llvm-project/llvm/lib/Target/AMDGPU/AMDGPUTargetTransformInfo.cpp

318 lines
10 KiB
C++

//===-- AMDGPUTargetTransformInfo.cpp - AMDGPU specific TTI pass ---------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// \file
// This file implements a TargetTransformInfo analysis pass specific to the
// AMDGPU target machine. It uses the target's detailed information to provide
// more precise answers to certain TTI queries, while letting the target
// independent and default TTI implementations handle the rest.
//
//===----------------------------------------------------------------------===//
#include "AMDGPUTargetTransformInfo.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/CodeGen/BasicTTIImpl.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/Support/Debug.h"
#include "llvm/Target/CostTable.h"
#include "llvm/Target/TargetLowering.h"
using namespace llvm;
#define DEBUG_TYPE "AMDGPUtti"
void AMDGPUTTIImpl::getUnrollingPreferences(Loop *L,
TTI::UnrollingPreferences &UP) {
UP.Threshold = 300; // Twice the default.
UP.MaxCount = UINT_MAX;
UP.Partial = true;
// TODO: Do we want runtime unrolling?
for (const BasicBlock *BB : L->getBlocks()) {
const DataLayout &DL = BB->getModule()->getDataLayout();
for (const Instruction &I : *BB) {
const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&I);
if (!GEP || GEP->getAddressSpace() != AMDGPUAS::PRIVATE_ADDRESS)
continue;
const Value *Ptr = GEP->getPointerOperand();
const AllocaInst *Alloca =
dyn_cast<AllocaInst>(GetUnderlyingObject(Ptr, DL));
if (Alloca) {
// We want to do whatever we can to limit the number of alloca
// instructions that make it through to the code generator. allocas
// require us to use indirect addressing, which is slow and prone to
// compiler bugs. If this loop does an address calculation on an
// alloca ptr, then we want to use a higher than normal loop unroll
// threshold. This will give SROA a better chance to eliminate these
// allocas.
//
// Don't use the maximum allowed value here as it will make some
// programs way too big.
UP.Threshold = 800;
}
}
}
}
unsigned AMDGPUTTIImpl::getNumberOfRegisters(bool Vec) {
if (Vec)
return 0;
// Number of VGPRs on SI.
if (ST->getGeneration() >= AMDGPUSubtarget::SOUTHERN_ISLANDS)
return 256;
return 4 * 128; // XXX - 4 channels. Should these count as vector instead?
}
unsigned AMDGPUTTIImpl::getRegisterBitWidth(bool Vector) {
return Vector ? 0 : 32;
}
unsigned AMDGPUTTIImpl::getMaxInterleaveFactor(unsigned VF) {
// Semi-arbitrary large amount.
return 64;
}
int AMDGPUTTIImpl::getArithmeticInstrCost(
unsigned Opcode, Type *Ty, TTI::OperandValueKind Opd1Info,
TTI::OperandValueKind Opd2Info, TTI::OperandValueProperties Opd1PropInfo,
TTI::OperandValueProperties Opd2PropInfo) {
EVT OrigTy = TLI->getValueType(DL, Ty);
if (!OrigTy.isSimple()) {
return BaseT::getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info,
Opd1PropInfo, Opd2PropInfo);
}
// Legalize the type.
std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
int ISD = TLI->InstructionOpcodeToISD(Opcode);
// Because we don't have any legal vector operations, but the legal types, we
// need to account for split vectors.
unsigned NElts = LT.second.isVector() ?
LT.second.getVectorNumElements() : 1;
MVT::SimpleValueType SLT = LT.second.getScalarType().SimpleTy;
switch (ISD) {
case ISD::SHL:
case ISD::SRL:
case ISD::SRA: {
if (SLT == MVT::i64)
return get64BitInstrCost() * LT.first * NElts;
// i32
return getFullRateInstrCost() * LT.first * NElts;
}
case ISD::ADD:
case ISD::SUB:
case ISD::AND:
case ISD::OR:
case ISD::XOR: {
if (SLT == MVT::i64){
// and, or and xor are typically split into 2 VALU instructions.
return 2 * getFullRateInstrCost() * LT.first * NElts;
}
return LT.first * NElts * getFullRateInstrCost();
}
case ISD::MUL: {
const int QuarterRateCost = getQuarterRateInstrCost();
if (SLT == MVT::i64) {
const int FullRateCost = getFullRateInstrCost();
return (4 * QuarterRateCost + (2 * 2) * FullRateCost) * LT.first * NElts;
}
// i32
return QuarterRateCost * NElts * LT.first;
}
case ISD::FADD:
case ISD::FSUB:
case ISD::FMUL:
if (SLT == MVT::f64)
return LT.first * NElts * get64BitInstrCost();
if (SLT == MVT::f32 || SLT == MVT::f16)
return LT.first * NElts * getFullRateInstrCost();
break;
case ISD::FDIV:
case ISD::FREM:
// FIXME: frem should be handled separately. The fdiv in it is most of it,
// but the current lowering is also not entirely correct.
if (SLT == MVT::f64) {
int Cost = 4 * get64BitInstrCost() + 7 * getQuarterRateInstrCost();
// Add cost of workaround.
if (ST->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS)
Cost += 3 * getFullRateInstrCost();
return LT.first * Cost * NElts;
}
// Assuming no fp32 denormals lowering.
if (SLT == MVT::f32 || SLT == MVT::f16) {
assert(!ST->hasFP32Denormals() && "will change when supported");
int Cost = 7 * getFullRateInstrCost() + 1 * getQuarterRateInstrCost();
return LT.first * NElts * Cost;
}
break;
default:
break;
}
return BaseT::getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info,
Opd1PropInfo, Opd2PropInfo);
}
unsigned AMDGPUTTIImpl::getCFInstrCost(unsigned Opcode) {
// XXX - For some reason this isn't called for switch.
switch (Opcode) {
case Instruction::Br:
case Instruction::Ret:
return 10;
default:
return BaseT::getCFInstrCost(Opcode);
}
}
int AMDGPUTTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy,
unsigned Index) {
switch (Opcode) {
case Instruction::ExtractElement:
case Instruction::InsertElement:
// Extracts are just reads of a subregister, so are free. Inserts are
// considered free because we don't want to have any cost for scalarizing
// operations, and we don't have to copy into a different register class.
// Dynamic indexing isn't free and is best avoided.
return Index == ~0u ? 2 : 0;
default:
return BaseT::getVectorInstrCost(Opcode, ValTy, Index);
}
}
static bool isIntrinsicSourceOfDivergence(const TargetIntrinsicInfo *TII,
const IntrinsicInst *I) {
switch (I->getIntrinsicID()) {
default:
return false;
case Intrinsic::not_intrinsic:
// This means we have an intrinsic that isn't defined in
// IntrinsicsAMDGPU.td
break;
case Intrinsic::amdgcn_workitem_id_x:
case Intrinsic::amdgcn_workitem_id_y:
case Intrinsic::amdgcn_workitem_id_z:
case Intrinsic::amdgcn_interp_p1:
case Intrinsic::amdgcn_interp_p2:
case Intrinsic::amdgcn_mbcnt_hi:
case Intrinsic::amdgcn_mbcnt_lo:
case Intrinsic::r600_read_tidig_x:
case Intrinsic::r600_read_tidig_y:
case Intrinsic::r600_read_tidig_z:
case Intrinsic::amdgcn_image_atomic_swap:
case Intrinsic::amdgcn_image_atomic_add:
case Intrinsic::amdgcn_image_atomic_sub:
case Intrinsic::amdgcn_image_atomic_smin:
case Intrinsic::amdgcn_image_atomic_umin:
case Intrinsic::amdgcn_image_atomic_smax:
case Intrinsic::amdgcn_image_atomic_umax:
case Intrinsic::amdgcn_image_atomic_and:
case Intrinsic::amdgcn_image_atomic_or:
case Intrinsic::amdgcn_image_atomic_xor:
case Intrinsic::amdgcn_image_atomic_inc:
case Intrinsic::amdgcn_image_atomic_dec:
case Intrinsic::amdgcn_image_atomic_cmpswap:
case Intrinsic::amdgcn_buffer_atomic_swap:
case Intrinsic::amdgcn_buffer_atomic_add:
case Intrinsic::amdgcn_buffer_atomic_sub:
case Intrinsic::amdgcn_buffer_atomic_smin:
case Intrinsic::amdgcn_buffer_atomic_umin:
case Intrinsic::amdgcn_buffer_atomic_smax:
case Intrinsic::amdgcn_buffer_atomic_umax:
case Intrinsic::amdgcn_buffer_atomic_and:
case Intrinsic::amdgcn_buffer_atomic_or:
case Intrinsic::amdgcn_buffer_atomic_xor:
case Intrinsic::amdgcn_buffer_atomic_cmpswap:
case Intrinsic::amdgcn_ps_live:
return true;
}
StringRef Name = I->getCalledFunction()->getName();
switch (TII->lookupName((const char *)Name.bytes_begin(), Name.size())) {
default:
return false;
case AMDGPUIntrinsic::SI_tid:
case AMDGPUIntrinsic::SI_fs_interp:
return true;
}
}
static bool isArgPassedInSGPR(const Argument *A) {
const Function *F = A->getParent();
// Arguments to compute shaders are never a source of divergence.
if (!AMDGPU::isShader(F->getCallingConv()))
return true;
// For non-compute shaders, SGPR inputs are marked with either inreg or byval.
if (F->getAttributes().hasAttribute(A->getArgNo() + 1, Attribute::InReg) ||
F->getAttributes().hasAttribute(A->getArgNo() + 1, Attribute::ByVal))
return true;
// Everything else is in VGPRs.
return false;
}
///
/// \returns true if the result of the value could potentially be
/// different across workitems in a wavefront.
bool AMDGPUTTIImpl::isSourceOfDivergence(const Value *V) const {
if (const Argument *A = dyn_cast<Argument>(V))
return !isArgPassedInSGPR(A);
// Loads from the private address space are divergent, because threads
// can execute the load instruction with the same inputs and get different
// results.
//
// All other loads are not divergent, because if threads issue loads with the
// same arguments, they will always get the same result.
if (const LoadInst *Load = dyn_cast<LoadInst>(V))
return Load->getPointerAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS;
// Atomics are divergent because they are executed sequentially: when an
// atomic operation refers to the same address in each thread, then each
// thread after the first sees the value written by the previous thread as
// original value.
if (isa<AtomicRMWInst>(V) || isa<AtomicCmpXchgInst>(V))
return true;
if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(V)) {
const TargetMachine &TM = getTLI()->getTargetMachine();
return isIntrinsicSourceOfDivergence(TM.getIntrinsicInfo(), Intrinsic);
}
// Assume all function calls are a source of divergence.
if (isa<CallInst>(V) || isa<InvokeInst>(V))
return true;
return false;
}