forked from OSchip/llvm-project
396 lines
16 KiB
C++
396 lines
16 KiB
C++
//===- Utils.cpp - Utilities to support the Linalg dialect ----------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements utilities for the Linalg dialect.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/Dialect/Linalg/Utils/Utils.h"
|
|
|
|
#include "mlir/Dialect/Affine/EDSC/Intrinsics.h"
|
|
#include "mlir/Dialect/Affine/IR/AffineOps.h"
|
|
#include "mlir/Dialect/Linalg/IR/LinalgOps.h"
|
|
#include "mlir/Dialect/Linalg/IR/LinalgTypes.h"
|
|
#include "mlir/Dialect/SCF/EDSC/Builders.h"
|
|
#include "mlir/Dialect/SCF/SCF.h"
|
|
#include "mlir/Dialect/StandardOps/IR/Ops.h"
|
|
#include "mlir/IR/AffineExpr.h"
|
|
#include "mlir/IR/AffineMap.h"
|
|
#include "mlir/IR/Matchers.h"
|
|
#include "mlir/IR/OpImplementation.h"
|
|
#include "mlir/Pass/Pass.h"
|
|
#include "mlir/Transforms/LoopUtils.h"
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::linalg;
|
|
using namespace mlir::scf;
|
|
|
|
Optional<RegionMatcher::BinaryOpKind>
|
|
RegionMatcher::matchAsScalarBinaryOp(GenericOp op) {
|
|
auto ®ion = op.region();
|
|
if (!llvm::hasSingleElement(region))
|
|
return llvm::None;
|
|
|
|
Block &block = region.front();
|
|
if (block.getNumArguments() != 2 ||
|
|
!block.getArgument(0).getType().isSignlessIntOrFloat() ||
|
|
!block.getArgument(1).getType().isSignlessIntOrFloat())
|
|
return llvm::None;
|
|
|
|
auto &ops = block.getOperations();
|
|
if (!llvm::hasSingleElement(block.without_terminator()))
|
|
return llvm::None;
|
|
|
|
using mlir::matchers::m_Val;
|
|
auto a = m_Val(block.getArgument(0));
|
|
auto b = m_Val(block.getArgument(1));
|
|
|
|
auto addPattern = m_Op<linalg::YieldOp>(m_Op<AddIOp>(a, b));
|
|
if (addPattern.match(&ops.back()))
|
|
return BinaryOpKind::IAdd;
|
|
|
|
return llvm::None;
|
|
}
|
|
|
|
bool mlir::linalg::isParallelIteratorType(Attribute attr) {
|
|
if (auto strAttr = attr.dyn_cast<StringAttr>()) {
|
|
return strAttr.getValue() == getParallelIteratorTypeName();
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool mlir::linalg::isReductionIteratorType(Attribute attr) {
|
|
if (auto strAttr = attr.dyn_cast<StringAttr>()) {
|
|
return strAttr.getValue() == getReductionIteratorTypeName();
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool mlir::linalg::isWindowIteratorType(Attribute attr) {
|
|
if (auto strAttr = attr.dyn_cast<StringAttr>()) {
|
|
return strAttr.getValue() == getWindowIteratorTypeName();
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// Explicit instantiation of loop nest generator for different loop types.
|
|
template struct mlir::linalg::GenerateLoopNest<scf::ForOp>;
|
|
template struct mlir::linalg::GenerateLoopNest<scf::ParallelOp>;
|
|
template struct mlir::linalg::GenerateLoopNest<AffineForOp>;
|
|
|
|
/// Given a list of subview ranges, extract individual values for lower, upper
|
|
/// bounds and steps and put them into the corresponding vectors.
|
|
static void unpackRanges(ArrayRef<Range> ranges, SmallVectorImpl<Value> &lbs,
|
|
SmallVectorImpl<Value> &ubs,
|
|
SmallVectorImpl<Value> &steps) {
|
|
for (Range range : ranges) {
|
|
lbs.emplace_back(range.offset);
|
|
ubs.emplace_back(range.size);
|
|
steps.emplace_back(range.stride);
|
|
}
|
|
}
|
|
|
|
namespace mlir {
|
|
namespace linalg {
|
|
|
|
SmallVector<int64_t, 8> getStaticShape(LinalgOp linalgOp) {
|
|
SmallVector<int64_t, 8> res;
|
|
for (Value v : linalgOp.getShapedOperands()) {
|
|
auto shape = v.getType().cast<ShapedType>().getShape();
|
|
res.append(shape.begin(), shape.end());
|
|
}
|
|
return res;
|
|
}
|
|
|
|
Optional<SmallVector<int64_t, 4>> getStaticLoopRanges(LinalgOp linalgOp) {
|
|
SmallVector<int64_t, 8> viewSizes = getStaticShape(linalgOp);
|
|
AffineMap invertedMap = linalgOp.getShapesToLoopsMap();
|
|
if (!invertedMap)
|
|
return {};
|
|
return invertedMap.compose(viewSizes);
|
|
}
|
|
|
|
/// If `size` comes from an AffineMinOp and one of the values of AffineMinOp
|
|
/// is a constant then return a new value set to the smallest such constant.
|
|
/// Otherwise returngetSmallestBoundingIndex nullptr.
|
|
IntegerAttr getSmallestBoundingIndex(Value size) {
|
|
Optional<int64_t> boundingConst = {};
|
|
if (auto affineMinOp = size.getDefiningOp<AffineMinOp>()) {
|
|
for (auto e : affineMinOp.getAffineMap().getResults())
|
|
if (auto cst = e.dyn_cast<AffineConstantExpr>())
|
|
boundingConst = boundingConst
|
|
? std::min(boundingConst.getValue(), cst.getValue())
|
|
: cst.getValue();
|
|
} else if (auto constIndexOp = size.getDefiningOp<ConstantOp>()) {
|
|
if (constIndexOp.getType().isa<IndexType>())
|
|
boundingConst = constIndexOp.value().cast<IntegerAttr>().getInt();
|
|
} else if (auto affineApplyOp = size.getDefiningOp<AffineApplyOp>()) {
|
|
if (auto cExpr = affineApplyOp.getAffineMap()
|
|
.getResult(0)
|
|
.dyn_cast<AffineConstantExpr>())
|
|
boundingConst = cExpr.getValue();
|
|
}
|
|
if (boundingConst && *boundingConst >= 0)
|
|
return Builder(size.getContext()).getIndexAttr(*boundingConst);
|
|
return nullptr;
|
|
}
|
|
|
|
/// Specialization to build an scf "for" nest.
|
|
template <>
|
|
void GenerateLoopNest<scf::ForOp>::doit(
|
|
ArrayRef<Range> loopRanges, ValueRange iterArgInitValues,
|
|
ArrayRef<Attribute> iteratorTypes,
|
|
function_ref<scf::ValueVector(ValueRange, ValueRange)> bodyBuilderFn,
|
|
Optional<LinalgLoopDistributionOptions> distributionOptions) {
|
|
// Create procInfo so it dominates loops, if appropriate.
|
|
OpBuilder &builder = edsc::ScopedContext::getBuilderRef();
|
|
Location loc = edsc::ScopedContext::getLocation();
|
|
SmallVector<ProcInfo, 2> procInfo;
|
|
if (distributionOptions.hasValue())
|
|
procInfo = distributionOptions->procInfo(builder, loc, loopRanges);
|
|
|
|
SmallVector<Value, 4> lbs, ubs, steps;
|
|
unpackRanges(loopRanges, lbs, ubs, steps);
|
|
LoopNest loopNest =
|
|
edsc::loopNestBuilder(lbs, ubs, steps, iterArgInitValues, bodyBuilderFn);
|
|
|
|
if (!distributionOptions.hasValue() || loopNest.loops.empty())
|
|
return;
|
|
|
|
// Only supports cyclic distribution for now.
|
|
for (auto it : llvm::zip(loopNest.loops, procInfo,
|
|
distributionOptions->distributionMethod))
|
|
if (std::get<2>(it) == DistributionMethod::Cyclic)
|
|
mapLoopToProcessorIds(std::get<0>(it), std::get<1>(it).procId,
|
|
std::get<1>(it).nprocs);
|
|
}
|
|
|
|
/// Specialization to build affine "for" nest.
|
|
template <>
|
|
void GenerateLoopNest<AffineForOp>::doit(
|
|
ArrayRef<Range> loopRanges, ValueRange iterArgInitValues,
|
|
ArrayRef<Attribute> iteratorTypes,
|
|
function_ref<scf::ValueVector(ValueRange, ValueRange)> bodyBuilderFn,
|
|
Optional<LinalgLoopDistributionOptions>) {
|
|
assert(iterArgInitValues.empty() && "unexpected AffineForOp init values");
|
|
SmallVector<Value, 4> lbs, ubs, steps;
|
|
unpackRanges(loopRanges, lbs, ubs, steps);
|
|
|
|
// Affine loops require constant steps.
|
|
SmallVector<int64_t, 4> constantSteps;
|
|
constantSteps.reserve(steps.size());
|
|
for (Value v : steps) {
|
|
auto op = v.getDefiningOp<ConstantIndexOp>();
|
|
assert(op && "Affine loops require constant steps");
|
|
constantSteps.push_back(op.getValue());
|
|
}
|
|
|
|
auto bodyBuilderWithoutIterArgsFn = [&](ValueRange ivs) {
|
|
bodyBuilderFn(ivs, {});
|
|
};
|
|
edsc::affineLoopNestBuilder(lbs, ubs, constantSteps,
|
|
bodyBuilderWithoutIterArgsFn);
|
|
}
|
|
|
|
/// Update the `lb`, `ub` and `step` to get per processor `lb`, `ub` and `step`.
|
|
static void updateBoundsForCyclicDistribution(OpBuilder &builder, Location loc,
|
|
Value procId, Value nprocs,
|
|
Value &lb, Value &ub,
|
|
Value &step) {
|
|
using edsc::op::operator+;
|
|
using edsc::op::operator*;
|
|
lb = lb + (procId * step);
|
|
step = nprocs * step;
|
|
}
|
|
|
|
/// Generates a loop nest consisting of scf.parallel and scf.for, depending
|
|
/// on the `iteratorTypes.` Consecutive parallel loops create a single
|
|
/// scf.parallel operation; each sequential loop creates a new scf.for
|
|
/// operation. The body of the innermost loop is populated by
|
|
/// `bodyBuilderFn` that accepts a range of induction variables for all
|
|
/// loops. `ivStorage` is used to store the partial list of induction
|
|
/// variables.
|
|
// TODO: this function can be made iterative instead. However, it
|
|
// will have at most as many recursive calls as nested loops, which rarely
|
|
// exceeds 10.
|
|
static void
|
|
generateParallelLoopNest(ValueRange lbs, ValueRange ubs, ValueRange steps,
|
|
ArrayRef<Attribute> iteratorTypes,
|
|
function_ref<void(ValueRange)> bodyBuilderFn,
|
|
SmallVectorImpl<Value> &ivStorage,
|
|
ArrayRef<DistributionMethod> distributionMethod = {}) {
|
|
assert(lbs.size() == ubs.size());
|
|
assert(lbs.size() == steps.size());
|
|
assert(lbs.size() == iteratorTypes.size());
|
|
|
|
// If there are no (more) loops to be generated, generate the body and be
|
|
// done with it.
|
|
if (iteratorTypes.empty())
|
|
return bodyBuilderFn(ivStorage);
|
|
|
|
// Find the outermost parallel loops and drop their types from the list.
|
|
unsigned nLoops = iteratorTypes.size();
|
|
unsigned nOuterPar =
|
|
nLoops - iteratorTypes.drop_while(isParallelIteratorType).size();
|
|
|
|
// If there are no outer parallel loops, generate one sequential loop and
|
|
// recurse. Note that we wouldn't have dropped anything from `iteratorTypes`
|
|
// in this case.
|
|
if (nOuterPar == 0) {
|
|
edsc::loopNestBuilder(lbs[0], ubs[0], steps[0], [&](Value iv) {
|
|
ivStorage.push_back(iv);
|
|
generateParallelLoopNest(lbs.drop_front(), ubs.drop_front(),
|
|
steps.drop_front(), iteratorTypes.drop_front(),
|
|
bodyBuilderFn, ivStorage, distributionMethod);
|
|
});
|
|
return;
|
|
}
|
|
if (distributionMethod.empty()) {
|
|
// Generate a single parallel loop-nest operation for all outermost
|
|
// parallel loops and recurse.
|
|
edsc::OperationBuilder<scf::ParallelOp>(
|
|
lbs.take_front(nOuterPar), ubs.take_front(nOuterPar),
|
|
steps.take_front(nOuterPar),
|
|
[&](OpBuilder &nestedBuilder, Location nestedLoc, ValueRange localIvs) {
|
|
edsc::ScopedContext context(nestedBuilder, nestedLoc);
|
|
ivStorage.append(localIvs.begin(), localIvs.end());
|
|
generateParallelLoopNest(
|
|
lbs.drop_front(nOuterPar), ubs.drop_front(nOuterPar),
|
|
steps.drop_front(nOuterPar), iteratorTypes.drop_front(nOuterPar),
|
|
bodyBuilderFn, ivStorage,
|
|
(distributionMethod.size() < nOuterPar)
|
|
? ArrayRef<DistributionMethod>()
|
|
: distributionMethod.drop_front(nOuterPar));
|
|
});
|
|
return;
|
|
}
|
|
|
|
// Process all consecutive similarly distributed loops simultaneously.
|
|
DistributionMethod methodToUse = distributionMethod[0];
|
|
unsigned numProcessed = 1;
|
|
for (unsigned i = 1; i < nOuterPar && i < distributionMethod.size(); ++i) {
|
|
if (distributionMethod[i] != methodToUse)
|
|
break;
|
|
numProcessed++;
|
|
}
|
|
|
|
switch (methodToUse) {
|
|
case DistributionMethod::Cyclic: {
|
|
// Generate a single parallel loop-nest operation for all outermost
|
|
// parallel loops and recurse.
|
|
edsc::OperationBuilder<scf::ParallelOp>(
|
|
lbs.take_front(numProcessed), ubs.take_front(numProcessed),
|
|
steps.take_front(numProcessed),
|
|
[&](OpBuilder &nestedBuilder, Location nestedLoc, ValueRange localIvs) {
|
|
edsc::ScopedContext context(nestedBuilder, nestedLoc);
|
|
ivStorage.append(localIvs.begin(), localIvs.end());
|
|
generateParallelLoopNest(
|
|
lbs.drop_front(numProcessed), ubs.drop_front(numProcessed),
|
|
steps.drop_front(numProcessed),
|
|
iteratorTypes.drop_front(numProcessed), bodyBuilderFn, ivStorage,
|
|
(distributionMethod.size() < numProcessed)
|
|
? ArrayRef<DistributionMethod>()
|
|
: distributionMethod.drop_front(numProcessed));
|
|
});
|
|
return;
|
|
}
|
|
case DistributionMethod::CyclicNumProcsGeNumIters: {
|
|
// Check (for the processed loops) that the iteration is in-bounds.
|
|
using edsc::op::slt;
|
|
using edsc::op::operator&&;
|
|
Value cond = slt(lbs[0], ubs[0]);
|
|
for (unsigned i = 1; i < numProcessed; ++i)
|
|
cond = cond && slt(lbs[i], ubs[i]);
|
|
ivStorage.append(lbs.begin(), std::next(lbs.begin(), numProcessed));
|
|
edsc::conditionBuilder(cond, [&]() {
|
|
generateParallelLoopNest(
|
|
lbs.drop_front(numProcessed), ubs.drop_front(numProcessed),
|
|
steps.drop_front(numProcessed),
|
|
iteratorTypes.drop_front(numProcessed), bodyBuilderFn, ivStorage,
|
|
distributionMethod.drop_front(numProcessed));
|
|
});
|
|
return;
|
|
}
|
|
case DistributionMethod::CyclicNumProcsEqNumIters:
|
|
// No check/loops needed here. Set the `%iv` to be the `%lb` and proceed
|
|
// with inner loop generation.
|
|
ivStorage.append(lbs.begin(), std::next(lbs.begin(), numProcessed));
|
|
generateParallelLoopNest(
|
|
lbs.drop_front(numProcessed), ubs.drop_front(numProcessed),
|
|
steps.drop_front(numProcessed), iteratorTypes.drop_front(numProcessed),
|
|
bodyBuilderFn, ivStorage, distributionMethod.drop_front(numProcessed));
|
|
return;
|
|
}
|
|
}
|
|
|
|
/// Specialization for generating a mix of parallel and sequential scf loops.
|
|
template <>
|
|
void GenerateLoopNest<scf::ParallelOp>::doit(
|
|
ArrayRef<Range> loopRanges, ValueRange iterArgInitValues,
|
|
ArrayRef<Attribute> iteratorTypes,
|
|
function_ref<scf::ValueVector(ValueRange, ValueRange)> bodyBuilderFn,
|
|
Optional<LinalgLoopDistributionOptions> distributionOptions) {
|
|
assert(iterArgInitValues.empty() && "unexpected ParallelOp init values");
|
|
// This function may be passed more iterator types than ranges.
|
|
assert(iteratorTypes.size() >= loopRanges.size() &&
|
|
"expected iterator type for all ranges");
|
|
iteratorTypes = iteratorTypes.take_front(loopRanges.size());
|
|
SmallVector<Value, 8> lbsStorage, ubsStorage, stepsStorage, ivs;
|
|
unsigned numLoops = iteratorTypes.size();
|
|
ivs.reserve(numLoops);
|
|
lbsStorage.reserve(numLoops);
|
|
ubsStorage.reserve(numLoops);
|
|
stepsStorage.reserve(numLoops);
|
|
|
|
// Get the loop lb, ub, and step.
|
|
unpackRanges(loopRanges, lbsStorage, ubsStorage, stepsStorage);
|
|
|
|
// Modify the lb, ub, and step based on the distribution options.
|
|
SmallVector<DistributionMethod, 0> distributionMethod;
|
|
if (distributionOptions) {
|
|
auto &options = distributionOptions.getValue();
|
|
OpBuilder &builder = edsc::ScopedContext::getBuilderRef();
|
|
Location loc = edsc::ScopedContext::getLocation();
|
|
distributionMethod.assign(distributionOptions->distributionMethod.begin(),
|
|
distributionOptions->distributionMethod.end());
|
|
SmallVector<Range, 2> parallelLoopRanges;
|
|
for (auto iteratorType : enumerate(iteratorTypes)) {
|
|
if (isParallelIteratorType(iteratorType.value()))
|
|
parallelLoopRanges.push_back(loopRanges[iteratorType.index()]);
|
|
}
|
|
if (distributionMethod.size() < parallelLoopRanges.size())
|
|
parallelLoopRanges.resize(distributionMethod.size());
|
|
SmallVector<ProcInfo, 2> procInfo =
|
|
options.procInfo(builder, loc, parallelLoopRanges);
|
|
unsigned index = 0;
|
|
for (auto iteratorType : enumerate(iteratorTypes)) {
|
|
if (index >= procInfo.size())
|
|
break;
|
|
if (isParallelIteratorType(iteratorType.value())) {
|
|
unsigned i = iteratorType.index();
|
|
updateBoundsForCyclicDistribution(builder, loc, procInfo[index].procId,
|
|
procInfo[index].nprocs, lbsStorage[i],
|
|
ubsStorage[i], stepsStorage[i]);
|
|
index++;
|
|
}
|
|
}
|
|
}
|
|
ValueRange lbs(lbsStorage), ubs(ubsStorage), steps(stepsStorage);
|
|
auto bodyBuilderWithoutIterArgsFn = [&](ValueRange ivs) {
|
|
bodyBuilderFn(ivs, {});
|
|
};
|
|
generateParallelLoopNest(lbs, ubs, steps, iteratorTypes,
|
|
bodyBuilderWithoutIterArgsFn, ivs,
|
|
distributionMethod);
|
|
|
|
assert(ivs.size() == iteratorTypes.size() && "did not generate enough loops");
|
|
}
|
|
|
|
} // namespace linalg
|
|
} // namespace mlir
|