
|
MI.addMemOperand(MMO);
|
|
}
|
|
|
|
void llvm::emitFrameOffset(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator MBBI, DebugLoc DL,
|
|
unsigned DestReg, unsigned SrcReg, int Offset,
|
|
const TargetInstrInfo *TII,
|
|
MachineInstr::MIFlag Flag, bool SetNZCV) {
|
|
if (DestReg == SrcReg && Offset == 0)
|
|
return;
|
|
|
|
bool isSub = Offset < 0;
|
|
if (isSub)
|
|
Offset = -Offset;
|
|
|
|
// FIXME: If the offset won't fit in 24-bits, compute the offset into a
|
|
// scratch register. If DestReg is a virtual register, use it as the
|
|
// scratch register; otherwise, create a new virtual register (to be
|
|
// replaced by the scavenger at the end of PEI). That case can be optimized
|
|
// slightly if DestReg is SP which is always 16-byte aligned, so the scratch
|
|
// register can be loaded with offset%8 and the add/sub can use an extending
|
|
// instruction with LSL#3.
|
|
// Currently the function handles any offsets but generates a poor sequence
|
|
// of code.
|
|
// assert(Offset < (1 << 24) && "unimplemented reg plus immediate");
|
|
|
|
unsigned Opc;
|
|
if (SetNZCV)
|
|
Opc = isSub ? AArch64::SUBSXri : AArch64::ADDSXri;
|
|
else
|
|
Opc = isSub ? AArch64::SUBXri : AArch64::ADDXri;
|
|
const unsigned MaxEncoding = 0xfff;
|
|
const unsigned ShiftSize = 12;
|
|
const unsigned MaxEncodableValue = MaxEncoding << ShiftSize;
|
|
while (((unsigned)Offset) >= (1 << ShiftSize)) {
|
|
unsigned ThisVal;
|
|
if (((unsigned)Offset) > MaxEncodableValue) {
|
|
ThisVal = MaxEncodableValue;
|
|
} else {
|
|
ThisVal = Offset & MaxEncodableValue;
|
|
}
|
|
assert((ThisVal >> ShiftSize) <= MaxEncoding &&
|
|
"Encoding cannot handle value that big");
|
|
BuildMI(MBB, MBBI, DL, TII->get(Opc), DestReg)
|
|
.addReg(SrcReg)
|
|
.addImm(ThisVal >> ShiftSize)
|
|
.addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, ShiftSize))
|
|
.setMIFlag(Flag);
|
|
|
|
SrcReg = DestReg;
|
|
Offset -= ThisVal;
|
|
if (Offset == 0)
|
|
return;
|
|
}
|
|
BuildMI(MBB, MBBI, DL, TII->get(Opc), DestReg)
|
|
.addReg(SrcReg)
|
|
.addImm(Offset)
|
|
.addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0))
|
|
.setMIFlag(Flag);
|
|
}
|
|
|
|
MachineInstr *AArch64InstrInfo::foldMemoryOperandImpl(
|
|
MachineFunction &MF, MachineInstr *MI, ArrayRef<unsigned> Ops,
|
|
MachineBasicBlock::iterator InsertPt, int FrameIndex) const {
|
|
// This is a bit of a hack. Consider this instruction:
|
|
//
|
|
// %vreg0<def> = COPY %SP; GPR64all:%vreg0
|
|
//
|
|
// We explicitly chose GPR64all for the virtual register so such a copy might
|
|
// be eliminated by RegisterCoalescer. However, that may not be possible, and
|
|
// %vreg0 may even spill. We can't spill %SP, and since it is in the GPR64all
|
|
// register class, TargetInstrInfo::foldMemoryOperand() is going to try.
|
|
//
|
|
// To prevent that, we are going to constrain the %vreg0 register class here.
|
|
//
|
|
// <rdar://problem/11522048>
|
|
//
|
|
if (MI->isCopy()) {
|
|
unsigned DstReg = MI->getOperand(0).getReg();
|
|
unsigned SrcReg = MI->getOperand(1).getReg();
|
|
if (SrcReg == AArch64::SP &&
|
|
TargetRegisterInfo::isVirtualRegister(DstReg)) {
|
|
MF.getRegInfo().constrainRegClass(DstReg, &AArch64::GPR64RegClass);
|
|
return nullptr;
|
|
}
|
|
if (DstReg == AArch64::SP &&
|
|
TargetRegisterInfo::isVirtualRegister(SrcReg)) {
|
|
MF.getRegInfo().constrainRegClass(SrcReg, &AArch64::GPR64RegClass);
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
// Cannot fold.
|
|
return nullptr;
|
|
}
|
|
|
|
int llvm::isAArch64FrameOffsetLegal(const MachineInstr &MI, int &Offset,
|
|
bool *OutUseUnscaledOp,
|
|
unsigned *OutUnscaledOp,
|
|
int *EmittableOffset) {
|
|
int Scale = 1;
|
|
bool IsSigned = false;
|
|
// The ImmIdx should be changed case by case if it is not 2.
|
|
unsigned ImmIdx = 2;
|
|
unsigned UnscaledOp = 0;
|
|
// Set output values in case of early exit.
|
|
if (EmittableOffset)
|
|
*EmittableOffset = 0;
|
|
if (OutUseUnscaledOp)
|
|
*OutUseUnscaledOp = false;
|
|
if (OutUnscaledOp)
|
|
*OutUnscaledOp = 0;
|
|
switch (MI.getOpcode()) {
|
|
default:
|
|
llvm_unreachable("unhandled opcode in rewriteAArch64FrameIndex");
|
|
// Vector spills/fills can't take an immediate offset.
|
|
case AArch64::LD1Twov2d:
|
|
case AArch64::LD1Threev2d:
|
|
case AArch64::LD1Fourv2d:
|
|
case AArch64::LD1Twov1d:
|
|
case AArch64::LD1Threev1d:
|
|
case AArch64::LD1Fourv1d:
|
|
case AArch64::ST1Twov2d:
|
|
case AArch64::ST1Threev2d:
|
|
case AArch64::ST1Fourv2d:
|
|
case AArch64::ST1Twov1d:
|
|
case AArch64::ST1Threev1d:
|
|
case AArch64::ST1Fourv1d:
|
|
return AArch64FrameOffsetCannotUpdate;
|
|
case AArch64::PRFMui:
|
|
Scale = 8;
|
|
UnscaledOp = AArch64::PRFUMi;
|
|
break;
|
|
case AArch64::LDRXui:
|
|
Scale = 8;
|
|
UnscaledOp = AArch64::LDURXi;
|
|
break;
|
|
case AArch64::LDRWui:
|
|
Scale = 4;
|
|
UnscaledOp = AArch64::LDURWi;
|
|
break;
|
|
case AArch64::LDRBui:
|
|
Scale = 1;
|
|
UnscaledOp = AArch64::LDURBi;
|
|
break;
|
|
case AArch64::LDRHui:
|
|
Scale = 2;
|
|
UnscaledOp = AArch64::LDURHi;
|
|
break;
|
|
case AArch64::LDRSui:
|
|
Scale = 4;
|
|
UnscaledOp = AArch64::LDURSi;
|
|
break;
|
|
case AArch64::LDRDui:
|
|
Scale = 8;
|
|
UnscaledOp = AArch64::LDURDi;
|
|
break;
|
|
case AArch64::LDRQui:
|
|
Scale = 16;
|
|
UnscaledOp = AArch64::LDURQi;
|
|
break;
|
|
case AArch64::LDRBBui:
|
|
Scale = 1;
|
|
UnscaledOp = AArch64::LDURBBi;
|
|
break;
|
|
case AArch64::LDRHHui:
|
|
Scale = 2;
|
|
UnscaledOp = AArch64::LDURHHi;
|
|
break;
|
|
case AArch64::LDRSBXui:
|
|
Scale = 1;
|
|
UnscaledOp = AArch64::LDURSBXi;
|
|
break;
|
|
case AArch64::LDRSBWui:
|
|
Scale = 1;
|
|
UnscaledOp = AArch64::LDURSBWi;
|
|
break;
|
|
case AArch64::LDRSHXui:
|
|
Scale = 2;
|
|
UnscaledOp = AArch64::LDURSHXi;
|
|
break;
|
|
case AArch64::LDRSHWui:
|
|
Scale = 2;
|
|
UnscaledOp = AArch64::LDURSHWi;
|
|
break;
|
|
case AArch64::LDRSWui:
|
|
Scale = 4;
|
|
UnscaledOp = AArch64::LDURSWi;
|
|
break;
|
|
|
|
case AArch64::STRXui:
|
|
Scale = 8;
|
|
UnscaledOp = AArch64::STURXi;
|
|
break;
|
|
case AArch64::STRWui:
|
|
Scale = 4;
|
|
UnscaledOp = AArch64::STURWi;
|
|
break;
|
|
case AArch64::STRBui:
|
|
Scale = 1;
|
|
UnscaledOp = AArch64::STURBi;
|
|
break;
|
|
case AArch64::STRHui:
|
|
Scale = 2;
|
|
UnscaledOp = AArch64::STURHi;
|
|
break;
|
|
case AArch64::STRSui:
|
|
Scale = 4;
|
|
UnscaledOp = AArch64::STURSi;
|
|
break;
|
|
case AArch64::STRDui:
|
|
Scale = 8;
|
|
UnscaledOp = AArch64::STURDi;
|
|
break;
|
|
case AArch64::STRQui:
|
|
Scale = 16;
|
|
UnscaledOp = AArch64::STURQi;
|
|
break;
|
|
case AArch64::STRBBui:
|
|
Scale = 1;
|
|
UnscaledOp = AArch64::STURBBi;
|
|
break;
|
|
case AArch64::STRHHui:
|
|
Scale = 2;
|
|
UnscaledOp = AArch64::STURHHi;
|
|
break;
|
|
|
|
case AArch64::LDPXi:
|
|
case AArch64::LDPDi:
|
|
case AArch64::STPXi:
|
|
case AArch64::STPDi:
|
|
IsSigned = true;
|
|
Scale = 8;
|
|
break;
|
|
case AArch64::LDPQi:
|
|
case AArch64::STPQi:
|
|
IsSigned = true;
|
|
Scale = 16;
|
|
break;
|
|
case AArch64::LDPWi:
|
|
case AArch64::LDPSi:
|
|
case AArch64::STPWi:
|
|
case AArch64::STPSi:
|
|
IsSigned = true;
|
|
Scale = 4;
|
|
break;
|
|
|
|
case AArch64::LDURXi:
|
|
case AArch64::LDURWi:
|
|
case AArch64::LDURBi:
|
|
case AArch64::LDURHi:
|
|
case AArch64::LDURSi:
|
|
case AArch64::LDURDi:
|
|
case AArch64::LDURQi:
|
|
case AArch64::LDURHHi:
|
|
case AArch64::LDURBBi:
|
|
case AArch64::LDURSBXi:
|
|
case AArch64::LDURSBWi:
|
|
case AArch64::LDURSHXi:
|
|
case AArch64::LDURSHWi:
|
|
case AArch64::LDURSWi:
|
|
case AArch64::STURXi:
|
|
case AArch64::STURWi:
|
|
case AArch64::STURBi:
|
|
case AArch64::STURHi:
|
|
case AArch64::STURSi:
|
|
case AArch64::STURDi:
|
|
case AArch64::STURQi:
|
|
case AArch64::STURBBi:
|
|
case AArch64::STURHHi:
|
|
Scale = 1;
|
|
break;
|
|
}
|
|
|
|
Offset += MI.getOperand(ImmIdx).getImm() * Scale;
|
|
|
|
bool useUnscaledOp = false;
|
|
// If the offset doesn't match the scale, we rewrite the instruction to
|
|
// use the unscaled instruction instead. Likewise, if we have a negative
|
|
// offset (and have an unscaled op to use).
|
|
if ((Offset & (Scale - 1)) != 0 || (Offset < 0 && UnscaledOp != 0))
|
|
useUnscaledOp = true;
|
|
|
|
// Use an unscaled addressing mode if the instruction has a negative offset
|
|
// (or if the instruction is already using an unscaled addressing mode).
|
|
unsigned MaskBits;
|
|
if (IsSigned) {
|
|
// ldp/stp instructions.
|
|
MaskBits = 7;
|
|
Offset /= Scale;
|
|
} else if (UnscaledOp == 0 || useUnscaledOp) {
|
|
MaskBits = 9;
|
|
IsSigned = true;
|
|
Scale = 1;
|
|
} else {
|
|
MaskBits = 12;
|
|
IsSigned = false;
|
|
Offset /= Scale;
|
|
}
|
|
|
|
// Attempt to fold address computation.
|
|
int MaxOff = (1 << (MaskBits - IsSigned)) - 1;
|
|
int MinOff = (IsSigned ? (-MaxOff - 1) : 0);
|
|
if (Offset >= MinOff && Offset <= MaxOff) {
|
|
if (EmittableOffset)
|
|
*EmittableOffset = Offset;
|
|
Offset = 0;
|
|
} else {
|
|
int NewOff = Offset < 0 ? MinOff : MaxOff;
|
|
if (EmittableOffset)
|
|
*EmittableOffset = NewOff;
|
|
Offset = (Offset - NewOff) * Scale;
|
|
}
|
|
if (OutUseUnscaledOp)
|
|
*OutUseUnscaledOp = useUnscaledOp;
|
|
if (OutUnscaledOp)
|
|
*OutUnscaledOp = UnscaledOp;
|
|
return AArch64FrameOffsetCanUpdate |
|
|
(Offset == 0 ? AArch64FrameOffsetIsLegal : 0);
|
|
}
|
|
|
|
bool llvm::rewriteAArch64FrameIndex(MachineInstr &MI, unsigned FrameRegIdx,
|
|
unsigned FrameReg, int &Offset,
|
|
const AArch64InstrInfo *TII) {
|
|
unsigned Opcode = MI.getOpcode();
|
|
unsigned ImmIdx = FrameRegIdx + 1;
|
|
|
|
if (Opcode == AArch64::ADDSXri || Opcode == AArch64::ADDXri) {
|
|
Offset += MI.getOperand(ImmIdx).getImm();
|
|
emitFrameOffset(*MI.getParent(), MI, MI.getDebugLoc(),
|
|
MI.getOperand(0).getReg(), FrameReg, Offset, TII,
|
|
MachineInstr::NoFlags, (Opcode == AArch64::ADDSXri));
|
|
MI.eraseFromParent();
|
|
Offset = 0;
|
|
return true;
|
|
}
|
|
|
|
int NewOffset;
|
|
unsigned UnscaledOp;
|
|
bool UseUnscaledOp;
|
|
int Status = isAArch64FrameOffsetLegal(MI, Offset, &UseUnscaledOp,
|
|
&UnscaledOp, &NewOffset);
|
|
if (Status & AArch64FrameOffsetCanUpdate) {
|
|
if (Status & AArch64FrameOffsetIsLegal)
|
|
// Replace the FrameIndex with FrameReg.
|
|
MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
|
|
if (UseUnscaledOp)
|
|
MI.setDesc(TII->get(UnscaledOp));
|
|
|
|
MI.getOperand(ImmIdx).ChangeToImmediate(NewOffset);
|
|
return Offset == 0;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
void AArch64InstrInfo::getNoopForMachoTarget(MCInst &NopInst) const {
|
|
NopInst.setOpcode(AArch64::HINT);
|
|
NopInst.addOperand(MCOperand::createImm(0));
|
|
}
|
|
/// useMachineCombiner - return true when a target supports MachineCombiner
|
|
bool AArch64InstrInfo::useMachineCombiner() const {
|
|
// AArch64 supports the combiner
|
|
return true;
|
|
}
|
|
//
|
|
// True when Opc sets flag
|
|
static bool isCombineInstrSettingFlag(unsigned Opc) {
|
|
switch (Opc) {
|
|
case AArch64::ADDSWrr:
|
|
case AArch64::ADDSWri:
|
|
case AArch64::ADDSXrr:
|
|
case AArch64::ADDSXri:
|
|
case AArch64::SUBSWrr:
|
|
case AArch64::SUBSXrr:
|
|
// Note: MSUB Wd,Wn,Wm,Wi -> Wd = Wi - WnxWm, not Wd=WnxWm - Wi.
|
|
case AArch64::SUBSWri:
|
|
case AArch64::SUBSXri:
|
|
return true;
|
|
default:
|
|
break;
|
|
}
|
|
return false;
|
|
}
|
|
//
|
|
// 32b Opcodes that can be combined with a MUL
|
|
static bool isCombineInstrCandidate32(unsigned Opc) {
|
|
switch (Opc) {
|
|
case AArch64::ADDWrr:
|
|
case AArch64::ADDWri:
|
|
case AArch64::SUBWrr:
|
|
case AArch64::ADDSWrr:
|
|
case AArch64::ADDSWri:
|
|
case AArch64::SUBSWrr:
|
|
// Note: MSUB Wd,Wn,Wm,Wi -> Wd = Wi - WnxWm, not Wd=WnxWm - Wi.
|
|
case AArch64::SUBWri:
|
|
case AArch64::SUBSWri:
|
|
return true;
|
|
default:
|
|
break;
|
|
}
|
|
return false;
|
|
}
|
|
//
|
|
// 64b Opcodes that can be combined with a MUL
|
|
static bool isCombineInstrCandidate64(unsigned Opc) {
|
|
switch (Opc) {
|
|
case AArch64::ADDXrr:
|
|
case AArch64::ADDXri:
|
|
case AArch64::SUBXrr:
|
|
case AArch64::ADDSXrr:
|
|
case AArch64::ADDSXri:
|
|
case AArch64::SUBSXrr:
|
|
// Note: MSUB Wd,Wn,Wm,Wi -> Wd = Wi - WnxWm, not Wd=WnxWm - Wi.
|
|
case AArch64::SUBXri:
|
|
case AArch64::SUBSXri:
|
|
return true;
|
|
default:
|
|
break;
|
|
}
|
|
return false;
|
|
}
|
|
//
|
|
// Opcodes that can be combined with a MUL
|
|
static bool isCombineInstrCandidate(unsigned Opc) {
|
|
return (isCombineInstrCandidate32(Opc) || isCombineInstrCandidate64(Opc));
|
|
}
|
|
|
|
static bool canCombineWithMUL(MachineBasicBlock &MBB, MachineOperand &MO,
|
|
unsigned MulOpc, unsigned ZeroReg) {
|
|
MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
|
|
MachineInstr *MI = nullptr;
|
|
// We need a virtual register definition.
|
|
if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg()))
|
|
MI = MRI.getUniqueVRegDef(MO.getReg());
|
|
// And it needs to be in the trace (otherwise, it won't have a depth).
|
|
if (!MI || MI->getParent() != &MBB || (unsigned)MI->getOpcode() != MulOpc)
|
|
return false;
|
|
|
|
assert(MI->getNumOperands() >= 4 && MI->getOperand(0).isReg() &&
|
|
MI->getOperand(1).isReg() && MI->getOperand(2).isReg() &&
|
|
MI->getOperand(3).isReg() && "MAdd/MSub must have a least 4 regs");
|
|
|
|
// The third input reg must be zero.
|
|
if (MI->getOperand(3).getReg() != ZeroReg)
|
|
return false;
|
|
|
|
// Must only used by the user we combine with.
|
|
if (!MRI.hasOneNonDBGUse(MI->getOperand(0).getReg()))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Return true when there is potentially a faster code sequence
|
|
/// for an instruction chain ending in \p Root. All potential patterns are
|
|
/// listed
|
|
/// in the \p Pattern vector. Pattern should be sorted in priority order since
|
|
/// the pattern evaluator stops checking as soon as it finds a faster sequence.
|
|
|
|
bool AArch64InstrInfo::getMachineCombinerPatterns(
|
|
MachineInstr &Root,
|
|
SmallVectorImpl<MachineCombinerPattern::MC_PATTERN> &Patterns) const {
|
|
unsigned Opc = Root.getOpcode();
|
|
MachineBasicBlock &MBB = *Root.getParent();
|
|
bool Found = false;
|
|
|
|
if (!isCombineInstrCandidate(Opc))
|
|
return 0;
|
|
if (isCombineInstrSettingFlag(Opc)) {
|
|
int Cmp_NZCV = Root.findRegisterDefOperandIdx(AArch64::NZCV, true);
|
|
// When NZCV is live bail out.
|
|
if (Cmp_NZCV == -1)
|
|
return 0;
|
|
unsigned NewOpc = convertFlagSettingOpcode(&Root);
|
|
// When opcode can't change bail out.
|
|
// CHECKME: do we miss any cases for opcode conversion?
|
|
if (NewOpc == Opc)
|
|
return 0;
|
|
Opc = NewOpc;
|
|
}
|
|
|
|
switch (Opc) {
|
|
default:
|
|
break;
|
|
case AArch64::ADDWrr:
|
|
assert(Root.getOperand(1).isReg() && Root.getOperand(2).isReg() &&
|
|
"ADDWrr does not have register operands");
|
|
if (canCombineWithMUL(MBB, Root.getOperand(1), AArch64::MADDWrrr,
|
|
AArch64::WZR)) {
|
|
Patterns.push_back(MachineCombinerPattern::MC_MULADDW_OP1);
|
|
Found = true;
|
|
}
|
|
if (canCombineWithMUL(MBB, Root.getOperand(2), AArch64::MADDWrrr,
|
|
AArch64::WZR)) {
|
|
Patterns.push_back(MachineCombinerPattern::MC_MULADDW_OP2);
|
|
Found = true;
|
|
}
|
|
break;
|
|
case AArch64::ADDXrr:
|
|
if (canCombineWithMUL(MBB, Root.getOperand(1), AArch64::MADDXrrr,
|
|
AArch64::XZR)) {
|
|
Patterns.push_back(MachineCombinerPattern::MC_MULADDX_OP1);
|
|
Found = true;
|
|
}
|
|
if (canCombineWithMUL(MBB, Root.getOperand(2), AArch64::MADDXrrr,
|
|
AArch64::XZR)) {
|
|
Patterns.push_back(MachineCombinerPattern::MC_MULADDX_OP2);
|
|
Found = true;
|
|
}
|
|
break;
|
|
case AArch64::SUBWrr:
|
|
if (canCombineWithMUL(MBB, Root.getOperand(1), AArch64::MADDWrrr,
|
|
AArch64::WZR)) {
|
|
Patterns.push_back(MachineCombinerPattern::MC_MULSUBW_OP1);
|
|
Found = true;
|
|
}
|
|
if (canCombineWithMUL(MBB, Root.getOperand(2), AArch64::MADDWrrr,
|
|
AArch64::WZR)) {
|
|
Patterns.push_back(MachineCombinerPattern::MC_MULSUBW_OP2);
|
|
Found = true;
|
|
}
|
|
break;
|
|
case AArch64::SUBXrr:
|
|
if (canCombineWithMUL(MBB, Root.getOperand(1), AArch64::MADDXrrr,
|
|
AArch64::XZR)) {
|
|
Patterns.push_back(MachineCombinerPattern::MC_MULSUBX_OP1);
|
|
Found = true;
|
|
}
|
|
if (canCombineWithMUL(MBB, Root.getOperand(2), AArch64::MADDXrrr,
|
|
AArch64::XZR)) {
|
|
Patterns.push_back(MachineCombinerPattern::MC_MULSUBX_OP2);
|
|
Found = true;
|
|
}
|
|
break;
|
|
case AArch64::ADDWri:
|
|
if (canCombineWithMUL(MBB, Root.getOperand(1), AArch64::MADDWrrr,
|
|
AArch64::WZR)) {
|
|
Patterns.push_back(MachineCombinerPattern::MC_MULADDWI_OP1);
|
|
Found = true;
|
|
}
|
|
break;
|
|
case AArch64::ADDXri:
|
|
if (canCombineWithMUL(MBB, Root.getOperand(1), AArch64::MADDXrrr,
|
|
AArch64::XZR)) {
|
|
Patterns.push_back(MachineCombinerPattern::MC_MULADDXI_OP1);
|
|
Found = true;
|
|
}
|
|
break;
|
|
case AArch64::SUBWri:
|
|
if (canCombineWithMUL(MBB, Root.getOperand(1), AArch64::MADDWrrr,
|
|
AArch64::WZR)) {
|
|
Patterns.push_back(MachineCombinerPattern::MC_MULSUBWI_OP1);
|
|
Found = true;
|
|
}
|
|
break;
|
|
case AArch64::SUBXri:
|
|
if (canCombineWithMUL(MBB, Root.getOperand(1), AArch64::MADDXrrr,
|
|
AArch64::XZR)) {
|
|
Patterns.push_back(MachineCombinerPattern::MC_MULSUBXI_OP1);
|
|
Found = true;
|
|
}
|
|
break;
|
|
}
|
|
return Found;
|
|
}
|
|
|
|
/// genMadd - Generate madd instruction and combine mul and add.
|
|
/// Example:
|
|
/// MUL I=A,B,0
|
|
/// ADD R,I,C
|
|
/// ==> MADD R,A,B,C
|
|
/// \param Root is the ADD instruction
|
|
/// \param [out] InsInstrs is a vector of machine instructions and will
|
|
/// contain the generated madd instruction
|
|
/// \param IdxMulOpd is index of operand in Root that is the result of
|
|
/// the MUL. In the example above IdxMulOpd is 1.
|
|
/// \param MaddOpc the opcode fo the madd instruction
|
|
static MachineInstr *genMadd(MachineFunction &MF, MachineRegisterInfo &MRI,
|
|
const TargetInstrInfo *TII, MachineInstr &Root,
|
|
SmallVectorImpl<MachineInstr *> &InsInstrs,
|
|
unsigned IdxMulOpd, unsigned MaddOpc,
|
|
const TargetRegisterClass *RC) {
|
|
assert(IdxMulOpd == 1 || IdxMulOpd == 2);
|
|
|
|
unsigned IdxOtherOpd = IdxMulOpd == 1 ? 2 : 1;
|
|
MachineInstr *MUL = MRI.getUniqueVRegDef(Root.getOperand(IdxMulOpd).getReg());
|
|
unsigned ResultReg = Root.getOperand(0).getReg();
|
|
unsigned SrcReg0 = MUL->getOperand(1).getReg();
|
|
bool Src0IsKill = MUL->getOperand(1).isKill();
|
|
unsigned SrcReg1 = MUL->getOperand(2).getReg();
|
|
bool Src1IsKill = MUL->getOperand(2).isKill();
|
|
unsigned SrcReg2 = Root.getOperand(IdxOtherOpd).getReg();
|
|
bool Src2IsKill = Root.getOperand(IdxOtherOpd).isKill();
|
|
|
|
if (TargetRegisterInfo::isVirtualRegister(ResultReg))
|
|
MRI.constrainRegClass(ResultReg, RC);
|
|
if (TargetRegisterInfo::isVirtualRegister(SrcReg0))
|
|
MRI.constrainRegClass(SrcReg0, RC);
|
|
if (TargetRegisterInfo::isVirtualRegister(SrcReg1))
|
|
MRI.constrainRegClass(SrcReg1, RC);
|
|
if (TargetRegisterInfo::isVirtualRegister(SrcReg2))
|
|
MRI.constrainRegClass(SrcReg2, RC);
|
|
|
|
MachineInstrBuilder MIB = BuildMI(MF, Root.getDebugLoc(), TII->get(MaddOpc),
|
|
ResultReg)
|
|
.addReg(SrcReg0, getKillRegState(Src0IsKill))
|
|
.addReg(SrcReg1, getKillRegState(Src1IsKill))
|
|
.addReg(SrcReg2, getKillRegState(Src2IsKill));
|
|
// Insert the MADD
|
|
InsInstrs.push_back(MIB);
|
|
return MUL;
|
|
}
|
|
|
|
/// genMaddR - Generate madd instruction and combine mul and add using
|
|
/// an extra virtual register
|
|
/// Example - an ADD intermediate needs to be stored in a register:
|
|
/// MUL I=A,B,0
|
|
/// ADD R,I,Imm
|
|
/// ==> ORR V, ZR, Imm
|
|
/// ==> MADD R,A,B,V
|
|
/// \param Root is the ADD instruction
|
|
/// \param [out] InsInstrs is a vector of machine instructions and will
|
|
/// contain the generated madd instruction
|
|
/// \param IdxMulOpd is index of operand in Root that is the result of
|
|
/// the MUL. In the example above IdxMulOpd is 1.
|
|
/// \param MaddOpc the opcode fo the madd instruction
|
|
/// \param VR is a virtual register that holds the value of an ADD operand
|
|
/// (V in the example above).
|
|
static MachineInstr *genMaddR(MachineFunction &MF, MachineRegisterInfo &MRI,
|
|
const TargetInstrInfo *TII, MachineInstr &Root,
|
|
SmallVectorImpl<MachineInstr *> &InsInstrs,
|
|
unsigned IdxMulOpd, unsigned MaddOpc,
|
|
unsigned VR, const TargetRegisterClass *RC) {
|
|
assert(IdxMulOpd == 1 || IdxMulOpd == 2);
|
|
|
|
MachineInstr *MUL = MRI.getUniqueVRegDef(Root.getOperand(IdxMulOpd).getReg());
|
|
unsigned ResultReg = Root.getOperand(0).getReg();
|
|
unsigned SrcReg0 = MUL->getOperand(1).getReg();
|
|
bool Src0IsKill = MUL->getOperand(1).isKill();
|
|
unsigned SrcReg1 = MUL->getOperand(2).getReg();
|
|
bool Src1IsKill = MUL->getOperand(2).isKill();
|
|
|
|
if (TargetRegisterInfo::isVirtualRegister(ResultReg))
|
|
MRI.constrainRegClass(ResultReg, RC);
|
|
if (TargetRegisterInfo::isVirtualRegister(SrcReg0))
|
|
MRI.constrainRegClass(SrcReg0, RC);
|
|
if (TargetRegisterInfo::isVirtualRegister(SrcReg1))
|
|
MRI.constrainRegClass(SrcReg1, RC);
|
|
if (TargetRegisterInfo::isVirtualRegister(VR))
|
|
MRI.constrainRegClass(VR, RC);
|
|
|
|
MachineInstrBuilder MIB = BuildMI(MF, Root.getDebugLoc(), TII->get(MaddOpc),
|
|
ResultReg)
|
|
.addReg(SrcReg0, getKillRegState(Src0IsKill))
|
|
.addReg(SrcReg1, getKillRegState(Src1IsKill))
|
|
.addReg(VR);
|
|
// Insert the MADD
|
|
InsInstrs.push_back(MIB);
|
|
return MUL;
|
|
}
|
|
|
|
/// When getMachineCombinerPatterns() finds potential patterns,
|
|
/// this function generates the instructions that could replace the
|
|
/// original code sequence
|
|
void AArch64InstrInfo::genAlternativeCodeSequence(
|
|
MachineInstr &Root, MachineCombinerPattern::MC_PATTERN Pattern,
|
|
SmallVectorImpl<MachineInstr *> &InsInstrs,
|
|
SmallVectorImpl<MachineInstr *> &DelInstrs,
|
|
DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const {
|
|
MachineBasicBlock &MBB = *Root.getParent();
|
|
MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
|
|
MachineFunction &MF = *MBB.getParent();
|
|
const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
|
|
|
|
MachineInstr *MUL;
|
|
const TargetRegisterClass *RC;
|
|
unsigned Opc;
|
|
switch (Pattern) {
|
|
default:
|
|
// signal error.
|
|
break;
|
|
case MachineCombinerPattern::MC_MULADDW_OP1:
|
|
case MachineCombinerPattern::MC_MULADDX_OP1:
|
|
// MUL I=A,B,0
|
|
// ADD R,I,C
|
|
// ==> MADD R,A,B,C
|
|
// --- Create(MADD);
|
|
if (Pattern == MachineCombinerPattern::MC_MULADDW_OP1) {
|
|
Opc = AArch64::MADDWrrr;
|
|
RC = &AArch64::GPR32RegClass;
|
|
} else {
|
|
Opc = AArch64::MADDXrrr;
|
|
RC = &AArch64::GPR64RegClass;
|
|
}
|
|
MUL = genMadd(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC);
|
|
break;
|
|
case MachineCombinerPattern::MC_MULADDW_OP2:
|
|
case MachineCombinerPattern::MC_MULADDX_OP2:
|
|
// MUL I=A,B,0
|
|
// ADD R,C,I
|
|
// ==> MADD R,A,B,C
|
|
// --- Create(MADD);
|
|
if (Pattern == MachineCombinerPattern::MC_MULADDW_OP2) {
|
|
Opc = AArch64::MADDWrrr;
|
|
RC = &AArch64::GPR32RegClass;
|
|
} else {
|
|
Opc = AArch64::MADDXrrr;
|
|
RC = &AArch64::GPR64RegClass;
|
|
}
|
|
MUL = genMadd(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC);
|
|
break;
|
|
case MachineCombinerPattern::MC_MULADDWI_OP1:
|
|
case MachineCombinerPattern::MC_MULADDXI_OP1: {
|
|
// MUL I=A,B,0
|
|
// ADD R,I,Imm
|
|
// ==> ORR V, ZR, Imm
|
|
// ==> MADD R,A,B,V
|
|
// --- Create(MADD);
|
|
const TargetRegisterClass *OrrRC;
|
|
unsigned BitSize, OrrOpc, ZeroReg;
|
|
if (Pattern == MachineCombinerPattern::MC_MULADDWI_OP1) {
|
|
OrrOpc = AArch64::ORRWri;
|
|
OrrRC = &AArch64::GPR32spRegClass;
|
|
BitSize = 32;
|
|
ZeroReg = AArch64::WZR;
|
|
Opc = AArch64::MADDWrrr;
|
|
RC = &AArch64::GPR32RegClass;
|
|
} else {
|
|
OrrOpc = AArch64::ORRXri;
|
|
OrrRC = &AArch64::GPR64spRegClass;
|
|
BitSize = 64;
|
|
ZeroReg = AArch64::XZR;
|
|
Opc = AArch64::MADDXrrr;
|
|
RC = &AArch64::GPR64RegClass;
|
|
}
|
|
unsigned NewVR = MRI.createVirtualRegister(OrrRC);
|
|
uint64_t Imm = Root.getOperand(2).getImm();
|
|
|
|
if (Root.getOperand(3).isImm()) {
|
|
unsigned Val = Root.getOperand(3).getImm();
|
|
Imm = Imm << Val;
|
|
}
|
|
uint64_t UImm = Imm << (64 - BitSize) >> (64 - BitSize);
|
|
uint64_t Encoding;
|
|
if (AArch64_AM::processLogicalImmediate(UImm, BitSize, Encoding)) {
|
|
MachineInstrBuilder MIB1 =
|
|
BuildMI(MF, Root.getDebugLoc(), TII->get(OrrOpc), NewVR)
|
|
.addReg(ZeroReg)
|
|
.addImm(Encoding);
|
|
InsInstrs.push_back(MIB1);
|
|
InstrIdxForVirtReg.insert(std::make_pair(NewVR, 0));
|
|
MUL = genMaddR(MF, MRI, TII, Root, InsInstrs, 1, Opc, NewVR, RC);
|
|
}
|
|
break;
|
|
}
|
|
case MachineCombinerPattern::MC_MULSUBW_OP1:
|
|
case MachineCombinerPattern::MC_MULSUBX_OP1: {
|
|
// MUL I=A,B,0
|
|
// SUB R,I, C
|
|
// ==> SUB V, 0, C
|
|
// ==> MADD R,A,B,V // = -C + A*B
|
|
// --- Create(MADD);
|
|
const TargetRegisterClass *SubRC;
|
|
unsigned SubOpc, ZeroReg;
|
|
if (Pattern == MachineCombinerPattern::MC_MULSUBW_OP1) {
|
|
SubOpc = AArch64::SUBWrr;
|
|
SubRC = &AArch64::GPR32spRegClass;
|
|
ZeroReg = AArch64::WZR;
|
|
Opc = AArch64::MADDWrrr;
|
|
RC = &AArch64::GPR32RegClass;
|
|
} else {
|
|
SubOpc = AArch64::SUBXrr;
|
|
SubRC = &AArch64::GPR64spRegClass;
|
|
ZeroReg = AArch64::XZR;
|
|
Opc = AArch64::MADDXrrr;
|
|
RC = &AArch64::GPR64RegClass;
|
|
}
|
|
unsigned NewVR = MRI.createVirtualRegister(SubRC);
|
|
// SUB NewVR, 0, C
|
|
MachineInstrBuilder MIB1 =
|
|
BuildMI(MF, Root.getDebugLoc(), TII->get(SubOpc), NewVR)
|
|
.addReg(ZeroReg)
|
|
.addOperand(Root.getOperand(2));
|
|
InsInstrs.push_back(MIB1);
|
|
InstrIdxForVirtReg.insert(std::make_pair(NewVR, 0));
|
|
MUL = genMaddR(MF, MRI, TII, Root, InsInstrs, 1, Opc, NewVR, RC);
|
|
break;
|
|
}
|
|
case MachineCombinerPattern::MC_MULSUBW_OP2:
|
|
case MachineCombinerPattern::MC_MULSUBX_OP2:
|
|
// MUL I=A,B,0
|
|
// SUB R,C,I
|
|
// ==> MSUB R,A,B,C (computes C - A*B)
|
|
// --- Create(MSUB);
|
|
if (Pattern == MachineCombinerPattern::MC_MULSUBW_OP2) {
|
|
Opc = AArch64::MSUBWrrr;
|
|
RC = &AArch64::GPR32RegClass;
|
|
} else {
|
|
Opc = AArch64::MSUBXrrr;
|
|
RC = &AArch64::GPR64RegClass;
|
|
}
|
|
MUL = genMadd(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC);
|
|
break;
|
|
case MachineCombinerPattern::MC_MULSUBWI_OP1:
|
|
case MachineCombinerPattern::MC_MULSUBXI_OP1: {
|
|
// MUL I=A,B,0
|
|
// SUB R,I, Imm
|
|
// ==> ORR V, ZR, -Imm
|
|
// ==> MADD R,A,B,V // = -Imm + A*B
|
|
// --- Create(MADD);
|
|
const TargetRegisterClass *OrrRC;
|
|
unsigned BitSize, OrrOpc, ZeroReg;
|
|
if (Pattern == MachineCombinerPattern::MC_MULSUBWI_OP1) {
|
|
OrrOpc = AArch64::ORRWri;
|
|
OrrRC = &AArch64::GPR32spRegClass;
|
|
BitSize = 32;
|
|
ZeroReg = AArch64::WZR;
|
|
Opc = AArch64::MADDWrrr;
|
|
RC = &AArch64::GPR32RegClass;
|
|
} else {
|
|
OrrOpc = AArch64::ORRXri;
|
|
OrrRC = &AArch64::GPR64spRegClass;
|
|
BitSize = 64;
|
|
ZeroReg = AArch64::XZR;
|
|
Opc = AArch64::MADDXrrr;
|
|
RC = &AArch64::GPR64RegClass;
|
|
}
|
|
unsigned NewVR = MRI.createVirtualRegister(OrrRC);
|
|
int Imm = Root.getOperand(2).getImm();
|
|
if (Root.getOperand(3).isImm()) {
|
|
unsigned Val = Root.getOperand(3).getImm();
|
|
Imm = Imm << Val;
|
|
}
|
|
uint64_t UImm = -Imm << (64 - BitSize) >> (64 - BitSize);
|
|
uint64_t Encoding;
|
|
if (AArch64_AM::processLogicalImmediate(UImm, BitSize, Encoding)) {
|
|
MachineInstrBuilder MIB1 =
|
|
BuildMI(MF, Root.getDebugLoc(), TII->get(OrrOpc), NewVR)
|
|
.addReg(ZeroReg)
|
|
.addImm(Encoding);
|
|
InsInstrs.push_back(MIB1);
|
|
InstrIdxForVirtReg.insert(std::make_pair(NewVR, 0));
|
|
MUL = genMaddR(MF, MRI, TII, Root, InsInstrs, 1, Opc, NewVR, RC);
|
|
}
|
|
break;
|
|
}
|
|
} // end switch (Pattern)
|
|
// Record MUL and ADD/SUB for deletion
|
|
DelInstrs.push_back(MUL);
|
|
DelInstrs.push_back(&Root);
|
|
|
|
return;
|
|
}
|
|
|
|
/// \brief Replace csincr-branch sequence by simple conditional branch
|
|
///
|
|
/// Examples:
|
|
/// 1.
|
|
/// csinc w9, wzr, wzr, <condition code>
|
|
/// tbnz w9, #0, 0x44
|
|
/// to
|
|
/// b.<inverted condition code>
|
|
///
|
|
/// 2.
|
|
/// csinc w9, wzr, wzr, <condition code>
|
|
/// tbz w9, #0, 0x44
|
|
/// to
|
|
/// b.<condition code>
|
|
///
|
|
/// \param MI Conditional Branch
|
|
/// \return True when the simple conditional branch is generated
|
|
///
|
|
bool AArch64InstrInfo::optimizeCondBranch(MachineInstr *MI) const {
|
|
bool IsNegativeBranch = false;
|
|
bool IsTestAndBranch = false;
|
|
unsigned TargetBBInMI = 0;
|
|
switch (MI->getOpcode()) {
|
|
default:
|
|
llvm_unreachable("Unknown branch instruction?");
|
|
case AArch64::Bcc:
|
|
return false;
|
|
case AArch64::CBZW:
|
|
case AArch64::CBZX:
|
|
TargetBBInMI = 1;
|
|
break;
|
|
case AArch64::CBNZW:
|
|
case AArch64::CBNZX:
|
|
TargetBBInMI = 1;
|
|
IsNegativeBranch = true;
|
|
break;
|
|
case AArch64::TBZW:
|
|
case AArch64::TBZX:
|
|
TargetBBInMI = 2;
|
|
IsTestAndBranch = true;
|
|
break;
|
|
case AArch64::TBNZW:
|
|
case AArch64::TBNZX:
|
|
TargetBBInMI = 2;
|
|
IsNegativeBranch = true;
|
|
IsTestAndBranch = true;
|
|
break;
|
|
}
|
|
// So we increment a zero register and test for bits other
|
|
// than bit 0? Conservatively bail out in case the verifier
|
|
// missed this case.
|
|
if (IsTestAndBranch && MI->getOperand(1).getImm())
|
|
return false;
|
|
|
|
// Find Definition.
|
|
assert(MI->getParent() && "Incomplete machine instruciton\n");
|
|
MachineBasicBlock *MBB = MI->getParent();
|
|
MachineFunction *MF = MBB->getParent();
|
|
MachineRegisterInfo *MRI = &MF->getRegInfo();
|
|
unsigned VReg = MI->getOperand(0).getReg();
|
|
if (!TargetRegisterInfo::isVirtualRegister(VReg))
|
|
return false;
|
|
|
|
MachineInstr *DefMI = MRI->getVRegDef(VReg);
|
|
|
|
// Look for CSINC
|
|
if (!(DefMI->getOpcode() == AArch64::CSINCWr &&
|
|
DefMI->getOperand(1).getReg() == AArch64::WZR &&
|
|
DefMI->getOperand(2).getReg() == AArch64::WZR) &&
|
|
!(DefMI->getOpcode() == AArch64::CSINCXr &&
|
|
DefMI->getOperand(1).getReg() == AArch64::XZR &&
|
|
DefMI->getOperand(2).getReg() == AArch64::XZR))
|
|
return false;
|
|
|
|
if (DefMI->findRegisterDefOperandIdx(AArch64::NZCV, true) != -1)
|
|
return false;
|
|
|
|
AArch64CC::CondCode CC =
|
|
(AArch64CC::CondCode)DefMI->getOperand(3).getImm();
|
|
bool CheckOnlyCCWrites = true;
|
|
// Convert only when the condition code is not modified between
|
|
// the CSINC and the branch. The CC may be used by other
|
|
// instructions in between.
|
|
if (modifiesConditionCode(DefMI, MI, CheckOnlyCCWrites, &getRegisterInfo()))
|
|
return false;
|
|
MachineBasicBlock &RefToMBB = *MBB;
|
|
MachineBasicBlock *TBB = MI->getOperand(TargetBBInMI).getMBB();
|
|
DebugLoc DL = MI->getDebugLoc();
|
|
if (IsNegativeBranch)
|
|
CC = AArch64CC::getInvertedCondCode(CC);
|
|
BuildMI(RefToMBB, MI, DL, get(AArch64::Bcc)).addImm(CC).addMBB(TBB);
|
|
MI->eraseFromParent();
|
|
return true;
|
|
}
|