forked from OSchip/llvm-project
1089 lines
34 KiB
C++
1089 lines
34 KiB
C++
//===- X86_64.cpp ---------------------------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "InputFiles.h"
|
|
#include "OutputSections.h"
|
|
#include "Symbols.h"
|
|
#include "SyntheticSections.h"
|
|
#include "Target.h"
|
|
#include "lld/Common/ErrorHandler.h"
|
|
#include "llvm/Object/ELF.h"
|
|
#include "llvm/Support/Endian.h"
|
|
|
|
using namespace llvm;
|
|
using namespace llvm::object;
|
|
using namespace llvm::support::endian;
|
|
using namespace llvm::ELF;
|
|
using namespace lld;
|
|
using namespace lld::elf;
|
|
|
|
namespace {
|
|
class X86_64 : public TargetInfo {
|
|
public:
|
|
X86_64();
|
|
int getTlsGdRelaxSkip(RelType type) const override;
|
|
RelExpr getRelExpr(RelType type, const Symbol &s,
|
|
const uint8_t *loc) const override;
|
|
RelType getDynRel(RelType type) const override;
|
|
void writeGotPltHeader(uint8_t *buf) const override;
|
|
void writeGotPlt(uint8_t *buf, const Symbol &s) const override;
|
|
void writePltHeader(uint8_t *buf) const override;
|
|
void writePlt(uint8_t *buf, const Symbol &sym,
|
|
uint64_t pltEntryAddr) const override;
|
|
void relocate(uint8_t *loc, const Relocation &rel,
|
|
uint64_t val) const override;
|
|
void applyJumpInstrMod(uint8_t *loc, JumpModType type,
|
|
unsigned size) const override;
|
|
|
|
RelExpr adjustRelaxExpr(RelType type, const uint8_t *data,
|
|
RelExpr expr) const override;
|
|
void relaxGot(uint8_t *loc, const Relocation &rel,
|
|
uint64_t val) const override;
|
|
void relaxTlsGdToIe(uint8_t *loc, const Relocation &rel,
|
|
uint64_t val) const override;
|
|
void relaxTlsGdToLe(uint8_t *loc, const Relocation &rel,
|
|
uint64_t val) const override;
|
|
void relaxTlsIeToLe(uint8_t *loc, const Relocation &rel,
|
|
uint64_t val) const override;
|
|
void relaxTlsLdToLe(uint8_t *loc, const Relocation &rel,
|
|
uint64_t val) const override;
|
|
bool adjustPrologueForCrossSplitStack(uint8_t *loc, uint8_t *end,
|
|
uint8_t stOther) const override;
|
|
bool deleteFallThruJmpInsn(InputSection &is, InputFile *file,
|
|
InputSection *nextIS) const override;
|
|
};
|
|
} // namespace
|
|
|
|
// This is vector of NOP instructions of sizes from 1 to 8 bytes. The
|
|
// appropriately sized instructions are used to fill the gaps between sections
|
|
// which are executed during fall through.
|
|
static const std::vector<std::vector<uint8_t>> nopInstructions = {
|
|
{0x90},
|
|
{0x66, 0x90},
|
|
{0x0f, 0x1f, 0x00},
|
|
{0x0f, 0x1f, 0x40, 0x00},
|
|
{0x0f, 0x1f, 0x44, 0x00, 0x00},
|
|
{0x66, 0x0f, 0x1f, 0x44, 0x00, 0x00},
|
|
{0x0F, 0x1F, 0x80, 0x00, 0x00, 0x00, 0x00},
|
|
{0x0F, 0x1F, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00},
|
|
{0x66, 0x0F, 0x1F, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00}};
|
|
|
|
X86_64::X86_64() {
|
|
copyRel = R_X86_64_COPY;
|
|
gotRel = R_X86_64_GLOB_DAT;
|
|
noneRel = R_X86_64_NONE;
|
|
pltRel = R_X86_64_JUMP_SLOT;
|
|
relativeRel = R_X86_64_RELATIVE;
|
|
iRelativeRel = R_X86_64_IRELATIVE;
|
|
symbolicRel = R_X86_64_64;
|
|
tlsDescRel = R_X86_64_TLSDESC;
|
|
tlsGotRel = R_X86_64_TPOFF64;
|
|
tlsModuleIndexRel = R_X86_64_DTPMOD64;
|
|
tlsOffsetRel = R_X86_64_DTPOFF64;
|
|
pltHeaderSize = 16;
|
|
pltEntrySize = 16;
|
|
ipltEntrySize = 16;
|
|
trapInstr = {0xcc, 0xcc, 0xcc, 0xcc}; // 0xcc = INT3
|
|
nopInstrs = nopInstructions;
|
|
|
|
// Align to the large page size (known as a superpage or huge page).
|
|
// FreeBSD automatically promotes large, superpage-aligned allocations.
|
|
defaultImageBase = 0x200000;
|
|
}
|
|
|
|
int X86_64::getTlsGdRelaxSkip(RelType type) const { return 2; }
|
|
|
|
// Opcodes for the different X86_64 jmp instructions.
|
|
enum JmpInsnOpcode : uint32_t {
|
|
J_JMP_32,
|
|
J_JNE_32,
|
|
J_JE_32,
|
|
J_JG_32,
|
|
J_JGE_32,
|
|
J_JB_32,
|
|
J_JBE_32,
|
|
J_JL_32,
|
|
J_JLE_32,
|
|
J_JA_32,
|
|
J_JAE_32,
|
|
J_UNKNOWN,
|
|
};
|
|
|
|
// Given the first (optional) and second byte of the insn's opcode, this
|
|
// returns the corresponding enum value.
|
|
static JmpInsnOpcode getJmpInsnType(const uint8_t *first,
|
|
const uint8_t *second) {
|
|
if (*second == 0xe9)
|
|
return J_JMP_32;
|
|
|
|
if (first == nullptr)
|
|
return J_UNKNOWN;
|
|
|
|
if (*first == 0x0f) {
|
|
switch (*second) {
|
|
case 0x84:
|
|
return J_JE_32;
|
|
case 0x85:
|
|
return J_JNE_32;
|
|
case 0x8f:
|
|
return J_JG_32;
|
|
case 0x8d:
|
|
return J_JGE_32;
|
|
case 0x82:
|
|
return J_JB_32;
|
|
case 0x86:
|
|
return J_JBE_32;
|
|
case 0x8c:
|
|
return J_JL_32;
|
|
case 0x8e:
|
|
return J_JLE_32;
|
|
case 0x87:
|
|
return J_JA_32;
|
|
case 0x83:
|
|
return J_JAE_32;
|
|
}
|
|
}
|
|
return J_UNKNOWN;
|
|
}
|
|
|
|
// Return the relocation index for input section IS with a specific Offset.
|
|
// Returns the maximum size of the vector if no such relocation is found.
|
|
static unsigned getRelocationWithOffset(const InputSection &is,
|
|
uint64_t offset) {
|
|
unsigned size = is.relocations.size();
|
|
for (unsigned i = size - 1; i + 1 > 0; --i) {
|
|
if (is.relocations[i].offset == offset && is.relocations[i].expr != R_NONE)
|
|
return i;
|
|
}
|
|
return size;
|
|
}
|
|
|
|
// Returns true if R corresponds to a relocation used for a jump instruction.
|
|
// TODO: Once special relocations for relaxable jump instructions are available,
|
|
// this should be modified to use those relocations.
|
|
static bool isRelocationForJmpInsn(Relocation &R) {
|
|
return R.type == R_X86_64_PLT32 || R.type == R_X86_64_PC32 ||
|
|
R.type == R_X86_64_PC8;
|
|
}
|
|
|
|
// Return true if Relocation R points to the first instruction in the
|
|
// next section.
|
|
// TODO: Delete this once psABI reserves a new relocation type for fall thru
|
|
// jumps.
|
|
static bool isFallThruRelocation(InputSection &is, InputFile *file,
|
|
InputSection *nextIS, Relocation &r) {
|
|
if (!isRelocationForJmpInsn(r))
|
|
return false;
|
|
|
|
uint64_t addrLoc = is.getOutputSection()->addr + is.outSecOff + r.offset;
|
|
uint64_t targetOffset = InputSectionBase::getRelocTargetVA(
|
|
file, r.type, r.addend, addrLoc, *r.sym, r.expr);
|
|
|
|
// If this jmp is a fall thru, the target offset is the beginning of the
|
|
// next section.
|
|
uint64_t nextSectionOffset =
|
|
nextIS->getOutputSection()->addr + nextIS->outSecOff;
|
|
return (addrLoc + 4 + targetOffset) == nextSectionOffset;
|
|
}
|
|
|
|
// Return the jmp instruction opcode that is the inverse of the given
|
|
// opcode. For example, JE inverted is JNE.
|
|
static JmpInsnOpcode invertJmpOpcode(const JmpInsnOpcode opcode) {
|
|
switch (opcode) {
|
|
case J_JE_32:
|
|
return J_JNE_32;
|
|
case J_JNE_32:
|
|
return J_JE_32;
|
|
case J_JG_32:
|
|
return J_JLE_32;
|
|
case J_JGE_32:
|
|
return J_JL_32;
|
|
case J_JB_32:
|
|
return J_JAE_32;
|
|
case J_JBE_32:
|
|
return J_JA_32;
|
|
case J_JL_32:
|
|
return J_JGE_32;
|
|
case J_JLE_32:
|
|
return J_JG_32;
|
|
case J_JA_32:
|
|
return J_JBE_32;
|
|
case J_JAE_32:
|
|
return J_JB_32;
|
|
default:
|
|
return J_UNKNOWN;
|
|
}
|
|
}
|
|
|
|
// Deletes direct jump instruction in input sections that jumps to the
|
|
// following section as it is not required. If there are two consecutive jump
|
|
// instructions, it checks if they can be flipped and one can be deleted.
|
|
// For example:
|
|
// .section .text
|
|
// a.BB.foo:
|
|
// ...
|
|
// 10: jne aa.BB.foo
|
|
// 16: jmp bar
|
|
// aa.BB.foo:
|
|
// ...
|
|
//
|
|
// can be converted to:
|
|
// a.BB.foo:
|
|
// ...
|
|
// 10: je bar #jne flipped to je and the jmp is deleted.
|
|
// aa.BB.foo:
|
|
// ...
|
|
bool X86_64::deleteFallThruJmpInsn(InputSection &is, InputFile *file,
|
|
InputSection *nextIS) const {
|
|
const unsigned sizeOfDirectJmpInsn = 5;
|
|
|
|
if (nextIS == nullptr)
|
|
return false;
|
|
|
|
if (is.getSize() < sizeOfDirectJmpInsn)
|
|
return false;
|
|
|
|
// If this jmp insn can be removed, it is the last insn and the
|
|
// relocation is 4 bytes before the end.
|
|
unsigned rIndex = getRelocationWithOffset(is, is.getSize() - 4);
|
|
if (rIndex == is.relocations.size())
|
|
return false;
|
|
|
|
Relocation &r = is.relocations[rIndex];
|
|
|
|
// Check if the relocation corresponds to a direct jmp.
|
|
const uint8_t *secContents = is.data().data();
|
|
// If it is not a direct jmp instruction, there is nothing to do here.
|
|
if (*(secContents + r.offset - 1) != 0xe9)
|
|
return false;
|
|
|
|
if (isFallThruRelocation(is, file, nextIS, r)) {
|
|
// This is a fall thru and can be deleted.
|
|
r.expr = R_NONE;
|
|
r.offset = 0;
|
|
is.drop_back(sizeOfDirectJmpInsn);
|
|
is.nopFiller = true;
|
|
return true;
|
|
}
|
|
|
|
// Now, check if flip and delete is possible.
|
|
const unsigned sizeOfJmpCCInsn = 6;
|
|
// To flip, there must be atleast one JmpCC and one direct jmp.
|
|
if (is.getSize() < sizeOfDirectJmpInsn + sizeOfJmpCCInsn)
|
|
return 0;
|
|
|
|
unsigned rbIndex =
|
|
getRelocationWithOffset(is, (is.getSize() - sizeOfDirectJmpInsn - 4));
|
|
if (rbIndex == is.relocations.size())
|
|
return 0;
|
|
|
|
Relocation &rB = is.relocations[rbIndex];
|
|
|
|
const uint8_t *jmpInsnB = secContents + rB.offset - 1;
|
|
JmpInsnOpcode jmpOpcodeB = getJmpInsnType(jmpInsnB - 1, jmpInsnB);
|
|
if (jmpOpcodeB == J_UNKNOWN)
|
|
return false;
|
|
|
|
if (!isFallThruRelocation(is, file, nextIS, rB))
|
|
return false;
|
|
|
|
// jmpCC jumps to the fall thru block, the branch can be flipped and the
|
|
// jmp can be deleted.
|
|
JmpInsnOpcode jInvert = invertJmpOpcode(jmpOpcodeB);
|
|
if (jInvert == J_UNKNOWN)
|
|
return false;
|
|
is.jumpInstrMods.push_back({jInvert, (rB.offset - 1), 4});
|
|
// Move R's values to rB except the offset.
|
|
rB = {r.expr, r.type, rB.offset, r.addend, r.sym};
|
|
// Cancel R
|
|
r.expr = R_NONE;
|
|
r.offset = 0;
|
|
is.drop_back(sizeOfDirectJmpInsn);
|
|
is.nopFiller = true;
|
|
return true;
|
|
}
|
|
|
|
RelExpr X86_64::getRelExpr(RelType type, const Symbol &s,
|
|
const uint8_t *loc) const {
|
|
if (type == R_X86_64_GOTTPOFF)
|
|
config->hasStaticTlsModel = true;
|
|
|
|
switch (type) {
|
|
case R_X86_64_8:
|
|
case R_X86_64_16:
|
|
case R_X86_64_32:
|
|
case R_X86_64_32S:
|
|
case R_X86_64_64:
|
|
return R_ABS;
|
|
case R_X86_64_DTPOFF32:
|
|
case R_X86_64_DTPOFF64:
|
|
return R_DTPREL;
|
|
case R_X86_64_TPOFF32:
|
|
return R_TLS;
|
|
case R_X86_64_TLSDESC_CALL:
|
|
return R_TLSDESC_CALL;
|
|
case R_X86_64_TLSLD:
|
|
return R_TLSLD_PC;
|
|
case R_X86_64_TLSGD:
|
|
return R_TLSGD_PC;
|
|
case R_X86_64_SIZE32:
|
|
case R_X86_64_SIZE64:
|
|
return R_SIZE;
|
|
case R_X86_64_PLT32:
|
|
return R_PLT_PC;
|
|
case R_X86_64_PC8:
|
|
case R_X86_64_PC16:
|
|
case R_X86_64_PC32:
|
|
case R_X86_64_PC64:
|
|
return R_PC;
|
|
case R_X86_64_GOT32:
|
|
case R_X86_64_GOT64:
|
|
return R_GOTPLT;
|
|
case R_X86_64_GOTPC32_TLSDESC:
|
|
return R_TLSDESC_PC;
|
|
case R_X86_64_GOTPCREL:
|
|
case R_X86_64_GOTPCRELX:
|
|
case R_X86_64_REX_GOTPCRELX:
|
|
case R_X86_64_GOTTPOFF:
|
|
return R_GOT_PC;
|
|
case R_X86_64_GOTOFF64:
|
|
return R_GOTPLTREL;
|
|
case R_X86_64_GOTPC32:
|
|
case R_X86_64_GOTPC64:
|
|
return R_GOTPLTONLY_PC;
|
|
case R_X86_64_NONE:
|
|
return R_NONE;
|
|
default:
|
|
error(getErrorLocation(loc) + "unknown relocation (" + Twine(type) +
|
|
") against symbol " + toString(s));
|
|
return R_NONE;
|
|
}
|
|
}
|
|
|
|
void X86_64::writeGotPltHeader(uint8_t *buf) const {
|
|
// The first entry holds the value of _DYNAMIC. It is not clear why that is
|
|
// required, but it is documented in the psabi and the glibc dynamic linker
|
|
// seems to use it (note that this is relevant for linking ld.so, not any
|
|
// other program).
|
|
write64le(buf, mainPart->dynamic->getVA());
|
|
}
|
|
|
|
void X86_64::writeGotPlt(uint8_t *buf, const Symbol &s) const {
|
|
// See comments in X86::writeGotPlt.
|
|
write64le(buf, s.getPltVA() + 6);
|
|
}
|
|
|
|
void X86_64::writePltHeader(uint8_t *buf) const {
|
|
const uint8_t pltData[] = {
|
|
0xff, 0x35, 0, 0, 0, 0, // pushq GOTPLT+8(%rip)
|
|
0xff, 0x25, 0, 0, 0, 0, // jmp *GOTPLT+16(%rip)
|
|
0x0f, 0x1f, 0x40, 0x00, // nop
|
|
};
|
|
memcpy(buf, pltData, sizeof(pltData));
|
|
uint64_t gotPlt = in.gotPlt->getVA();
|
|
uint64_t plt = in.ibtPlt ? in.ibtPlt->getVA() : in.plt->getVA();
|
|
write32le(buf + 2, gotPlt - plt + 2); // GOTPLT+8
|
|
write32le(buf + 8, gotPlt - plt + 4); // GOTPLT+16
|
|
}
|
|
|
|
void X86_64::writePlt(uint8_t *buf, const Symbol &sym,
|
|
uint64_t pltEntryAddr) const {
|
|
const uint8_t inst[] = {
|
|
0xff, 0x25, 0, 0, 0, 0, // jmpq *got(%rip)
|
|
0x68, 0, 0, 0, 0, // pushq <relocation index>
|
|
0xe9, 0, 0, 0, 0, // jmpq plt[0]
|
|
};
|
|
memcpy(buf, inst, sizeof(inst));
|
|
|
|
write32le(buf + 2, sym.getGotPltVA() - pltEntryAddr - 6);
|
|
write32le(buf + 7, sym.pltIndex);
|
|
write32le(buf + 12, in.plt->getVA() - pltEntryAddr - 16);
|
|
}
|
|
|
|
RelType X86_64::getDynRel(RelType type) const {
|
|
if (type == R_X86_64_64 || type == R_X86_64_PC64 || type == R_X86_64_SIZE32 ||
|
|
type == R_X86_64_SIZE64)
|
|
return type;
|
|
return R_X86_64_NONE;
|
|
}
|
|
|
|
void X86_64::relaxTlsGdToLe(uint8_t *loc, const Relocation &rel,
|
|
uint64_t val) const {
|
|
if (rel.type == R_X86_64_TLSGD) {
|
|
// Convert
|
|
// .byte 0x66
|
|
// leaq x@tlsgd(%rip), %rdi
|
|
// .word 0x6666
|
|
// rex64
|
|
// call __tls_get_addr@plt
|
|
// to the following two instructions.
|
|
const uint8_t inst[] = {
|
|
0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00,
|
|
0x00, 0x00, // mov %fs:0x0,%rax
|
|
0x48, 0x8d, 0x80, 0, 0, 0, 0, // lea x@tpoff,%rax
|
|
};
|
|
memcpy(loc - 4, inst, sizeof(inst));
|
|
|
|
// The original code used a pc relative relocation and so we have to
|
|
// compensate for the -4 in had in the addend.
|
|
write32le(loc + 8, val + 4);
|
|
} else {
|
|
// Convert
|
|
// lea x@tlsgd(%rip), %rax
|
|
// call *(%rax)
|
|
// to the following two instructions.
|
|
assert(rel.type == R_X86_64_GOTPC32_TLSDESC);
|
|
if (memcmp(loc - 3, "\x48\x8d\x05", 3)) {
|
|
error(getErrorLocation(loc - 3) + "R_X86_64_GOTPC32_TLSDESC must be used "
|
|
"in callq *x@tlsdesc(%rip), %rax");
|
|
return;
|
|
}
|
|
// movq $x@tpoff(%rip),%rax
|
|
loc[-2] = 0xc7;
|
|
loc[-1] = 0xc0;
|
|
write32le(loc, val + 4);
|
|
// xchg ax,ax
|
|
loc[4] = 0x66;
|
|
loc[5] = 0x90;
|
|
}
|
|
}
|
|
|
|
void X86_64::relaxTlsGdToIe(uint8_t *loc, const Relocation &rel,
|
|
uint64_t val) const {
|
|
if (rel.type == R_X86_64_TLSGD) {
|
|
// Convert
|
|
// .byte 0x66
|
|
// leaq x@tlsgd(%rip), %rdi
|
|
// .word 0x6666
|
|
// rex64
|
|
// call __tls_get_addr@plt
|
|
// to the following two instructions.
|
|
const uint8_t inst[] = {
|
|
0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00,
|
|
0x00, 0x00, // mov %fs:0x0,%rax
|
|
0x48, 0x03, 0x05, 0, 0, 0, 0, // addq x@gottpoff(%rip),%rax
|
|
};
|
|
memcpy(loc - 4, inst, sizeof(inst));
|
|
|
|
// Both code sequences are PC relatives, but since we are moving the
|
|
// constant forward by 8 bytes we have to subtract the value by 8.
|
|
write32le(loc + 8, val - 8);
|
|
} else {
|
|
// Convert
|
|
// lea x@tlsgd(%rip), %rax
|
|
// call *(%rax)
|
|
// to the following two instructions.
|
|
assert(rel.type == R_X86_64_GOTPC32_TLSDESC);
|
|
if (memcmp(loc - 3, "\x48\x8d\x05", 3)) {
|
|
error(getErrorLocation(loc - 3) + "R_X86_64_GOTPC32_TLSDESC must be used "
|
|
"in callq *x@tlsdesc(%rip), %rax");
|
|
return;
|
|
}
|
|
// movq x@gottpoff(%rip),%rax
|
|
loc[-2] = 0x8b;
|
|
write32le(loc, val);
|
|
// xchg ax,ax
|
|
loc[4] = 0x66;
|
|
loc[5] = 0x90;
|
|
}
|
|
}
|
|
|
|
// In some conditions, R_X86_64_GOTTPOFF relocation can be optimized to
|
|
// R_X86_64_TPOFF32 so that it does not use GOT.
|
|
void X86_64::relaxTlsIeToLe(uint8_t *loc, const Relocation &,
|
|
uint64_t val) const {
|
|
uint8_t *inst = loc - 3;
|
|
uint8_t reg = loc[-1] >> 3;
|
|
uint8_t *regSlot = loc - 1;
|
|
|
|
// Note that ADD with RSP or R12 is converted to ADD instead of LEA
|
|
// because LEA with these registers needs 4 bytes to encode and thus
|
|
// wouldn't fit the space.
|
|
|
|
if (memcmp(inst, "\x48\x03\x25", 3) == 0) {
|
|
// "addq foo@gottpoff(%rip),%rsp" -> "addq $foo,%rsp"
|
|
memcpy(inst, "\x48\x81\xc4", 3);
|
|
} else if (memcmp(inst, "\x4c\x03\x25", 3) == 0) {
|
|
// "addq foo@gottpoff(%rip),%r12" -> "addq $foo,%r12"
|
|
memcpy(inst, "\x49\x81\xc4", 3);
|
|
} else if (memcmp(inst, "\x4c\x03", 2) == 0) {
|
|
// "addq foo@gottpoff(%rip),%r[8-15]" -> "leaq foo(%r[8-15]),%r[8-15]"
|
|
memcpy(inst, "\x4d\x8d", 2);
|
|
*regSlot = 0x80 | (reg << 3) | reg;
|
|
} else if (memcmp(inst, "\x48\x03", 2) == 0) {
|
|
// "addq foo@gottpoff(%rip),%reg -> "leaq foo(%reg),%reg"
|
|
memcpy(inst, "\x48\x8d", 2);
|
|
*regSlot = 0x80 | (reg << 3) | reg;
|
|
} else if (memcmp(inst, "\x4c\x8b", 2) == 0) {
|
|
// "movq foo@gottpoff(%rip),%r[8-15]" -> "movq $foo,%r[8-15]"
|
|
memcpy(inst, "\x49\xc7", 2);
|
|
*regSlot = 0xc0 | reg;
|
|
} else if (memcmp(inst, "\x48\x8b", 2) == 0) {
|
|
// "movq foo@gottpoff(%rip),%reg" -> "movq $foo,%reg"
|
|
memcpy(inst, "\x48\xc7", 2);
|
|
*regSlot = 0xc0 | reg;
|
|
} else {
|
|
error(getErrorLocation(loc - 3) +
|
|
"R_X86_64_GOTTPOFF must be used in MOVQ or ADDQ instructions only");
|
|
}
|
|
|
|
// The original code used a PC relative relocation.
|
|
// Need to compensate for the -4 it had in the addend.
|
|
write32le(loc, val + 4);
|
|
}
|
|
|
|
void X86_64::relaxTlsLdToLe(uint8_t *loc, const Relocation &rel,
|
|
uint64_t val) const {
|
|
if (rel.type == R_X86_64_DTPOFF64) {
|
|
write64le(loc, val);
|
|
return;
|
|
}
|
|
if (rel.type == R_X86_64_DTPOFF32) {
|
|
write32le(loc, val);
|
|
return;
|
|
}
|
|
|
|
const uint8_t inst[] = {
|
|
0x66, 0x66, // .word 0x6666
|
|
0x66, // .byte 0x66
|
|
0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00, // mov %fs:0,%rax
|
|
};
|
|
|
|
if (loc[4] == 0xe8) {
|
|
// Convert
|
|
// leaq bar@tlsld(%rip), %rdi # 48 8d 3d <Loc>
|
|
// callq __tls_get_addr@PLT # e8 <disp32>
|
|
// leaq bar@dtpoff(%rax), %rcx
|
|
// to
|
|
// .word 0x6666
|
|
// .byte 0x66
|
|
// mov %fs:0,%rax
|
|
// leaq bar@tpoff(%rax), %rcx
|
|
memcpy(loc - 3, inst, sizeof(inst));
|
|
return;
|
|
}
|
|
|
|
if (loc[4] == 0xff && loc[5] == 0x15) {
|
|
// Convert
|
|
// leaq x@tlsld(%rip),%rdi # 48 8d 3d <Loc>
|
|
// call *__tls_get_addr@GOTPCREL(%rip) # ff 15 <disp32>
|
|
// to
|
|
// .long 0x66666666
|
|
// movq %fs:0,%rax
|
|
// See "Table 11.9: LD -> LE Code Transition (LP64)" in
|
|
// https://raw.githubusercontent.com/wiki/hjl-tools/x86-psABI/x86-64-psABI-1.0.pdf
|
|
loc[-3] = 0x66;
|
|
memcpy(loc - 2, inst, sizeof(inst));
|
|
return;
|
|
}
|
|
|
|
error(getErrorLocation(loc - 3) +
|
|
"expected R_X86_64_PLT32 or R_X86_64_GOTPCRELX after R_X86_64_TLSLD");
|
|
}
|
|
|
|
// A JumpInstrMod at a specific offset indicates that the jump instruction
|
|
// opcode at that offset must be modified. This is specifically used to relax
|
|
// jump instructions with basic block sections. This function looks at the
|
|
// JumpMod and effects the change.
|
|
void X86_64::applyJumpInstrMod(uint8_t *loc, JumpModType type,
|
|
unsigned size) const {
|
|
switch (type) {
|
|
case J_JMP_32:
|
|
if (size == 4)
|
|
*loc = 0xe9;
|
|
else
|
|
*loc = 0xeb;
|
|
break;
|
|
case J_JE_32:
|
|
if (size == 4) {
|
|
loc[-1] = 0x0f;
|
|
*loc = 0x84;
|
|
} else
|
|
*loc = 0x74;
|
|
break;
|
|
case J_JNE_32:
|
|
if (size == 4) {
|
|
loc[-1] = 0x0f;
|
|
*loc = 0x85;
|
|
} else
|
|
*loc = 0x75;
|
|
break;
|
|
case J_JG_32:
|
|
if (size == 4) {
|
|
loc[-1] = 0x0f;
|
|
*loc = 0x8f;
|
|
} else
|
|
*loc = 0x7f;
|
|
break;
|
|
case J_JGE_32:
|
|
if (size == 4) {
|
|
loc[-1] = 0x0f;
|
|
*loc = 0x8d;
|
|
} else
|
|
*loc = 0x7d;
|
|
break;
|
|
case J_JB_32:
|
|
if (size == 4) {
|
|
loc[-1] = 0x0f;
|
|
*loc = 0x82;
|
|
} else
|
|
*loc = 0x72;
|
|
break;
|
|
case J_JBE_32:
|
|
if (size == 4) {
|
|
loc[-1] = 0x0f;
|
|
*loc = 0x86;
|
|
} else
|
|
*loc = 0x76;
|
|
break;
|
|
case J_JL_32:
|
|
if (size == 4) {
|
|
loc[-1] = 0x0f;
|
|
*loc = 0x8c;
|
|
} else
|
|
*loc = 0x7c;
|
|
break;
|
|
case J_JLE_32:
|
|
if (size == 4) {
|
|
loc[-1] = 0x0f;
|
|
*loc = 0x8e;
|
|
} else
|
|
*loc = 0x7e;
|
|
break;
|
|
case J_JA_32:
|
|
if (size == 4) {
|
|
loc[-1] = 0x0f;
|
|
*loc = 0x87;
|
|
} else
|
|
*loc = 0x77;
|
|
break;
|
|
case J_JAE_32:
|
|
if (size == 4) {
|
|
loc[-1] = 0x0f;
|
|
*loc = 0x83;
|
|
} else
|
|
*loc = 0x73;
|
|
break;
|
|
case J_UNKNOWN:
|
|
llvm_unreachable("Unknown Jump Relocation");
|
|
}
|
|
}
|
|
|
|
void X86_64::relocate(uint8_t *loc, const Relocation &rel, uint64_t val) const {
|
|
switch (rel.type) {
|
|
case R_X86_64_8:
|
|
checkIntUInt(loc, val, 8, rel);
|
|
*loc = val;
|
|
break;
|
|
case R_X86_64_PC8:
|
|
checkInt(loc, val, 8, rel);
|
|
*loc = val;
|
|
break;
|
|
case R_X86_64_16:
|
|
checkIntUInt(loc, val, 16, rel);
|
|
write16le(loc, val);
|
|
break;
|
|
case R_X86_64_PC16:
|
|
checkInt(loc, val, 16, rel);
|
|
write16le(loc, val);
|
|
break;
|
|
case R_X86_64_32:
|
|
checkUInt(loc, val, 32, rel);
|
|
write32le(loc, val);
|
|
break;
|
|
case R_X86_64_32S:
|
|
case R_X86_64_TPOFF32:
|
|
case R_X86_64_GOT32:
|
|
case R_X86_64_GOTPC32:
|
|
case R_X86_64_GOTPC32_TLSDESC:
|
|
case R_X86_64_GOTPCREL:
|
|
case R_X86_64_GOTPCRELX:
|
|
case R_X86_64_REX_GOTPCRELX:
|
|
case R_X86_64_PC32:
|
|
case R_X86_64_GOTTPOFF:
|
|
case R_X86_64_PLT32:
|
|
case R_X86_64_TLSGD:
|
|
case R_X86_64_TLSLD:
|
|
case R_X86_64_DTPOFF32:
|
|
case R_X86_64_SIZE32:
|
|
checkInt(loc, val, 32, rel);
|
|
write32le(loc, val);
|
|
break;
|
|
case R_X86_64_64:
|
|
case R_X86_64_DTPOFF64:
|
|
case R_X86_64_PC64:
|
|
case R_X86_64_SIZE64:
|
|
case R_X86_64_GOT64:
|
|
case R_X86_64_GOTOFF64:
|
|
case R_X86_64_GOTPC64:
|
|
write64le(loc, val);
|
|
break;
|
|
default:
|
|
llvm_unreachable("unknown relocation");
|
|
}
|
|
}
|
|
|
|
RelExpr X86_64::adjustRelaxExpr(RelType type, const uint8_t *data,
|
|
RelExpr relExpr) const {
|
|
if (type != R_X86_64_GOTPCRELX && type != R_X86_64_REX_GOTPCRELX)
|
|
return relExpr;
|
|
const uint8_t op = data[-2];
|
|
const uint8_t modRm = data[-1];
|
|
|
|
// FIXME: When PIC is disabled and foo is defined locally in the
|
|
// lower 32 bit address space, memory operand in mov can be converted into
|
|
// immediate operand. Otherwise, mov must be changed to lea. We support only
|
|
// latter relaxation at this moment.
|
|
if (op == 0x8b)
|
|
return R_RELAX_GOT_PC;
|
|
|
|
// Relax call and jmp.
|
|
if (op == 0xff && (modRm == 0x15 || modRm == 0x25))
|
|
return R_RELAX_GOT_PC;
|
|
|
|
// Relaxation of test, adc, add, and, cmp, or, sbb, sub, xor.
|
|
// If PIC then no relaxation is available.
|
|
// We also don't relax test/binop instructions without REX byte,
|
|
// they are 32bit operations and not common to have.
|
|
assert(type == R_X86_64_REX_GOTPCRELX);
|
|
return config->isPic ? relExpr : R_RELAX_GOT_PC_NOPIC;
|
|
}
|
|
|
|
// A subset of relaxations can only be applied for no-PIC. This method
|
|
// handles such relaxations. Instructions encoding information was taken from:
|
|
// "Intel 64 and IA-32 Architectures Software Developer's Manual V2"
|
|
// (http://www.intel.com/content/dam/www/public/us/en/documents/manuals/
|
|
// 64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf)
|
|
static void relaxGotNoPic(uint8_t *loc, uint64_t val, uint8_t op,
|
|
uint8_t modRm) {
|
|
const uint8_t rex = loc[-3];
|
|
// Convert "test %reg, foo@GOTPCREL(%rip)" to "test $foo, %reg".
|
|
if (op == 0x85) {
|
|
// See "TEST-Logical Compare" (4-428 Vol. 2B),
|
|
// TEST r/m64, r64 uses "full" ModR / M byte (no opcode extension).
|
|
|
|
// ModR/M byte has form XX YYY ZZZ, where
|
|
// YYY is MODRM.reg(register 2), ZZZ is MODRM.rm(register 1).
|
|
// XX has different meanings:
|
|
// 00: The operand's memory address is in reg1.
|
|
// 01: The operand's memory address is reg1 + a byte-sized displacement.
|
|
// 10: The operand's memory address is reg1 + a word-sized displacement.
|
|
// 11: The operand is reg1 itself.
|
|
// If an instruction requires only one operand, the unused reg2 field
|
|
// holds extra opcode bits rather than a register code
|
|
// 0xC0 == 11 000 000 binary.
|
|
// 0x38 == 00 111 000 binary.
|
|
// We transfer reg2 to reg1 here as operand.
|
|
// See "2.1.3 ModR/M and SIB Bytes" (Vol. 2A 2-3).
|
|
loc[-1] = 0xc0 | (modRm & 0x38) >> 3; // ModR/M byte.
|
|
|
|
// Change opcode from TEST r/m64, r64 to TEST r/m64, imm32
|
|
// See "TEST-Logical Compare" (4-428 Vol. 2B).
|
|
loc[-2] = 0xf7;
|
|
|
|
// Move R bit to the B bit in REX byte.
|
|
// REX byte is encoded as 0100WRXB, where
|
|
// 0100 is 4bit fixed pattern.
|
|
// REX.W When 1, a 64-bit operand size is used. Otherwise, when 0, the
|
|
// default operand size is used (which is 32-bit for most but not all
|
|
// instructions).
|
|
// REX.R This 1-bit value is an extension to the MODRM.reg field.
|
|
// REX.X This 1-bit value is an extension to the SIB.index field.
|
|
// REX.B This 1-bit value is an extension to the MODRM.rm field or the
|
|
// SIB.base field.
|
|
// See "2.2.1.2 More on REX Prefix Fields " (2-8 Vol. 2A).
|
|
loc[-3] = (rex & ~0x4) | (rex & 0x4) >> 2;
|
|
write32le(loc, val);
|
|
return;
|
|
}
|
|
|
|
// If we are here then we need to relax the adc, add, and, cmp, or, sbb, sub
|
|
// or xor operations.
|
|
|
|
// Convert "binop foo@GOTPCREL(%rip), %reg" to "binop $foo, %reg".
|
|
// Logic is close to one for test instruction above, but we also
|
|
// write opcode extension here, see below for details.
|
|
loc[-1] = 0xc0 | (modRm & 0x38) >> 3 | (op & 0x3c); // ModR/M byte.
|
|
|
|
// Primary opcode is 0x81, opcode extension is one of:
|
|
// 000b = ADD, 001b is OR, 010b is ADC, 011b is SBB,
|
|
// 100b is AND, 101b is SUB, 110b is XOR, 111b is CMP.
|
|
// This value was wrote to MODRM.reg in a line above.
|
|
// See "3.2 INSTRUCTIONS (A-M)" (Vol. 2A 3-15),
|
|
// "INSTRUCTION SET REFERENCE, N-Z" (Vol. 2B 4-1) for
|
|
// descriptions about each operation.
|
|
loc[-2] = 0x81;
|
|
loc[-3] = (rex & ~0x4) | (rex & 0x4) >> 2;
|
|
write32le(loc, val);
|
|
}
|
|
|
|
void X86_64::relaxGot(uint8_t *loc, const Relocation &, uint64_t val) const {
|
|
const uint8_t op = loc[-2];
|
|
const uint8_t modRm = loc[-1];
|
|
|
|
// Convert "mov foo@GOTPCREL(%rip),%reg" to "lea foo(%rip),%reg".
|
|
if (op == 0x8b) {
|
|
loc[-2] = 0x8d;
|
|
write32le(loc, val);
|
|
return;
|
|
}
|
|
|
|
if (op != 0xff) {
|
|
// We are relaxing a rip relative to an absolute, so compensate
|
|
// for the old -4 addend.
|
|
assert(!config->isPic);
|
|
relaxGotNoPic(loc, val + 4, op, modRm);
|
|
return;
|
|
}
|
|
|
|
// Convert call/jmp instructions.
|
|
if (modRm == 0x15) {
|
|
// ABI says we can convert "call *foo@GOTPCREL(%rip)" to "nop; call foo".
|
|
// Instead we convert to "addr32 call foo" where addr32 is an instruction
|
|
// prefix. That makes result expression to be a single instruction.
|
|
loc[-2] = 0x67; // addr32 prefix
|
|
loc[-1] = 0xe8; // call
|
|
write32le(loc, val);
|
|
return;
|
|
}
|
|
|
|
// Convert "jmp *foo@GOTPCREL(%rip)" to "jmp foo; nop".
|
|
// jmp doesn't return, so it is fine to use nop here, it is just a stub.
|
|
assert(modRm == 0x25);
|
|
loc[-2] = 0xe9; // jmp
|
|
loc[3] = 0x90; // nop
|
|
write32le(loc - 1, val + 1);
|
|
}
|
|
|
|
// A split-stack prologue starts by checking the amount of stack remaining
|
|
// in one of two ways:
|
|
// A) Comparing of the stack pointer to a field in the tcb.
|
|
// B) Or a load of a stack pointer offset with an lea to r10 or r11.
|
|
bool X86_64::adjustPrologueForCrossSplitStack(uint8_t *loc, uint8_t *end,
|
|
uint8_t stOther) const {
|
|
if (!config->is64) {
|
|
error("Target doesn't support split stacks.");
|
|
return false;
|
|
}
|
|
|
|
if (loc + 8 >= end)
|
|
return false;
|
|
|
|
// Replace "cmp %fs:0x70,%rsp" and subsequent branch
|
|
// with "stc, nopl 0x0(%rax,%rax,1)"
|
|
if (memcmp(loc, "\x64\x48\x3b\x24\x25", 5) == 0) {
|
|
memcpy(loc, "\xf9\x0f\x1f\x84\x00\x00\x00\x00", 8);
|
|
return true;
|
|
}
|
|
|
|
// Adjust "lea X(%rsp),%rYY" to lea "(X - 0x4000)(%rsp),%rYY" where rYY could
|
|
// be r10 or r11. The lea instruction feeds a subsequent compare which checks
|
|
// if there is X available stack space. Making X larger effectively reserves
|
|
// that much additional space. The stack grows downward so subtract the value.
|
|
if (memcmp(loc, "\x4c\x8d\x94\x24", 4) == 0 ||
|
|
memcmp(loc, "\x4c\x8d\x9c\x24", 4) == 0) {
|
|
// The offset bytes are encoded four bytes after the start of the
|
|
// instruction.
|
|
write32le(loc + 4, read32le(loc + 4) - 0x4000);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// If Intel Indirect Branch Tracking is enabled, we have to emit special PLT
|
|
// entries containing endbr64 instructions. A PLT entry will be split into two
|
|
// parts, one in .plt.sec (writePlt), and the other in .plt (writeIBTPlt).
|
|
namespace {
|
|
class IntelIBT : public X86_64 {
|
|
public:
|
|
IntelIBT();
|
|
void writeGotPlt(uint8_t *buf, const Symbol &s) const override;
|
|
void writePlt(uint8_t *buf, const Symbol &sym,
|
|
uint64_t pltEntryAddr) const override;
|
|
void writeIBTPlt(uint8_t *buf, size_t numEntries) const override;
|
|
|
|
static const unsigned IBTPltHeaderSize = 16;
|
|
};
|
|
} // namespace
|
|
|
|
IntelIBT::IntelIBT() { pltHeaderSize = 0; }
|
|
|
|
void IntelIBT::writeGotPlt(uint8_t *buf, const Symbol &s) const {
|
|
uint64_t va =
|
|
in.ibtPlt->getVA() + IBTPltHeaderSize + s.pltIndex * pltEntrySize;
|
|
write64le(buf, va);
|
|
}
|
|
|
|
void IntelIBT::writePlt(uint8_t *buf, const Symbol &sym,
|
|
uint64_t pltEntryAddr) const {
|
|
const uint8_t Inst[] = {
|
|
0xf3, 0x0f, 0x1e, 0xfa, // endbr64
|
|
0xff, 0x25, 0, 0, 0, 0, // jmpq *got(%rip)
|
|
0x66, 0x0f, 0x1f, 0x44, 0, 0, // nop
|
|
};
|
|
memcpy(buf, Inst, sizeof(Inst));
|
|
write32le(buf + 6, sym.getGotPltVA() - pltEntryAddr - 10);
|
|
}
|
|
|
|
void IntelIBT::writeIBTPlt(uint8_t *buf, size_t numEntries) const {
|
|
writePltHeader(buf);
|
|
buf += IBTPltHeaderSize;
|
|
|
|
const uint8_t inst[] = {
|
|
0xf3, 0x0f, 0x1e, 0xfa, // endbr64
|
|
0x68, 0, 0, 0, 0, // pushq <relocation index>
|
|
0xe9, 0, 0, 0, 0, // jmpq plt[0]
|
|
0x66, 0x90, // nop
|
|
};
|
|
|
|
for (size_t i = 0; i < numEntries; ++i) {
|
|
memcpy(buf, inst, sizeof(inst));
|
|
write32le(buf + 5, i);
|
|
write32le(buf + 10, -pltHeaderSize - sizeof(inst) * i - 30);
|
|
buf += sizeof(inst);
|
|
}
|
|
}
|
|
|
|
// These nonstandard PLT entries are to migtigate Spectre v2 security
|
|
// vulnerability. In order to mitigate Spectre v2, we want to avoid indirect
|
|
// branch instructions such as `jmp *GOTPLT(%rip)`. So, in the following PLT
|
|
// entries, we use a CALL followed by MOV and RET to do the same thing as an
|
|
// indirect jump. That instruction sequence is so-called "retpoline".
|
|
//
|
|
// We have two types of retpoline PLTs as a size optimization. If `-z now`
|
|
// is specified, all dynamic symbols are resolved at load-time. Thus, when
|
|
// that option is given, we can omit code for symbol lazy resolution.
|
|
namespace {
|
|
class Retpoline : public X86_64 {
|
|
public:
|
|
Retpoline();
|
|
void writeGotPlt(uint8_t *buf, const Symbol &s) const override;
|
|
void writePltHeader(uint8_t *buf) const override;
|
|
void writePlt(uint8_t *buf, const Symbol &sym,
|
|
uint64_t pltEntryAddr) const override;
|
|
};
|
|
|
|
class RetpolineZNow : public X86_64 {
|
|
public:
|
|
RetpolineZNow();
|
|
void writeGotPlt(uint8_t *buf, const Symbol &s) const override {}
|
|
void writePltHeader(uint8_t *buf) const override;
|
|
void writePlt(uint8_t *buf, const Symbol &sym,
|
|
uint64_t pltEntryAddr) const override;
|
|
};
|
|
} // namespace
|
|
|
|
Retpoline::Retpoline() {
|
|
pltHeaderSize = 48;
|
|
pltEntrySize = 32;
|
|
ipltEntrySize = 32;
|
|
}
|
|
|
|
void Retpoline::writeGotPlt(uint8_t *buf, const Symbol &s) const {
|
|
write64le(buf, s.getPltVA() + 17);
|
|
}
|
|
|
|
void Retpoline::writePltHeader(uint8_t *buf) const {
|
|
const uint8_t insn[] = {
|
|
0xff, 0x35, 0, 0, 0, 0, // 0: pushq GOTPLT+8(%rip)
|
|
0x4c, 0x8b, 0x1d, 0, 0, 0, 0, // 6: mov GOTPLT+16(%rip), %r11
|
|
0xe8, 0x0e, 0x00, 0x00, 0x00, // d: callq next
|
|
0xf3, 0x90, // 12: loop: pause
|
|
0x0f, 0xae, 0xe8, // 14: lfence
|
|
0xeb, 0xf9, // 17: jmp loop
|
|
0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 19: int3; .align 16
|
|
0x4c, 0x89, 0x1c, 0x24, // 20: next: mov %r11, (%rsp)
|
|
0xc3, // 24: ret
|
|
0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 25: int3; padding
|
|
0xcc, 0xcc, 0xcc, 0xcc, // 2c: int3; padding
|
|
};
|
|
memcpy(buf, insn, sizeof(insn));
|
|
|
|
uint64_t gotPlt = in.gotPlt->getVA();
|
|
uint64_t plt = in.plt->getVA();
|
|
write32le(buf + 2, gotPlt - plt - 6 + 8);
|
|
write32le(buf + 9, gotPlt - plt - 13 + 16);
|
|
}
|
|
|
|
void Retpoline::writePlt(uint8_t *buf, const Symbol &sym,
|
|
uint64_t pltEntryAddr) const {
|
|
const uint8_t insn[] = {
|
|
0x4c, 0x8b, 0x1d, 0, 0, 0, 0, // 0: mov foo@GOTPLT(%rip), %r11
|
|
0xe8, 0, 0, 0, 0, // 7: callq plt+0x20
|
|
0xe9, 0, 0, 0, 0, // c: jmp plt+0x12
|
|
0x68, 0, 0, 0, 0, // 11: pushq <relocation index>
|
|
0xe9, 0, 0, 0, 0, // 16: jmp plt+0
|
|
0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 1b: int3; padding
|
|
};
|
|
memcpy(buf, insn, sizeof(insn));
|
|
|
|
uint64_t off = pltEntryAddr - in.plt->getVA();
|
|
|
|
write32le(buf + 3, sym.getGotPltVA() - pltEntryAddr - 7);
|
|
write32le(buf + 8, -off - 12 + 32);
|
|
write32le(buf + 13, -off - 17 + 18);
|
|
write32le(buf + 18, sym.pltIndex);
|
|
write32le(buf + 23, -off - 27);
|
|
}
|
|
|
|
RetpolineZNow::RetpolineZNow() {
|
|
pltHeaderSize = 32;
|
|
pltEntrySize = 16;
|
|
ipltEntrySize = 16;
|
|
}
|
|
|
|
void RetpolineZNow::writePltHeader(uint8_t *buf) const {
|
|
const uint8_t insn[] = {
|
|
0xe8, 0x0b, 0x00, 0x00, 0x00, // 0: call next
|
|
0xf3, 0x90, // 5: loop: pause
|
|
0x0f, 0xae, 0xe8, // 7: lfence
|
|
0xeb, 0xf9, // a: jmp loop
|
|
0xcc, 0xcc, 0xcc, 0xcc, // c: int3; .align 16
|
|
0x4c, 0x89, 0x1c, 0x24, // 10: next: mov %r11, (%rsp)
|
|
0xc3, // 14: ret
|
|
0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 15: int3; padding
|
|
0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 1a: int3; padding
|
|
0xcc, // 1f: int3; padding
|
|
};
|
|
memcpy(buf, insn, sizeof(insn));
|
|
}
|
|
|
|
void RetpolineZNow::writePlt(uint8_t *buf, const Symbol &sym,
|
|
uint64_t pltEntryAddr) const {
|
|
const uint8_t insn[] = {
|
|
0x4c, 0x8b, 0x1d, 0, 0, 0, 0, // mov foo@GOTPLT(%rip), %r11
|
|
0xe9, 0, 0, 0, 0, // jmp plt+0
|
|
0xcc, 0xcc, 0xcc, 0xcc, // int3; padding
|
|
};
|
|
memcpy(buf, insn, sizeof(insn));
|
|
|
|
write32le(buf + 3, sym.getGotPltVA() - pltEntryAddr - 7);
|
|
write32le(buf + 8, in.plt->getVA() - pltEntryAddr - 12);
|
|
}
|
|
|
|
static TargetInfo *getTargetInfo() {
|
|
if (config->zRetpolineplt) {
|
|
if (config->zNow) {
|
|
static RetpolineZNow t;
|
|
return &t;
|
|
}
|
|
static Retpoline t;
|
|
return &t;
|
|
}
|
|
|
|
if (config->andFeatures & GNU_PROPERTY_X86_FEATURE_1_IBT) {
|
|
static IntelIBT t;
|
|
return &t;
|
|
}
|
|
|
|
static X86_64 t;
|
|
return &t;
|
|
}
|
|
|
|
TargetInfo *elf::getX86_64TargetInfo() { return getTargetInfo(); }
|