forked from OSchip/llvm-project
704 lines
24 KiB
C++
704 lines
24 KiB
C++
//===- WholeProgramDevirt.cpp - Whole program virtual call optimization ---===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This pass implements whole program optimization of virtual calls in cases
|
|
// where we know (via !type metadata) that the list of callees is fixed. This
|
|
// includes the following:
|
|
// - Single implementation devirtualization: if a virtual call has a single
|
|
// possible callee, replace all calls with a direct call to that callee.
|
|
// - Virtual constant propagation: if the virtual function's return type is an
|
|
// integer <=64 bits and all possible callees are readnone, for each class and
|
|
// each list of constant arguments: evaluate the function, store the return
|
|
// value alongside the virtual table, and rewrite each virtual call as a load
|
|
// from the virtual table.
|
|
// - Uniform return value optimization: if the conditions for virtual constant
|
|
// propagation hold and each function returns the same constant value, replace
|
|
// each virtual call with that constant.
|
|
// - Unique return value optimization for i1 return values: if the conditions
|
|
// for virtual constant propagation hold and a single vtable's function
|
|
// returns 0, or a single vtable's function returns 1, replace each virtual
|
|
// call with a comparison of the vptr against that vtable's address.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Transforms/IPO/WholeProgramDevirt.h"
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include "llvm/ADT/DenseSet.h"
|
|
#include "llvm/ADT/MapVector.h"
|
|
#include "llvm/Analysis/TypeMetadataUtils.h"
|
|
#include "llvm/IR/CallSite.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/Intrinsics.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Transforms/IPO.h"
|
|
#include "llvm/Transforms/Utils/Evaluator.h"
|
|
#include "llvm/Transforms/Utils/Local.h"
|
|
|
|
#include <set>
|
|
|
|
using namespace llvm;
|
|
using namespace wholeprogramdevirt;
|
|
|
|
#define DEBUG_TYPE "wholeprogramdevirt"
|
|
|
|
// Find the minimum offset that we may store a value of size Size bits at. If
|
|
// IsAfter is set, look for an offset before the object, otherwise look for an
|
|
// offset after the object.
|
|
uint64_t
|
|
wholeprogramdevirt::findLowestOffset(ArrayRef<VirtualCallTarget> Targets,
|
|
bool IsAfter, uint64_t Size) {
|
|
// Find a minimum offset taking into account only vtable sizes.
|
|
uint64_t MinByte = 0;
|
|
for (const VirtualCallTarget &Target : Targets) {
|
|
if (IsAfter)
|
|
MinByte = std::max(MinByte, Target.minAfterBytes());
|
|
else
|
|
MinByte = std::max(MinByte, Target.minBeforeBytes());
|
|
}
|
|
|
|
// Build a vector of arrays of bytes covering, for each target, a slice of the
|
|
// used region (see AccumBitVector::BytesUsed in
|
|
// llvm/Transforms/IPO/WholeProgramDevirt.h) starting at MinByte. Effectively,
|
|
// this aligns the used regions to start at MinByte.
|
|
//
|
|
// In this example, A, B and C are vtables, # is a byte already allocated for
|
|
// a virtual function pointer, AAAA... (etc.) are the used regions for the
|
|
// vtables and Offset(X) is the value computed for the Offset variable below
|
|
// for X.
|
|
//
|
|
// Offset(A)
|
|
// | |
|
|
// |MinByte
|
|
// A: ################AAAAAAAA|AAAAAAAA
|
|
// B: ########BBBBBBBBBBBBBBBB|BBBB
|
|
// C: ########################|CCCCCCCCCCCCCCCC
|
|
// | Offset(B) |
|
|
//
|
|
// This code produces the slices of A, B and C that appear after the divider
|
|
// at MinByte.
|
|
std::vector<ArrayRef<uint8_t>> Used;
|
|
for (const VirtualCallTarget &Target : Targets) {
|
|
ArrayRef<uint8_t> VTUsed = IsAfter ? Target.TM->Bits->After.BytesUsed
|
|
: Target.TM->Bits->Before.BytesUsed;
|
|
uint64_t Offset = IsAfter ? MinByte - Target.minAfterBytes()
|
|
: MinByte - Target.minBeforeBytes();
|
|
|
|
// Disregard used regions that are smaller than Offset. These are
|
|
// effectively all-free regions that do not need to be checked.
|
|
if (VTUsed.size() > Offset)
|
|
Used.push_back(VTUsed.slice(Offset));
|
|
}
|
|
|
|
if (Size == 1) {
|
|
// Find a free bit in each member of Used.
|
|
for (unsigned I = 0;; ++I) {
|
|
uint8_t BitsUsed = 0;
|
|
for (auto &&B : Used)
|
|
if (I < B.size())
|
|
BitsUsed |= B[I];
|
|
if (BitsUsed != 0xff)
|
|
return (MinByte + I) * 8 +
|
|
countTrailingZeros(uint8_t(~BitsUsed), ZB_Undefined);
|
|
}
|
|
} else {
|
|
// Find a free (Size/8) byte region in each member of Used.
|
|
// FIXME: see if alignment helps.
|
|
for (unsigned I = 0;; ++I) {
|
|
for (auto &&B : Used) {
|
|
unsigned Byte = 0;
|
|
while ((I + Byte) < B.size() && Byte < (Size / 8)) {
|
|
if (B[I + Byte])
|
|
goto NextI;
|
|
++Byte;
|
|
}
|
|
}
|
|
return (MinByte + I) * 8;
|
|
NextI:;
|
|
}
|
|
}
|
|
}
|
|
|
|
void wholeprogramdevirt::setBeforeReturnValues(
|
|
MutableArrayRef<VirtualCallTarget> Targets, uint64_t AllocBefore,
|
|
unsigned BitWidth, int64_t &OffsetByte, uint64_t &OffsetBit) {
|
|
if (BitWidth == 1)
|
|
OffsetByte = -(AllocBefore / 8 + 1);
|
|
else
|
|
OffsetByte = -((AllocBefore + 7) / 8 + (BitWidth + 7) / 8);
|
|
OffsetBit = AllocBefore % 8;
|
|
|
|
for (VirtualCallTarget &Target : Targets) {
|
|
if (BitWidth == 1)
|
|
Target.setBeforeBit(AllocBefore);
|
|
else
|
|
Target.setBeforeBytes(AllocBefore, (BitWidth + 7) / 8);
|
|
}
|
|
}
|
|
|
|
void wholeprogramdevirt::setAfterReturnValues(
|
|
MutableArrayRef<VirtualCallTarget> Targets, uint64_t AllocAfter,
|
|
unsigned BitWidth, int64_t &OffsetByte, uint64_t &OffsetBit) {
|
|
if (BitWidth == 1)
|
|
OffsetByte = AllocAfter / 8;
|
|
else
|
|
OffsetByte = (AllocAfter + 7) / 8;
|
|
OffsetBit = AllocAfter % 8;
|
|
|
|
for (VirtualCallTarget &Target : Targets) {
|
|
if (BitWidth == 1)
|
|
Target.setAfterBit(AllocAfter);
|
|
else
|
|
Target.setAfterBytes(AllocAfter, (BitWidth + 7) / 8);
|
|
}
|
|
}
|
|
|
|
VirtualCallTarget::VirtualCallTarget(Function *Fn, const TypeMemberInfo *TM)
|
|
: Fn(Fn), TM(TM),
|
|
IsBigEndian(Fn->getParent()->getDataLayout().isBigEndian()) {}
|
|
|
|
namespace {
|
|
|
|
// A slot in a set of virtual tables. The TypeID identifies the set of virtual
|
|
// tables, and the ByteOffset is the offset in bytes from the address point to
|
|
// the virtual function pointer.
|
|
struct VTableSlot {
|
|
Metadata *TypeID;
|
|
uint64_t ByteOffset;
|
|
};
|
|
|
|
}
|
|
|
|
namespace llvm {
|
|
|
|
template <> struct DenseMapInfo<VTableSlot> {
|
|
static VTableSlot getEmptyKey() {
|
|
return {DenseMapInfo<Metadata *>::getEmptyKey(),
|
|
DenseMapInfo<uint64_t>::getEmptyKey()};
|
|
}
|
|
static VTableSlot getTombstoneKey() {
|
|
return {DenseMapInfo<Metadata *>::getTombstoneKey(),
|
|
DenseMapInfo<uint64_t>::getTombstoneKey()};
|
|
}
|
|
static unsigned getHashValue(const VTableSlot &I) {
|
|
return DenseMapInfo<Metadata *>::getHashValue(I.TypeID) ^
|
|
DenseMapInfo<uint64_t>::getHashValue(I.ByteOffset);
|
|
}
|
|
static bool isEqual(const VTableSlot &LHS,
|
|
const VTableSlot &RHS) {
|
|
return LHS.TypeID == RHS.TypeID && LHS.ByteOffset == RHS.ByteOffset;
|
|
}
|
|
};
|
|
|
|
}
|
|
|
|
namespace {
|
|
|
|
// A virtual call site. VTable is the loaded virtual table pointer, and CS is
|
|
// the indirect virtual call.
|
|
struct VirtualCallSite {
|
|
Value *VTable;
|
|
CallSite CS;
|
|
|
|
void replaceAndErase(Value *New) {
|
|
CS->replaceAllUsesWith(New);
|
|
if (auto II = dyn_cast<InvokeInst>(CS.getInstruction())) {
|
|
BranchInst::Create(II->getNormalDest(), CS.getInstruction());
|
|
II->getUnwindDest()->removePredecessor(II->getParent());
|
|
}
|
|
CS->eraseFromParent();
|
|
}
|
|
};
|
|
|
|
struct DevirtModule {
|
|
Module &M;
|
|
IntegerType *Int8Ty;
|
|
PointerType *Int8PtrTy;
|
|
IntegerType *Int32Ty;
|
|
|
|
MapVector<VTableSlot, std::vector<VirtualCallSite>> CallSlots;
|
|
|
|
DevirtModule(Module &M)
|
|
: M(M), Int8Ty(Type::getInt8Ty(M.getContext())),
|
|
Int8PtrTy(Type::getInt8PtrTy(M.getContext())),
|
|
Int32Ty(Type::getInt32Ty(M.getContext())) {}
|
|
|
|
void buildTypeIdentifierMap(
|
|
std::vector<VTableBits> &Bits,
|
|
DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap);
|
|
bool
|
|
tryFindVirtualCallTargets(std::vector<VirtualCallTarget> &TargetsForSlot,
|
|
const std::set<TypeMemberInfo> &TypeMemberInfos,
|
|
uint64_t ByteOffset);
|
|
bool trySingleImplDevirt(ArrayRef<VirtualCallTarget> TargetsForSlot,
|
|
MutableArrayRef<VirtualCallSite> CallSites);
|
|
bool tryEvaluateFunctionsWithArgs(
|
|
MutableArrayRef<VirtualCallTarget> TargetsForSlot,
|
|
ArrayRef<ConstantInt *> Args);
|
|
bool tryUniformRetValOpt(IntegerType *RetType,
|
|
ArrayRef<VirtualCallTarget> TargetsForSlot,
|
|
MutableArrayRef<VirtualCallSite> CallSites);
|
|
bool tryUniqueRetValOpt(unsigned BitWidth,
|
|
ArrayRef<VirtualCallTarget> TargetsForSlot,
|
|
MutableArrayRef<VirtualCallSite> CallSites);
|
|
bool tryVirtualConstProp(MutableArrayRef<VirtualCallTarget> TargetsForSlot,
|
|
ArrayRef<VirtualCallSite> CallSites);
|
|
|
|
void rebuildGlobal(VTableBits &B);
|
|
|
|
bool run();
|
|
};
|
|
|
|
struct WholeProgramDevirt : public ModulePass {
|
|
static char ID;
|
|
WholeProgramDevirt() : ModulePass(ID) {
|
|
initializeWholeProgramDevirtPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
bool runOnModule(Module &M) {
|
|
if (skipModule(M))
|
|
return false;
|
|
|
|
return DevirtModule(M).run();
|
|
}
|
|
};
|
|
|
|
} // anonymous namespace
|
|
|
|
INITIALIZE_PASS(WholeProgramDevirt, "wholeprogramdevirt",
|
|
"Whole program devirtualization", false, false)
|
|
char WholeProgramDevirt::ID = 0;
|
|
|
|
ModulePass *llvm::createWholeProgramDevirtPass() {
|
|
return new WholeProgramDevirt;
|
|
}
|
|
|
|
PreservedAnalyses WholeProgramDevirtPass::run(Module &M,
|
|
ModuleAnalysisManager &) {
|
|
if (!DevirtModule(M).run())
|
|
return PreservedAnalyses::all();
|
|
return PreservedAnalyses::none();
|
|
}
|
|
|
|
void DevirtModule::buildTypeIdentifierMap(
|
|
std::vector<VTableBits> &Bits,
|
|
DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap) {
|
|
DenseMap<GlobalVariable *, VTableBits *> GVToBits;
|
|
Bits.reserve(M.getGlobalList().size());
|
|
SmallVector<MDNode *, 2> Types;
|
|
for (GlobalVariable &GV : M.globals()) {
|
|
Types.clear();
|
|
GV.getMetadata(LLVMContext::MD_type, Types);
|
|
if (Types.empty())
|
|
continue;
|
|
|
|
VTableBits *&BitsPtr = GVToBits[&GV];
|
|
if (!BitsPtr) {
|
|
Bits.emplace_back();
|
|
Bits.back().GV = &GV;
|
|
Bits.back().ObjectSize =
|
|
M.getDataLayout().getTypeAllocSize(GV.getInitializer()->getType());
|
|
BitsPtr = &Bits.back();
|
|
}
|
|
|
|
for (MDNode *Type : Types) {
|
|
auto TypeID = Type->getOperand(1).get();
|
|
|
|
uint64_t Offset =
|
|
cast<ConstantInt>(
|
|
cast<ConstantAsMetadata>(Type->getOperand(0))->getValue())
|
|
->getZExtValue();
|
|
|
|
TypeIdMap[TypeID].insert({BitsPtr, Offset});
|
|
}
|
|
}
|
|
}
|
|
|
|
bool DevirtModule::tryFindVirtualCallTargets(
|
|
std::vector<VirtualCallTarget> &TargetsForSlot,
|
|
const std::set<TypeMemberInfo> &TypeMemberInfos, uint64_t ByteOffset) {
|
|
for (const TypeMemberInfo &TM : TypeMemberInfos) {
|
|
if (!TM.Bits->GV->isConstant())
|
|
return false;
|
|
|
|
auto Init = dyn_cast<ConstantArray>(TM.Bits->GV->getInitializer());
|
|
if (!Init)
|
|
return false;
|
|
ArrayType *VTableTy = Init->getType();
|
|
|
|
uint64_t ElemSize =
|
|
M.getDataLayout().getTypeAllocSize(VTableTy->getElementType());
|
|
uint64_t GlobalSlotOffset = TM.Offset + ByteOffset;
|
|
if (GlobalSlotOffset % ElemSize != 0)
|
|
return false;
|
|
|
|
unsigned Op = GlobalSlotOffset / ElemSize;
|
|
if (Op >= Init->getNumOperands())
|
|
return false;
|
|
|
|
auto Fn = dyn_cast<Function>(Init->getOperand(Op)->stripPointerCasts());
|
|
if (!Fn)
|
|
return false;
|
|
|
|
// We can disregard __cxa_pure_virtual as a possible call target, as
|
|
// calls to pure virtuals are UB.
|
|
if (Fn->getName() == "__cxa_pure_virtual")
|
|
continue;
|
|
|
|
TargetsForSlot.push_back({Fn, &TM});
|
|
}
|
|
|
|
// Give up if we couldn't find any targets.
|
|
return !TargetsForSlot.empty();
|
|
}
|
|
|
|
bool DevirtModule::trySingleImplDevirt(
|
|
ArrayRef<VirtualCallTarget> TargetsForSlot,
|
|
MutableArrayRef<VirtualCallSite> CallSites) {
|
|
// See if the program contains a single implementation of this virtual
|
|
// function.
|
|
Function *TheFn = TargetsForSlot[0].Fn;
|
|
for (auto &&Target : TargetsForSlot)
|
|
if (TheFn != Target.Fn)
|
|
return false;
|
|
|
|
// If so, update each call site to call that implementation directly.
|
|
for (auto &&VCallSite : CallSites) {
|
|
VCallSite.CS.setCalledFunction(ConstantExpr::getBitCast(
|
|
TheFn, VCallSite.CS.getCalledValue()->getType()));
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool DevirtModule::tryEvaluateFunctionsWithArgs(
|
|
MutableArrayRef<VirtualCallTarget> TargetsForSlot,
|
|
ArrayRef<ConstantInt *> Args) {
|
|
// Evaluate each function and store the result in each target's RetVal
|
|
// field.
|
|
for (VirtualCallTarget &Target : TargetsForSlot) {
|
|
if (Target.Fn->arg_size() != Args.size() + 1)
|
|
return false;
|
|
for (unsigned I = 0; I != Args.size(); ++I)
|
|
if (Target.Fn->getFunctionType()->getParamType(I + 1) !=
|
|
Args[I]->getType())
|
|
return false;
|
|
|
|
Evaluator Eval(M.getDataLayout(), nullptr);
|
|
SmallVector<Constant *, 2> EvalArgs;
|
|
EvalArgs.push_back(
|
|
Constant::getNullValue(Target.Fn->getFunctionType()->getParamType(0)));
|
|
EvalArgs.insert(EvalArgs.end(), Args.begin(), Args.end());
|
|
Constant *RetVal;
|
|
if (!Eval.EvaluateFunction(Target.Fn, RetVal, EvalArgs) ||
|
|
!isa<ConstantInt>(RetVal))
|
|
return false;
|
|
Target.RetVal = cast<ConstantInt>(RetVal)->getZExtValue();
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool DevirtModule::tryUniformRetValOpt(
|
|
IntegerType *RetType, ArrayRef<VirtualCallTarget> TargetsForSlot,
|
|
MutableArrayRef<VirtualCallSite> CallSites) {
|
|
// Uniform return value optimization. If all functions return the same
|
|
// constant, replace all calls with that constant.
|
|
uint64_t TheRetVal = TargetsForSlot[0].RetVal;
|
|
for (const VirtualCallTarget &Target : TargetsForSlot)
|
|
if (Target.RetVal != TheRetVal)
|
|
return false;
|
|
|
|
auto TheRetValConst = ConstantInt::get(RetType, TheRetVal);
|
|
for (auto Call : CallSites)
|
|
Call.replaceAndErase(TheRetValConst);
|
|
return true;
|
|
}
|
|
|
|
bool DevirtModule::tryUniqueRetValOpt(
|
|
unsigned BitWidth, ArrayRef<VirtualCallTarget> TargetsForSlot,
|
|
MutableArrayRef<VirtualCallSite> CallSites) {
|
|
// IsOne controls whether we look for a 0 or a 1.
|
|
auto tryUniqueRetValOptFor = [&](bool IsOne) {
|
|
const TypeMemberInfo *UniqueMember = 0;
|
|
for (const VirtualCallTarget &Target : TargetsForSlot) {
|
|
if (Target.RetVal == (IsOne ? 1 : 0)) {
|
|
if (UniqueMember)
|
|
return false;
|
|
UniqueMember = Target.TM;
|
|
}
|
|
}
|
|
|
|
// We should have found a unique member or bailed out by now. We already
|
|
// checked for a uniform return value in tryUniformRetValOpt.
|
|
assert(UniqueMember);
|
|
|
|
// Replace each call with the comparison.
|
|
for (auto &&Call : CallSites) {
|
|
IRBuilder<> B(Call.CS.getInstruction());
|
|
Value *OneAddr = B.CreateBitCast(UniqueMember->Bits->GV, Int8PtrTy);
|
|
OneAddr = B.CreateConstGEP1_64(OneAddr, UniqueMember->Offset);
|
|
Value *Cmp = B.CreateICmp(IsOne ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE,
|
|
Call.VTable, OneAddr);
|
|
Call.replaceAndErase(Cmp);
|
|
}
|
|
return true;
|
|
};
|
|
|
|
if (BitWidth == 1) {
|
|
if (tryUniqueRetValOptFor(true))
|
|
return true;
|
|
if (tryUniqueRetValOptFor(false))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool DevirtModule::tryVirtualConstProp(
|
|
MutableArrayRef<VirtualCallTarget> TargetsForSlot,
|
|
ArrayRef<VirtualCallSite> CallSites) {
|
|
// This only works if the function returns an integer.
|
|
auto RetType = dyn_cast<IntegerType>(TargetsForSlot[0].Fn->getReturnType());
|
|
if (!RetType)
|
|
return false;
|
|
unsigned BitWidth = RetType->getBitWidth();
|
|
if (BitWidth > 64)
|
|
return false;
|
|
|
|
// Make sure that each function does not access memory, takes at least one
|
|
// argument, does not use its first argument (which we assume is 'this'),
|
|
// and has the same return type.
|
|
for (VirtualCallTarget &Target : TargetsForSlot) {
|
|
if (!Target.Fn->doesNotAccessMemory() || Target.Fn->arg_empty() ||
|
|
!Target.Fn->arg_begin()->use_empty() ||
|
|
Target.Fn->getReturnType() != RetType)
|
|
return false;
|
|
}
|
|
|
|
// Group call sites by the list of constant arguments they pass.
|
|
// The comparator ensures deterministic ordering.
|
|
struct ByAPIntValue {
|
|
bool operator()(const std::vector<ConstantInt *> &A,
|
|
const std::vector<ConstantInt *> &B) const {
|
|
return std::lexicographical_compare(
|
|
A.begin(), A.end(), B.begin(), B.end(),
|
|
[](ConstantInt *AI, ConstantInt *BI) {
|
|
return AI->getValue().ult(BI->getValue());
|
|
});
|
|
}
|
|
};
|
|
std::map<std::vector<ConstantInt *>, std::vector<VirtualCallSite>,
|
|
ByAPIntValue>
|
|
VCallSitesByConstantArg;
|
|
for (auto &&VCallSite : CallSites) {
|
|
std::vector<ConstantInt *> Args;
|
|
if (VCallSite.CS.getType() != RetType)
|
|
continue;
|
|
for (auto &&Arg :
|
|
make_range(VCallSite.CS.arg_begin() + 1, VCallSite.CS.arg_end())) {
|
|
if (!isa<ConstantInt>(Arg))
|
|
break;
|
|
Args.push_back(cast<ConstantInt>(&Arg));
|
|
}
|
|
if (Args.size() + 1 != VCallSite.CS.arg_size())
|
|
continue;
|
|
|
|
VCallSitesByConstantArg[Args].push_back(VCallSite);
|
|
}
|
|
|
|
for (auto &&CSByConstantArg : VCallSitesByConstantArg) {
|
|
if (!tryEvaluateFunctionsWithArgs(TargetsForSlot, CSByConstantArg.first))
|
|
continue;
|
|
|
|
if (tryUniformRetValOpt(RetType, TargetsForSlot, CSByConstantArg.second))
|
|
continue;
|
|
|
|
if (tryUniqueRetValOpt(BitWidth, TargetsForSlot, CSByConstantArg.second))
|
|
continue;
|
|
|
|
// Find an allocation offset in bits in all vtables associated with the
|
|
// type.
|
|
uint64_t AllocBefore =
|
|
findLowestOffset(TargetsForSlot, /*IsAfter=*/false, BitWidth);
|
|
uint64_t AllocAfter =
|
|
findLowestOffset(TargetsForSlot, /*IsAfter=*/true, BitWidth);
|
|
|
|
// Calculate the total amount of padding needed to store a value at both
|
|
// ends of the object.
|
|
uint64_t TotalPaddingBefore = 0, TotalPaddingAfter = 0;
|
|
for (auto &&Target : TargetsForSlot) {
|
|
TotalPaddingBefore += std::max<int64_t>(
|
|
(AllocBefore + 7) / 8 - Target.allocatedBeforeBytes() - 1, 0);
|
|
TotalPaddingAfter += std::max<int64_t>(
|
|
(AllocAfter + 7) / 8 - Target.allocatedAfterBytes() - 1, 0);
|
|
}
|
|
|
|
// If the amount of padding is too large, give up.
|
|
// FIXME: do something smarter here.
|
|
if (std::min(TotalPaddingBefore, TotalPaddingAfter) > 128)
|
|
continue;
|
|
|
|
// Calculate the offset to the value as a (possibly negative) byte offset
|
|
// and (if applicable) a bit offset, and store the values in the targets.
|
|
int64_t OffsetByte;
|
|
uint64_t OffsetBit;
|
|
if (TotalPaddingBefore <= TotalPaddingAfter)
|
|
setBeforeReturnValues(TargetsForSlot, AllocBefore, BitWidth, OffsetByte,
|
|
OffsetBit);
|
|
else
|
|
setAfterReturnValues(TargetsForSlot, AllocAfter, BitWidth, OffsetByte,
|
|
OffsetBit);
|
|
|
|
// Rewrite each call to a load from OffsetByte/OffsetBit.
|
|
for (auto Call : CSByConstantArg.second) {
|
|
IRBuilder<> B(Call.CS.getInstruction());
|
|
Value *Addr = B.CreateConstGEP1_64(Call.VTable, OffsetByte);
|
|
if (BitWidth == 1) {
|
|
Value *Bits = B.CreateLoad(Addr);
|
|
Value *Bit = ConstantInt::get(Int8Ty, 1ULL << OffsetBit);
|
|
Value *BitsAndBit = B.CreateAnd(Bits, Bit);
|
|
auto IsBitSet = B.CreateICmpNE(BitsAndBit, ConstantInt::get(Int8Ty, 0));
|
|
Call.replaceAndErase(IsBitSet);
|
|
} else {
|
|
Value *ValAddr = B.CreateBitCast(Addr, RetType->getPointerTo());
|
|
Value *Val = B.CreateLoad(RetType, ValAddr);
|
|
Call.replaceAndErase(Val);
|
|
}
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void DevirtModule::rebuildGlobal(VTableBits &B) {
|
|
if (B.Before.Bytes.empty() && B.After.Bytes.empty())
|
|
return;
|
|
|
|
// Align each byte array to pointer width.
|
|
unsigned PointerSize = M.getDataLayout().getPointerSize();
|
|
B.Before.Bytes.resize(alignTo(B.Before.Bytes.size(), PointerSize));
|
|
B.After.Bytes.resize(alignTo(B.After.Bytes.size(), PointerSize));
|
|
|
|
// Before was stored in reverse order; flip it now.
|
|
for (size_t I = 0, Size = B.Before.Bytes.size(); I != Size / 2; ++I)
|
|
std::swap(B.Before.Bytes[I], B.Before.Bytes[Size - 1 - I]);
|
|
|
|
// Build an anonymous global containing the before bytes, followed by the
|
|
// original initializer, followed by the after bytes.
|
|
auto NewInit = ConstantStruct::getAnon(
|
|
{ConstantDataArray::get(M.getContext(), B.Before.Bytes),
|
|
B.GV->getInitializer(),
|
|
ConstantDataArray::get(M.getContext(), B.After.Bytes)});
|
|
auto NewGV =
|
|
new GlobalVariable(M, NewInit->getType(), B.GV->isConstant(),
|
|
GlobalVariable::PrivateLinkage, NewInit, "", B.GV);
|
|
NewGV->setSection(B.GV->getSection());
|
|
NewGV->setComdat(B.GV->getComdat());
|
|
|
|
// Build an alias named after the original global, pointing at the second
|
|
// element (the original initializer).
|
|
auto Alias = GlobalAlias::create(
|
|
B.GV->getInitializer()->getType(), 0, B.GV->getLinkage(), "",
|
|
ConstantExpr::getGetElementPtr(
|
|
NewInit->getType(), NewGV,
|
|
ArrayRef<Constant *>{ConstantInt::get(Int32Ty, 0),
|
|
ConstantInt::get(Int32Ty, 1)}),
|
|
&M);
|
|
Alias->setVisibility(B.GV->getVisibility());
|
|
Alias->takeName(B.GV);
|
|
|
|
B.GV->replaceAllUsesWith(Alias);
|
|
B.GV->eraseFromParent();
|
|
}
|
|
|
|
bool DevirtModule::run() {
|
|
Function *TypeTestFunc =
|
|
M.getFunction(Intrinsic::getName(Intrinsic::type_test));
|
|
if (!TypeTestFunc || TypeTestFunc->use_empty())
|
|
return false;
|
|
|
|
Function *AssumeFunc = M.getFunction(Intrinsic::getName(Intrinsic::assume));
|
|
if (!AssumeFunc || AssumeFunc->use_empty())
|
|
return false;
|
|
|
|
// Find all virtual calls via a virtual table pointer %p under an assumption
|
|
// of the form llvm.assume(llvm.type.test(%p, %md)). This indicates that %p
|
|
// points to a member of the type identifier %md. Group calls by (type ID,
|
|
// offset) pair (effectively the identity of the virtual function) and store
|
|
// to CallSlots.
|
|
DenseSet<Value *> SeenPtrs;
|
|
for (auto I = TypeTestFunc->use_begin(), E = TypeTestFunc->use_end();
|
|
I != E;) {
|
|
auto CI = dyn_cast<CallInst>(I->getUser());
|
|
++I;
|
|
if (!CI)
|
|
continue;
|
|
|
|
// Search for virtual calls based on %p and add them to DevirtCalls.
|
|
SmallVector<DevirtCallSite, 1> DevirtCalls;
|
|
SmallVector<CallInst *, 1> Assumes;
|
|
findDevirtualizableCalls(DevirtCalls, Assumes, CI);
|
|
|
|
// If we found any, add them to CallSlots. Only do this if we haven't seen
|
|
// the vtable pointer before, as it may have been CSE'd with pointers from
|
|
// other call sites, and we don't want to process call sites multiple times.
|
|
if (!Assumes.empty()) {
|
|
Metadata *TypeId =
|
|
cast<MetadataAsValue>(CI->getArgOperand(1))->getMetadata();
|
|
Value *Ptr = CI->getArgOperand(0)->stripPointerCasts();
|
|
if (SeenPtrs.insert(Ptr).second) {
|
|
for (DevirtCallSite Call : DevirtCalls) {
|
|
CallSlots[{TypeId, Call.Offset}].push_back(
|
|
{CI->getArgOperand(0), Call.CS});
|
|
}
|
|
}
|
|
}
|
|
|
|
// We no longer need the assumes or the type test.
|
|
for (auto Assume : Assumes)
|
|
Assume->eraseFromParent();
|
|
// We can't use RecursivelyDeleteTriviallyDeadInstructions here because we
|
|
// may use the vtable argument later.
|
|
if (CI->use_empty())
|
|
CI->eraseFromParent();
|
|
}
|
|
|
|
// Rebuild type metadata into a map for easy lookup.
|
|
std::vector<VTableBits> Bits;
|
|
DenseMap<Metadata *, std::set<TypeMemberInfo>> TypeIdMap;
|
|
buildTypeIdentifierMap(Bits, TypeIdMap);
|
|
if (TypeIdMap.empty())
|
|
return true;
|
|
|
|
// For each (type, offset) pair:
|
|
bool DidVirtualConstProp = false;
|
|
for (auto &S : CallSlots) {
|
|
// Search each of the members of the type identifier for the virtual
|
|
// function implementation at offset S.first.ByteOffset, and add to
|
|
// TargetsForSlot.
|
|
std::vector<VirtualCallTarget> TargetsForSlot;
|
|
if (!tryFindVirtualCallTargets(TargetsForSlot, TypeIdMap[S.first.TypeID],
|
|
S.first.ByteOffset))
|
|
continue;
|
|
|
|
if (trySingleImplDevirt(TargetsForSlot, S.second))
|
|
continue;
|
|
|
|
DidVirtualConstProp |= tryVirtualConstProp(TargetsForSlot, S.second);
|
|
}
|
|
|
|
// Rebuild each global we touched as part of virtual constant propagation to
|
|
// include the before and after bytes.
|
|
if (DidVirtualConstProp)
|
|
for (VTableBits &B : Bits)
|
|
rebuildGlobal(B);
|
|
|
|
return true;
|
|
}
|