llvm-project/llvm/lib/Target/AArch64/AsmParser/AArch64AsmParser.cpp

4714 lines
158 KiB
C++

//==- AArch64AsmParser.cpp - Parse AArch64 assembly to MCInst instructions -==//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "MCTargetDesc/AArch64AddressingModes.h"
#include "MCTargetDesc/AArch64MCExpr.h"
#include "MCTargetDesc/AArch64TargetStreamer.h"
#include "Utils/AArch64BaseInfo.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/ADT/Twine.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCObjectFileInfo.h"
#include "llvm/MC/MCParser/MCAsmLexer.h"
#include "llvm/MC/MCParser/MCAsmParser.h"
#include "llvm/MC/MCParser/MCParsedAsmOperand.h"
#include "llvm/MC/MCParser/MCTargetAsmParser.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/SourceMgr.h"
#include "llvm/Support/TargetParser.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/raw_ostream.h"
#include <cstdio>
using namespace llvm;
namespace {
class AArch64Operand;
class AArch64AsmParser : public MCTargetAsmParser {
private:
StringRef Mnemonic; ///< Instruction mnemonic.
// Map of register aliases registers via the .req directive.
StringMap<std::pair<bool, unsigned> > RegisterReqs;
AArch64TargetStreamer &getTargetStreamer() {
MCTargetStreamer &TS = *getParser().getStreamer().getTargetStreamer();
return static_cast<AArch64TargetStreamer &>(TS);
}
SMLoc getLoc() const { return getParser().getTok().getLoc(); }
bool parseSysAlias(StringRef Name, SMLoc NameLoc, OperandVector &Operands);
AArch64CC::CondCode parseCondCodeString(StringRef Cond);
bool parseCondCode(OperandVector &Operands, bool invertCondCode);
unsigned matchRegisterNameAlias(StringRef Name, bool isVector);
int tryParseRegister();
int tryMatchVectorRegister(StringRef &Kind, bool expected);
bool parseRegister(OperandVector &Operands);
bool parseSymbolicImmVal(const MCExpr *&ImmVal);
bool parseVectorList(OperandVector &Operands);
bool parseOperand(OperandVector &Operands, bool isCondCode,
bool invertCondCode);
void Warning(SMLoc L, const Twine &Msg) { getParser().Warning(L, Msg); }
bool Error(SMLoc L, const Twine &Msg) { return getParser().Error(L, Msg); }
bool showMatchError(SMLoc Loc, unsigned ErrCode);
bool parseDirectiveArch(SMLoc L);
bool parseDirectiveCPU(SMLoc L);
bool parseDirectiveWord(unsigned Size, SMLoc L);
bool parseDirectiveInst(SMLoc L);
bool parseDirectiveTLSDescCall(SMLoc L);
bool parseDirectiveLOH(StringRef LOH, SMLoc L);
bool parseDirectiveLtorg(SMLoc L);
bool parseDirectiveReq(StringRef Name, SMLoc L);
bool parseDirectiveUnreq(SMLoc L);
bool validateInstruction(MCInst &Inst, SmallVectorImpl<SMLoc> &Loc);
bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
OperandVector &Operands, MCStreamer &Out,
uint64_t &ErrorInfo,
bool MatchingInlineAsm) override;
/// @name Auto-generated Match Functions
/// {
#define GET_ASSEMBLER_HEADER
#include "AArch64GenAsmMatcher.inc"
/// }
OperandMatchResultTy tryParseOptionalShiftExtend(OperandVector &Operands);
OperandMatchResultTy tryParseBarrierOperand(OperandVector &Operands);
OperandMatchResultTy tryParseMRSSystemRegister(OperandVector &Operands);
OperandMatchResultTy tryParseSysReg(OperandVector &Operands);
OperandMatchResultTy tryParseSysCROperand(OperandVector &Operands);
OperandMatchResultTy tryParsePrefetch(OperandVector &Operands);
OperandMatchResultTy tryParsePSBHint(OperandVector &Operands);
OperandMatchResultTy tryParseAdrpLabel(OperandVector &Operands);
OperandMatchResultTy tryParseAdrLabel(OperandVector &Operands);
OperandMatchResultTy tryParseFPImm(OperandVector &Operands);
OperandMatchResultTy tryParseAddSubImm(OperandVector &Operands);
OperandMatchResultTy tryParseGPR64sp0Operand(OperandVector &Operands);
bool tryParseVectorRegister(OperandVector &Operands);
OperandMatchResultTy tryParseGPRSeqPair(OperandVector &Operands);
public:
enum AArch64MatchResultTy {
Match_InvalidSuffix = FIRST_TARGET_MATCH_RESULT_TY,
#define GET_OPERAND_DIAGNOSTIC_TYPES
#include "AArch64GenAsmMatcher.inc"
};
AArch64AsmParser(const MCSubtargetInfo &STI, MCAsmParser &Parser,
const MCInstrInfo &MII, const MCTargetOptions &Options)
: MCTargetAsmParser(Options, STI) {
MCAsmParserExtension::Initialize(Parser);
MCStreamer &S = getParser().getStreamer();
if (S.getTargetStreamer() == nullptr)
new AArch64TargetStreamer(S);
// Initialize the set of available features.
setAvailableFeatures(ComputeAvailableFeatures(getSTI().getFeatureBits()));
}
bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
SMLoc NameLoc, OperandVector &Operands) override;
bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override;
bool ParseDirective(AsmToken DirectiveID) override;
unsigned validateTargetOperandClass(MCParsedAsmOperand &Op,
unsigned Kind) override;
static bool classifySymbolRef(const MCExpr *Expr,
AArch64MCExpr::VariantKind &ELFRefKind,
MCSymbolRefExpr::VariantKind &DarwinRefKind,
int64_t &Addend);
};
} // end anonymous namespace
namespace {
/// AArch64Operand - Instances of this class represent a parsed AArch64 machine
/// instruction.
class AArch64Operand : public MCParsedAsmOperand {
private:
enum KindTy {
k_Immediate,
k_ShiftedImm,
k_CondCode,
k_Register,
k_VectorList,
k_VectorIndex,
k_Token,
k_SysReg,
k_SysCR,
k_Prefetch,
k_ShiftExtend,
k_FPImm,
k_Barrier,
k_PSBHint,
} Kind;
SMLoc StartLoc, EndLoc;
struct TokOp {
const char *Data;
unsigned Length;
bool IsSuffix; // Is the operand actually a suffix on the mnemonic.
};
struct RegOp {
unsigned RegNum;
bool isVector;
};
struct VectorListOp {
unsigned RegNum;
unsigned Count;
unsigned NumElements;
unsigned ElementKind;
};
struct VectorIndexOp {
unsigned Val;
};
struct ImmOp {
const MCExpr *Val;
};
struct ShiftedImmOp {
const MCExpr *Val;
unsigned ShiftAmount;
};
struct CondCodeOp {
AArch64CC::CondCode Code;
};
struct FPImmOp {
unsigned Val; // Encoded 8-bit representation.
};
struct BarrierOp {
const char *Data;
unsigned Length;
unsigned Val; // Not the enum since not all values have names.
};
struct SysRegOp {
const char *Data;
unsigned Length;
uint32_t MRSReg;
uint32_t MSRReg;
uint32_t PStateField;
};
struct SysCRImmOp {
unsigned Val;
};
struct PrefetchOp {
const char *Data;
unsigned Length;
unsigned Val;
};
struct PSBHintOp {
const char *Data;
unsigned Length;
unsigned Val;
};
struct ShiftExtendOp {
AArch64_AM::ShiftExtendType Type;
unsigned Amount;
bool HasExplicitAmount;
};
struct ExtendOp {
unsigned Val;
};
union {
struct TokOp Tok;
struct RegOp Reg;
struct VectorListOp VectorList;
struct VectorIndexOp VectorIndex;
struct ImmOp Imm;
struct ShiftedImmOp ShiftedImm;
struct CondCodeOp CondCode;
struct FPImmOp FPImm;
struct BarrierOp Barrier;
struct SysRegOp SysReg;
struct SysCRImmOp SysCRImm;
struct PrefetchOp Prefetch;
struct PSBHintOp PSBHint;
struct ShiftExtendOp ShiftExtend;
};
// Keep the MCContext around as the MCExprs may need manipulated during
// the add<>Operands() calls.
MCContext &Ctx;
public:
AArch64Operand(KindTy K, MCContext &Ctx) : Kind(K), Ctx(Ctx) {}
AArch64Operand(const AArch64Operand &o) : MCParsedAsmOperand(), Ctx(o.Ctx) {
Kind = o.Kind;
StartLoc = o.StartLoc;
EndLoc = o.EndLoc;
switch (Kind) {
case k_Token:
Tok = o.Tok;
break;
case k_Immediate:
Imm = o.Imm;
break;
case k_ShiftedImm:
ShiftedImm = o.ShiftedImm;
break;
case k_CondCode:
CondCode = o.CondCode;
break;
case k_FPImm:
FPImm = o.FPImm;
break;
case k_Barrier:
Barrier = o.Barrier;
break;
case k_Register:
Reg = o.Reg;
break;
case k_VectorList:
VectorList = o.VectorList;
break;
case k_VectorIndex:
VectorIndex = o.VectorIndex;
break;
case k_SysReg:
SysReg = o.SysReg;
break;
case k_SysCR:
SysCRImm = o.SysCRImm;
break;
case k_Prefetch:
Prefetch = o.Prefetch;
break;
case k_PSBHint:
PSBHint = o.PSBHint;
break;
case k_ShiftExtend:
ShiftExtend = o.ShiftExtend;
break;
}
}
/// getStartLoc - Get the location of the first token of this operand.
SMLoc getStartLoc() const override { return StartLoc; }
/// getEndLoc - Get the location of the last token of this operand.
SMLoc getEndLoc() const override { return EndLoc; }
StringRef getToken() const {
assert(Kind == k_Token && "Invalid access!");
return StringRef(Tok.Data, Tok.Length);
}
bool isTokenSuffix() const {
assert(Kind == k_Token && "Invalid access!");
return Tok.IsSuffix;
}
const MCExpr *getImm() const {
assert(Kind == k_Immediate && "Invalid access!");
return Imm.Val;
}
const MCExpr *getShiftedImmVal() const {
assert(Kind == k_ShiftedImm && "Invalid access!");
return ShiftedImm.Val;
}
unsigned getShiftedImmShift() const {
assert(Kind == k_ShiftedImm && "Invalid access!");
return ShiftedImm.ShiftAmount;
}
AArch64CC::CondCode getCondCode() const {
assert(Kind == k_CondCode && "Invalid access!");
return CondCode.Code;
}
unsigned getFPImm() const {
assert(Kind == k_FPImm && "Invalid access!");
return FPImm.Val;
}
unsigned getBarrier() const {
assert(Kind == k_Barrier && "Invalid access!");
return Barrier.Val;
}
StringRef getBarrierName() const {
assert(Kind == k_Barrier && "Invalid access!");
return StringRef(Barrier.Data, Barrier.Length);
}
unsigned getReg() const override {
assert(Kind == k_Register && "Invalid access!");
return Reg.RegNum;
}
unsigned getVectorListStart() const {
assert(Kind == k_VectorList && "Invalid access!");
return VectorList.RegNum;
}
unsigned getVectorListCount() const {
assert(Kind == k_VectorList && "Invalid access!");
return VectorList.Count;
}
unsigned getVectorIndex() const {
assert(Kind == k_VectorIndex && "Invalid access!");
return VectorIndex.Val;
}
StringRef getSysReg() const {
assert(Kind == k_SysReg && "Invalid access!");
return StringRef(SysReg.Data, SysReg.Length);
}
unsigned getSysCR() const {
assert(Kind == k_SysCR && "Invalid access!");
return SysCRImm.Val;
}
unsigned getPrefetch() const {
assert(Kind == k_Prefetch && "Invalid access!");
return Prefetch.Val;
}
unsigned getPSBHint() const {
assert(Kind == k_PSBHint && "Invalid access!");
return PSBHint.Val;
}
StringRef getPSBHintName() const {
assert(Kind == k_PSBHint && "Invalid access!");
return StringRef(PSBHint.Data, PSBHint.Length);
}
StringRef getPrefetchName() const {
assert(Kind == k_Prefetch && "Invalid access!");
return StringRef(Prefetch.Data, Prefetch.Length);
}
AArch64_AM::ShiftExtendType getShiftExtendType() const {
assert(Kind == k_ShiftExtend && "Invalid access!");
return ShiftExtend.Type;
}
unsigned getShiftExtendAmount() const {
assert(Kind == k_ShiftExtend && "Invalid access!");
return ShiftExtend.Amount;
}
bool hasShiftExtendAmount() const {
assert(Kind == k_ShiftExtend && "Invalid access!");
return ShiftExtend.HasExplicitAmount;
}
bool isImm() const override { return Kind == k_Immediate; }
bool isMem() const override { return false; }
bool isSImm9() const {
if (!isImm())
return false;
const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm());
if (!MCE)
return false;
int64_t Val = MCE->getValue();
return (Val >= -256 && Val < 256);
}
bool isSImm7s4() const {
if (!isImm())
return false;
const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm());
if (!MCE)
return false;
int64_t Val = MCE->getValue();
return (Val >= -256 && Val <= 252 && (Val & 3) == 0);
}
bool isSImm7s8() const {
if (!isImm())
return false;
const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm());
if (!MCE)
return false;
int64_t Val = MCE->getValue();
return (Val >= -512 && Val <= 504 && (Val & 7) == 0);
}
bool isSImm7s16() const {
if (!isImm())
return false;
const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm());
if (!MCE)
return false;
int64_t Val = MCE->getValue();
return (Val >= -1024 && Val <= 1008 && (Val & 15) == 0);
}
bool isSymbolicUImm12Offset(const MCExpr *Expr, unsigned Scale) const {
AArch64MCExpr::VariantKind ELFRefKind;
MCSymbolRefExpr::VariantKind DarwinRefKind;
int64_t Addend;
if (!AArch64AsmParser::classifySymbolRef(Expr, ELFRefKind, DarwinRefKind,
Addend)) {
// If we don't understand the expression, assume the best and
// let the fixup and relocation code deal with it.
return true;
}
if (DarwinRefKind == MCSymbolRefExpr::VK_PAGEOFF ||
ELFRefKind == AArch64MCExpr::VK_LO12 ||
ELFRefKind == AArch64MCExpr::VK_GOT_LO12 ||
ELFRefKind == AArch64MCExpr::VK_DTPREL_LO12 ||
ELFRefKind == AArch64MCExpr::VK_DTPREL_LO12_NC ||
ELFRefKind == AArch64MCExpr::VK_TPREL_LO12 ||
ELFRefKind == AArch64MCExpr::VK_TPREL_LO12_NC ||
ELFRefKind == AArch64MCExpr::VK_GOTTPREL_LO12_NC ||
ELFRefKind == AArch64MCExpr::VK_TLSDESC_LO12) {
// Note that we don't range-check the addend. It's adjusted modulo page
// size when converted, so there is no "out of range" condition when using
// @pageoff.
return Addend >= 0 && (Addend % Scale) == 0;
} else if (DarwinRefKind == MCSymbolRefExpr::VK_GOTPAGEOFF ||
DarwinRefKind == MCSymbolRefExpr::VK_TLVPPAGEOFF) {
// @gotpageoff/@tlvppageoff can only be used directly, not with an addend.
return Addend == 0;
}
return false;
}
template <int Scale> bool isUImm12Offset() const {
if (!isImm())
return false;
const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm());
if (!MCE)
return isSymbolicUImm12Offset(getImm(), Scale);
int64_t Val = MCE->getValue();
return (Val % Scale) == 0 && Val >= 0 && (Val / Scale) < 0x1000;
}
bool isImm0_1() const {
if (!isImm())
return false;
const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm());
if (!MCE)
return false;
int64_t Val = MCE->getValue();
return (Val >= 0 && Val < 2);
}
bool isImm0_7() const {
if (!isImm())
return false;
const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm());
if (!MCE)
return false;
int64_t Val = MCE->getValue();
return (Val >= 0 && Val < 8);
}
bool isImm1_8() const {
if (!isImm())
return false;
const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm());
if (!MCE)
return false;
int64_t Val = MCE->getValue();
return (Val > 0 && Val < 9);
}
bool isImm0_15() const {
if (!isImm())
return false;
const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm());
if (!MCE)
return false;
int64_t Val = MCE->getValue();
return (Val >= 0 && Val < 16);
}
bool isImm1_16() const {
if (!isImm())
return false;
const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm());
if (!MCE)
return false;
int64_t Val = MCE->getValue();
return (Val > 0 && Val < 17);
}
bool isImm0_31() const {
if (!isImm())
return false;
const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm());
if (!MCE)
return false;
int64_t Val = MCE->getValue();
return (Val >= 0 && Val < 32);
}
bool isImm1_31() const {
if (!isImm())
return false;
const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm());
if (!MCE)
return false;
int64_t Val = MCE->getValue();
return (Val >= 1 && Val < 32);
}
bool isImm1_32() const {
if (!isImm())
return false;
const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm());
if (!MCE)
return false;
int64_t Val = MCE->getValue();
return (Val >= 1 && Val < 33);
}
bool isImm0_63() const {
if (!isImm())
return false;
const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm());
if (!MCE)
return false;
int64_t Val = MCE->getValue();
return (Val >= 0 && Val < 64);
}
bool isImm1_63() const {
if (!isImm())
return false;
const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm());
if (!MCE)
return false;
int64_t Val = MCE->getValue();
return (Val >= 1 && Val < 64);
}
bool isImm1_64() const {
if (!isImm())
return false;
const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm());
if (!MCE)
return false;
int64_t Val = MCE->getValue();
return (Val >= 1 && Val < 65);
}
bool isImm0_127() const {
if (!isImm())
return false;
const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm());
if (!MCE)
return false;
int64_t Val = MCE->getValue();
return (Val >= 0 && Val < 128);
}
bool isImm0_255() const {
if (!isImm())
return false;
const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm());
if (!MCE)
return false;
int64_t Val = MCE->getValue();
return (Val >= 0 && Val < 256);
}
bool isImm0_65535() const {
if (!isImm())
return false;
const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm());
if (!MCE)
return false;
int64_t Val = MCE->getValue();
return (Val >= 0 && Val < 65536);
}
bool isImm32_63() const {
if (!isImm())
return false;
const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm());
if (!MCE)
return false;
int64_t Val = MCE->getValue();
return (Val >= 32 && Val < 64);
}
bool isLogicalImm32() const {
if (!isImm())
return false;
const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm());
if (!MCE)
return false;
int64_t Val = MCE->getValue();
if (Val >> 32 != 0 && Val >> 32 != ~0LL)
return false;
Val &= 0xFFFFFFFF;
return AArch64_AM::isLogicalImmediate(Val, 32);
}
bool isLogicalImm64() const {
if (!isImm())
return false;
const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm());
if (!MCE)
return false;
return AArch64_AM::isLogicalImmediate(MCE->getValue(), 64);
}
bool isLogicalImm32Not() const {
if (!isImm())
return false;
const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm());
if (!MCE)
return false;
int64_t Val = ~MCE->getValue() & 0xFFFFFFFF;
return AArch64_AM::isLogicalImmediate(Val, 32);
}
bool isLogicalImm64Not() const {
if (!isImm())
return false;
const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm());
if (!MCE)
return false;
return AArch64_AM::isLogicalImmediate(~MCE->getValue(), 64);
}
bool isShiftedImm() const { return Kind == k_ShiftedImm; }
bool isAddSubImm() const {
if (!isShiftedImm() && !isImm())
return false;
const MCExpr *Expr;
// An ADD/SUB shifter is either 'lsl #0' or 'lsl #12'.
if (isShiftedImm()) {
unsigned Shift = ShiftedImm.ShiftAmount;
Expr = ShiftedImm.Val;
if (Shift != 0 && Shift != 12)
return false;
} else {
Expr = getImm();
}
AArch64MCExpr::VariantKind ELFRefKind;
MCSymbolRefExpr::VariantKind DarwinRefKind;
int64_t Addend;
if (AArch64AsmParser::classifySymbolRef(Expr, ELFRefKind,
DarwinRefKind, Addend)) {
return DarwinRefKind == MCSymbolRefExpr::VK_PAGEOFF
|| DarwinRefKind == MCSymbolRefExpr::VK_TLVPPAGEOFF
|| (DarwinRefKind == MCSymbolRefExpr::VK_GOTPAGEOFF && Addend == 0)
|| ELFRefKind == AArch64MCExpr::VK_LO12
|| ELFRefKind == AArch64MCExpr::VK_DTPREL_HI12
|| ELFRefKind == AArch64MCExpr::VK_DTPREL_LO12
|| ELFRefKind == AArch64MCExpr::VK_DTPREL_LO12_NC
|| ELFRefKind == AArch64MCExpr::VK_TPREL_HI12
|| ELFRefKind == AArch64MCExpr::VK_TPREL_LO12
|| ELFRefKind == AArch64MCExpr::VK_TPREL_LO12_NC
|| ELFRefKind == AArch64MCExpr::VK_TLSDESC_LO12;
}
// Otherwise it should be a real immediate in range:
const MCConstantExpr *CE = cast<MCConstantExpr>(Expr);
return CE->getValue() >= 0 && CE->getValue() <= 0xfff;
}
bool isAddSubImmNeg() const {
if (!isShiftedImm() && !isImm())
return false;
const MCExpr *Expr;
// An ADD/SUB shifter is either 'lsl #0' or 'lsl #12'.
if (isShiftedImm()) {
unsigned Shift = ShiftedImm.ShiftAmount;
Expr = ShiftedImm.Val;
if (Shift != 0 && Shift != 12)
return false;
} else
Expr = getImm();
// Otherwise it should be a real negative immediate in range:
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr);
return CE != nullptr && CE->getValue() < 0 && -CE->getValue() <= 0xfff;
}
bool isCondCode() const { return Kind == k_CondCode; }
bool isSIMDImmType10() const {
if (!isImm())
return false;
const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm());
if (!MCE)
return false;
return AArch64_AM::isAdvSIMDModImmType10(MCE->getValue());
}
bool isBranchTarget26() const {
if (!isImm())
return false;
const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm());
if (!MCE)
return true;
int64_t Val = MCE->getValue();
if (Val & 0x3)
return false;
return (Val >= -(0x2000000 << 2) && Val <= (0x1ffffff << 2));
}
bool isPCRelLabel19() const {
if (!isImm())
return false;
const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm());
if (!MCE)
return true;
int64_t Val = MCE->getValue();
if (Val & 0x3)
return false;
return (Val >= -(0x40000 << 2) && Val <= (0x3ffff << 2));
}
bool isBranchTarget14() const {
if (!isImm())
return false;
const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm());
if (!MCE)
return true;
int64_t Val = MCE->getValue();
if (Val & 0x3)
return false;
return (Val >= -(0x2000 << 2) && Val <= (0x1fff << 2));
}
bool
isMovWSymbol(ArrayRef<AArch64MCExpr::VariantKind> AllowedModifiers) const {
if (!isImm())
return false;
AArch64MCExpr::VariantKind ELFRefKind;
MCSymbolRefExpr::VariantKind DarwinRefKind;
int64_t Addend;
if (!AArch64AsmParser::classifySymbolRef(getImm(), ELFRefKind,
DarwinRefKind, Addend)) {
return false;
}
if (DarwinRefKind != MCSymbolRefExpr::VK_None)
return false;
for (unsigned i = 0; i != AllowedModifiers.size(); ++i) {
if (ELFRefKind == AllowedModifiers[i])
return Addend == 0;
}
return false;
}
bool isMovZSymbolG3() const {
return isMovWSymbol(AArch64MCExpr::VK_ABS_G3);
}
bool isMovZSymbolG2() const {
return isMovWSymbol({AArch64MCExpr::VK_ABS_G2, AArch64MCExpr::VK_ABS_G2_S,
AArch64MCExpr::VK_TPREL_G2,
AArch64MCExpr::VK_DTPREL_G2});
}
bool isMovZSymbolG1() const {
return isMovWSymbol({
AArch64MCExpr::VK_ABS_G1, AArch64MCExpr::VK_ABS_G1_S,
AArch64MCExpr::VK_GOTTPREL_G1, AArch64MCExpr::VK_TPREL_G1,
AArch64MCExpr::VK_DTPREL_G1,
});
}
bool isMovZSymbolG0() const {
return isMovWSymbol({AArch64MCExpr::VK_ABS_G0, AArch64MCExpr::VK_ABS_G0_S,
AArch64MCExpr::VK_TPREL_G0,
AArch64MCExpr::VK_DTPREL_G0});
}
bool isMovKSymbolG3() const {
return isMovWSymbol(AArch64MCExpr::VK_ABS_G3);
}
bool isMovKSymbolG2() const {
return isMovWSymbol(AArch64MCExpr::VK_ABS_G2_NC);
}
bool isMovKSymbolG1() const {
return isMovWSymbol({AArch64MCExpr::VK_ABS_G1_NC,
AArch64MCExpr::VK_TPREL_G1_NC,
AArch64MCExpr::VK_DTPREL_G1_NC});
}
bool isMovKSymbolG0() const {
return isMovWSymbol(
{AArch64MCExpr::VK_ABS_G0_NC, AArch64MCExpr::VK_GOTTPREL_G0_NC,
AArch64MCExpr::VK_TPREL_G0_NC, AArch64MCExpr::VK_DTPREL_G0_NC});
}
template<int RegWidth, int Shift>
bool isMOVZMovAlias() const {
if (!isImm()) return false;
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
if (!CE) return false;
uint64_t Value = CE->getValue();
return AArch64_AM::isMOVZMovAlias(Value, Shift, RegWidth);
}
template<int RegWidth, int Shift>
bool isMOVNMovAlias() const {
if (!isImm()) return false;
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
if (!CE) return false;
uint64_t Value = CE->getValue();
return AArch64_AM::isMOVNMovAlias(Value, Shift, RegWidth);
}
bool isFPImm() const { return Kind == k_FPImm; }
bool isBarrier() const { return Kind == k_Barrier; }
bool isSysReg() const { return Kind == k_SysReg; }
bool isMRSSystemRegister() const {
if (!isSysReg()) return false;
return SysReg.MRSReg != -1U;
}
bool isMSRSystemRegister() const {
if (!isSysReg()) return false;
return SysReg.MSRReg != -1U;
}
bool isSystemPStateFieldWithImm0_1() const {
if (!isSysReg()) return false;
return (SysReg.PStateField == AArch64PState::PAN ||
SysReg.PStateField == AArch64PState::UAO);
}
bool isSystemPStateFieldWithImm0_15() const {
if (!isSysReg() || isSystemPStateFieldWithImm0_1()) return false;
return SysReg.PStateField != -1U;
}
bool isReg() const override { return Kind == k_Register && !Reg.isVector; }
bool isVectorReg() const { return Kind == k_Register && Reg.isVector; }
bool isVectorRegLo() const {
return Kind == k_Register && Reg.isVector &&
AArch64MCRegisterClasses[AArch64::FPR128_loRegClassID].contains(
Reg.RegNum);
}
bool isGPR32as64() const {
return Kind == k_Register && !Reg.isVector &&
AArch64MCRegisterClasses[AArch64::GPR64RegClassID].contains(Reg.RegNum);
}
bool isWSeqPair() const {
return Kind == k_Register && !Reg.isVector &&
AArch64MCRegisterClasses[AArch64::WSeqPairsClassRegClassID].contains(
Reg.RegNum);
}
bool isXSeqPair() const {
return Kind == k_Register && !Reg.isVector &&
AArch64MCRegisterClasses[AArch64::XSeqPairsClassRegClassID].contains(
Reg.RegNum);
}
bool isGPR64sp0() const {
return Kind == k_Register && !Reg.isVector &&
AArch64MCRegisterClasses[AArch64::GPR64spRegClassID].contains(Reg.RegNum);
}
/// Is this a vector list with the type implicit (presumably attached to the
/// instruction itself)?
template <unsigned NumRegs> bool isImplicitlyTypedVectorList() const {
return Kind == k_VectorList && VectorList.Count == NumRegs &&
!VectorList.ElementKind;
}
template <unsigned NumRegs, unsigned NumElements, char ElementKind>
bool isTypedVectorList() const {
if (Kind != k_VectorList)
return false;
if (VectorList.Count != NumRegs)
return false;
if (VectorList.ElementKind != ElementKind)
return false;
return VectorList.NumElements == NumElements;
}
bool isVectorIndex1() const {
return Kind == k_VectorIndex && VectorIndex.Val == 1;
}
bool isVectorIndexB() const {
return Kind == k_VectorIndex && VectorIndex.Val < 16;
}
bool isVectorIndexH() const {
return Kind == k_VectorIndex && VectorIndex.Val < 8;
}
bool isVectorIndexS() const {
return Kind == k_VectorIndex && VectorIndex.Val < 4;
}
bool isVectorIndexD() const {
return Kind == k_VectorIndex && VectorIndex.Val < 2;
}
bool isToken() const override { return Kind == k_Token; }
bool isTokenEqual(StringRef Str) const {
return Kind == k_Token && getToken() == Str;
}
bool isSysCR() const { return Kind == k_SysCR; }
bool isPrefetch() const { return Kind == k_Prefetch; }
bool isPSBHint() const { return Kind == k_PSBHint; }
bool isShiftExtend() const { return Kind == k_ShiftExtend; }
bool isShifter() const {
if (!isShiftExtend())
return false;
AArch64_AM::ShiftExtendType ST = getShiftExtendType();
return (ST == AArch64_AM::LSL || ST == AArch64_AM::LSR ||
ST == AArch64_AM::ASR || ST == AArch64_AM::ROR ||
ST == AArch64_AM::MSL);
}
bool isExtend() const {
if (!isShiftExtend())
return false;
AArch64_AM::ShiftExtendType ET = getShiftExtendType();
return (ET == AArch64_AM::UXTB || ET == AArch64_AM::SXTB ||
ET == AArch64_AM::UXTH || ET == AArch64_AM::SXTH ||
ET == AArch64_AM::UXTW || ET == AArch64_AM::SXTW ||
ET == AArch64_AM::UXTX || ET == AArch64_AM::SXTX ||
ET == AArch64_AM::LSL) &&
getShiftExtendAmount() <= 4;
}
bool isExtend64() const {
if (!isExtend())
return false;
// UXTX and SXTX require a 64-bit source register (the ExtendLSL64 class).
AArch64_AM::ShiftExtendType ET = getShiftExtendType();
return ET != AArch64_AM::UXTX && ET != AArch64_AM::SXTX;
}
bool isExtendLSL64() const {
if (!isExtend())
return false;
AArch64_AM::ShiftExtendType ET = getShiftExtendType();
return (ET == AArch64_AM::UXTX || ET == AArch64_AM::SXTX ||
ET == AArch64_AM::LSL) &&
getShiftExtendAmount() <= 4;
}
template<int Width> bool isMemXExtend() const {
if (!isExtend())
return false;
AArch64_AM::ShiftExtendType ET = getShiftExtendType();
return (ET == AArch64_AM::LSL || ET == AArch64_AM::SXTX) &&
(getShiftExtendAmount() == Log2_32(Width / 8) ||
getShiftExtendAmount() == 0);
}
template<int Width> bool isMemWExtend() const {
if (!isExtend())
return false;
AArch64_AM::ShiftExtendType ET = getShiftExtendType();
return (ET == AArch64_AM::UXTW || ET == AArch64_AM::SXTW) &&
(getShiftExtendAmount() == Log2_32(Width / 8) ||
getShiftExtendAmount() == 0);
}
template <unsigned width>
bool isArithmeticShifter() const {
if (!isShifter())
return false;
// An arithmetic shifter is LSL, LSR, or ASR.
AArch64_AM::ShiftExtendType ST = getShiftExtendType();
return (ST == AArch64_AM::LSL || ST == AArch64_AM::LSR ||
ST == AArch64_AM::ASR) && getShiftExtendAmount() < width;
}
template <unsigned width>
bool isLogicalShifter() const {
if (!isShifter())
return false;
// A logical shifter is LSL, LSR, ASR or ROR.
AArch64_AM::ShiftExtendType ST = getShiftExtendType();
return (ST == AArch64_AM::LSL || ST == AArch64_AM::LSR ||
ST == AArch64_AM::ASR || ST == AArch64_AM::ROR) &&
getShiftExtendAmount() < width;
}
bool isMovImm32Shifter() const {
if (!isShifter())
return false;
// A MOVi shifter is LSL of 0, 16, 32, or 48.
AArch64_AM::ShiftExtendType ST = getShiftExtendType();
if (ST != AArch64_AM::LSL)
return false;
uint64_t Val = getShiftExtendAmount();
return (Val == 0 || Val == 16);
}
bool isMovImm64Shifter() const {
if (!isShifter())
return false;
// A MOVi shifter is LSL of 0 or 16.
AArch64_AM::ShiftExtendType ST = getShiftExtendType();
if (ST != AArch64_AM::LSL)
return false;
uint64_t Val = getShiftExtendAmount();
return (Val == 0 || Val == 16 || Val == 32 || Val == 48);
}
bool isLogicalVecShifter() const {
if (!isShifter())
return false;
// A logical vector shifter is a left shift by 0, 8, 16, or 24.
unsigned Shift = getShiftExtendAmount();
return getShiftExtendType() == AArch64_AM::LSL &&
(Shift == 0 || Shift == 8 || Shift == 16 || Shift == 24);
}
bool isLogicalVecHalfWordShifter() const {
if (!isLogicalVecShifter())
return false;
// A logical vector shifter is a left shift by 0 or 8.
unsigned Shift = getShiftExtendAmount();
return getShiftExtendType() == AArch64_AM::LSL &&
(Shift == 0 || Shift == 8);
}
bool isMoveVecShifter() const {
if (!isShiftExtend())
return false;
// A logical vector shifter is a left shift by 8 or 16.
unsigned Shift = getShiftExtendAmount();
return getShiftExtendType() == AArch64_AM::MSL &&
(Shift == 8 || Shift == 16);
}
// Fallback unscaled operands are for aliases of LDR/STR that fall back
// to LDUR/STUR when the offset is not legal for the former but is for
// the latter. As such, in addition to checking for being a legal unscaled
// address, also check that it is not a legal scaled address. This avoids
// ambiguity in the matcher.
template<int Width>
bool isSImm9OffsetFB() const {
return isSImm9() && !isUImm12Offset<Width / 8>();
}
bool isAdrpLabel() const {
// Validation was handled during parsing, so we just sanity check that
// something didn't go haywire.
if (!isImm())
return false;
if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) {
int64_t Val = CE->getValue();
int64_t Min = - (4096 * (1LL << (21 - 1)));
int64_t Max = 4096 * ((1LL << (21 - 1)) - 1);
return (Val % 4096) == 0 && Val >= Min && Val <= Max;
}
return true;
}
bool isAdrLabel() const {
// Validation was handled during parsing, so we just sanity check that
// something didn't go haywire.
if (!isImm())
return false;
if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) {
int64_t Val = CE->getValue();
int64_t Min = - (1LL << (21 - 1));
int64_t Max = ((1LL << (21 - 1)) - 1);
return Val >= Min && Val <= Max;
}
return true;
}
void addExpr(MCInst &Inst, const MCExpr *Expr) const {
// Add as immediates when possible. Null MCExpr = 0.
if (!Expr)
Inst.addOperand(MCOperand::createImm(0));
else if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr))
Inst.addOperand(MCOperand::createImm(CE->getValue()));
else
Inst.addOperand(MCOperand::createExpr(Expr));
}
void addRegOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createReg(getReg()));
}
void addGPR32as64Operands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
assert(
AArch64MCRegisterClasses[AArch64::GPR64RegClassID].contains(getReg()));
const MCRegisterInfo *RI = Ctx.getRegisterInfo();
uint32_t Reg = RI->getRegClass(AArch64::GPR32RegClassID).getRegister(
RI->getEncodingValue(getReg()));
Inst.addOperand(MCOperand::createReg(Reg));
}
void addVectorReg64Operands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
assert(
AArch64MCRegisterClasses[AArch64::FPR128RegClassID].contains(getReg()));
Inst.addOperand(MCOperand::createReg(AArch64::D0 + getReg() - AArch64::Q0));
}
void addVectorReg128Operands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
assert(
AArch64MCRegisterClasses[AArch64::FPR128RegClassID].contains(getReg()));
Inst.addOperand(MCOperand::createReg(getReg()));
}
void addVectorRegLoOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createReg(getReg()));
}
template <unsigned NumRegs>
void addVectorList64Operands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
static const unsigned FirstRegs[] = { AArch64::D0,
AArch64::D0_D1,
AArch64::D0_D1_D2,
AArch64::D0_D1_D2_D3 };
unsigned FirstReg = FirstRegs[NumRegs - 1];
Inst.addOperand(
MCOperand::createReg(FirstReg + getVectorListStart() - AArch64::Q0));
}
template <unsigned NumRegs>
void addVectorList128Operands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
static const unsigned FirstRegs[] = { AArch64::Q0,
AArch64::Q0_Q1,
AArch64::Q0_Q1_Q2,
AArch64::Q0_Q1_Q2_Q3 };
unsigned FirstReg = FirstRegs[NumRegs - 1];
Inst.addOperand(
MCOperand::createReg(FirstReg + getVectorListStart() - AArch64::Q0));
}
void addVectorIndex1Operands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createImm(getVectorIndex()));
}
void addVectorIndexBOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createImm(getVectorIndex()));
}
void addVectorIndexHOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createImm(getVectorIndex()));
}
void addVectorIndexSOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createImm(getVectorIndex()));
}
void addVectorIndexDOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createImm(getVectorIndex()));
}
void addImmOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
// If this is a pageoff symrefexpr with an addend, adjust the addend
// to be only the page-offset portion. Otherwise, just add the expr
// as-is.
addExpr(Inst, getImm());
}
void addAddSubImmOperands(MCInst &Inst, unsigned N) const {
assert(N == 2 && "Invalid number of operands!");
if (isShiftedImm()) {
addExpr(Inst, getShiftedImmVal());
Inst.addOperand(MCOperand::createImm(getShiftedImmShift()));
} else {
addExpr(Inst, getImm());
Inst.addOperand(MCOperand::createImm(0));
}
}
void addAddSubImmNegOperands(MCInst &Inst, unsigned N) const {
assert(N == 2 && "Invalid number of operands!");
const MCExpr *MCE = isShiftedImm() ? getShiftedImmVal() : getImm();
const MCConstantExpr *CE = cast<MCConstantExpr>(MCE);
int64_t Val = -CE->getValue();
unsigned ShiftAmt = isShiftedImm() ? ShiftedImm.ShiftAmount : 0;
Inst.addOperand(MCOperand::createImm(Val));
Inst.addOperand(MCOperand::createImm(ShiftAmt));
}
void addCondCodeOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createImm(getCondCode()));
}
void addAdrpLabelOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm());
if (!MCE)
addExpr(Inst, getImm());
else
Inst.addOperand(MCOperand::createImm(MCE->getValue() >> 12));
}
void addAdrLabelOperands(MCInst &Inst, unsigned N) const {
addImmOperands(Inst, N);
}
template<int Scale>
void addUImm12OffsetOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm());
if (!MCE) {
Inst.addOperand(MCOperand::createExpr(getImm()));
return;
}
Inst.addOperand(MCOperand::createImm(MCE->getValue() / Scale));
}
void addSImm9Operands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
const MCConstantExpr *MCE = cast<MCConstantExpr>(getImm());
Inst.addOperand(MCOperand::createImm(MCE->getValue()));
}
void addSImm7s4Operands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
const MCConstantExpr *MCE = cast<MCConstantExpr>(getImm());
Inst.addOperand(MCOperand::createImm(MCE->getValue() / 4));
}
void addSImm7s8Operands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
const MCConstantExpr *MCE = cast<MCConstantExpr>(getImm());
Inst.addOperand(MCOperand::createImm(MCE->getValue() / 8));
}
void addSImm7s16Operands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
const MCConstantExpr *MCE = cast<MCConstantExpr>(getImm());
Inst.addOperand(MCOperand::createImm(MCE->getValue() / 16));
}
void addImm0_1Operands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
const MCConstantExpr *MCE = cast<MCConstantExpr>(getImm());
Inst.addOperand(MCOperand::createImm(MCE->getValue()));
}
void addImm0_7Operands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
const MCConstantExpr *MCE = cast<MCConstantExpr>(getImm());
Inst.addOperand(MCOperand::createImm(MCE->getValue()));
}
void addImm1_8Operands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
const MCConstantExpr *MCE = cast<MCConstantExpr>(getImm());
Inst.addOperand(MCOperand::createImm(MCE->getValue()));
}
void addImm0_15Operands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
const MCConstantExpr *MCE = cast<MCConstantExpr>(getImm());
Inst.addOperand(MCOperand::createImm(MCE->getValue()));
}
void addImm1_16Operands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
const MCConstantExpr *MCE = cast<MCConstantExpr>(getImm());
assert(MCE && "Invalid constant immediate operand!");
Inst.addOperand(MCOperand::createImm(MCE->getValue()));
}
void addImm0_31Operands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
const MCConstantExpr *MCE = cast<MCConstantExpr>(getImm());
Inst.addOperand(MCOperand::createImm(MCE->getValue()));
}
void addImm1_31Operands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
const MCConstantExpr *MCE = cast<MCConstantExpr>(getImm());
Inst.addOperand(MCOperand::createImm(MCE->getValue()));
}
void addImm1_32Operands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
const MCConstantExpr *MCE = cast<MCConstantExpr>(getImm());
Inst.addOperand(MCOperand::createImm(MCE->getValue()));
}
void addImm0_63Operands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
const MCConstantExpr *MCE = cast<MCConstantExpr>(getImm());
Inst.addOperand(MCOperand::createImm(MCE->getValue()));
}
void addImm1_63Operands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
const MCConstantExpr *MCE = cast<MCConstantExpr>(getImm());
Inst.addOperand(MCOperand::createImm(MCE->getValue()));
}
void addImm1_64Operands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
const MCConstantExpr *MCE = cast<MCConstantExpr>(getImm());
Inst.addOperand(MCOperand::createImm(MCE->getValue()));
}
void addImm0_127Operands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
const MCConstantExpr *MCE = cast<MCConstantExpr>(getImm());
Inst.addOperand(MCOperand::createImm(MCE->getValue()));
}
void addImm0_255Operands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
const MCConstantExpr *MCE = cast<MCConstantExpr>(getImm());
Inst.addOperand(MCOperand::createImm(MCE->getValue()));
}
void addImm0_65535Operands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
const MCConstantExpr *MCE = cast<MCConstantExpr>(getImm());
Inst.addOperand(MCOperand::createImm(MCE->getValue()));
}
void addImm32_63Operands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
const MCConstantExpr *MCE = cast<MCConstantExpr>(getImm());
Inst.addOperand(MCOperand::createImm(MCE->getValue()));
}
void addLogicalImm32Operands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
const MCConstantExpr *MCE = cast<MCConstantExpr>(getImm());
uint64_t encoding =
AArch64_AM::encodeLogicalImmediate(MCE->getValue() & 0xFFFFFFFF, 32);
Inst.addOperand(MCOperand::createImm(encoding));
}
void addLogicalImm64Operands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
const MCConstantExpr *MCE = cast<MCConstantExpr>(getImm());
uint64_t encoding = AArch64_AM::encodeLogicalImmediate(MCE->getValue(), 64);
Inst.addOperand(MCOperand::createImm(encoding));
}
void addLogicalImm32NotOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
const MCConstantExpr *MCE = cast<MCConstantExpr>(getImm());
int64_t Val = ~MCE->getValue() & 0xFFFFFFFF;
uint64_t encoding = AArch64_AM::encodeLogicalImmediate(Val, 32);
Inst.addOperand(MCOperand::createImm(encoding));
}
void addLogicalImm64NotOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
const MCConstantExpr *MCE = cast<MCConstantExpr>(getImm());
uint64_t encoding =
AArch64_AM::encodeLogicalImmediate(~MCE->getValue(), 64);
Inst.addOperand(MCOperand::createImm(encoding));
}
void addSIMDImmType10Operands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
const MCConstantExpr *MCE = cast<MCConstantExpr>(getImm());
uint64_t encoding = AArch64_AM::encodeAdvSIMDModImmType10(MCE->getValue());
Inst.addOperand(MCOperand::createImm(encoding));
}
void addBranchTarget26Operands(MCInst &Inst, unsigned N) const {
// Branch operands don't encode the low bits, so shift them off
// here. If it's a label, however, just put it on directly as there's
// not enough information now to do anything.
assert(N == 1 && "Invalid number of operands!");
const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm());
if (!MCE) {
addExpr(Inst, getImm());
return;
}
assert(MCE && "Invalid constant immediate operand!");
Inst.addOperand(MCOperand::createImm(MCE->getValue() >> 2));
}
void addPCRelLabel19Operands(MCInst &Inst, unsigned N) const {
// Branch operands don't encode the low bits, so shift them off
// here. If it's a label, however, just put it on directly as there's
// not enough information now to do anything.
assert(N == 1 && "Invalid number of operands!");
const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm());
if (!MCE) {
addExpr(Inst, getImm());
return;
}
assert(MCE && "Invalid constant immediate operand!");
Inst.addOperand(MCOperand::createImm(MCE->getValue() >> 2));
}
void addBranchTarget14Operands(MCInst &Inst, unsigned N) const {
// Branch operands don't encode the low bits, so shift them off
// here. If it's a label, however, just put it on directly as there's
// not enough information now to do anything.
assert(N == 1 && "Invalid number of operands!");
const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm());
if (!MCE) {
addExpr(Inst, getImm());
return;
}
assert(MCE && "Invalid constant immediate operand!");
Inst.addOperand(MCOperand::createImm(MCE->getValue() >> 2));
}
void addFPImmOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createImm(getFPImm()));
}
void addBarrierOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createImm(getBarrier()));
}
void addMRSSystemRegisterOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createImm(SysReg.MRSReg));
}
void addMSRSystemRegisterOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createImm(SysReg.MSRReg));
}
void addSystemPStateFieldWithImm0_1Operands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createImm(SysReg.PStateField));
}
void addSystemPStateFieldWithImm0_15Operands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createImm(SysReg.PStateField));
}
void addSysCROperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createImm(getSysCR()));
}
void addPrefetchOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createImm(getPrefetch()));
}
void addPSBHintOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createImm(getPSBHint()));
}
void addShifterOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
unsigned Imm =
AArch64_AM::getShifterImm(getShiftExtendType(), getShiftExtendAmount());
Inst.addOperand(MCOperand::createImm(Imm));
}
void addExtendOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
AArch64_AM::ShiftExtendType ET = getShiftExtendType();
if (ET == AArch64_AM::LSL) ET = AArch64_AM::UXTW;
unsigned Imm = AArch64_AM::getArithExtendImm(ET, getShiftExtendAmount());
Inst.addOperand(MCOperand::createImm(Imm));
}
void addExtend64Operands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
AArch64_AM::ShiftExtendType ET = getShiftExtendType();
if (ET == AArch64_AM::LSL) ET = AArch64_AM::UXTX;
unsigned Imm = AArch64_AM::getArithExtendImm(ET, getShiftExtendAmount());
Inst.addOperand(MCOperand::createImm(Imm));
}
void addMemExtendOperands(MCInst &Inst, unsigned N) const {
assert(N == 2 && "Invalid number of operands!");
AArch64_AM::ShiftExtendType ET = getShiftExtendType();
bool IsSigned = ET == AArch64_AM::SXTW || ET == AArch64_AM::SXTX;
Inst.addOperand(MCOperand::createImm(IsSigned));
Inst.addOperand(MCOperand::createImm(getShiftExtendAmount() != 0));
}
// For 8-bit load/store instructions with a register offset, both the
// "DoShift" and "NoShift" variants have a shift of 0. Because of this,
// they're disambiguated by whether the shift was explicit or implicit rather
// than its size.
void addMemExtend8Operands(MCInst &Inst, unsigned N) const {
assert(N == 2 && "Invalid number of operands!");
AArch64_AM::ShiftExtendType ET = getShiftExtendType();
bool IsSigned = ET == AArch64_AM::SXTW || ET == AArch64_AM::SXTX;
Inst.addOperand(MCOperand::createImm(IsSigned));
Inst.addOperand(MCOperand::createImm(hasShiftExtendAmount()));
}
template<int Shift>
void addMOVZMovAliasOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
uint64_t Value = CE->getValue();
Inst.addOperand(MCOperand::createImm((Value >> Shift) & 0xffff));
}
template<int Shift>
void addMOVNMovAliasOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
uint64_t Value = CE->getValue();
Inst.addOperand(MCOperand::createImm((~Value >> Shift) & 0xffff));
}
void print(raw_ostream &OS) const override;
static std::unique_ptr<AArch64Operand>
CreateToken(StringRef Str, bool IsSuffix, SMLoc S, MCContext &Ctx) {
auto Op = make_unique<AArch64Operand>(k_Token, Ctx);
Op->Tok.Data = Str.data();
Op->Tok.Length = Str.size();
Op->Tok.IsSuffix = IsSuffix;
Op->StartLoc = S;
Op->EndLoc = S;
return Op;
}
static std::unique_ptr<AArch64Operand>
CreateReg(unsigned RegNum, bool isVector, SMLoc S, SMLoc E, MCContext &Ctx) {
auto Op = make_unique<AArch64Operand>(k_Register, Ctx);
Op->Reg.RegNum = RegNum;
Op->Reg.isVector = isVector;
Op->StartLoc = S;
Op->EndLoc = E;
return Op;
}
static std::unique_ptr<AArch64Operand>
CreateVectorList(unsigned RegNum, unsigned Count, unsigned NumElements,
char ElementKind, SMLoc S, SMLoc E, MCContext &Ctx) {
auto Op = make_unique<AArch64Operand>(k_VectorList, Ctx);
Op->VectorList.RegNum = RegNum;
Op->VectorList.Count = Count;
Op->VectorList.NumElements = NumElements;
Op->VectorList.ElementKind = ElementKind;
Op->StartLoc = S;
Op->EndLoc = E;
return Op;
}
static std::unique_ptr<AArch64Operand>
CreateVectorIndex(unsigned Idx, SMLoc S, SMLoc E, MCContext &Ctx) {
auto Op = make_unique<AArch64Operand>(k_VectorIndex, Ctx);
Op->VectorIndex.Val = Idx;
Op->StartLoc = S;
Op->EndLoc = E;
return Op;
}
static std::unique_ptr<AArch64Operand> CreateImm(const MCExpr *Val, SMLoc S,
SMLoc E, MCContext &Ctx) {
auto Op = make_unique<AArch64Operand>(k_Immediate, Ctx);
Op->Imm.Val = Val;
Op->StartLoc = S;
Op->EndLoc = E;
return Op;
}
static std::unique_ptr<AArch64Operand> CreateShiftedImm(const MCExpr *Val,
unsigned ShiftAmount,
SMLoc S, SMLoc E,
MCContext &Ctx) {
auto Op = make_unique<AArch64Operand>(k_ShiftedImm, Ctx);
Op->ShiftedImm .Val = Val;
Op->ShiftedImm.ShiftAmount = ShiftAmount;
Op->StartLoc = S;
Op->EndLoc = E;
return Op;
}
static std::unique_ptr<AArch64Operand>
CreateCondCode(AArch64CC::CondCode Code, SMLoc S, SMLoc E, MCContext &Ctx) {
auto Op = make_unique<AArch64Operand>(k_CondCode, Ctx);
Op->CondCode.Code = Code;
Op->StartLoc = S;
Op->EndLoc = E;
return Op;
}
static std::unique_ptr<AArch64Operand> CreateFPImm(unsigned Val, SMLoc S,
MCContext &Ctx) {
auto Op = make_unique<AArch64Operand>(k_FPImm, Ctx);
Op->FPImm.Val = Val;
Op->StartLoc = S;
Op->EndLoc = S;
return Op;
}
static std::unique_ptr<AArch64Operand> CreateBarrier(unsigned Val,
StringRef Str,
SMLoc S,
MCContext &Ctx) {
auto Op = make_unique<AArch64Operand>(k_Barrier, Ctx);
Op->Barrier.Val = Val;
Op->Barrier.Data = Str.data();
Op->Barrier.Length = Str.size();
Op->StartLoc = S;
Op->EndLoc = S;
return Op;
}
static std::unique_ptr<AArch64Operand> CreateSysReg(StringRef Str, SMLoc S,
uint32_t MRSReg,
uint32_t MSRReg,
uint32_t PStateField,
MCContext &Ctx) {
auto Op = make_unique<AArch64Operand>(k_SysReg, Ctx);
Op->SysReg.Data = Str.data();
Op->SysReg.Length = Str.size();
Op->SysReg.MRSReg = MRSReg;
Op->SysReg.MSRReg = MSRReg;
Op->SysReg.PStateField = PStateField;
Op->StartLoc = S;
Op->EndLoc = S;
return Op;
}
static std::unique_ptr<AArch64Operand> CreateSysCR(unsigned Val, SMLoc S,
SMLoc E, MCContext &Ctx) {
auto Op = make_unique<AArch64Operand>(k_SysCR, Ctx);
Op->SysCRImm.Val = Val;
Op->StartLoc = S;
Op->EndLoc = E;
return Op;
}
static std::unique_ptr<AArch64Operand> CreatePrefetch(unsigned Val,
StringRef Str,
SMLoc S,
MCContext &Ctx) {
auto Op = make_unique<AArch64Operand>(k_Prefetch, Ctx);
Op->Prefetch.Val = Val;
Op->Barrier.Data = Str.data();
Op->Barrier.Length = Str.size();
Op->StartLoc = S;
Op->EndLoc = S;
return Op;
}
static std::unique_ptr<AArch64Operand> CreatePSBHint(unsigned Val,
StringRef Str,
SMLoc S,
MCContext &Ctx) {
auto Op = make_unique<AArch64Operand>(k_PSBHint, Ctx);
Op->PSBHint.Val = Val;
Op->PSBHint.Data = Str.data();
Op->PSBHint.Length = Str.size();
Op->StartLoc = S;
Op->EndLoc = S;
return Op;
}
static std::unique_ptr<AArch64Operand>
CreateShiftExtend(AArch64_AM::ShiftExtendType ShOp, unsigned Val,
bool HasExplicitAmount, SMLoc S, SMLoc E, MCContext &Ctx) {
auto Op = make_unique<AArch64Operand>(k_ShiftExtend, Ctx);
Op->ShiftExtend.Type = ShOp;
Op->ShiftExtend.Amount = Val;
Op->ShiftExtend.HasExplicitAmount = HasExplicitAmount;
Op->StartLoc = S;
Op->EndLoc = E;
return Op;
}
};
} // end anonymous namespace.
void AArch64Operand::print(raw_ostream &OS) const {
switch (Kind) {
case k_FPImm:
OS << "<fpimm " << getFPImm() << "("
<< AArch64_AM::getFPImmFloat(getFPImm()) << ") >";
break;
case k_Barrier: {
StringRef Name = getBarrierName();
if (!Name.empty())
OS << "<barrier " << Name << ">";
else
OS << "<barrier invalid #" << getBarrier() << ">";
break;
}
case k_Immediate:
OS << *getImm();
break;
case k_ShiftedImm: {
unsigned Shift = getShiftedImmShift();
OS << "<shiftedimm ";
OS << *getShiftedImmVal();
OS << ", lsl #" << AArch64_AM::getShiftValue(Shift) << ">";
break;
}
case k_CondCode:
OS << "<condcode " << getCondCode() << ">";
break;
case k_Register:
OS << "<register " << getReg() << ">";
break;
case k_VectorList: {
OS << "<vectorlist ";
unsigned Reg = getVectorListStart();
for (unsigned i = 0, e = getVectorListCount(); i != e; ++i)
OS << Reg + i << " ";
OS << ">";
break;
}
case k_VectorIndex:
OS << "<vectorindex " << getVectorIndex() << ">";
break;
case k_SysReg:
OS << "<sysreg: " << getSysReg() << '>';
break;
case k_Token:
OS << "'" << getToken() << "'";
break;
case k_SysCR:
OS << "c" << getSysCR();
break;
case k_Prefetch: {
StringRef Name = getPrefetchName();
if (!Name.empty())
OS << "<prfop " << Name << ">";
else
OS << "<prfop invalid #" << getPrefetch() << ">";
break;
}
case k_PSBHint: {
OS << getPSBHintName();
break;
}
case k_ShiftExtend: {
OS << "<" << AArch64_AM::getShiftExtendName(getShiftExtendType()) << " #"
<< getShiftExtendAmount();
if (!hasShiftExtendAmount())
OS << "<imp>";
OS << '>';
break;
}
}
}
/// @name Auto-generated Match Functions
/// {
static unsigned MatchRegisterName(StringRef Name);
/// }
static unsigned matchVectorRegName(StringRef Name) {
return StringSwitch<unsigned>(Name.lower())
.Case("v0", AArch64::Q0)
.Case("v1", AArch64::Q1)
.Case("v2", AArch64::Q2)
.Case("v3", AArch64::Q3)
.Case("v4", AArch64::Q4)
.Case("v5", AArch64::Q5)
.Case("v6", AArch64::Q6)
.Case("v7", AArch64::Q7)
.Case("v8", AArch64::Q8)
.Case("v9", AArch64::Q9)
.Case("v10", AArch64::Q10)
.Case("v11", AArch64::Q11)
.Case("v12", AArch64::Q12)
.Case("v13", AArch64::Q13)
.Case("v14", AArch64::Q14)
.Case("v15", AArch64::Q15)
.Case("v16", AArch64::Q16)
.Case("v17", AArch64::Q17)
.Case("v18", AArch64::Q18)
.Case("v19", AArch64::Q19)
.Case("v20", AArch64::Q20)
.Case("v21", AArch64::Q21)
.Case("v22", AArch64::Q22)
.Case("v23", AArch64::Q23)
.Case("v24", AArch64::Q24)
.Case("v25", AArch64::Q25)
.Case("v26", AArch64::Q26)
.Case("v27", AArch64::Q27)
.Case("v28", AArch64::Q28)
.Case("v29", AArch64::Q29)
.Case("v30", AArch64::Q30)
.Case("v31", AArch64::Q31)
.Default(0);
}
static bool isValidVectorKind(StringRef Name) {
return StringSwitch<bool>(Name.lower())
.Case(".8b", true)
.Case(".16b", true)
.Case(".4h", true)
.Case(".8h", true)
.Case(".2s", true)
.Case(".4s", true)
.Case(".1d", true)
.Case(".2d", true)
.Case(".1q", true)
// Accept the width neutral ones, too, for verbose syntax. If those
// aren't used in the right places, the token operand won't match so
// all will work out.
.Case(".b", true)
.Case(".h", true)
.Case(".s", true)
.Case(".d", true)
// Needed for fp16 scalar pairwise reductions
.Case(".2h", true)
.Default(false);
}
static void parseValidVectorKind(StringRef Name, unsigned &NumElements,
char &ElementKind) {
assert(isValidVectorKind(Name));
ElementKind = Name.lower()[Name.size() - 1];
NumElements = 0;
if (Name.size() == 2)
return;
// Parse the lane count
Name = Name.drop_front();
while (isdigit(Name.front())) {
NumElements = 10 * NumElements + (Name.front() - '0');
Name = Name.drop_front();
}
}
bool AArch64AsmParser::ParseRegister(unsigned &RegNo, SMLoc &StartLoc,
SMLoc &EndLoc) {
StartLoc = getLoc();
RegNo = tryParseRegister();
EndLoc = SMLoc::getFromPointer(getLoc().getPointer() - 1);
return (RegNo == (unsigned)-1);
}
// Matches a register name or register alias previously defined by '.req'
unsigned AArch64AsmParser::matchRegisterNameAlias(StringRef Name,
bool isVector) {
unsigned RegNum = isVector ? matchVectorRegName(Name)
: MatchRegisterName(Name);
if (RegNum == 0) {
// Check for aliases registered via .req. Canonicalize to lower case.
// That's more consistent since register names are case insensitive, and
// it's how the original entry was passed in from MC/MCParser/AsmParser.
auto Entry = RegisterReqs.find(Name.lower());
if (Entry == RegisterReqs.end())
return 0;
// set RegNum if the match is the right kind of register
if (isVector == Entry->getValue().first)
RegNum = Entry->getValue().second;
}
return RegNum;
}
/// tryParseRegister - Try to parse a register name. The token must be an
/// Identifier when called, and if it is a register name the token is eaten and
/// the register is added to the operand list.
int AArch64AsmParser::tryParseRegister() {
MCAsmParser &Parser = getParser();
const AsmToken &Tok = Parser.getTok();
assert(Tok.is(AsmToken::Identifier) && "Token is not an Identifier");
std::string lowerCase = Tok.getString().lower();
unsigned RegNum = matchRegisterNameAlias(lowerCase, false);
// Also handle a few aliases of registers.
if (RegNum == 0)
RegNum = StringSwitch<unsigned>(lowerCase)
.Case("fp", AArch64::FP)
.Case("lr", AArch64::LR)
.Case("x31", AArch64::XZR)
.Case("w31", AArch64::WZR)
.Default(0);
if (RegNum == 0)
return -1;
Parser.Lex(); // Eat identifier token.
return RegNum;
}
/// tryMatchVectorRegister - Try to parse a vector register name with optional
/// kind specifier. If it is a register specifier, eat the token and return it.
int AArch64AsmParser::tryMatchVectorRegister(StringRef &Kind, bool expected) {
MCAsmParser &Parser = getParser();
if (Parser.getTok().isNot(AsmToken::Identifier)) {
TokError("vector register expected");
return -1;
}
StringRef Name = Parser.getTok().getString();
// If there is a kind specifier, it's separated from the register name by
// a '.'.
size_t Start = 0, Next = Name.find('.');
StringRef Head = Name.slice(Start, Next);
unsigned RegNum = matchRegisterNameAlias(Head, true);
if (RegNum) {
if (Next != StringRef::npos) {
Kind = Name.slice(Next, StringRef::npos);
if (!isValidVectorKind(Kind)) {
TokError("invalid vector kind qualifier");
return -1;
}
}
Parser.Lex(); // Eat the register token.
return RegNum;
}
if (expected)
TokError("vector register expected");
return -1;
}
/// tryParseSysCROperand - Try to parse a system instruction CR operand name.
AArch64AsmParser::OperandMatchResultTy
AArch64AsmParser::tryParseSysCROperand(OperandVector &Operands) {
MCAsmParser &Parser = getParser();
SMLoc S = getLoc();
if (Parser.getTok().isNot(AsmToken::Identifier)) {
Error(S, "Expected cN operand where 0 <= N <= 15");
return MatchOperand_ParseFail;
}
StringRef Tok = Parser.getTok().getIdentifier();
if (Tok[0] != 'c' && Tok[0] != 'C') {
Error(S, "Expected cN operand where 0 <= N <= 15");
return MatchOperand_ParseFail;
}
uint32_t CRNum;
bool BadNum = Tok.drop_front().getAsInteger(10, CRNum);
if (BadNum || CRNum > 15) {
Error(S, "Expected cN operand where 0 <= N <= 15");
return MatchOperand_ParseFail;
}
Parser.Lex(); // Eat identifier token.
Operands.push_back(
AArch64Operand::CreateSysCR(CRNum, S, getLoc(), getContext()));
return MatchOperand_Success;
}
/// tryParsePrefetch - Try to parse a prefetch operand.
AArch64AsmParser::OperandMatchResultTy
AArch64AsmParser::tryParsePrefetch(OperandVector &Operands) {
MCAsmParser &Parser = getParser();
SMLoc S = getLoc();
const AsmToken &Tok = Parser.getTok();
// Either an identifier for named values or a 5-bit immediate.
bool Hash = Tok.is(AsmToken::Hash);
if (Hash || Tok.is(AsmToken::Integer)) {
if (Hash)
Parser.Lex(); // Eat hash token.
const MCExpr *ImmVal;
if (getParser().parseExpression(ImmVal))
return MatchOperand_ParseFail;
const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(ImmVal);
if (!MCE) {
TokError("immediate value expected for prefetch operand");
return MatchOperand_ParseFail;
}
unsigned prfop = MCE->getValue();
if (prfop > 31) {
TokError("prefetch operand out of range, [0,31] expected");
return MatchOperand_ParseFail;
}
auto PRFM = AArch64PRFM::lookupPRFMByEncoding(MCE->getValue());
Operands.push_back(AArch64Operand::CreatePrefetch(
prfop, PRFM ? PRFM->Name : "", S, getContext()));
return MatchOperand_Success;
}
if (Tok.isNot(AsmToken::Identifier)) {
TokError("pre-fetch hint expected");
return MatchOperand_ParseFail;
}
auto PRFM = AArch64PRFM::lookupPRFMByName(Tok.getString());
if (!PRFM) {
TokError("pre-fetch hint expected");
return MatchOperand_ParseFail;
}
Parser.Lex(); // Eat identifier token.
Operands.push_back(AArch64Operand::CreatePrefetch(
PRFM->Encoding, Tok.getString(), S, getContext()));
return MatchOperand_Success;
}
/// tryParsePSBHint - Try to parse a PSB operand, mapped to Hint command
AArch64AsmParser::OperandMatchResultTy
AArch64AsmParser::tryParsePSBHint(OperandVector &Operands) {
MCAsmParser &Parser = getParser();
SMLoc S = getLoc();
const AsmToken &Tok = Parser.getTok();
if (Tok.isNot(AsmToken::Identifier)) {
TokError("invalid operand for instruction");
return MatchOperand_ParseFail;
}
auto PSB = AArch64PSBHint::lookupPSBByName(Tok.getString());
if (!PSB) {
TokError("invalid operand for instruction");
return MatchOperand_ParseFail;
}
Parser.Lex(); // Eat identifier token.
Operands.push_back(AArch64Operand::CreatePSBHint(
PSB->Encoding, Tok.getString(), S, getContext()));
return MatchOperand_Success;
}
/// tryParseAdrpLabel - Parse and validate a source label for the ADRP
/// instruction.
AArch64AsmParser::OperandMatchResultTy
AArch64AsmParser::tryParseAdrpLabel(OperandVector &Operands) {
MCAsmParser &Parser = getParser();
SMLoc S = getLoc();
const MCExpr *Expr;
if (Parser.getTok().is(AsmToken::Hash)) {
Parser.Lex(); // Eat hash token.
}
if (parseSymbolicImmVal(Expr))
return MatchOperand_ParseFail;
AArch64MCExpr::VariantKind ELFRefKind;
MCSymbolRefExpr::VariantKind DarwinRefKind;
int64_t Addend;
if (classifySymbolRef(Expr, ELFRefKind, DarwinRefKind, Addend)) {
if (DarwinRefKind == MCSymbolRefExpr::VK_None &&
ELFRefKind == AArch64MCExpr::VK_INVALID) {
// No modifier was specified at all; this is the syntax for an ELF basic
// ADRP relocation (unfortunately).
Expr =
AArch64MCExpr::create(Expr, AArch64MCExpr::VK_ABS_PAGE, getContext());
} else if ((DarwinRefKind == MCSymbolRefExpr::VK_GOTPAGE ||
DarwinRefKind == MCSymbolRefExpr::VK_TLVPPAGE) &&
Addend != 0) {
Error(S, "gotpage label reference not allowed an addend");
return MatchOperand_ParseFail;
} else if (DarwinRefKind != MCSymbolRefExpr::VK_PAGE &&
DarwinRefKind != MCSymbolRefExpr::VK_GOTPAGE &&
DarwinRefKind != MCSymbolRefExpr::VK_TLVPPAGE &&
ELFRefKind != AArch64MCExpr::VK_GOT_PAGE &&
ELFRefKind != AArch64MCExpr::VK_GOTTPREL_PAGE &&
ELFRefKind != AArch64MCExpr::VK_TLSDESC_PAGE) {
// The operand must be an @page or @gotpage qualified symbolref.
Error(S, "page or gotpage label reference expected");
return MatchOperand_ParseFail;
}
}
// We have either a label reference possibly with addend or an immediate. The
// addend is a raw value here. The linker will adjust it to only reference the
// page.
SMLoc E = SMLoc::getFromPointer(getLoc().getPointer() - 1);
Operands.push_back(AArch64Operand::CreateImm(Expr, S, E, getContext()));
return MatchOperand_Success;
}
/// tryParseAdrLabel - Parse and validate a source label for the ADR
/// instruction.
AArch64AsmParser::OperandMatchResultTy
AArch64AsmParser::tryParseAdrLabel(OperandVector &Operands) {
MCAsmParser &Parser = getParser();
SMLoc S = getLoc();
const MCExpr *Expr;
if (Parser.getTok().is(AsmToken::Hash)) {
Parser.Lex(); // Eat hash token.
}
if (getParser().parseExpression(Expr))
return MatchOperand_ParseFail;
SMLoc E = SMLoc::getFromPointer(getLoc().getPointer() - 1);
Operands.push_back(AArch64Operand::CreateImm(Expr, S, E, getContext()));
return MatchOperand_Success;
}
/// tryParseFPImm - A floating point immediate expression operand.
AArch64AsmParser::OperandMatchResultTy
AArch64AsmParser::tryParseFPImm(OperandVector &Operands) {
MCAsmParser &Parser = getParser();
SMLoc S = getLoc();
bool Hash = false;
if (Parser.getTok().is(AsmToken::Hash)) {
Parser.Lex(); // Eat '#'
Hash = true;
}
// Handle negation, as that still comes through as a separate token.
bool isNegative = false;
if (Parser.getTok().is(AsmToken::Minus)) {
isNegative = true;
Parser.Lex();
}
const AsmToken &Tok = Parser.getTok();
if (Tok.is(AsmToken::Real)) {
APFloat RealVal(APFloat::IEEEdouble, Tok.getString());
if (isNegative)
RealVal.changeSign();
uint64_t IntVal = RealVal.bitcastToAPInt().getZExtValue();
int Val = AArch64_AM::getFP64Imm(APInt(64, IntVal));
Parser.Lex(); // Eat the token.
// Check for out of range values. As an exception, we let Zero through,
// as we handle that special case in post-processing before matching in
// order to use the zero register for it.
if (Val == -1 && !RealVal.isPosZero()) {
TokError("expected compatible register or floating-point constant");
return MatchOperand_ParseFail;
}
Operands.push_back(AArch64Operand::CreateFPImm(Val, S, getContext()));
return MatchOperand_Success;
}
if (Tok.is(AsmToken::Integer)) {
int64_t Val;
if (!isNegative && Tok.getString().startswith("0x")) {
Val = Tok.getIntVal();
if (Val > 255 || Val < 0) {
TokError("encoded floating point value out of range");
return MatchOperand_ParseFail;
}
} else {
APFloat RealVal(APFloat::IEEEdouble, Tok.getString());
uint64_t IntVal = RealVal.bitcastToAPInt().getZExtValue();
// If we had a '-' in front, toggle the sign bit.
IntVal ^= (uint64_t)isNegative << 63;
Val = AArch64_AM::getFP64Imm(APInt(64, IntVal));
}
Parser.Lex(); // Eat the token.
Operands.push_back(AArch64Operand::CreateFPImm(Val, S, getContext()));
return MatchOperand_Success;
}
if (!Hash)
return MatchOperand_NoMatch;
TokError("invalid floating point immediate");
return MatchOperand_ParseFail;
}
/// tryParseAddSubImm - Parse ADD/SUB shifted immediate operand
AArch64AsmParser::OperandMatchResultTy
AArch64AsmParser::tryParseAddSubImm(OperandVector &Operands) {
MCAsmParser &Parser = getParser();
SMLoc S = getLoc();
if (Parser.getTok().is(AsmToken::Hash))
Parser.Lex(); // Eat '#'
else if (Parser.getTok().isNot(AsmToken::Integer))
// Operand should start from # or should be integer, emit error otherwise.
return MatchOperand_NoMatch;
const MCExpr *Imm;
if (parseSymbolicImmVal(Imm))
return MatchOperand_ParseFail;
else if (Parser.getTok().isNot(AsmToken::Comma)) {
uint64_t ShiftAmount = 0;
const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(Imm);
if (MCE) {
int64_t Val = MCE->getValue();
if (Val > 0xfff && (Val & 0xfff) == 0) {
Imm = MCConstantExpr::create(Val >> 12, getContext());
ShiftAmount = 12;
}
}
SMLoc E = Parser.getTok().getLoc();
Operands.push_back(AArch64Operand::CreateShiftedImm(Imm, ShiftAmount, S, E,
getContext()));
return MatchOperand_Success;
}
// Eat ','
Parser.Lex();
// The optional operand must be "lsl #N" where N is non-negative.
if (!Parser.getTok().is(AsmToken::Identifier) ||
!Parser.getTok().getIdentifier().equals_lower("lsl")) {
Error(Parser.getTok().getLoc(), "only 'lsl #+N' valid after immediate");
return MatchOperand_ParseFail;
}
// Eat 'lsl'
Parser.Lex();
if (Parser.getTok().is(AsmToken::Hash)) {
Parser.Lex();
}
if (Parser.getTok().isNot(AsmToken::Integer)) {
Error(Parser.getTok().getLoc(), "only 'lsl #+N' valid after immediate");
return MatchOperand_ParseFail;
}
int64_t ShiftAmount = Parser.getTok().getIntVal();
if (ShiftAmount < 0) {
Error(Parser.getTok().getLoc(), "positive shift amount required");
return MatchOperand_ParseFail;
}
Parser.Lex(); // Eat the number
SMLoc E = Parser.getTok().getLoc();
Operands.push_back(AArch64Operand::CreateShiftedImm(Imm, ShiftAmount,
S, E, getContext()));
return MatchOperand_Success;
}
/// parseCondCodeString - Parse a Condition Code string.
AArch64CC::CondCode AArch64AsmParser::parseCondCodeString(StringRef Cond) {
AArch64CC::CondCode CC = StringSwitch<AArch64CC::CondCode>(Cond.lower())
.Case("eq", AArch64CC::EQ)
.Case("ne", AArch64CC::NE)
.Case("cs", AArch64CC::HS)
.Case("hs", AArch64CC::HS)
.Case("cc", AArch64CC::LO)
.Case("lo", AArch64CC::LO)
.Case("mi", AArch64CC::MI)
.Case("pl", AArch64CC::PL)
.Case("vs", AArch64CC::VS)
.Case("vc", AArch64CC::VC)
.Case("hi", AArch64CC::HI)
.Case("ls", AArch64CC::LS)
.Case("ge", AArch64CC::GE)
.Case("lt", AArch64CC::LT)
.Case("gt", AArch64CC::GT)
.Case("le", AArch64CC::LE)
.Case("al", AArch64CC::AL)
.Case("nv", AArch64CC::NV)
.Default(AArch64CC::Invalid);
return CC;
}
/// parseCondCode - Parse a Condition Code operand.
bool AArch64AsmParser::parseCondCode(OperandVector &Operands,
bool invertCondCode) {
MCAsmParser &Parser = getParser();
SMLoc S = getLoc();
const AsmToken &Tok = Parser.getTok();
assert(Tok.is(AsmToken::Identifier) && "Token is not an Identifier");
StringRef Cond = Tok.getString();
AArch64CC::CondCode CC = parseCondCodeString(Cond);
if (CC == AArch64CC::Invalid)
return TokError("invalid condition code");
Parser.Lex(); // Eat identifier token.
if (invertCondCode) {
if (CC == AArch64CC::AL || CC == AArch64CC::NV)
return TokError("condition codes AL and NV are invalid for this instruction");
CC = AArch64CC::getInvertedCondCode(AArch64CC::CondCode(CC));
}
Operands.push_back(
AArch64Operand::CreateCondCode(CC, S, getLoc(), getContext()));
return false;
}
/// tryParseOptionalShift - Some operands take an optional shift argument. Parse
/// them if present.
AArch64AsmParser::OperandMatchResultTy
AArch64AsmParser::tryParseOptionalShiftExtend(OperandVector &Operands) {
MCAsmParser &Parser = getParser();
const AsmToken &Tok = Parser.getTok();
std::string LowerID = Tok.getString().lower();
AArch64_AM::ShiftExtendType ShOp =
StringSwitch<AArch64_AM::ShiftExtendType>(LowerID)
.Case("lsl", AArch64_AM::LSL)
.Case("lsr", AArch64_AM::LSR)
.Case("asr", AArch64_AM::ASR)
.Case("ror", AArch64_AM::ROR)
.Case("msl", AArch64_AM::MSL)
.Case("uxtb", AArch64_AM::UXTB)
.Case("uxth", AArch64_AM::UXTH)
.Case("uxtw", AArch64_AM::UXTW)
.Case("uxtx", AArch64_AM::UXTX)
.Case("sxtb", AArch64_AM::SXTB)
.Case("sxth", AArch64_AM::SXTH)
.Case("sxtw", AArch64_AM::SXTW)
.Case("sxtx", AArch64_AM::SXTX)
.Default(AArch64_AM::InvalidShiftExtend);
if (ShOp == AArch64_AM::InvalidShiftExtend)
return MatchOperand_NoMatch;
SMLoc S = Tok.getLoc();
Parser.Lex();
bool Hash = getLexer().is(AsmToken::Hash);
if (!Hash && getLexer().isNot(AsmToken::Integer)) {
if (ShOp == AArch64_AM::LSL || ShOp == AArch64_AM::LSR ||
ShOp == AArch64_AM::ASR || ShOp == AArch64_AM::ROR ||
ShOp == AArch64_AM::MSL) {
// We expect a number here.
TokError("expected #imm after shift specifier");
return MatchOperand_ParseFail;
}
// "extend" type operatoins don't need an immediate, #0 is implicit.
SMLoc E = SMLoc::getFromPointer(getLoc().getPointer() - 1);
Operands.push_back(
AArch64Operand::CreateShiftExtend(ShOp, 0, false, S, E, getContext()));
return MatchOperand_Success;
}
if (Hash)
Parser.Lex(); // Eat the '#'.
// Make sure we do actually have a number or a parenthesized expression.
SMLoc E = Parser.getTok().getLoc();
if (!Parser.getTok().is(AsmToken::Integer) &&
!Parser.getTok().is(AsmToken::LParen)) {
Error(E, "expected integer shift amount");
return MatchOperand_ParseFail;
}
const MCExpr *ImmVal;
if (getParser().parseExpression(ImmVal))
return MatchOperand_ParseFail;
const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(ImmVal);
if (!MCE) {
Error(E, "expected constant '#imm' after shift specifier");
return MatchOperand_ParseFail;
}
E = SMLoc::getFromPointer(getLoc().getPointer() - 1);
Operands.push_back(AArch64Operand::CreateShiftExtend(
ShOp, MCE->getValue(), true, S, E, getContext()));
return MatchOperand_Success;
}
/// parseSysAlias - The IC, DC, AT, and TLBI instructions are simple aliases for
/// the SYS instruction. Parse them specially so that we create a SYS MCInst.
bool AArch64AsmParser::parseSysAlias(StringRef Name, SMLoc NameLoc,
OperandVector &Operands) {
if (Name.find('.') != StringRef::npos)
return TokError("invalid operand");
Mnemonic = Name;
Operands.push_back(
AArch64Operand::CreateToken("sys", false, NameLoc, getContext()));
MCAsmParser &Parser = getParser();
const AsmToken &Tok = Parser.getTok();
StringRef Op = Tok.getString();
SMLoc S = Tok.getLoc();
const MCExpr *Expr = nullptr;
#define SYS_ALIAS(op1, Cn, Cm, op2) \
do { \
Expr = MCConstantExpr::create(op1, getContext()); \
Operands.push_back( \
AArch64Operand::CreateImm(Expr, S, getLoc(), getContext())); \
Operands.push_back( \
AArch64Operand::CreateSysCR(Cn, S, getLoc(), getContext())); \
Operands.push_back( \
AArch64Operand::CreateSysCR(Cm, S, getLoc(), getContext())); \
Expr = MCConstantExpr::create(op2, getContext()); \
Operands.push_back( \
AArch64Operand::CreateImm(Expr, S, getLoc(), getContext())); \
} while (0)
if (Mnemonic == "ic") {
if (!Op.compare_lower("ialluis")) {
// SYS #0, C7, C1, #0
SYS_ALIAS(0, 7, 1, 0);
} else if (!Op.compare_lower("iallu")) {
// SYS #0, C7, C5, #0
SYS_ALIAS(0, 7, 5, 0);
} else if (!Op.compare_lower("ivau")) {
// SYS #3, C7, C5, #1
SYS_ALIAS(3, 7, 5, 1);
} else {
return TokError("invalid operand for IC instruction");
}
} else if (Mnemonic == "dc") {
if (!Op.compare_lower("zva")) {
// SYS #3, C7, C4, #1
SYS_ALIAS(3, 7, 4, 1);
} else if (!Op.compare_lower("ivac")) {
// SYS #3, C7, C6, #1
SYS_ALIAS(0, 7, 6, 1);
} else if (!Op.compare_lower("isw")) {
// SYS #0, C7, C6, #2
SYS_ALIAS(0, 7, 6, 2);
} else if (!Op.compare_lower("cvac")) {
// SYS #3, C7, C10, #1
SYS_ALIAS(3, 7, 10, 1);
} else if (!Op.compare_lower("csw")) {
// SYS #0, C7, C10, #2
SYS_ALIAS(0, 7, 10, 2);
} else if (!Op.compare_lower("cvau")) {
// SYS #3, C7, C11, #1
SYS_ALIAS(3, 7, 11, 1);
} else if (!Op.compare_lower("civac")) {
// SYS #3, C7, C14, #1
SYS_ALIAS(3, 7, 14, 1);
} else if (!Op.compare_lower("cisw")) {
// SYS #0, C7, C14, #2
SYS_ALIAS(0, 7, 14, 2);
} else if (!Op.compare_lower("cvap")) {
if (getSTI().getFeatureBits()[AArch64::HasV8_2aOps]) {
// SYS #3, C7, C12, #1
SYS_ALIAS(3, 7, 12, 1);
} else {
return TokError("DC CVAP requires ARMv8.2a");
}
} else {
return TokError("invalid operand for DC instruction");
}
} else if (Mnemonic == "at") {
if (!Op.compare_lower("s1e1r")) {
// SYS #0, C7, C8, #0
SYS_ALIAS(0, 7, 8, 0);
} else if (!Op.compare_lower("s1e2r")) {
// SYS #4, C7, C8, #0
SYS_ALIAS(4, 7, 8, 0);
} else if (!Op.compare_lower("s1e3r")) {
// SYS #6, C7, C8, #0
SYS_ALIAS(6, 7, 8, 0);
} else if (!Op.compare_lower("s1e1w")) {
// SYS #0, C7, C8, #1
SYS_ALIAS(0, 7, 8, 1);
} else if (!Op.compare_lower("s1e2w")) {
// SYS #4, C7, C8, #1
SYS_ALIAS(4, 7, 8, 1);
} else if (!Op.compare_lower("s1e3w")) {
// SYS #6, C7, C8, #1
SYS_ALIAS(6, 7, 8, 1);
} else if (!Op.compare_lower("s1e0r")) {
// SYS #0, C7, C8, #3
SYS_ALIAS(0, 7, 8, 2);
} else if (!Op.compare_lower("s1e0w")) {
// SYS #0, C7, C8, #3
SYS_ALIAS(0, 7, 8, 3);
} else if (!Op.compare_lower("s12e1r")) {
// SYS #4, C7, C8, #4
SYS_ALIAS(4, 7, 8, 4);
} else if (!Op.compare_lower("s12e1w")) {
// SYS #4, C7, C8, #5
SYS_ALIAS(4, 7, 8, 5);
} else if (!Op.compare_lower("s12e0r")) {
// SYS #4, C7, C8, #6
SYS_ALIAS(4, 7, 8, 6);
} else if (!Op.compare_lower("s12e0w")) {
// SYS #4, C7, C8, #7
SYS_ALIAS(4, 7, 8, 7);
} else if (!Op.compare_lower("s1e1rp")) {
if (getSTI().getFeatureBits()[AArch64::HasV8_2aOps]) {
// SYS #0, C7, C9, #0
SYS_ALIAS(0, 7, 9, 0);
} else {
return TokError("AT S1E1RP requires ARMv8.2a");
}
} else if (!Op.compare_lower("s1e1wp")) {
if (getSTI().getFeatureBits()[AArch64::HasV8_2aOps]) {
// SYS #0, C7, C9, #1
SYS_ALIAS(0, 7, 9, 1);
} else {
return TokError("AT S1E1WP requires ARMv8.2a");
}
} else {
return TokError("invalid operand for AT instruction");
}
} else if (Mnemonic == "tlbi") {
if (!Op.compare_lower("vmalle1is")) {
// SYS #0, C8, C3, #0
SYS_ALIAS(0, 8, 3, 0);
} else if (!Op.compare_lower("alle2is")) {
// SYS #4, C8, C3, #0
SYS_ALIAS(4, 8, 3, 0);
} else if (!Op.compare_lower("alle3is")) {
// SYS #6, C8, C3, #0
SYS_ALIAS(6, 8, 3, 0);
} else if (!Op.compare_lower("vae1is")) {
// SYS #0, C8, C3, #1
SYS_ALIAS(0, 8, 3, 1);
} else if (!Op.compare_lower("vae2is")) {
// SYS #4, C8, C3, #1
SYS_ALIAS(4, 8, 3, 1);
} else if (!Op.compare_lower("vae3is")) {
// SYS #6, C8, C3, #1
SYS_ALIAS(6, 8, 3, 1);
} else if (!Op.compare_lower("aside1is")) {
// SYS #0, C8, C3, #2
SYS_ALIAS(0, 8, 3, 2);
} else if (!Op.compare_lower("vaae1is")) {
// SYS #0, C8, C3, #3
SYS_ALIAS(0, 8, 3, 3);
} else if (!Op.compare_lower("alle1is")) {
// SYS #4, C8, C3, #4
SYS_ALIAS(4, 8, 3, 4);
} else if (!Op.compare_lower("vale1is")) {
// SYS #0, C8, C3, #5
SYS_ALIAS(0, 8, 3, 5);
} else if (!Op.compare_lower("vaale1is")) {
// SYS #0, C8, C3, #7
SYS_ALIAS(0, 8, 3, 7);
} else if (!Op.compare_lower("vmalle1")) {
// SYS #0, C8, C7, #0
SYS_ALIAS(0, 8, 7, 0);
} else if (!Op.compare_lower("alle2")) {
// SYS #4, C8, C7, #0
SYS_ALIAS(4, 8, 7, 0);
} else if (!Op.compare_lower("vale2is")) {
// SYS #4, C8, C3, #5
SYS_ALIAS(4, 8, 3, 5);
} else if (!Op.compare_lower("vale3is")) {
// SYS #6, C8, C3, #5
SYS_ALIAS(6, 8, 3, 5);
} else if (!Op.compare_lower("alle3")) {
// SYS #6, C8, C7, #0
SYS_ALIAS(6, 8, 7, 0);
} else if (!Op.compare_lower("vae1")) {
// SYS #0, C8, C7, #1
SYS_ALIAS(0, 8, 7, 1);
} else if (!Op.compare_lower("vae2")) {
// SYS #4, C8, C7, #1
SYS_ALIAS(4, 8, 7, 1);
} else if (!Op.compare_lower("vae3")) {
// SYS #6, C8, C7, #1
SYS_ALIAS(6, 8, 7, 1);
} else if (!Op.compare_lower("aside1")) {
// SYS #0, C8, C7, #2
SYS_ALIAS(0, 8, 7, 2);
} else if (!Op.compare_lower("vaae1")) {
// SYS #0, C8, C7, #3
SYS_ALIAS(0, 8, 7, 3);
} else if (!Op.compare_lower("alle1")) {
// SYS #4, C8, C7, #4
SYS_ALIAS(4, 8, 7, 4);
} else if (!Op.compare_lower("vale1")) {
// SYS #0, C8, C7, #5
SYS_ALIAS(0, 8, 7, 5);
} else if (!Op.compare_lower("vale2")) {
// SYS #4, C8, C7, #5
SYS_ALIAS(4, 8, 7, 5);
} else if (!Op.compare_lower("vale3")) {
// SYS #6, C8, C7, #5
SYS_ALIAS(6, 8, 7, 5);
} else if (!Op.compare_lower("vaale1")) {
// SYS #0, C8, C7, #7
SYS_ALIAS(0, 8, 7, 7);
} else if (!Op.compare_lower("ipas2e1")) {
// SYS #4, C8, C4, #1
SYS_ALIAS(4, 8, 4, 1);
} else if (!Op.compare_lower("ipas2le1")) {
// SYS #4, C8, C4, #5
SYS_ALIAS(4, 8, 4, 5);
} else if (!Op.compare_lower("ipas2e1is")) {
// SYS #4, C8, C4, #1
SYS_ALIAS(4, 8, 0, 1);
} else if (!Op.compare_lower("ipas2le1is")) {
// SYS #4, C8, C4, #5
SYS_ALIAS(4, 8, 0, 5);
} else if (!Op.compare_lower("vmalls12e1")) {
// SYS #4, C8, C7, #6
SYS_ALIAS(4, 8, 7, 6);
} else if (!Op.compare_lower("vmalls12e1is")) {
// SYS #4, C8, C3, #6
SYS_ALIAS(4, 8, 3, 6);
} else {
return TokError("invalid operand for TLBI instruction");
}
}
#undef SYS_ALIAS
Parser.Lex(); // Eat operand.
bool ExpectRegister = (Op.lower().find("all") == StringRef::npos);
bool HasRegister = false;
// Check for the optional register operand.
if (getLexer().is(AsmToken::Comma)) {
Parser.Lex(); // Eat comma.
if (Tok.isNot(AsmToken::Identifier) || parseRegister(Operands))
return TokError("expected register operand");
HasRegister = true;
}
if (getLexer().isNot(AsmToken::EndOfStatement)) {
Parser.eatToEndOfStatement();
return TokError("unexpected token in argument list");
}
if (ExpectRegister && !HasRegister) {
return TokError("specified " + Mnemonic + " op requires a register");
}
else if (!ExpectRegister && HasRegister) {
return TokError("specified " + Mnemonic + " op does not use a register");
}
Parser.Lex(); // Consume the EndOfStatement
return false;
}
AArch64AsmParser::OperandMatchResultTy
AArch64AsmParser::tryParseBarrierOperand(OperandVector &Operands) {
MCAsmParser &Parser = getParser();
const AsmToken &Tok = Parser.getTok();
// Can be either a #imm style literal or an option name
bool Hash = Tok.is(AsmToken::Hash);
if (Hash || Tok.is(AsmToken::Integer)) {
// Immediate operand.
if (Hash)
Parser.Lex(); // Eat the '#'
const MCExpr *ImmVal;
SMLoc ExprLoc = getLoc();
if (getParser().parseExpression(ImmVal))
return MatchOperand_ParseFail;
const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(ImmVal);
if (!MCE) {
Error(ExprLoc, "immediate value expected for barrier operand");
return MatchOperand_ParseFail;
}
if (MCE->getValue() < 0 || MCE->getValue() > 15) {
Error(ExprLoc, "barrier operand out of range");
return MatchOperand_ParseFail;
}
auto DB = AArch64DB::lookupDBByEncoding(MCE->getValue());
Operands.push_back(AArch64Operand::CreateBarrier(
MCE->getValue(), DB ? DB->Name : "", ExprLoc, getContext()));
return MatchOperand_Success;
}
if (Tok.isNot(AsmToken::Identifier)) {
TokError("invalid operand for instruction");
return MatchOperand_ParseFail;
}
auto DB = AArch64DB::lookupDBByName(Tok.getString());
if (!DB) {
TokError("invalid barrier option name");
return MatchOperand_ParseFail;
}
// The only valid named option for ISB is 'sy'
if (Mnemonic == "isb" && DB->Encoding != AArch64DB::sy) {
TokError("'sy' or #imm operand expected");
return MatchOperand_ParseFail;
}
Operands.push_back(AArch64Operand::CreateBarrier(
DB->Encoding, Tok.getString(), getLoc(), getContext()));
Parser.Lex(); // Consume the option
return MatchOperand_Success;
}
AArch64AsmParser::OperandMatchResultTy
AArch64AsmParser::tryParseSysReg(OperandVector &Operands) {
MCAsmParser &Parser = getParser();
const AsmToken &Tok = Parser.getTok();
if (Tok.isNot(AsmToken::Identifier))
return MatchOperand_NoMatch;
int MRSReg, MSRReg;
auto SysReg = AArch64SysReg::lookupSysRegByName(Tok.getString());
if (SysReg && SysReg->haveFeatures(getSTI().getFeatureBits())) {
MRSReg = SysReg->Readable ? SysReg->Encoding : -1;
MSRReg = SysReg->Writeable ? SysReg->Encoding : -1;
} else
MRSReg = MSRReg = AArch64SysReg::parseGenericRegister(Tok.getString());
auto PState = AArch64PState::lookupPStateByName(Tok.getString());
unsigned PStateImm = -1;
if (PState && PState->haveFeatures(getSTI().getFeatureBits()))
PStateImm = PState->Encoding;
Operands.push_back(
AArch64Operand::CreateSysReg(Tok.getString(), getLoc(), MRSReg, MSRReg,
PStateImm, getContext()));
Parser.Lex(); // Eat identifier
return MatchOperand_Success;
}
/// tryParseVectorRegister - Parse a vector register operand.
bool AArch64AsmParser::tryParseVectorRegister(OperandVector &Operands) {
MCAsmParser &Parser = getParser();
if (Parser.getTok().isNot(AsmToken::Identifier))
return true;
SMLoc S = getLoc();
// Check for a vector register specifier first.
StringRef Kind;
int64_t Reg = tryMatchVectorRegister(Kind, false);
if (Reg == -1)
return true;
Operands.push_back(
AArch64Operand::CreateReg(Reg, true, S, getLoc(), getContext()));
// If there was an explicit qualifier, that goes on as a literal text
// operand.
if (!Kind.empty())
Operands.push_back(
AArch64Operand::CreateToken(Kind, false, S, getContext()));
// If there is an index specifier following the register, parse that too.
if (Parser.getTok().is(AsmToken::LBrac)) {
SMLoc SIdx = getLoc();
Parser.Lex(); // Eat left bracket token.
const MCExpr *ImmVal;
if (getParser().parseExpression(ImmVal))
return false;
const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(ImmVal);
if (!MCE) {
TokError("immediate value expected for vector index");
return false;
}
SMLoc E = getLoc();
if (Parser.getTok().isNot(AsmToken::RBrac)) {
Error(E, "']' expected");
return false;
}
Parser.Lex(); // Eat right bracket token.
Operands.push_back(AArch64Operand::CreateVectorIndex(MCE->getValue(), SIdx,
E, getContext()));
}
return false;
}
/// parseRegister - Parse a non-vector register operand.
bool AArch64AsmParser::parseRegister(OperandVector &Operands) {
MCAsmParser &Parser = getParser();
SMLoc S = getLoc();
// Try for a vector register.
if (!tryParseVectorRegister(Operands))
return false;
// Try for a scalar register.
int64_t Reg = tryParseRegister();
if (Reg == -1)
return true;
Operands.push_back(
AArch64Operand::CreateReg(Reg, false, S, getLoc(), getContext()));
// A small number of instructions (FMOVXDhighr, for example) have "[1]"
// as a string token in the instruction itself.
if (getLexer().getKind() == AsmToken::LBrac) {
SMLoc LBracS = getLoc();
Parser.Lex();
const AsmToken &Tok = Parser.getTok();
if (Tok.is(AsmToken::Integer)) {
SMLoc IntS = getLoc();
int64_t Val = Tok.getIntVal();
if (Val == 1) {
Parser.Lex();
if (getLexer().getKind() == AsmToken::RBrac) {
SMLoc RBracS = getLoc();
Parser.Lex();
Operands.push_back(
AArch64Operand::CreateToken("[", false, LBracS, getContext()));
Operands.push_back(
AArch64Operand::CreateToken("1", false, IntS, getContext()));
Operands.push_back(
AArch64Operand::CreateToken("]", false, RBracS, getContext()));
return false;
}
}
}
}
return false;
}
bool AArch64AsmParser::parseSymbolicImmVal(const MCExpr *&ImmVal) {
MCAsmParser &Parser = getParser();
bool HasELFModifier = false;
AArch64MCExpr::VariantKind RefKind;
if (Parser.getTok().is(AsmToken::Colon)) {
Parser.Lex(); // Eat ':"
HasELFModifier = true;
if (Parser.getTok().isNot(AsmToken::Identifier)) {
Error(Parser.getTok().getLoc(),
"expect relocation specifier in operand after ':'");
return true;
}
std::string LowerCase = Parser.getTok().getIdentifier().lower();
RefKind = StringSwitch<AArch64MCExpr::VariantKind>(LowerCase)
.Case("lo12", AArch64MCExpr::VK_LO12)
.Case("abs_g3", AArch64MCExpr::VK_ABS_G3)
.Case("abs_g2", AArch64MCExpr::VK_ABS_G2)
.Case("abs_g2_s", AArch64MCExpr::VK_ABS_G2_S)
.Case("abs_g2_nc", AArch64MCExpr::VK_ABS_G2_NC)
.Case("abs_g1", AArch64MCExpr::VK_ABS_G1)
.Case("abs_g1_s", AArch64MCExpr::VK_ABS_G1_S)
.Case("abs_g1_nc", AArch64MCExpr::VK_ABS_G1_NC)
.Case("abs_g0", AArch64MCExpr::VK_ABS_G0)
.Case("abs_g0_s", AArch64MCExpr::VK_ABS_G0_S)
.Case("abs_g0_nc", AArch64MCExpr::VK_ABS_G0_NC)
.Case("dtprel_g2", AArch64MCExpr::VK_DTPREL_G2)
.Case("dtprel_g1", AArch64MCExpr::VK_DTPREL_G1)
.Case("dtprel_g1_nc", AArch64MCExpr::VK_DTPREL_G1_NC)
.Case("dtprel_g0", AArch64MCExpr::VK_DTPREL_G0)
.Case("dtprel_g0_nc", AArch64MCExpr::VK_DTPREL_G0_NC)
.Case("dtprel_hi12", AArch64MCExpr::VK_DTPREL_HI12)
.Case("dtprel_lo12", AArch64MCExpr::VK_DTPREL_LO12)
.Case("dtprel_lo12_nc", AArch64MCExpr::VK_DTPREL_LO12_NC)
.Case("tprel_g2", AArch64MCExpr::VK_TPREL_G2)
.Case("tprel_g1", AArch64MCExpr::VK_TPREL_G1)
.Case("tprel_g1_nc", AArch64MCExpr::VK_TPREL_G1_NC)
.Case("tprel_g0", AArch64MCExpr::VK_TPREL_G0)
.Case("tprel_g0_nc", AArch64MCExpr::VK_TPREL_G0_NC)
.Case("tprel_hi12", AArch64MCExpr::VK_TPREL_HI12)
.Case("tprel_lo12", AArch64MCExpr::VK_TPREL_LO12)
.Case("tprel_lo12_nc", AArch64MCExpr::VK_TPREL_LO12_NC)
.Case("tlsdesc_lo12", AArch64MCExpr::VK_TLSDESC_LO12)
.Case("got", AArch64MCExpr::VK_GOT_PAGE)
.Case("got_lo12", AArch64MCExpr::VK_GOT_LO12)
.Case("gottprel", AArch64MCExpr::VK_GOTTPREL_PAGE)
.Case("gottprel_lo12", AArch64MCExpr::VK_GOTTPREL_LO12_NC)
.Case("gottprel_g1", AArch64MCExpr::VK_GOTTPREL_G1)
.Case("gottprel_g0_nc", AArch64MCExpr::VK_GOTTPREL_G0_NC)
.Case("tlsdesc", AArch64MCExpr::VK_TLSDESC_PAGE)
.Default(AArch64MCExpr::VK_INVALID);
if (RefKind == AArch64MCExpr::VK_INVALID) {
Error(Parser.getTok().getLoc(),
"expect relocation specifier in operand after ':'");
return true;
}
Parser.Lex(); // Eat identifier
if (Parser.getTok().isNot(AsmToken::Colon)) {
Error(Parser.getTok().getLoc(), "expect ':' after relocation specifier");
return true;
}
Parser.Lex(); // Eat ':'
}
if (getParser().parseExpression(ImmVal))
return true;
if (HasELFModifier)
ImmVal = AArch64MCExpr::create(ImmVal, RefKind, getContext());
return false;
}
/// parseVectorList - Parse a vector list operand for AdvSIMD instructions.
bool AArch64AsmParser::parseVectorList(OperandVector &Operands) {
MCAsmParser &Parser = getParser();
assert(Parser.getTok().is(AsmToken::LCurly) && "Token is not a Left Bracket");
SMLoc S = getLoc();
Parser.Lex(); // Eat left bracket token.
StringRef Kind;
int64_t FirstReg = tryMatchVectorRegister(Kind, true);
if (FirstReg == -1)
return true;
int64_t PrevReg = FirstReg;
unsigned Count = 1;
if (Parser.getTok().is(AsmToken::Minus)) {
Parser.Lex(); // Eat the minus.
SMLoc Loc = getLoc();
StringRef NextKind;
int64_t Reg = tryMatchVectorRegister(NextKind, true);
if (Reg == -1)
return true;
// Any Kind suffices must match on all regs in the list.
if (Kind != NextKind)
return Error(Loc, "mismatched register size suffix");
unsigned Space = (PrevReg < Reg) ? (Reg - PrevReg) : (Reg + 32 - PrevReg);
if (Space == 0 || Space > 3) {
return Error(Loc, "invalid number of vectors");
}
Count += Space;
}
else {
while (Parser.getTok().is(AsmToken::Comma)) {
Parser.Lex(); // Eat the comma token.
SMLoc Loc = getLoc();
StringRef NextKind;
int64_t Reg = tryMatchVectorRegister(NextKind, true);
if (Reg == -1)
return true;
// Any Kind suffices must match on all regs in the list.
if (Kind != NextKind)
return Error(Loc, "mismatched register size suffix");
// Registers must be incremental (with wraparound at 31)
if (getContext().getRegisterInfo()->getEncodingValue(Reg) !=
(getContext().getRegisterInfo()->getEncodingValue(PrevReg) + 1) % 32)
return Error(Loc, "registers must be sequential");
PrevReg = Reg;
++Count;
}
}
if (Parser.getTok().isNot(AsmToken::RCurly))
return Error(getLoc(), "'}' expected");
Parser.Lex(); // Eat the '}' token.
if (Count > 4)
return Error(S, "invalid number of vectors");
unsigned NumElements = 0;
char ElementKind = 0;
if (!Kind.empty())
parseValidVectorKind(Kind, NumElements, ElementKind);
Operands.push_back(AArch64Operand::CreateVectorList(
FirstReg, Count, NumElements, ElementKind, S, getLoc(), getContext()));
// If there is an index specifier following the list, parse that too.
if (Parser.getTok().is(AsmToken::LBrac)) {
SMLoc SIdx = getLoc();
Parser.Lex(); // Eat left bracket token.
const MCExpr *ImmVal;
if (getParser().parseExpression(ImmVal))
return false;
const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(ImmVal);
if (!MCE) {
TokError("immediate value expected for vector index");
return false;
}
SMLoc E = getLoc();
if (Parser.getTok().isNot(AsmToken::RBrac)) {
Error(E, "']' expected");
return false;
}
Parser.Lex(); // Eat right bracket token.
Operands.push_back(AArch64Operand::CreateVectorIndex(MCE->getValue(), SIdx,
E, getContext()));
}
return false;
}
AArch64AsmParser::OperandMatchResultTy
AArch64AsmParser::tryParseGPR64sp0Operand(OperandVector &Operands) {
MCAsmParser &Parser = getParser();
const AsmToken &Tok = Parser.getTok();
if (!Tok.is(AsmToken::Identifier))
return MatchOperand_NoMatch;
unsigned RegNum = matchRegisterNameAlias(Tok.getString().lower(), false);
MCContext &Ctx = getContext();
const MCRegisterInfo *RI = Ctx.getRegisterInfo();
if (!RI->getRegClass(AArch64::GPR64spRegClassID).contains(RegNum))
return MatchOperand_NoMatch;
SMLoc S = getLoc();
Parser.Lex(); // Eat register
if (Parser.getTok().isNot(AsmToken::Comma)) {
Operands.push_back(
AArch64Operand::CreateReg(RegNum, false, S, getLoc(), Ctx));
return MatchOperand_Success;
}
Parser.Lex(); // Eat comma.
if (Parser.getTok().is(AsmToken::Hash))
Parser.Lex(); // Eat hash
if (Parser.getTok().isNot(AsmToken::Integer)) {
Error(getLoc(), "index must be absent or #0");
return MatchOperand_ParseFail;
}
const MCExpr *ImmVal;
if (Parser.parseExpression(ImmVal) || !isa<MCConstantExpr>(ImmVal) ||
cast<MCConstantExpr>(ImmVal)->getValue() != 0) {
Error(getLoc(), "index must be absent or #0");
return MatchOperand_ParseFail;
}
Operands.push_back(
AArch64Operand::CreateReg(RegNum, false, S, getLoc(), Ctx));
return MatchOperand_Success;
}
/// parseOperand - Parse a arm instruction operand. For now this parses the
/// operand regardless of the mnemonic.
bool AArch64AsmParser::parseOperand(OperandVector &Operands, bool isCondCode,
bool invertCondCode) {
MCAsmParser &Parser = getParser();
// Check if the current operand has a custom associated parser, if so, try to
// custom parse the operand, or fallback to the general approach.
OperandMatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic);
if (ResTy == MatchOperand_Success)
return false;
// If there wasn't a custom match, try the generic matcher below. Otherwise,
// there was a match, but an error occurred, in which case, just return that
// the operand parsing failed.
if (ResTy == MatchOperand_ParseFail)
return true;
// Nothing custom, so do general case parsing.
SMLoc S, E;
switch (getLexer().getKind()) {
default: {
SMLoc S = getLoc();
const MCExpr *Expr;
if (parseSymbolicImmVal(Expr))
return Error(S, "invalid operand");
SMLoc E = SMLoc::getFromPointer(getLoc().getPointer() - 1);
Operands.push_back(AArch64Operand::CreateImm(Expr, S, E, getContext()));
return false;
}
case AsmToken::LBrac: {
SMLoc Loc = Parser.getTok().getLoc();
Operands.push_back(AArch64Operand::CreateToken("[", false, Loc,
getContext()));
Parser.Lex(); // Eat '['
// There's no comma after a '[', so we can parse the next operand
// immediately.
return parseOperand(Operands, false, false);
}
case AsmToken::LCurly:
return parseVectorList(Operands);
case AsmToken::Identifier: {
// If we're expecting a Condition Code operand, then just parse that.
if (isCondCode)
return parseCondCode(Operands, invertCondCode);
// If it's a register name, parse it.
if (!parseRegister(Operands))
return false;
// This could be an optional "shift" or "extend" operand.
OperandMatchResultTy GotShift = tryParseOptionalShiftExtend(Operands);
// We can only continue if no tokens were eaten.
if (GotShift != MatchOperand_NoMatch)
return GotShift;
// This was not a register so parse other operands that start with an
// identifier (like labels) as expressions and create them as immediates.
const MCExpr *IdVal;
S = getLoc();
if (getParser().parseExpression(IdVal))
return true;
E = SMLoc::getFromPointer(getLoc().getPointer() - 1);
Operands.push_back(AArch64Operand::CreateImm(IdVal, S, E, getContext()));
return false;
}
case AsmToken::Integer:
case AsmToken::Real:
case AsmToken::Hash: {
// #42 -> immediate.
S = getLoc();
if (getLexer().is(AsmToken::Hash))
Parser.Lex();
// Parse a negative sign
bool isNegative = false;
if (Parser.getTok().is(AsmToken::Minus)) {
isNegative = true;
// We need to consume this token only when we have a Real, otherwise
// we let parseSymbolicImmVal take care of it
if (Parser.getLexer().peekTok().is(AsmToken::Real))
Parser.Lex();
}
// The only Real that should come through here is a literal #0.0 for
// the fcmp[e] r, #0.0 instructions. They expect raw token operands,
// so convert the value.
const AsmToken &Tok = Parser.getTok();
if (Tok.is(AsmToken::Real)) {
APFloat RealVal(APFloat::IEEEdouble, Tok.getString());
uint64_t IntVal = RealVal.bitcastToAPInt().getZExtValue();
if (Mnemonic != "fcmp" && Mnemonic != "fcmpe" && Mnemonic != "fcmeq" &&
Mnemonic != "fcmge" && Mnemonic != "fcmgt" && Mnemonic != "fcmle" &&
Mnemonic != "fcmlt")
return TokError("unexpected floating point literal");
else if (IntVal != 0 || isNegative)
return TokError("expected floating-point constant #0.0");
Parser.Lex(); // Eat the token.
Operands.push_back(
AArch64Operand::CreateToken("#0", false, S, getContext()));
Operands.push_back(
AArch64Operand::CreateToken(".0", false, S, getContext()));
return false;
}
const MCExpr *ImmVal;
if (parseSymbolicImmVal(ImmVal))
return true;
E = SMLoc::getFromPointer(getLoc().getPointer() - 1);
Operands.push_back(AArch64Operand::CreateImm(ImmVal, S, E, getContext()));
return false;
}
case AsmToken::Equal: {
SMLoc Loc = Parser.getTok().getLoc();
if (Mnemonic != "ldr") // only parse for ldr pseudo (e.g. ldr r0, =val)
return Error(Loc, "unexpected token in operand");
Parser.Lex(); // Eat '='
const MCExpr *SubExprVal;
if (getParser().parseExpression(SubExprVal))
return true;
if (Operands.size() < 2 ||
!static_cast<AArch64Operand &>(*Operands[1]).isReg())
return Error(Loc, "Only valid when first operand is register");
bool IsXReg =
AArch64MCRegisterClasses[AArch64::GPR64allRegClassID].contains(
Operands[1]->getReg());
MCContext& Ctx = getContext();
E = SMLoc::getFromPointer(Loc.getPointer() - 1);
// If the op is an imm and can be fit into a mov, then replace ldr with mov.
if (isa<MCConstantExpr>(SubExprVal)) {
uint64_t Imm = (cast<MCConstantExpr>(SubExprVal))->getValue();
uint32_t ShiftAmt = 0, MaxShiftAmt = IsXReg ? 48 : 16;
while(Imm > 0xFFFF && countTrailingZeros(Imm) >= 16) {
ShiftAmt += 16;
Imm >>= 16;
}
if (ShiftAmt <= MaxShiftAmt && Imm <= 0xFFFF) {
Operands[0] = AArch64Operand::CreateToken("movz", false, Loc, Ctx);
Operands.push_back(AArch64Operand::CreateImm(
MCConstantExpr::create(Imm, Ctx), S, E, Ctx));
if (ShiftAmt)
Operands.push_back(AArch64Operand::CreateShiftExtend(AArch64_AM::LSL,
ShiftAmt, true, S, E, Ctx));
return false;
}
APInt Simm = APInt(64, Imm << ShiftAmt);
// check if the immediate is an unsigned or signed 32-bit int for W regs
if (!IsXReg && !(Simm.isIntN(32) || Simm.isSignedIntN(32)))
return Error(Loc, "Immediate too large for register");
}
// If it is a label or an imm that cannot fit in a movz, put it into CP.
const MCExpr *CPLoc =
getTargetStreamer().addConstantPoolEntry(SubExprVal, IsXReg ? 8 : 4, Loc);
Operands.push_back(AArch64Operand::CreateImm(CPLoc, S, E, Ctx));
return false;
}
}
}
/// ParseInstruction - Parse an AArch64 instruction mnemonic followed by its
/// operands.
bool AArch64AsmParser::ParseInstruction(ParseInstructionInfo &Info,
StringRef Name, SMLoc NameLoc,
OperandVector &Operands) {
MCAsmParser &Parser = getParser();
Name = StringSwitch<StringRef>(Name.lower())
.Case("beq", "b.eq")
.Case("bne", "b.ne")
.Case("bhs", "b.hs")
.Case("bcs", "b.cs")
.Case("blo", "b.lo")
.Case("bcc", "b.cc")
.Case("bmi", "b.mi")
.Case("bpl", "b.pl")
.Case("bvs", "b.vs")
.Case("bvc", "b.vc")
.Case("bhi", "b.hi")
.Case("bls", "b.ls")
.Case("bge", "b.ge")
.Case("blt", "b.lt")
.Case("bgt", "b.gt")
.Case("ble", "b.le")
.Case("bal", "b.al")
.Case("bnv", "b.nv")
.Default(Name);
// First check for the AArch64-specific .req directive.
if (Parser.getTok().is(AsmToken::Identifier) &&
Parser.getTok().getIdentifier() == ".req") {
parseDirectiveReq(Name, NameLoc);
// We always return 'error' for this, as we're done with this
// statement and don't need to match the 'instruction."
return true;
}
// Create the leading tokens for the mnemonic, split by '.' characters.
size_t Start = 0, Next = Name.find('.');
StringRef Head = Name.slice(Start, Next);
// IC, DC, AT, and TLBI instructions are aliases for the SYS instruction.
if (Head == "ic" || Head == "dc" || Head == "at" || Head == "tlbi") {
bool IsError = parseSysAlias(Head, NameLoc, Operands);
if (IsError && getLexer().isNot(AsmToken::EndOfStatement))
Parser.eatToEndOfStatement();
return IsError;
}
Operands.push_back(
AArch64Operand::CreateToken(Head, false, NameLoc, getContext()));
Mnemonic = Head;
// Handle condition codes for a branch mnemonic
if (Head == "b" && Next != StringRef::npos) {
Start = Next;
Next = Name.find('.', Start + 1);
Head = Name.slice(Start + 1, Next);
SMLoc SuffixLoc = SMLoc::getFromPointer(NameLoc.getPointer() +
(Head.data() - Name.data()));
AArch64CC::CondCode CC = parseCondCodeString(Head);
if (CC == AArch64CC::Invalid)
return Error(SuffixLoc, "invalid condition code");
Operands.push_back(
AArch64Operand::CreateToken(".", true, SuffixLoc, getContext()));
Operands.push_back(
AArch64Operand::CreateCondCode(CC, NameLoc, NameLoc, getContext()));
}
// Add the remaining tokens in the mnemonic.
while (Next != StringRef::npos) {
Start = Next;
Next = Name.find('.', Start + 1);
Head = Name.slice(Start, Next);
SMLoc SuffixLoc = SMLoc::getFromPointer(NameLoc.getPointer() +
(Head.data() - Name.data()) + 1);
Operands.push_back(
AArch64Operand::CreateToken(Head, true, SuffixLoc, getContext()));
}
// Conditional compare instructions have a Condition Code operand, which needs
// to be parsed and an immediate operand created.
bool condCodeFourthOperand =
(Head == "ccmp" || Head == "ccmn" || Head == "fccmp" ||
Head == "fccmpe" || Head == "fcsel" || Head == "csel" ||
Head == "csinc" || Head == "csinv" || Head == "csneg");
// These instructions are aliases to some of the conditional select
// instructions. However, the condition code is inverted in the aliased
// instruction.
//
// FIXME: Is this the correct way to handle these? Or should the parser
// generate the aliased instructions directly?
bool condCodeSecondOperand = (Head == "cset" || Head == "csetm");
bool condCodeThirdOperand =
(Head == "cinc" || Head == "cinv" || Head == "cneg");
// Read the remaining operands.
if (getLexer().isNot(AsmToken::EndOfStatement)) {
// Read the first operand.
if (parseOperand(Operands, false, false)) {
Parser.eatToEndOfStatement();
return true;
}
unsigned N = 2;
while (getLexer().is(AsmToken::Comma)) {
Parser.Lex(); // Eat the comma.
// Parse and remember the operand.
if (parseOperand(Operands, (N == 4 && condCodeFourthOperand) ||
(N == 3 && condCodeThirdOperand) ||
(N == 2 && condCodeSecondOperand),
condCodeSecondOperand || condCodeThirdOperand)) {
Parser.eatToEndOfStatement();
return true;
}
// After successfully parsing some operands there are two special cases to
// consider (i.e. notional operands not separated by commas). Both are due
// to memory specifiers:
// + An RBrac will end an address for load/store/prefetch
// + An '!' will indicate a pre-indexed operation.
//
// It's someone else's responsibility to make sure these tokens are sane
// in the given context!
if (Parser.getTok().is(AsmToken::RBrac)) {
SMLoc Loc = Parser.getTok().getLoc();
Operands.push_back(AArch64Operand::CreateToken("]", false, Loc,
getContext()));
Parser.Lex();
}
if (Parser.getTok().is(AsmToken::Exclaim)) {
SMLoc Loc = Parser.getTok().getLoc();
Operands.push_back(AArch64Operand::CreateToken("!", false, Loc,
getContext()));
Parser.Lex();
}
++N;
}
}
if (getLexer().isNot(AsmToken::EndOfStatement)) {
SMLoc Loc = Parser.getTok().getLoc();
Parser.eatToEndOfStatement();
return Error(Loc, "unexpected token in argument list");
}
Parser.Lex(); // Consume the EndOfStatement
return false;
}
// FIXME: This entire function is a giant hack to provide us with decent
// operand range validation/diagnostics until TableGen/MC can be extended
// to support autogeneration of this kind of validation.
bool AArch64AsmParser::validateInstruction(MCInst &Inst,
SmallVectorImpl<SMLoc> &Loc) {
const MCRegisterInfo *RI = getContext().getRegisterInfo();
// Check for indexed addressing modes w/ the base register being the
// same as a destination/source register or pair load where
// the Rt == Rt2. All of those are undefined behaviour.
switch (Inst.getOpcode()) {
case AArch64::LDPSWpre:
case AArch64::LDPWpost:
case AArch64::LDPWpre:
case AArch64::LDPXpost:
case AArch64::LDPXpre: {
unsigned Rt = Inst.getOperand(1).getReg();
unsigned Rt2 = Inst.getOperand(2).getReg();
unsigned Rn = Inst.getOperand(3).getReg();
if (RI->isSubRegisterEq(Rn, Rt))
return Error(Loc[0], "unpredictable LDP instruction, writeback base "
"is also a destination");
if (RI->isSubRegisterEq(Rn, Rt2))
return Error(Loc[1], "unpredictable LDP instruction, writeback base "
"is also a destination");
LLVM_FALLTHROUGH;
}
case AArch64::LDPDi:
case AArch64::LDPQi:
case AArch64::LDPSi:
case AArch64::LDPSWi:
case AArch64::LDPWi:
case AArch64::LDPXi: {
unsigned Rt = Inst.getOperand(0).getReg();
unsigned Rt2 = Inst.getOperand(1).getReg();
if (Rt == Rt2)
return Error(Loc[1], "unpredictable LDP instruction, Rt2==Rt");
break;
}
case AArch64::LDPDpost:
case AArch64::LDPDpre:
case AArch64::LDPQpost:
case AArch64::LDPQpre:
case AArch64::LDPSpost:
case AArch64::LDPSpre:
case AArch64::LDPSWpost: {
unsigned Rt = Inst.getOperand(1).getReg();
unsigned Rt2 = Inst.getOperand(2).getReg();
if (Rt == Rt2)
return Error(Loc[1], "unpredictable LDP instruction, Rt2==Rt");
break;
}
case AArch64::STPDpost:
case AArch64::STPDpre:
case AArch64::STPQpost:
case AArch64::STPQpre:
case AArch64::STPSpost:
case AArch64::STPSpre:
case AArch64::STPWpost:
case AArch64::STPWpre:
case AArch64::STPXpost:
case AArch64::STPXpre: {
unsigned Rt = Inst.getOperand(1).getReg();
unsigned Rt2 = Inst.getOperand(2).getReg();
unsigned Rn = Inst.getOperand(3).getReg();
if (RI->isSubRegisterEq(Rn, Rt))
return Error(Loc[0], "unpredictable STP instruction, writeback base "
"is also a source");
if (RI->isSubRegisterEq(Rn, Rt2))
return Error(Loc[1], "unpredictable STP instruction, writeback base "
"is also a source");
break;
}
case AArch64::LDRBBpre:
case AArch64::LDRBpre:
case AArch64::LDRHHpre:
case AArch64::LDRHpre:
case AArch64::LDRSBWpre:
case AArch64::LDRSBXpre:
case AArch64::LDRSHWpre:
case AArch64::LDRSHXpre:
case AArch64::LDRSWpre:
case AArch64::LDRWpre:
case AArch64::LDRXpre:
case AArch64::LDRBBpost:
case AArch64::LDRBpost:
case AArch64::LDRHHpost:
case AArch64::LDRHpost:
case AArch64::LDRSBWpost:
case AArch64::LDRSBXpost:
case AArch64::LDRSHWpost:
case AArch64::LDRSHXpost:
case AArch64::LDRSWpost:
case AArch64::LDRWpost:
case AArch64::LDRXpost: {
unsigned Rt = Inst.getOperand(1).getReg();
unsigned Rn = Inst.getOperand(2).getReg();
if (RI->isSubRegisterEq(Rn, Rt))
return Error(Loc[0], "unpredictable LDR instruction, writeback base "
"is also a source");
break;
}
case AArch64::STRBBpost:
case AArch64::STRBpost:
case AArch64::STRHHpost:
case AArch64::STRHpost:
case AArch64::STRWpost:
case AArch64::STRXpost:
case AArch64::STRBBpre:
case AArch64::STRBpre:
case AArch64::STRHHpre:
case AArch64::STRHpre:
case AArch64::STRWpre:
case AArch64::STRXpre: {
unsigned Rt = Inst.getOperand(1).getReg();
unsigned Rn = Inst.getOperand(2).getReg();
if (RI->isSubRegisterEq(Rn, Rt))
return Error(Loc[0], "unpredictable STR instruction, writeback base "
"is also a source");
break;
}
}
// Now check immediate ranges. Separate from the above as there is overlap
// in the instructions being checked and this keeps the nested conditionals
// to a minimum.
switch (Inst.getOpcode()) {
case AArch64::ADDSWri:
case AArch64::ADDSXri:
case AArch64::ADDWri:
case AArch64::ADDXri:
case AArch64::SUBSWri:
case AArch64::SUBSXri:
case AArch64::SUBWri:
case AArch64::SUBXri: {
// Annoyingly we can't do this in the isAddSubImm predicate, so there is
// some slight duplication here.
if (Inst.getOperand(2).isExpr()) {
const MCExpr *Expr = Inst.getOperand(2).getExpr();
AArch64MCExpr::VariantKind ELFRefKind;
MCSymbolRefExpr::VariantKind DarwinRefKind;
int64_t Addend;
if (!classifySymbolRef(Expr, ELFRefKind, DarwinRefKind, Addend)) {
return Error(Loc[2], "invalid immediate expression");
}
// Only allow these with ADDXri.
if ((DarwinRefKind == MCSymbolRefExpr::VK_PAGEOFF ||
DarwinRefKind == MCSymbolRefExpr::VK_TLVPPAGEOFF) &&
Inst.getOpcode() == AArch64::ADDXri)
return false;
// Only allow these with ADDXri/ADDWri
if ((ELFRefKind == AArch64MCExpr::VK_LO12 ||
ELFRefKind == AArch64MCExpr::VK_DTPREL_HI12 ||
ELFRefKind == AArch64MCExpr::VK_DTPREL_LO12 ||
ELFRefKind == AArch64MCExpr::VK_DTPREL_LO12_NC ||
ELFRefKind == AArch64MCExpr::VK_TPREL_HI12 ||
ELFRefKind == AArch64MCExpr::VK_TPREL_LO12 ||
ELFRefKind == AArch64MCExpr::VK_TPREL_LO12_NC ||
ELFRefKind == AArch64MCExpr::VK_TLSDESC_LO12) &&
(Inst.getOpcode() == AArch64::ADDXri ||
Inst.getOpcode() == AArch64::ADDWri))
return false;
// Don't allow expressions in the immediate field otherwise
return Error(Loc[2], "invalid immediate expression");
}
return false;
}
default:
return false;
}
}
bool AArch64AsmParser::showMatchError(SMLoc Loc, unsigned ErrCode) {
switch (ErrCode) {
case Match_MissingFeature:
return Error(Loc,
"instruction requires a CPU feature not currently enabled");
case Match_InvalidOperand:
return Error(Loc, "invalid operand for instruction");
case Match_InvalidSuffix:
return Error(Loc, "invalid type suffix for instruction");
case Match_InvalidCondCode:
return Error(Loc, "expected AArch64 condition code");
case Match_AddSubRegExtendSmall:
return Error(Loc,
"expected '[su]xt[bhw]' or 'lsl' with optional integer in range [0, 4]");
case Match_AddSubRegExtendLarge:
return Error(Loc,
"expected 'sxtx' 'uxtx' or 'lsl' with optional integer in range [0, 4]");
case Match_AddSubSecondSource:
return Error(Loc,
"expected compatible register, symbol or integer in range [0, 4095]");
case Match_LogicalSecondSource:
return Error(Loc, "expected compatible register or logical immediate");
case Match_InvalidMovImm32Shift:
return Error(Loc, "expected 'lsl' with optional integer 0 or 16");
case Match_InvalidMovImm64Shift:
return Error(Loc, "expected 'lsl' with optional integer 0, 16, 32 or 48");
case Match_AddSubRegShift32:
return Error(Loc,
"expected 'lsl', 'lsr' or 'asr' with optional integer in range [0, 31]");
case Match_AddSubRegShift64:
return Error(Loc,
"expected 'lsl', 'lsr' or 'asr' with optional integer in range [0, 63]");
case Match_InvalidFPImm:
return Error(Loc,
"expected compatible register or floating-point constant");
case Match_InvalidMemoryIndexedSImm9:
return Error(Loc, "index must be an integer in range [-256, 255].");
case Match_InvalidMemoryIndexed4SImm7:
return Error(Loc, "index must be a multiple of 4 in range [-256, 252].");
case Match_InvalidMemoryIndexed8SImm7:
return Error(Loc, "index must be a multiple of 8 in range [-512, 504].");
case Match_InvalidMemoryIndexed16SImm7:
return Error(Loc, "index must be a multiple of 16 in range [-1024, 1008].");
case Match_InvalidMemoryWExtend8:
return Error(Loc,
"expected 'uxtw' or 'sxtw' with optional shift of #0");
case Match_InvalidMemoryWExtend16:
return Error(Loc,
"expected 'uxtw' or 'sxtw' with optional shift of #0 or #1");
case Match_InvalidMemoryWExtend32:
return Error(Loc,
"expected 'uxtw' or 'sxtw' with optional shift of #0 or #2");
case Match_InvalidMemoryWExtend64:
return Error(Loc,
"expected 'uxtw' or 'sxtw' with optional shift of #0 or #3");
case Match_InvalidMemoryWExtend128:
return Error(Loc,
"expected 'uxtw' or 'sxtw' with optional shift of #0 or #4");
case Match_InvalidMemoryXExtend8:
return Error(Loc,
"expected 'lsl' or 'sxtx' with optional shift of #0");
case Match_InvalidMemoryXExtend16:
return Error(Loc,
"expected 'lsl' or 'sxtx' with optional shift of #0 or #1");
case Match_InvalidMemoryXExtend32:
return Error(Loc,
"expected 'lsl' or 'sxtx' with optional shift of #0 or #2");
case Match_InvalidMemoryXExtend64:
return Error(Loc,
"expected 'lsl' or 'sxtx' with optional shift of #0 or #3");
case Match_InvalidMemoryXExtend128:
return Error(Loc,
"expected 'lsl' or 'sxtx' with optional shift of #0 or #4");
case Match_InvalidMemoryIndexed1:
return Error(Loc, "index must be an integer in range [0, 4095].");
case Match_InvalidMemoryIndexed2:
return Error(Loc, "index must be a multiple of 2 in range [0, 8190].");
case Match_InvalidMemoryIndexed4:
return Error(Loc, "index must be a multiple of 4 in range [0, 16380].");
case Match_InvalidMemoryIndexed8:
return Error(Loc, "index must be a multiple of 8 in range [0, 32760].");
case Match_InvalidMemoryIndexed16:
return Error(Loc, "index must be a multiple of 16 in range [0, 65520].");
case Match_InvalidImm0_1:
return Error(Loc, "immediate must be an integer in range [0, 1].");
case Match_InvalidImm0_7:
return Error(Loc, "immediate must be an integer in range [0, 7].");
case Match_InvalidImm0_15:
return Error(Loc, "immediate must be an integer in range [0, 15].");
case Match_InvalidImm0_31:
return Error(Loc, "immediate must be an integer in range [0, 31].");
case Match_InvalidImm0_63:
return Error(Loc, "immediate must be an integer in range [0, 63].");
case Match_InvalidImm0_127:
return Error(Loc, "immediate must be an integer in range [0, 127].");
case Match_InvalidImm0_65535:
return Error(Loc, "immediate must be an integer in range [0, 65535].");
case Match_InvalidImm1_8:
return Error(Loc, "immediate must be an integer in range [1, 8].");
case Match_InvalidImm1_16:
return Error(Loc, "immediate must be an integer in range [1, 16].");
case Match_InvalidImm1_32:
return Error(Loc, "immediate must be an integer in range [1, 32].");
case Match_InvalidImm1_64:
return Error(Loc, "immediate must be an integer in range [1, 64].");
case Match_InvalidIndex1:
return Error(Loc, "expected lane specifier '[1]'");
case Match_InvalidIndexB:
return Error(Loc, "vector lane must be an integer in range [0, 15].");
case Match_InvalidIndexH:
return Error(Loc, "vector lane must be an integer in range [0, 7].");
case Match_InvalidIndexS:
return Error(Loc, "vector lane must be an integer in range [0, 3].");
case Match_InvalidIndexD:
return Error(Loc, "vector lane must be an integer in range [0, 1].");
case Match_InvalidLabel:
return Error(Loc, "expected label or encodable integer pc offset");
case Match_MRS:
return Error(Loc, "expected readable system register");
case Match_MSR:
return Error(Loc, "expected writable system register or pstate");
case Match_MnemonicFail:
return Error(Loc, "unrecognized instruction mnemonic");
default:
llvm_unreachable("unexpected error code!");
}
}
static const char *getSubtargetFeatureName(uint64_t Val);
bool AArch64AsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
OperandVector &Operands,
MCStreamer &Out,
uint64_t &ErrorInfo,
bool MatchingInlineAsm) {
assert(!Operands.empty() && "Unexpect empty operand list!");
AArch64Operand &Op = static_cast<AArch64Operand &>(*Operands[0]);
assert(Op.isToken() && "Leading operand should always be a mnemonic!");
StringRef Tok = Op.getToken();
unsigned NumOperands = Operands.size();
if (NumOperands == 4 && Tok == "lsl") {
AArch64Operand &Op2 = static_cast<AArch64Operand &>(*Operands[2]);
AArch64Operand &Op3 = static_cast<AArch64Operand &>(*Operands[3]);
if (Op2.isReg() && Op3.isImm()) {
const MCConstantExpr *Op3CE = dyn_cast<MCConstantExpr>(Op3.getImm());
if (Op3CE) {
uint64_t Op3Val = Op3CE->getValue();
uint64_t NewOp3Val = 0;
uint64_t NewOp4Val = 0;
if (AArch64MCRegisterClasses[AArch64::GPR32allRegClassID].contains(
Op2.getReg())) {
NewOp3Val = (32 - Op3Val) & 0x1f;
NewOp4Val = 31 - Op3Val;
} else {
NewOp3Val = (64 - Op3Val) & 0x3f;
NewOp4Val = 63 - Op3Val;
}
const MCExpr *NewOp3 = MCConstantExpr::create(NewOp3Val, getContext());
const MCExpr *NewOp4 = MCConstantExpr::create(NewOp4Val, getContext());
Operands[0] = AArch64Operand::CreateToken(
"ubfm", false, Op.getStartLoc(), getContext());
Operands.push_back(AArch64Operand::CreateImm(
NewOp4, Op3.getStartLoc(), Op3.getEndLoc(), getContext()));
Operands[3] = AArch64Operand::CreateImm(NewOp3, Op3.getStartLoc(),
Op3.getEndLoc(), getContext());
}
}
} else if (NumOperands == 4 && Tok == "bfc") {
// FIXME: Horrible hack to handle BFC->BFM alias.
AArch64Operand &Op1 = static_cast<AArch64Operand &>(*Operands[1]);
AArch64Operand LSBOp = static_cast<AArch64Operand &>(*Operands[2]);
AArch64Operand WidthOp = static_cast<AArch64Operand &>(*Operands[3]);
if (Op1.isReg() && LSBOp.isImm() && WidthOp.isImm()) {
const MCConstantExpr *LSBCE = dyn_cast<MCConstantExpr>(LSBOp.getImm());
const MCConstantExpr *WidthCE = dyn_cast<MCConstantExpr>(WidthOp.getImm());
if (LSBCE && WidthCE) {
uint64_t LSB = LSBCE->getValue();
uint64_t Width = WidthCE->getValue();
uint64_t RegWidth = 0;
if (AArch64MCRegisterClasses[AArch64::GPR64allRegClassID].contains(
Op1.getReg()))
RegWidth = 64;
else
RegWidth = 32;
if (LSB >= RegWidth)
return Error(LSBOp.getStartLoc(),
"expected integer in range [0, 31]");
if (Width < 1 || Width > RegWidth)
return Error(WidthOp.getStartLoc(),
"expected integer in range [1, 32]");
uint64_t ImmR = 0;
if (RegWidth == 32)
ImmR = (32 - LSB) & 0x1f;
else
ImmR = (64 - LSB) & 0x3f;
uint64_t ImmS = Width - 1;
if (ImmR != 0 && ImmS >= ImmR)
return Error(WidthOp.getStartLoc(),
"requested insert overflows register");
const MCExpr *ImmRExpr = MCConstantExpr::create(ImmR, getContext());
const MCExpr *ImmSExpr = MCConstantExpr::create(ImmS, getContext());
Operands[0] = AArch64Operand::CreateToken(
"bfm", false, Op.getStartLoc(), getContext());
Operands[2] = AArch64Operand::CreateReg(
RegWidth == 32 ? AArch64::WZR : AArch64::XZR, false, SMLoc(),
SMLoc(), getContext());
Operands[3] = AArch64Operand::CreateImm(
ImmRExpr, LSBOp.getStartLoc(), LSBOp.getEndLoc(), getContext());
Operands.emplace_back(
AArch64Operand::CreateImm(ImmSExpr, WidthOp.getStartLoc(),
WidthOp.getEndLoc(), getContext()));
}
}
} else if (NumOperands == 5) {
// FIXME: Horrible hack to handle the BFI -> BFM, SBFIZ->SBFM, and
// UBFIZ -> UBFM aliases.
if (Tok == "bfi" || Tok == "sbfiz" || Tok == "ubfiz") {
AArch64Operand &Op1 = static_cast<AArch64Operand &>(*Operands[1]);
AArch64Operand &Op3 = static_cast<AArch64Operand &>(*Operands[3]);
AArch64Operand &Op4 = static_cast<AArch64Operand &>(*Operands[4]);
if (Op1.isReg() && Op3.isImm() && Op4.isImm()) {
const MCConstantExpr *Op3CE = dyn_cast<MCConstantExpr>(Op3.getImm());
const MCConstantExpr *Op4CE = dyn_cast<MCConstantExpr>(Op4.getImm());
if (Op3CE && Op4CE) {
uint64_t Op3Val = Op3CE->getValue();
uint64_t Op4Val = Op4CE->getValue();
uint64_t RegWidth = 0;
if (AArch64MCRegisterClasses[AArch64::GPR64allRegClassID].contains(
Op1.getReg()))
RegWidth = 64;
else
RegWidth = 32;
if (Op3Val >= RegWidth)
return Error(Op3.getStartLoc(),
"expected integer in range [0, 31]");
if (Op4Val < 1 || Op4Val > RegWidth)
return Error(Op4.getStartLoc(),
"expected integer in range [1, 32]");
uint64_t NewOp3Val = 0;
if (RegWidth == 32)
NewOp3Val = (32 - Op3Val) & 0x1f;
else
NewOp3Val = (64 - Op3Val) & 0x3f;
uint64_t NewOp4Val = Op4Val - 1;
if (NewOp3Val != 0 && NewOp4Val >= NewOp3Val)
return Error(Op4.getStartLoc(),
"requested insert overflows register");
const MCExpr *NewOp3 =
MCConstantExpr::create(NewOp3Val, getContext());
const MCExpr *NewOp4 =
MCConstantExpr::create(NewOp4Val, getContext());
Operands[3] = AArch64Operand::CreateImm(
NewOp3, Op3.getStartLoc(), Op3.getEndLoc(), getContext());
Operands[4] = AArch64Operand::CreateImm(
NewOp4, Op4.getStartLoc(), Op4.getEndLoc(), getContext());
if (Tok == "bfi")
Operands[0] = AArch64Operand::CreateToken(
"bfm", false, Op.getStartLoc(), getContext());
else if (Tok == "sbfiz")
Operands[0] = AArch64Operand::CreateToken(
"sbfm", false, Op.getStartLoc(), getContext());
else if (Tok == "ubfiz")
Operands[0] = AArch64Operand::CreateToken(
"ubfm", false, Op.getStartLoc(), getContext());
else
llvm_unreachable("No valid mnemonic for alias?");
}
}
// FIXME: Horrible hack to handle the BFXIL->BFM, SBFX->SBFM, and
// UBFX -> UBFM aliases.
} else if (NumOperands == 5 &&
(Tok == "bfxil" || Tok == "sbfx" || Tok == "ubfx")) {
AArch64Operand &Op1 = static_cast<AArch64Operand &>(*Operands[1]);
AArch64Operand &Op3 = static_cast<AArch64Operand &>(*Operands[3]);
AArch64Operand &Op4 = static_cast<AArch64Operand &>(*Operands[4]);
if (Op1.isReg() && Op3.isImm() && Op4.isImm()) {
const MCConstantExpr *Op3CE = dyn_cast<MCConstantExpr>(Op3.getImm());
const MCConstantExpr *Op4CE = dyn_cast<MCConstantExpr>(Op4.getImm());
if (Op3CE && Op4CE) {
uint64_t Op3Val = Op3CE->getValue();
uint64_t Op4Val = Op4CE->getValue();
uint64_t RegWidth = 0;
if (AArch64MCRegisterClasses[AArch64::GPR64allRegClassID].contains(
Op1.getReg()))
RegWidth = 64;
else
RegWidth = 32;
if (Op3Val >= RegWidth)
return Error(Op3.getStartLoc(),
"expected integer in range [0, 31]");
if (Op4Val < 1 || Op4Val > RegWidth)
return Error(Op4.getStartLoc(),
"expected integer in range [1, 32]");
uint64_t NewOp4Val = Op3Val + Op4Val - 1;
if (NewOp4Val >= RegWidth || NewOp4Val < Op3Val)
return Error(Op4.getStartLoc(),
"requested extract overflows register");
const MCExpr *NewOp4 =
MCConstantExpr::create(NewOp4Val, getContext());
Operands[4] = AArch64Operand::CreateImm(
NewOp4, Op4.getStartLoc(), Op4.getEndLoc(), getContext());
if (Tok == "bfxil")
Operands[0] = AArch64Operand::CreateToken(
"bfm", false, Op.getStartLoc(), getContext());
else if (Tok == "sbfx")
Operands[0] = AArch64Operand::CreateToken(
"sbfm", false, Op.getStartLoc(), getContext());
else if (Tok == "ubfx")
Operands[0] = AArch64Operand::CreateToken(
"ubfm", false, Op.getStartLoc(), getContext());
else
llvm_unreachable("No valid mnemonic for alias?");
}
}
}
}
// FIXME: Horrible hack for sxtw and uxtw with Wn src and Xd dst operands.
// InstAlias can't quite handle this since the reg classes aren't
// subclasses.
if (NumOperands == 3 && (Tok == "sxtw" || Tok == "uxtw")) {
// The source register can be Wn here, but the matcher expects a
// GPR64. Twiddle it here if necessary.
AArch64Operand &Op = static_cast<AArch64Operand &>(*Operands[2]);
if (Op.isReg()) {
unsigned Reg = getXRegFromWReg(Op.getReg());
Operands[2] = AArch64Operand::CreateReg(Reg, false, Op.getStartLoc(),
Op.getEndLoc(), getContext());
}
}
// FIXME: Likewise for sxt[bh] with a Xd dst operand
else if (NumOperands == 3 && (Tok == "sxtb" || Tok == "sxth")) {
AArch64Operand &Op = static_cast<AArch64Operand &>(*Operands[1]);
if (Op.isReg() &&
AArch64MCRegisterClasses[AArch64::GPR64allRegClassID].contains(
Op.getReg())) {
// The source register can be Wn here, but the matcher expects a
// GPR64. Twiddle it here if necessary.
AArch64Operand &Op = static_cast<AArch64Operand &>(*Operands[2]);
if (Op.isReg()) {
unsigned Reg = getXRegFromWReg(Op.getReg());
Operands[2] = AArch64Operand::CreateReg(Reg, false, Op.getStartLoc(),
Op.getEndLoc(), getContext());
}
}
}
// FIXME: Likewise for uxt[bh] with a Xd dst operand
else if (NumOperands == 3 && (Tok == "uxtb" || Tok == "uxth")) {
AArch64Operand &Op = static_cast<AArch64Operand &>(*Operands[1]);
if (Op.isReg() &&
AArch64MCRegisterClasses[AArch64::GPR64allRegClassID].contains(
Op.getReg())) {
// The source register can be Wn here, but the matcher expects a
// GPR32. Twiddle it here if necessary.
AArch64Operand &Op = static_cast<AArch64Operand &>(*Operands[1]);
if (Op.isReg()) {
unsigned Reg = getWRegFromXReg(Op.getReg());
Operands[1] = AArch64Operand::CreateReg(Reg, false, Op.getStartLoc(),
Op.getEndLoc(), getContext());
}
}
}
// Yet another horrible hack to handle FMOV Rd, #0.0 using [WX]ZR.
if (NumOperands == 3 && Tok == "fmov") {
AArch64Operand &RegOp = static_cast<AArch64Operand &>(*Operands[1]);
AArch64Operand &ImmOp = static_cast<AArch64Operand &>(*Operands[2]);
if (RegOp.isReg() && ImmOp.isFPImm() && ImmOp.getFPImm() == (unsigned)-1) {
unsigned zreg =
!AArch64MCRegisterClasses[AArch64::FPR64RegClassID].contains(
RegOp.getReg())
? AArch64::WZR
: AArch64::XZR;
Operands[2] = AArch64Operand::CreateReg(zreg, false, Op.getStartLoc(),
Op.getEndLoc(), getContext());
}
}
MCInst Inst;
// First try to match against the secondary set of tables containing the
// short-form NEON instructions (e.g. "fadd.2s v0, v1, v2").
unsigned MatchResult =
MatchInstructionImpl(Operands, Inst, ErrorInfo, MatchingInlineAsm, 1);
// If that fails, try against the alternate table containing long-form NEON:
// "fadd v0.2s, v1.2s, v2.2s"
if (MatchResult != Match_Success) {
// But first, save the short-form match result: we can use it in case the
// long-form match also fails.
auto ShortFormNEONErrorInfo = ErrorInfo;
auto ShortFormNEONMatchResult = MatchResult;
MatchResult =
MatchInstructionImpl(Operands, Inst, ErrorInfo, MatchingInlineAsm, 0);
// Now, both matches failed, and the long-form match failed on the mnemonic
// suffix token operand. The short-form match failure is probably more
// relevant: use it instead.
if (MatchResult == Match_InvalidOperand && ErrorInfo == 1 &&
Operands.size() > 1 && ((AArch64Operand &)*Operands[1]).isToken() &&
((AArch64Operand &)*Operands[1]).isTokenSuffix()) {
MatchResult = ShortFormNEONMatchResult;
ErrorInfo = ShortFormNEONErrorInfo;
}
}
switch (MatchResult) {
case Match_Success: {
// Perform range checking and other semantic validations
SmallVector<SMLoc, 8> OperandLocs;
NumOperands = Operands.size();
for (unsigned i = 1; i < NumOperands; ++i)
OperandLocs.push_back(Operands[i]->getStartLoc());
if (validateInstruction(Inst, OperandLocs))
return true;
Inst.setLoc(IDLoc);
Out.EmitInstruction(Inst, getSTI());
return false;
}
case Match_MissingFeature: {
assert(ErrorInfo && "Unknown missing feature!");
// Special case the error message for the very common case where only
// a single subtarget feature is missing (neon, e.g.).
std::string Msg = "instruction requires:";
uint64_t Mask = 1;
for (unsigned i = 0; i < (sizeof(ErrorInfo)*8-1); ++i) {
if (ErrorInfo & Mask) {
Msg += " ";
Msg += getSubtargetFeatureName(ErrorInfo & Mask);
}
Mask <<= 1;
}
return Error(IDLoc, Msg);
}
case Match_MnemonicFail:
return showMatchError(IDLoc, MatchResult);
case Match_InvalidOperand: {
SMLoc ErrorLoc = IDLoc;
if (ErrorInfo != ~0ULL) {
if (ErrorInfo >= Operands.size())
return Error(IDLoc, "too few operands for instruction");
ErrorLoc = ((AArch64Operand &)*Operands[ErrorInfo]).getStartLoc();
if (ErrorLoc == SMLoc())
ErrorLoc = IDLoc;
}
// If the match failed on a suffix token operand, tweak the diagnostic
// accordingly.
if (((AArch64Operand &)*Operands[ErrorInfo]).isToken() &&
((AArch64Operand &)*Operands[ErrorInfo]).isTokenSuffix())
MatchResult = Match_InvalidSuffix;
return showMatchError(ErrorLoc, MatchResult);
}
case Match_InvalidMemoryIndexed1:
case Match_InvalidMemoryIndexed2:
case Match_InvalidMemoryIndexed4:
case Match_InvalidMemoryIndexed8:
case Match_InvalidMemoryIndexed16:
case Match_InvalidCondCode:
case Match_AddSubRegExtendSmall:
case Match_AddSubRegExtendLarge:
case Match_AddSubSecondSource:
case Match_LogicalSecondSource:
case Match_AddSubRegShift32:
case Match_AddSubRegShift64:
case Match_InvalidMovImm32Shift:
case Match_InvalidMovImm64Shift:
case Match_InvalidFPImm:
case Match_InvalidMemoryWExtend8:
case Match_InvalidMemoryWExtend16:
case Match_InvalidMemoryWExtend32:
case Match_InvalidMemoryWExtend64:
case Match_InvalidMemoryWExtend128:
case Match_InvalidMemoryXExtend8:
case Match_InvalidMemoryXExtend16:
case Match_InvalidMemoryXExtend32:
case Match_InvalidMemoryXExtend64:
case Match_InvalidMemoryXExtend128:
case Match_InvalidMemoryIndexed4SImm7:
case Match_InvalidMemoryIndexed8SImm7:
case Match_InvalidMemoryIndexed16SImm7:
case Match_InvalidMemoryIndexedSImm9:
case Match_InvalidImm0_1:
case Match_InvalidImm0_7:
case Match_InvalidImm0_15:
case Match_InvalidImm0_31:
case Match_InvalidImm0_63:
case Match_InvalidImm0_127:
case Match_InvalidImm0_65535:
case Match_InvalidImm1_8:
case Match_InvalidImm1_16:
case Match_InvalidImm1_32:
case Match_InvalidImm1_64:
case Match_InvalidIndex1:
case Match_InvalidIndexB:
case Match_InvalidIndexH:
case Match_InvalidIndexS:
case Match_InvalidIndexD:
case Match_InvalidLabel:
case Match_MSR:
case Match_MRS: {
if (ErrorInfo >= Operands.size())
return Error(IDLoc, "too few operands for instruction");
// Any time we get here, there's nothing fancy to do. Just get the
// operand SMLoc and display the diagnostic.
SMLoc ErrorLoc = ((AArch64Operand &)*Operands[ErrorInfo]).getStartLoc();
if (ErrorLoc == SMLoc())
ErrorLoc = IDLoc;
return showMatchError(ErrorLoc, MatchResult);
}
}
llvm_unreachable("Implement any new match types added!");
}
/// ParseDirective parses the arm specific directives
bool AArch64AsmParser::ParseDirective(AsmToken DirectiveID) {
const MCObjectFileInfo::Environment Format =
getContext().getObjectFileInfo()->getObjectFileType();
bool IsMachO = Format == MCObjectFileInfo::IsMachO;
bool IsCOFF = Format == MCObjectFileInfo::IsCOFF;
StringRef IDVal = DirectiveID.getIdentifier();
SMLoc Loc = DirectiveID.getLoc();
if (IDVal == ".arch")
return parseDirectiveArch(Loc);
if (IDVal == ".cpu")
return parseDirectiveCPU(Loc);
if (IDVal == ".hword")
return parseDirectiveWord(2, Loc);
if (IDVal == ".word")
return parseDirectiveWord(4, Loc);
if (IDVal == ".xword")
return parseDirectiveWord(8, Loc);
if (IDVal == ".tlsdesccall")
return parseDirectiveTLSDescCall(Loc);
if (IDVal == ".ltorg" || IDVal == ".pool")
return parseDirectiveLtorg(Loc);
if (IDVal == ".unreq")
return parseDirectiveUnreq(Loc);
if (!IsMachO && !IsCOFF) {
if (IDVal == ".inst")
return parseDirectiveInst(Loc);
}
return parseDirectiveLOH(IDVal, Loc);
}
static const struct {
const char *Name;
const FeatureBitset Features;
} ExtensionMap[] = {
{ "crc", {AArch64::FeatureCRC} },
{ "crypto", {AArch64::FeatureCrypto} },
{ "fp", {AArch64::FeatureFPARMv8} },
{ "simd", {AArch64::FeatureNEON} },
{ "ras", {AArch64::FeatureRAS} },
// FIXME: Unsupported extensions
{ "lse", {} },
{ "pan", {} },
{ "lor", {} },
{ "rdma", {} },
{ "profile", {} },
};
/// parseDirectiveArch
/// ::= .arch token
bool AArch64AsmParser::parseDirectiveArch(SMLoc L) {
SMLoc ArchLoc = getLoc();
StringRef Arch, ExtensionString;
std::tie(Arch, ExtensionString) =
getParser().parseStringToEndOfStatement().trim().split('+');
unsigned ID = AArch64::parseArch(Arch);
if (ID == static_cast<unsigned>(AArch64::ArchKind::AK_INVALID)) {
Error(ArchLoc, "unknown arch name");
return false;
}
// Get the architecture and extension features.
std::vector<const char *> AArch64Features;
AArch64::getArchFeatures(ID, AArch64Features);
AArch64::getExtensionFeatures(AArch64::getDefaultExtensions("generic", ID),
AArch64Features);
MCSubtargetInfo &STI = copySTI();
std::vector<std::string> ArchFeatures(AArch64Features.begin(), AArch64Features.end());
STI.setDefaultFeatures("generic", join(ArchFeatures.begin(), ArchFeatures.end(), ","));
SmallVector<StringRef, 4> RequestedExtensions;
if (!ExtensionString.empty())
ExtensionString.split(RequestedExtensions, '+');
FeatureBitset Features = STI.getFeatureBits();
for (auto Name : RequestedExtensions) {
bool EnableFeature = true;
if (Name.startswith_lower("no")) {
EnableFeature = false;
Name = Name.substr(2);
}
for (const auto &Extension : ExtensionMap) {
if (Extension.Name != Name)
continue;
if (Extension.Features.none())
report_fatal_error("unsupported architectural extension: " + Name);
FeatureBitset ToggleFeatures = EnableFeature
? (~Features & Extension.Features)
: ( Features & Extension.Features);
uint64_t Features =
ComputeAvailableFeatures(STI.ToggleFeature(ToggleFeatures));
setAvailableFeatures(Features);
break;
}
}
return false;
}
/// parseDirectiveCPU
/// ::= .cpu id
bool AArch64AsmParser::parseDirectiveCPU(SMLoc L) {
SMLoc CPULoc = getLoc();
StringRef CPU, ExtensionString;
std::tie(CPU, ExtensionString) =
getParser().parseStringToEndOfStatement().trim().split('+');
SmallVector<StringRef, 4> RequestedExtensions;
if (!ExtensionString.empty())
ExtensionString.split(RequestedExtensions, '+');
// FIXME This is using tablegen data, but should be moved to ARMTargetParser
// once that is tablegen'ed
if (!getSTI().isCPUStringValid(CPU)) {
Error(CPULoc, "unknown CPU name");
return false;
}
MCSubtargetInfo &STI = copySTI();
STI.setDefaultFeatures(CPU, "");
FeatureBitset Features = STI.getFeatureBits();
for (auto Name : RequestedExtensions) {
bool EnableFeature = true;
if (Name.startswith_lower("no")) {
EnableFeature = false;
Name = Name.substr(2);
}
for (const auto &Extension : ExtensionMap) {
if (Extension.Name != Name)
continue;
if (Extension.Features.none())
report_fatal_error("unsupported architectural extension: " + Name);
FeatureBitset ToggleFeatures = EnableFeature
? (~Features & Extension.Features)
: ( Features & Extension.Features);
uint64_t Features =
ComputeAvailableFeatures(STI.ToggleFeature(ToggleFeatures));
setAvailableFeatures(Features);
break;
}
}
return false;
}
/// parseDirectiveWord
/// ::= .word [ expression (, expression)* ]
bool AArch64AsmParser::parseDirectiveWord(unsigned Size, SMLoc L) {
MCAsmParser &Parser = getParser();
if (getLexer().isNot(AsmToken::EndOfStatement)) {
for (;;) {
const MCExpr *Value;
if (getParser().parseExpression(Value))
return true;
getParser().getStreamer().EmitValue(Value, Size, L);
if (getLexer().is(AsmToken::EndOfStatement))
break;
// FIXME: Improve diagnostic.
if (getLexer().isNot(AsmToken::Comma))
return Error(L, "unexpected token in directive");
Parser.Lex();
}
}
Parser.Lex();
return false;
}
/// parseDirectiveInst
/// ::= .inst opcode [, ...]
bool AArch64AsmParser::parseDirectiveInst(SMLoc Loc) {
MCAsmParser &Parser = getParser();
if (getLexer().is(AsmToken::EndOfStatement)) {
Parser.eatToEndOfStatement();
Error(Loc, "expected expression following directive");
return false;
}
for (;;) {
const MCExpr *Expr;
if (getParser().parseExpression(Expr)) {
Error(Loc, "expected expression");
return false;
}
const MCConstantExpr *Value = dyn_cast_or_null<MCConstantExpr>(Expr);
if (!Value) {
Error(Loc, "expected constant expression");
return false;
}
getTargetStreamer().emitInst(Value->getValue());
if (getLexer().is(AsmToken::EndOfStatement))
break;
if (getLexer().isNot(AsmToken::Comma)) {
Error(Loc, "unexpected token in directive");
return false;
}
Parser.Lex(); // Eat comma.
}
Parser.Lex();
return false;
}
// parseDirectiveTLSDescCall:
// ::= .tlsdesccall symbol
bool AArch64AsmParser::parseDirectiveTLSDescCall(SMLoc L) {
StringRef Name;
if (getParser().parseIdentifier(Name))
return Error(L, "expected symbol after directive");
MCSymbol *Sym = getContext().getOrCreateSymbol(Name);
const MCExpr *Expr = MCSymbolRefExpr::create(Sym, getContext());
Expr = AArch64MCExpr::create(Expr, AArch64MCExpr::VK_TLSDESC, getContext());
MCInst Inst;
Inst.setOpcode(AArch64::TLSDESCCALL);
Inst.addOperand(MCOperand::createExpr(Expr));
getParser().getStreamer().EmitInstruction(Inst, getSTI());
return false;
}
/// ::= .loh <lohName | lohId> label1, ..., labelN
/// The number of arguments depends on the loh identifier.
bool AArch64AsmParser::parseDirectiveLOH(StringRef IDVal, SMLoc Loc) {
if (IDVal != MCLOHDirectiveName())
return true;
MCLOHType Kind;
if (getParser().getTok().isNot(AsmToken::Identifier)) {
if (getParser().getTok().isNot(AsmToken::Integer))
return TokError("expected an identifier or a number in directive");
// We successfully get a numeric value for the identifier.
// Check if it is valid.
int64_t Id = getParser().getTok().getIntVal();
if (Id <= -1U && !isValidMCLOHType(Id))
return TokError("invalid numeric identifier in directive");
Kind = (MCLOHType)Id;
} else {
StringRef Name = getTok().getIdentifier();
// We successfully parse an identifier.
// Check if it is a recognized one.
int Id = MCLOHNameToId(Name);
if (Id == -1)
return TokError("invalid identifier in directive");
Kind = (MCLOHType)Id;
}
// Consume the identifier.
Lex();
// Get the number of arguments of this LOH.
int NbArgs = MCLOHIdToNbArgs(Kind);
assert(NbArgs != -1 && "Invalid number of arguments");
SmallVector<MCSymbol *, 3> Args;
for (int Idx = 0; Idx < NbArgs; ++Idx) {
StringRef Name;
if (getParser().parseIdentifier(Name))
return TokError("expected identifier in directive");
Args.push_back(getContext().getOrCreateSymbol(Name));
if (Idx + 1 == NbArgs)
break;
if (getLexer().isNot(AsmToken::Comma))
return TokError("unexpected token in '" + Twine(IDVal) + "' directive");
Lex();
}
if (getLexer().isNot(AsmToken::EndOfStatement))
return TokError("unexpected token in '" + Twine(IDVal) + "' directive");
getStreamer().EmitLOHDirective((MCLOHType)Kind, Args);
return false;
}
/// parseDirectiveLtorg
/// ::= .ltorg | .pool
bool AArch64AsmParser::parseDirectiveLtorg(SMLoc L) {
getTargetStreamer().emitCurrentConstantPool();
return false;
}
/// parseDirectiveReq
/// ::= name .req registername
bool AArch64AsmParser::parseDirectiveReq(StringRef Name, SMLoc L) {
MCAsmParser &Parser = getParser();
Parser.Lex(); // Eat the '.req' token.
SMLoc SRegLoc = getLoc();
unsigned RegNum = tryParseRegister();
bool IsVector = false;
if (RegNum == static_cast<unsigned>(-1)) {
StringRef Kind;
RegNum = tryMatchVectorRegister(Kind, false);
if (!Kind.empty()) {
Error(SRegLoc, "vector register without type specifier expected");
return false;
}
IsVector = true;
}
if (RegNum == static_cast<unsigned>(-1)) {
Parser.eatToEndOfStatement();
Error(SRegLoc, "register name or alias expected");
return false;
}
// Shouldn't be anything else.
if (Parser.getTok().isNot(AsmToken::EndOfStatement)) {
Error(Parser.getTok().getLoc(), "unexpected input in .req directive");
Parser.eatToEndOfStatement();
return false;
}
Parser.Lex(); // Consume the EndOfStatement
auto pair = std::make_pair(IsVector, RegNum);
if (RegisterReqs.insert(std::make_pair(Name, pair)).first->second != pair)
Warning(L, "ignoring redefinition of register alias '" + Name + "'");
return true;
}
/// parseDirectiveUneq
/// ::= .unreq registername
bool AArch64AsmParser::parseDirectiveUnreq(SMLoc L) {
MCAsmParser &Parser = getParser();
if (Parser.getTok().isNot(AsmToken::Identifier)) {
Error(Parser.getTok().getLoc(), "unexpected input in .unreq directive.");
Parser.eatToEndOfStatement();
return false;
}
RegisterReqs.erase(Parser.getTok().getIdentifier().lower());
Parser.Lex(); // Eat the identifier.
return false;
}
bool
AArch64AsmParser::classifySymbolRef(const MCExpr *Expr,
AArch64MCExpr::VariantKind &ELFRefKind,
MCSymbolRefExpr::VariantKind &DarwinRefKind,
int64_t &Addend) {
ELFRefKind = AArch64MCExpr::VK_INVALID;
DarwinRefKind = MCSymbolRefExpr::VK_None;
Addend = 0;
if (const AArch64MCExpr *AE = dyn_cast<AArch64MCExpr>(Expr)) {
ELFRefKind = AE->getKind();
Expr = AE->getSubExpr();
}
const MCSymbolRefExpr *SE = dyn_cast<MCSymbolRefExpr>(Expr);
if (SE) {
// It's a simple symbol reference with no addend.
DarwinRefKind = SE->getKind();
return true;
}
const MCBinaryExpr *BE = dyn_cast<MCBinaryExpr>(Expr);
if (!BE)
return false;
SE = dyn_cast<MCSymbolRefExpr>(BE->getLHS());
if (!SE)
return false;
DarwinRefKind = SE->getKind();
if (BE->getOpcode() != MCBinaryExpr::Add &&
BE->getOpcode() != MCBinaryExpr::Sub)
return false;
// See if the addend is is a constant, otherwise there's more going
// on here than we can deal with.
auto AddendExpr = dyn_cast<MCConstantExpr>(BE->getRHS());
if (!AddendExpr)
return false;
Addend = AddendExpr->getValue();
if (BE->getOpcode() == MCBinaryExpr::Sub)
Addend = -Addend;
// It's some symbol reference + a constant addend, but really
// shouldn't use both Darwin and ELF syntax.
return ELFRefKind == AArch64MCExpr::VK_INVALID ||
DarwinRefKind == MCSymbolRefExpr::VK_None;
}
/// Force static initialization.
extern "C" void LLVMInitializeAArch64AsmParser() {
RegisterMCAsmParser<AArch64AsmParser> X(TheAArch64leTarget);
RegisterMCAsmParser<AArch64AsmParser> Y(TheAArch64beTarget);
RegisterMCAsmParser<AArch64AsmParser> Z(TheARM64Target);
}
#define GET_REGISTER_MATCHER
#define GET_SUBTARGET_FEATURE_NAME
#define GET_MATCHER_IMPLEMENTATION
#include "AArch64GenAsmMatcher.inc"
// Define this matcher function after the auto-generated include so we
// have the match class enum definitions.
unsigned AArch64AsmParser::validateTargetOperandClass(MCParsedAsmOperand &AsmOp,
unsigned Kind) {
AArch64Operand &Op = static_cast<AArch64Operand &>(AsmOp);
// If the kind is a token for a literal immediate, check if our asm
// operand matches. This is for InstAliases which have a fixed-value
// immediate in the syntax.
int64_t ExpectedVal;
switch (Kind) {
default:
return Match_InvalidOperand;
case MCK__35_0:
ExpectedVal = 0;
break;
case MCK__35_1:
ExpectedVal = 1;
break;
case MCK__35_12:
ExpectedVal = 12;
break;
case MCK__35_16:
ExpectedVal = 16;
break;
case MCK__35_2:
ExpectedVal = 2;
break;
case MCK__35_24:
ExpectedVal = 24;
break;
case MCK__35_3:
ExpectedVal = 3;
break;
case MCK__35_32:
ExpectedVal = 32;
break;
case MCK__35_4:
ExpectedVal = 4;
break;
case MCK__35_48:
ExpectedVal = 48;
break;
case MCK__35_6:
ExpectedVal = 6;
break;
case MCK__35_64:
ExpectedVal = 64;
break;
case MCK__35_8:
ExpectedVal = 8;
break;
}
if (!Op.isImm())
return Match_InvalidOperand;
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm());
if (!CE)
return Match_InvalidOperand;
if (CE->getValue() == ExpectedVal)
return Match_Success;
return Match_InvalidOperand;
}
AArch64AsmParser::OperandMatchResultTy
AArch64AsmParser::tryParseGPRSeqPair(OperandVector &Operands) {
SMLoc S = getLoc();
if (getParser().getTok().isNot(AsmToken::Identifier)) {
Error(S, "expected register");
return MatchOperand_ParseFail;
}
int FirstReg = tryParseRegister();
if (FirstReg == -1) {
return MatchOperand_ParseFail;
}
const MCRegisterClass &WRegClass =
AArch64MCRegisterClasses[AArch64::GPR32RegClassID];
const MCRegisterClass &XRegClass =
AArch64MCRegisterClasses[AArch64::GPR64RegClassID];
bool isXReg = XRegClass.contains(FirstReg),
isWReg = WRegClass.contains(FirstReg);
if (!isXReg && !isWReg) {
Error(S, "expected first even register of a "
"consecutive same-size even/odd register pair");
return MatchOperand_ParseFail;
}
const MCRegisterInfo *RI = getContext().getRegisterInfo();
unsigned FirstEncoding = RI->getEncodingValue(FirstReg);
if (FirstEncoding & 0x1) {
Error(S, "expected first even register of a "
"consecutive same-size even/odd register pair");
return MatchOperand_ParseFail;
}
SMLoc M = getLoc();
if (getParser().getTok().isNot(AsmToken::Comma)) {
Error(M, "expected comma");
return MatchOperand_ParseFail;
}
// Eat the comma
getParser().Lex();
SMLoc E = getLoc();
int SecondReg = tryParseRegister();
if (SecondReg ==-1) {
return MatchOperand_ParseFail;
}
if (RI->getEncodingValue(SecondReg) != FirstEncoding + 1 ||
(isXReg && !XRegClass.contains(SecondReg)) ||
(isWReg && !WRegClass.contains(SecondReg))) {
Error(E,"expected second odd register of a "
"consecutive same-size even/odd register pair");
return MatchOperand_ParseFail;
}
unsigned Pair = 0;
if(isXReg) {
Pair = RI->getMatchingSuperReg(FirstReg, AArch64::sube64,
&AArch64MCRegisterClasses[AArch64::XSeqPairsClassRegClassID]);
} else {
Pair = RI->getMatchingSuperReg(FirstReg, AArch64::sube32,
&AArch64MCRegisterClasses[AArch64::WSeqPairsClassRegClassID]);
}
Operands.push_back(AArch64Operand::CreateReg(Pair, false, S, getLoc(),
getContext()));
return MatchOperand_Success;
}