llvm-project/compiler-rt/lib/builtins/udivmodti4.c

159 lines
4.9 KiB
C

//===-- udivmodti4.c - Implement __udivmodti4 -----------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements __udivmodti4 for the compiler_rt library.
//
//===----------------------------------------------------------------------===//
#include "int_lib.h"
#ifdef CRT_HAS_128BIT
// Returns the 128 bit division result by 64 bit. Result must fit in 64 bits.
// Remainder stored in r.
// Taken and adjusted from libdivide libdivide_128_div_64_to_64 division
// fallback. For a correctness proof see the reference for this algorithm
// in Knuth, Volume 2, section 4.3.1, Algorithm D.
UNUSED
static inline du_int udiv128by64to64default(du_int u1, du_int u0, du_int v,
du_int *r) {
const unsigned n_udword_bits = sizeof(du_int) * CHAR_BIT;
const du_int b = (1ULL << (n_udword_bits / 2)); // Number base (32 bits)
du_int un1, un0; // Norm. dividend LSD's
du_int vn1, vn0; // Norm. divisor digits
du_int q1, q0; // Quotient digits
du_int un64, un21, un10; // Dividend digit pairs
du_int rhat; // A remainder
si_int s; // Shift amount for normalization
s = __builtin_clzll(v);
if (s > 0) {
// Normalize the divisor.
v = v << s;
un64 = (u1 << s) | (u0 >> (n_udword_bits - s));
un10 = u0 << s; // Shift dividend left
} else {
// Avoid undefined behavior of (u0 >> 64).
un64 = u1;
un10 = u0;
}
// Break divisor up into two 32-bit digits.
vn1 = v >> (n_udword_bits / 2);
vn0 = v & 0xFFFFFFFF;
// Break right half of dividend into two digits.
un1 = un10 >> (n_udword_bits / 2);
un0 = un10 & 0xFFFFFFFF;
// Compute the first quotient digit, q1.
q1 = un64 / vn1;
rhat = un64 - q1 * vn1;
// q1 has at most error 2. No more than 2 iterations.
while (q1 >= b || q1 * vn0 > b * rhat + un1) {
q1 = q1 - 1;
rhat = rhat + vn1;
if (rhat >= b)
break;
}
un21 = un64 * b + un1 - q1 * v;
// Compute the second quotient digit.
q0 = un21 / vn1;
rhat = un21 - q0 * vn1;
// q0 has at most error 2. No more than 2 iterations.
while (q0 >= b || q0 * vn0 > b * rhat + un0) {
q0 = q0 - 1;
rhat = rhat + vn1;
if (rhat >= b)
break;
}
*r = (un21 * b + un0 - q0 * v) >> s;
return q1 * b + q0;
}
static inline du_int udiv128by64to64(du_int u1, du_int u0, du_int v,
du_int *r) {
#if defined(__x86_64__)
du_int result;
__asm__("divq %[v]"
: "=a"(result), "=d"(*r)
: [ v ] "r"(v), "a"(u0), "d"(u1));
return result;
#else
return udiv128by64to64default(u1, u0, v, r);
#endif
}
// Effects: if rem != 0, *rem = a % b
// Returns: a / b
COMPILER_RT_ABI tu_int __udivmodti4(tu_int a, tu_int b, tu_int *rem) {
const unsigned n_utword_bits = sizeof(tu_int) * CHAR_BIT;
utwords dividend;
dividend.all = a;
utwords divisor;
divisor.all = b;
utwords quotient;
utwords remainder;
if (divisor.all > dividend.all) {
if (rem)
*rem = dividend.all;
return 0;
}
// When the divisor fits in 64 bits, we can use an optimized path.
if (divisor.s.high == 0) {
remainder.s.high = 0;
if (dividend.s.high < divisor.s.low) {
// The result fits in 64 bits.
quotient.s.low = udiv128by64to64(dividend.s.high, dividend.s.low,
divisor.s.low, &remainder.s.low);
quotient.s.high = 0;
} else {
// First, divide with the high part to get the remainder in dividend.s.high.
// After that dividend.s.high < divisor.s.low.
quotient.s.high = dividend.s.high / divisor.s.low;
dividend.s.high = dividend.s.high % divisor.s.low;
quotient.s.low = udiv128by64to64(dividend.s.high, dividend.s.low,
divisor.s.low, &remainder.s.low);
}
if (rem)
*rem = remainder.all;
return quotient.all;
}
// 0 <= shift <= 63.
si_int shift =
__builtin_clzll(divisor.s.high) - __builtin_clzll(dividend.s.high);
divisor.all <<= shift;
quotient.s.high = 0;
quotient.s.low = 0;
for (; shift >= 0; --shift) {
quotient.s.low <<= 1;
// Branch free version of.
// if (dividend.all >= divisor.all)
// {
// dividend.all -= divisor.all;
// carry = 1;
// }
const ti_int s =
(ti_int)(divisor.all - dividend.all - 1) >> (n_utword_bits - 1);
quotient.s.low |= s & 1;
dividend.all -= divisor.all & s;
divisor.all >>= 1;
}
if (rem)
*rem = dividend.all;
return quotient.all;
}
#endif // CRT_HAS_128BIT