forked from OSchip/llvm-project
760 lines
29 KiB
C++
760 lines
29 KiB
C++
//===--- Preprocess.cpp - C Language Family Preprocessor Implementation ---===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the Preprocessor interface.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Options to support:
|
|
// -H - Print the name of each header file used.
|
|
// -d[MDNI] - Dump various things.
|
|
// -fworking-directory - #line's with preprocessor's working dir.
|
|
// -fpreprocessed
|
|
// -dependency-file,-M,-MM,-MF,-MG,-MP,-MT,-MQ,-MD,-MMD
|
|
// -W*
|
|
// -w
|
|
//
|
|
// Messages to emit:
|
|
// "Multiple include guards may be useful for:\n"
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "clang/Lex/Preprocessor.h"
|
|
#include "clang/Lex/HeaderSearch.h"
|
|
#include "clang/Lex/MacroInfo.h"
|
|
#include "clang/Lex/Pragma.h"
|
|
#include "clang/Lex/ScratchBuffer.h"
|
|
#include "clang/Basic/Diagnostic.h"
|
|
#include "clang/Basic/SourceManager.h"
|
|
#include "clang/Basic/TargetInfo.h"
|
|
#include "llvm/ADT/APFloat.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/Support/MemoryBuffer.h"
|
|
#include "llvm/Support/Streams.h"
|
|
using namespace clang;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
PreprocessorFactory::~PreprocessorFactory() {}
|
|
|
|
Preprocessor::Preprocessor(Diagnostic &diags, const LangOptions &opts,
|
|
TargetInfo &target, SourceManager &SM,
|
|
HeaderSearch &Headers)
|
|
: Diags(diags), Features(opts), Target(target), FileMgr(Headers.getFileMgr()),
|
|
SourceMgr(SM), HeaderInfo(Headers), Identifiers(opts),
|
|
CurLexer(0), CurDirLookup(0), CurTokenLexer(0), Callbacks(0) {
|
|
ScratchBuf = new ScratchBuffer(SourceMgr);
|
|
|
|
// Clear stats.
|
|
NumDirectives = NumDefined = NumUndefined = NumPragma = 0;
|
|
NumIf = NumElse = NumEndif = 0;
|
|
NumEnteredSourceFiles = 0;
|
|
NumMacroExpanded = NumFnMacroExpanded = NumBuiltinMacroExpanded = 0;
|
|
NumFastMacroExpanded = NumTokenPaste = NumFastTokenPaste = 0;
|
|
MaxIncludeStackDepth = 0;
|
|
NumSkipped = 0;
|
|
|
|
// Default to discarding comments.
|
|
KeepComments = false;
|
|
KeepMacroComments = false;
|
|
|
|
// Macro expansion is enabled.
|
|
DisableMacroExpansion = false;
|
|
InMacroArgs = false;
|
|
NumCachedTokenLexers = 0;
|
|
|
|
CacheTokens = false;
|
|
CachedLexPos = 0;
|
|
|
|
// "Poison" __VA_ARGS__, which can only appear in the expansion of a macro.
|
|
// This gets unpoisoned where it is allowed.
|
|
(Ident__VA_ARGS__ = getIdentifierInfo("__VA_ARGS__"))->setIsPoisoned();
|
|
|
|
// Initialize the pragma handlers.
|
|
PragmaHandlers = new PragmaNamespace(0);
|
|
RegisterBuiltinPragmas();
|
|
|
|
// Initialize builtin macros like __LINE__ and friends.
|
|
RegisterBuiltinMacros();
|
|
}
|
|
|
|
Preprocessor::~Preprocessor() {
|
|
assert(BacktrackPositions.empty() && "EnableBacktrack/Backtrack imbalance!");
|
|
|
|
// Free any active lexers.
|
|
delete CurLexer;
|
|
|
|
while (!IncludeMacroStack.empty()) {
|
|
delete IncludeMacroStack.back().TheLexer;
|
|
delete IncludeMacroStack.back().TheTokenLexer;
|
|
IncludeMacroStack.pop_back();
|
|
}
|
|
|
|
// Free any macro definitions.
|
|
for (llvm::DenseMap<IdentifierInfo*, MacroInfo*>::iterator I =
|
|
Macros.begin(), E = Macros.end(); I != E; ++I) {
|
|
// Free the macro definition.
|
|
delete I->second;
|
|
I->second = 0;
|
|
I->first->setHasMacroDefinition(false);
|
|
}
|
|
|
|
// Free any cached macro expanders.
|
|
for (unsigned i = 0, e = NumCachedTokenLexers; i != e; ++i)
|
|
delete TokenLexerCache[i];
|
|
|
|
// Release pragma information.
|
|
delete PragmaHandlers;
|
|
|
|
// Delete the scratch buffer info.
|
|
delete ScratchBuf;
|
|
|
|
delete Callbacks;
|
|
}
|
|
|
|
/// Diag - Forwarding function for diagnostics. This emits a diagnostic at
|
|
/// the specified Token's location, translating the token's start
|
|
/// position in the current buffer into a SourcePosition object for rendering.
|
|
void Preprocessor::Diag(SourceLocation Loc, unsigned DiagID) {
|
|
Diags.Report(getFullLoc(Loc), DiagID);
|
|
}
|
|
|
|
void Preprocessor::Diag(SourceLocation Loc, unsigned DiagID,
|
|
const std::string &Msg) {
|
|
Diags.Report(getFullLoc(Loc), DiagID, &Msg, 1);
|
|
}
|
|
|
|
void Preprocessor::Diag(SourceLocation Loc, unsigned DiagID,
|
|
const std::string &Msg,
|
|
const SourceRange &R1, const SourceRange &R2) {
|
|
SourceRange R[] = {R1, R2};
|
|
Diags.Report(getFullLoc(Loc), DiagID, &Msg, 1, R, 2);
|
|
}
|
|
|
|
|
|
void Preprocessor::Diag(SourceLocation Loc, unsigned DiagID,
|
|
const SourceRange &R) {
|
|
Diags.Report(getFullLoc(Loc), DiagID, 0, 0, &R, 1);
|
|
}
|
|
|
|
void Preprocessor::Diag(SourceLocation Loc, unsigned DiagID,
|
|
const SourceRange &R1, const SourceRange &R2) {
|
|
SourceRange R[] = {R1, R2};
|
|
Diags.Report(getFullLoc(Loc), DiagID, 0, 0, R, 2);
|
|
}
|
|
|
|
|
|
void Preprocessor::DumpToken(const Token &Tok, bool DumpFlags) const {
|
|
llvm::cerr << tok::getTokenName(Tok.getKind()) << " '"
|
|
<< getSpelling(Tok) << "'";
|
|
|
|
if (!DumpFlags) return;
|
|
|
|
llvm::cerr << "\t";
|
|
if (Tok.isAtStartOfLine())
|
|
llvm::cerr << " [StartOfLine]";
|
|
if (Tok.hasLeadingSpace())
|
|
llvm::cerr << " [LeadingSpace]";
|
|
if (Tok.isExpandDisabled())
|
|
llvm::cerr << " [ExpandDisabled]";
|
|
if (Tok.needsCleaning()) {
|
|
const char *Start = SourceMgr.getCharacterData(Tok.getLocation());
|
|
llvm::cerr << " [UnClean='" << std::string(Start, Start+Tok.getLength())
|
|
<< "']";
|
|
}
|
|
|
|
llvm::cerr << "\tLoc=<";
|
|
DumpLocation(Tok.getLocation());
|
|
llvm::cerr << ">";
|
|
}
|
|
|
|
void Preprocessor::DumpLocation(SourceLocation Loc) const {
|
|
SourceLocation LogLoc = SourceMgr.getLogicalLoc(Loc);
|
|
llvm::cerr << SourceMgr.getSourceName(LogLoc) << ':'
|
|
<< SourceMgr.getLineNumber(LogLoc) << ':'
|
|
<< SourceMgr.getColumnNumber(LogLoc);
|
|
|
|
SourceLocation PhysLoc = SourceMgr.getPhysicalLoc(Loc);
|
|
if (PhysLoc != LogLoc) {
|
|
llvm::cerr << " <PhysLoc=";
|
|
DumpLocation(PhysLoc);
|
|
llvm::cerr << ">";
|
|
}
|
|
}
|
|
|
|
void Preprocessor::DumpMacro(const MacroInfo &MI) const {
|
|
llvm::cerr << "MACRO: ";
|
|
for (unsigned i = 0, e = MI.getNumTokens(); i != e; ++i) {
|
|
DumpToken(MI.getReplacementToken(i));
|
|
llvm::cerr << " ";
|
|
}
|
|
llvm::cerr << "\n";
|
|
}
|
|
|
|
void Preprocessor::PrintStats() {
|
|
llvm::cerr << "\n*** Preprocessor Stats:\n";
|
|
llvm::cerr << NumDirectives << " directives found:\n";
|
|
llvm::cerr << " " << NumDefined << " #define.\n";
|
|
llvm::cerr << " " << NumUndefined << " #undef.\n";
|
|
llvm::cerr << " #include/#include_next/#import:\n";
|
|
llvm::cerr << " " << NumEnteredSourceFiles << " source files entered.\n";
|
|
llvm::cerr << " " << MaxIncludeStackDepth << " max include stack depth\n";
|
|
llvm::cerr << " " << NumIf << " #if/#ifndef/#ifdef.\n";
|
|
llvm::cerr << " " << NumElse << " #else/#elif.\n";
|
|
llvm::cerr << " " << NumEndif << " #endif.\n";
|
|
llvm::cerr << " " << NumPragma << " #pragma.\n";
|
|
llvm::cerr << NumSkipped << " #if/#ifndef#ifdef regions skipped\n";
|
|
|
|
llvm::cerr << NumMacroExpanded << "/" << NumFnMacroExpanded << "/"
|
|
<< NumBuiltinMacroExpanded << " obj/fn/builtin macros expanded, "
|
|
<< NumFastMacroExpanded << " on the fast path.\n";
|
|
llvm::cerr << (NumFastTokenPaste+NumTokenPaste)
|
|
<< " token paste (##) operations performed, "
|
|
<< NumFastTokenPaste << " on the fast path.\n";
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Token Spelling
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
/// getSpelling() - Return the 'spelling' of this token. The spelling of a
|
|
/// token are the characters used to represent the token in the source file
|
|
/// after trigraph expansion and escaped-newline folding. In particular, this
|
|
/// wants to get the true, uncanonicalized, spelling of things like digraphs
|
|
/// UCNs, etc.
|
|
std::string Preprocessor::getSpelling(const Token &Tok) const {
|
|
assert((int)Tok.getLength() >= 0 && "Token character range is bogus!");
|
|
|
|
// If this token contains nothing interesting, return it directly.
|
|
const char *TokStart = SourceMgr.getCharacterData(Tok.getLocation());
|
|
if (!Tok.needsCleaning())
|
|
return std::string(TokStart, TokStart+Tok.getLength());
|
|
|
|
std::string Result;
|
|
Result.reserve(Tok.getLength());
|
|
|
|
// Otherwise, hard case, relex the characters into the string.
|
|
for (const char *Ptr = TokStart, *End = TokStart+Tok.getLength();
|
|
Ptr != End; ) {
|
|
unsigned CharSize;
|
|
Result.push_back(Lexer::getCharAndSizeNoWarn(Ptr, CharSize, Features));
|
|
Ptr += CharSize;
|
|
}
|
|
assert(Result.size() != unsigned(Tok.getLength()) &&
|
|
"NeedsCleaning flag set on something that didn't need cleaning!");
|
|
return Result;
|
|
}
|
|
|
|
/// getSpelling - This method is used to get the spelling of a token into a
|
|
/// preallocated buffer, instead of as an std::string. The caller is required
|
|
/// to allocate enough space for the token, which is guaranteed to be at least
|
|
/// Tok.getLength() bytes long. The actual length of the token is returned.
|
|
///
|
|
/// Note that this method may do two possible things: it may either fill in
|
|
/// the buffer specified with characters, or it may *change the input pointer*
|
|
/// to point to a constant buffer with the data already in it (avoiding a
|
|
/// copy). The caller is not allowed to modify the returned buffer pointer
|
|
/// if an internal buffer is returned.
|
|
unsigned Preprocessor::getSpelling(const Token &Tok,
|
|
const char *&Buffer) const {
|
|
assert((int)Tok.getLength() >= 0 && "Token character range is bogus!");
|
|
|
|
// If this token is an identifier, just return the string from the identifier
|
|
// table, which is very quick.
|
|
if (const IdentifierInfo *II = Tok.getIdentifierInfo()) {
|
|
Buffer = II->getName();
|
|
|
|
// Return the length of the token. If the token needed cleaning, don't
|
|
// include the size of the newlines or trigraphs in it.
|
|
if (!Tok.needsCleaning())
|
|
return Tok.getLength();
|
|
else
|
|
return strlen(Buffer);
|
|
}
|
|
|
|
// Otherwise, compute the start of the token in the input lexer buffer.
|
|
const char *TokStart = SourceMgr.getCharacterData(Tok.getLocation());
|
|
|
|
// If this token contains nothing interesting, return it directly.
|
|
if (!Tok.needsCleaning()) {
|
|
Buffer = TokStart;
|
|
return Tok.getLength();
|
|
}
|
|
// Otherwise, hard case, relex the characters into the string.
|
|
char *OutBuf = const_cast<char*>(Buffer);
|
|
for (const char *Ptr = TokStart, *End = TokStart+Tok.getLength();
|
|
Ptr != End; ) {
|
|
unsigned CharSize;
|
|
*OutBuf++ = Lexer::getCharAndSizeNoWarn(Ptr, CharSize, Features);
|
|
Ptr += CharSize;
|
|
}
|
|
assert(unsigned(OutBuf-Buffer) != Tok.getLength() &&
|
|
"NeedsCleaning flag set on something that didn't need cleaning!");
|
|
|
|
return OutBuf-Buffer;
|
|
}
|
|
|
|
|
|
/// CreateString - Plop the specified string into a scratch buffer and return a
|
|
/// location for it. If specified, the source location provides a source
|
|
/// location for the token.
|
|
SourceLocation Preprocessor::
|
|
CreateString(const char *Buf, unsigned Len, SourceLocation SLoc) {
|
|
if (SLoc.isValid())
|
|
return ScratchBuf->getToken(Buf, Len, SLoc);
|
|
return ScratchBuf->getToken(Buf, Len);
|
|
}
|
|
|
|
|
|
/// AdvanceToTokenCharacter - Given a location that specifies the start of a
|
|
/// token, return a new location that specifies a character within the token.
|
|
SourceLocation Preprocessor::AdvanceToTokenCharacter(SourceLocation TokStart,
|
|
unsigned CharNo) {
|
|
// If they request the first char of the token, we're trivially done. If this
|
|
// is a macro expansion, it doesn't make sense to point to a character within
|
|
// the instantiation point (the name). We could point to the source
|
|
// character, but without also pointing to instantiation info, this is
|
|
// confusing.
|
|
if (CharNo == 0 || TokStart.isMacroID()) return TokStart;
|
|
|
|
// Figure out how many physical characters away the specified logical
|
|
// character is. This needs to take into consideration newlines and
|
|
// trigraphs.
|
|
const char *TokPtr = SourceMgr.getCharacterData(TokStart);
|
|
unsigned PhysOffset = 0;
|
|
|
|
// The usual case is that tokens don't contain anything interesting. Skip
|
|
// over the uninteresting characters. If a token only consists of simple
|
|
// chars, this method is extremely fast.
|
|
while (CharNo && Lexer::isObviouslySimpleCharacter(*TokPtr))
|
|
++TokPtr, --CharNo, ++PhysOffset;
|
|
|
|
// If we have a character that may be a trigraph or escaped newline, create a
|
|
// lexer to parse it correctly.
|
|
if (CharNo != 0) {
|
|
// Create a lexer starting at this token position.
|
|
Lexer TheLexer(TokStart, *this, TokPtr);
|
|
Token Tok;
|
|
// Skip over characters the remaining characters.
|
|
const char *TokStartPtr = TokPtr;
|
|
for (; CharNo; --CharNo)
|
|
TheLexer.getAndAdvanceChar(TokPtr, Tok);
|
|
|
|
PhysOffset += TokPtr-TokStartPtr;
|
|
}
|
|
|
|
return TokStart.getFileLocWithOffset(PhysOffset);
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Preprocessor Initialization Methods
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Append a #define line to Buf for Macro. Macro should be of the form XXX,
|
|
// in which case we emit "#define XXX 1" or "XXX=Y z W" in which case we emit
|
|
// "#define XXX Y z W". To get a #define with no value, use "XXX=".
|
|
static void DefineBuiltinMacro(std::vector<char> &Buf, const char *Macro,
|
|
const char *Command = "#define ") {
|
|
Buf.insert(Buf.end(), Command, Command+strlen(Command));
|
|
if (const char *Equal = strchr(Macro, '=')) {
|
|
// Turn the = into ' '.
|
|
Buf.insert(Buf.end(), Macro, Equal);
|
|
Buf.push_back(' ');
|
|
Buf.insert(Buf.end(), Equal+1, Equal+strlen(Equal));
|
|
} else {
|
|
// Push "macroname 1".
|
|
Buf.insert(Buf.end(), Macro, Macro+strlen(Macro));
|
|
Buf.push_back(' ');
|
|
Buf.push_back('1');
|
|
}
|
|
Buf.push_back('\n');
|
|
}
|
|
|
|
/// PickFP - This is used to pick a value based on the FP semantics of the
|
|
/// specified FP model.
|
|
template <typename T>
|
|
static T PickFP(const llvm::fltSemantics *Sem, T IEEESingleVal,
|
|
T IEEEDoubleVal, T X87DoubleExtendedVal, T PPCDoubleDoubleVal) {
|
|
if (Sem == &llvm::APFloat::IEEEsingle)
|
|
return IEEESingleVal;
|
|
if (Sem == &llvm::APFloat::IEEEdouble)
|
|
return IEEEDoubleVal;
|
|
if (Sem == &llvm::APFloat::x87DoubleExtended)
|
|
return X87DoubleExtendedVal;
|
|
assert(Sem == &llvm::APFloat::PPCDoubleDouble);
|
|
return PPCDoubleDoubleVal;
|
|
}
|
|
|
|
static void DefineFloatMacros(std::vector<char> &Buf, const char *Prefix,
|
|
const llvm::fltSemantics *Sem) {
|
|
const char *DenormMin, *Epsilon, *Max, *Min;
|
|
DenormMin = PickFP(Sem, "1.40129846e-45F", "4.9406564584124654e-324",
|
|
"3.64519953188247460253e-4951L",
|
|
"4.94065645841246544176568792868221e-324L");
|
|
int Digits = PickFP(Sem, 6, 15, 18, 31);
|
|
Epsilon = PickFP(Sem, "1.19209290e-7F", "2.2204460492503131e-16",
|
|
"1.08420217248550443401e-19L",
|
|
"4.94065645841246544176568792868221e-324L");
|
|
int HasInifinity = 1, HasQuietNaN = 1;
|
|
int MantissaDigits = PickFP(Sem, 24, 53, 64, 106);
|
|
int Min10Exp = PickFP(Sem, -37, -307, -4931, -291);
|
|
int Max10Exp = PickFP(Sem, 38, 308, 4932, 308);
|
|
int MinExp = PickFP(Sem, -125, -1021, -16381, -968);
|
|
int MaxExp = PickFP(Sem, 128, 1024, 16384, 1024);
|
|
Min = PickFP(Sem, "1.17549435e-38F", "2.2250738585072014e-308",
|
|
"3.36210314311209350626e-4932L",
|
|
"2.00416836000897277799610805135016e-292L");
|
|
Max = PickFP(Sem, "3.40282347e+38F", "1.7976931348623157e+308",
|
|
"1.18973149535723176502e+4932L",
|
|
"1.79769313486231580793728971405301e+308L");
|
|
|
|
char MacroBuf[60];
|
|
sprintf(MacroBuf, "__%s_DENORM_MIN__=%s", Prefix, DenormMin);
|
|
DefineBuiltinMacro(Buf, MacroBuf);
|
|
sprintf(MacroBuf, "__%s_DIG__=%d", Prefix, Digits);
|
|
DefineBuiltinMacro(Buf, MacroBuf);
|
|
sprintf(MacroBuf, "__%s_EPSILON__=%s", Prefix, Epsilon);
|
|
DefineBuiltinMacro(Buf, MacroBuf);
|
|
sprintf(MacroBuf, "__%s_HAS_INFINITY__=%d", Prefix, HasInifinity);
|
|
DefineBuiltinMacro(Buf, MacroBuf);
|
|
sprintf(MacroBuf, "__%s_HAS_QUIET_NAN__=%d", Prefix, HasQuietNaN);
|
|
DefineBuiltinMacro(Buf, MacroBuf);
|
|
sprintf(MacroBuf, "__%s_MANT_DIG__=%d", Prefix, MantissaDigits);
|
|
DefineBuiltinMacro(Buf, MacroBuf);
|
|
sprintf(MacroBuf, "__%s_MAX_10_EXP__=%d", Prefix, Max10Exp);
|
|
DefineBuiltinMacro(Buf, MacroBuf);
|
|
sprintf(MacroBuf, "__%s_MAX_EXP__=%d", Prefix, MaxExp);
|
|
DefineBuiltinMacro(Buf, MacroBuf);
|
|
sprintf(MacroBuf, "__%s_MAX__=%s", Prefix, Max);
|
|
DefineBuiltinMacro(Buf, MacroBuf);
|
|
sprintf(MacroBuf, "__%s_MIN_10_EXP__=(%d)", Prefix, Min10Exp);
|
|
DefineBuiltinMacro(Buf, MacroBuf);
|
|
sprintf(MacroBuf, "__%s_MIN_EXP__=(%d)", Prefix, MinExp);
|
|
DefineBuiltinMacro(Buf, MacroBuf);
|
|
sprintf(MacroBuf, "__%s_MIN__=%s", Prefix, Min);
|
|
DefineBuiltinMacro(Buf, MacroBuf);
|
|
}
|
|
|
|
|
|
static void InitializePredefinedMacros(Preprocessor &PP,
|
|
std::vector<char> &Buf) {
|
|
// Compiler version introspection macros.
|
|
DefineBuiltinMacro(Buf, "__llvm__=1"); // LLVM Backend
|
|
DefineBuiltinMacro(Buf, "__clang__=1"); // Clang Frontend
|
|
|
|
// Currently claim to be compatible with GCC 4.2.1-5621.
|
|
DefineBuiltinMacro(Buf, "__APPLE_CC__=5621");
|
|
DefineBuiltinMacro(Buf, "__GNUC_MINOR__=2");
|
|
DefineBuiltinMacro(Buf, "__GNUC_PATCHLEVEL__=1");
|
|
DefineBuiltinMacro(Buf, "__GNUC__=4");
|
|
DefineBuiltinMacro(Buf, "__GXX_ABI_VERSION=1002");
|
|
DefineBuiltinMacro(Buf, "__VERSION__=\"4.2.1 (Apple Computer, Inc. "
|
|
"build 5621) (dot 3)\"");
|
|
|
|
|
|
// Initialize language-specific preprocessor defines.
|
|
|
|
// FIXME: Implement magic like cpp_init_builtins for things like __STDC__
|
|
// and __DATE__ etc.
|
|
// These should all be defined in the preprocessor according to the
|
|
// current language configuration.
|
|
DefineBuiltinMacro(Buf, "__STDC__=1");
|
|
//DefineBuiltinMacro(Buf, "__ASSEMBLER__=1");
|
|
if (PP.getLangOptions().C99 && !PP.getLangOptions().CPlusPlus)
|
|
DefineBuiltinMacro(Buf, "__STDC_VERSION__=199901L");
|
|
else if (0) // STDC94 ?
|
|
DefineBuiltinMacro(Buf, "__STDC_VERSION__=199409L");
|
|
|
|
DefineBuiltinMacro(Buf, "__STDC_HOSTED__=1");
|
|
if (PP.getLangOptions().ObjC1) {
|
|
DefineBuiltinMacro(Buf, "__OBJC__=1");
|
|
|
|
if (PP.getLangOptions().getGCMode() == LangOptions::NonGC) {
|
|
DefineBuiltinMacro(Buf, "__weak=");
|
|
DefineBuiltinMacro(Buf, "__strong=");
|
|
} else {
|
|
DefineBuiltinMacro(Buf, "__weak=__attribute__((objc_gc(weak)))");
|
|
DefineBuiltinMacro(Buf, "__strong=__attribute__((objc_gc(strong)))");
|
|
DefineBuiltinMacro(Buf, "__OBJC_GC__=1");
|
|
}
|
|
|
|
if (PP.getLangOptions().NeXTRuntime)
|
|
DefineBuiltinMacro(Buf, "__NEXT_RUNTIME__=1");
|
|
}
|
|
|
|
// darwin_constant_cfstrings controls this. This is also dependent
|
|
// on other things like the runtime I believe. This is set even for C code.
|
|
DefineBuiltinMacro(Buf, "__CONSTANT_CFSTRINGS__=1");
|
|
|
|
if (PP.getLangOptions().ObjC2)
|
|
DefineBuiltinMacro(Buf, "OBJC_NEW_PROPERTIES");
|
|
|
|
if (PP.getLangOptions().PascalStrings)
|
|
DefineBuiltinMacro(Buf, "__PASCAL_STRINGS__");
|
|
|
|
if (PP.getLangOptions().Blocks) {
|
|
DefineBuiltinMacro(Buf, "__block=__attribute__((__blocks__(byref)))");
|
|
DefineBuiltinMacro(Buf, "__BLOCKS__=1");
|
|
}
|
|
|
|
if (PP.getLangOptions().CPlusPlus) {
|
|
DefineBuiltinMacro(Buf, "__DEPRECATED=1");
|
|
DefineBuiltinMacro(Buf, "__EXCEPTIONS=1");
|
|
DefineBuiltinMacro(Buf, "__GNUG__=4");
|
|
DefineBuiltinMacro(Buf, "__GXX_WEAK__=1");
|
|
DefineBuiltinMacro(Buf, "__cplusplus=1");
|
|
DefineBuiltinMacro(Buf, "__private_extern__=extern");
|
|
}
|
|
|
|
// Filter out some microsoft extensions when trying to parse in ms-compat
|
|
// mode.
|
|
if (PP.getLangOptions().Microsoft) {
|
|
DefineBuiltinMacro(Buf, "__stdcall=");
|
|
DefineBuiltinMacro(Buf, "__cdecl=");
|
|
DefineBuiltinMacro(Buf, "_cdecl=");
|
|
DefineBuiltinMacro(Buf, "__ptr64=");
|
|
DefineBuiltinMacro(Buf, "__w64=");
|
|
DefineBuiltinMacro(Buf, "__forceinline=");
|
|
DefineBuiltinMacro(Buf, "__int8=char");
|
|
DefineBuiltinMacro(Buf, "__int16=short");
|
|
DefineBuiltinMacro(Buf, "__int32=int");
|
|
DefineBuiltinMacro(Buf, "__int64=long long");
|
|
DefineBuiltinMacro(Buf, "__declspec(X)=");
|
|
}
|
|
|
|
|
|
// Initialize target-specific preprocessor defines.
|
|
const TargetInfo &TI = PP.getTargetInfo();
|
|
|
|
// Define type sizing macros based on the target properties.
|
|
assert(TI.getCharWidth() == 8 && "Only support 8-bit char so far");
|
|
DefineBuiltinMacro(Buf, "__CHAR_BIT__=8");
|
|
DefineBuiltinMacro(Buf, "__SCHAR_MAX__=127");
|
|
|
|
assert(TI.getWCharWidth() == 32 && "Only support 32-bit wchar so far");
|
|
DefineBuiltinMacro(Buf, "__WCHAR_MAX__=2147483647");
|
|
DefineBuiltinMacro(Buf, "__WCHAR_TYPE__=int");
|
|
DefineBuiltinMacro(Buf, "__WINT_TYPE__=int");
|
|
|
|
assert(TI.getShortWidth() == 16 && "Only support 16-bit short so far");
|
|
DefineBuiltinMacro(Buf, "__SHRT_MAX__=32767");
|
|
|
|
if (TI.getIntWidth() == 32)
|
|
DefineBuiltinMacro(Buf, "__INT_MAX__=2147483647");
|
|
else if (TI.getIntWidth() == 16)
|
|
DefineBuiltinMacro(Buf, "__INT_MAX__=32767");
|
|
else
|
|
assert(0 && "Unknown integer size");
|
|
|
|
assert(TI.getLongLongWidth() == 64 && "Only support 64-bit long long so far");
|
|
DefineBuiltinMacro(Buf, "__LONG_LONG_MAX__=9223372036854775807LL");
|
|
|
|
if (TI.getLongWidth() == 32)
|
|
DefineBuiltinMacro(Buf, "__LONG_MAX__=2147483647L");
|
|
else if (TI.getLongWidth() == 64)
|
|
DefineBuiltinMacro(Buf, "__LONG_MAX__=9223372036854775807L");
|
|
else if (TI.getLongWidth() == 16)
|
|
DefineBuiltinMacro(Buf, "__LONG_MAX__=32767L");
|
|
else
|
|
assert(0 && "Unknown long size");
|
|
|
|
// For "32-bit" targets, GCC generally defines intmax to be 'long long' and
|
|
// ptrdiff_t to be 'int'. On "64-bit" targets, it defines intmax to be long,
|
|
// and ptrdiff_t to be 'long int'. This sort of stuff shouldn't matter in
|
|
// theory, but can affect C++ overloading, stringizing, etc.
|
|
if (TI.getPointerWidth(0) == TI.getLongLongWidth()) {
|
|
// If sizeof(void*) == sizeof(long long) assume we have an LP64 target,
|
|
// because we assume sizeof(long) always is sizeof(void*) currently.
|
|
assert(TI.getPointerWidth(0) == TI.getLongWidth() &&
|
|
TI.getLongWidth() == 64 &&
|
|
TI.getIntWidth() == 32 && "Not I32 LP64?");
|
|
assert(TI.getIntMaxTWidth() == 64);
|
|
DefineBuiltinMacro(Buf, "__INTMAX_MAX__=9223372036854775807L");
|
|
DefineBuiltinMacro(Buf, "__INTMAX_TYPE__=long int");
|
|
DefineBuiltinMacro(Buf, "__PTRDIFF_TYPE__=long int");
|
|
DefineBuiltinMacro(Buf, "__UINTMAX_TYPE__=long unsigned int");
|
|
} else {
|
|
// Otherwise we know that the pointer is smaller than long long. We continue
|
|
// to assume that sizeof(void*) == sizeof(long).
|
|
assert(TI.getPointerWidth(0) < TI.getLongLongWidth() &&
|
|
TI.getPointerWidth(0) == TI.getLongWidth() &&
|
|
"Unexpected target sizes");
|
|
// We currently only support targets where long is 32-bit. This can be
|
|
// easily generalized in the future.
|
|
assert(TI.getIntMaxTWidth() == 64);
|
|
DefineBuiltinMacro(Buf, "__INTMAX_MAX__=9223372036854775807LL");
|
|
DefineBuiltinMacro(Buf, "__INTMAX_TYPE__=long long int");
|
|
DefineBuiltinMacro(Buf, "__PTRDIFF_TYPE__=int");
|
|
DefineBuiltinMacro(Buf, "__UINTMAX_TYPE__=long long unsigned int");
|
|
}
|
|
|
|
// All of our current targets have sizeof(long) == sizeof(void*).
|
|
assert(TI.getPointerWidth(0) == TI.getLongWidth());
|
|
DefineBuiltinMacro(Buf, "__SIZE_TYPE__=long unsigned int");
|
|
|
|
DefineFloatMacros(Buf, "FLT", &TI.getFloatFormat());
|
|
DefineFloatMacros(Buf, "DBL", &TI.getDoubleFormat());
|
|
DefineFloatMacros(Buf, "LDBL", &TI.getLongDoubleFormat());
|
|
|
|
|
|
// Add __builtin_va_list typedef.
|
|
{
|
|
const char *VAList = TI.getVAListDeclaration();
|
|
Buf.insert(Buf.end(), VAList, VAList+strlen(VAList));
|
|
Buf.push_back('\n');
|
|
}
|
|
|
|
char MacroBuf[60];
|
|
if (const char *Prefix = TI.getUserLabelPrefix()) {
|
|
sprintf(MacroBuf, "__USER_LABEL_PREFIX__=%s", Prefix);
|
|
DefineBuiltinMacro(Buf, MacroBuf);
|
|
}
|
|
|
|
// Build configuration options. FIXME: these should be controlled by
|
|
// command line options or something.
|
|
DefineBuiltinMacro(Buf, "__DYNAMIC__=1");
|
|
DefineBuiltinMacro(Buf, "__FINITE_MATH_ONLY__=0");
|
|
DefineBuiltinMacro(Buf, "__NO_INLINE__=1");
|
|
DefineBuiltinMacro(Buf, "__PIC__=1");
|
|
|
|
// Macros to control C99 numerics and <float.h>
|
|
DefineBuiltinMacro(Buf, "__FLT_EVAL_METHOD__=0");
|
|
DefineBuiltinMacro(Buf, "__FLT_RADIX__=2");
|
|
sprintf(MacroBuf, "__DECIMAL_DIG__=%d",
|
|
PickFP(&TI.getLongDoubleFormat(), -1/*FIXME*/, 17, 21, 33));
|
|
DefineBuiltinMacro(Buf, MacroBuf);
|
|
|
|
// Get other target #defines.
|
|
TI.getTargetDefines(Buf);
|
|
|
|
// FIXME: Should emit a #line directive here.
|
|
}
|
|
|
|
|
|
/// EnterMainSourceFile - Enter the specified FileID as the main source file,
|
|
/// which implicitly adds the builtin defines etc.
|
|
void Preprocessor::EnterMainSourceFile() {
|
|
|
|
unsigned MainFileID = SourceMgr.getMainFileID();
|
|
|
|
// Enter the main file source buffer.
|
|
EnterSourceFile(MainFileID, 0);
|
|
|
|
// Tell the header info that the main file was entered. If the file is later
|
|
// #imported, it won't be re-entered.
|
|
if (const FileEntry *FE =
|
|
SourceMgr.getFileEntryForLoc(SourceLocation::getFileLoc(MainFileID, 0)))
|
|
HeaderInfo.IncrementIncludeCount(FE);
|
|
|
|
std::vector<char> PrologFile;
|
|
PrologFile.reserve(4080);
|
|
|
|
// Install things like __POWERPC__, __GNUC__, etc into the macro table.
|
|
InitializePredefinedMacros(*this, PrologFile);
|
|
|
|
// Add on the predefines from the driver.
|
|
PrologFile.insert(PrologFile.end(), Predefines.begin(), Predefines.end());
|
|
|
|
// Memory buffer must end with a null byte!
|
|
PrologFile.push_back(0);
|
|
|
|
// Now that we have emitted the predefined macros, #includes, etc into
|
|
// PrologFile, preprocess it to populate the initial preprocessor state.
|
|
llvm::MemoryBuffer *SB =
|
|
llvm::MemoryBuffer::getMemBufferCopy(&PrologFile.front(),&PrologFile.back(),
|
|
"<predefines>");
|
|
assert(SB && "Cannot fail to create predefined source buffer");
|
|
unsigned FileID = SourceMgr.createFileIDForMemBuffer(SB);
|
|
assert(FileID && "Could not create FileID for predefines?");
|
|
|
|
// Start parsing the predefines.
|
|
EnterSourceFile(FileID, 0);
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Lexer Event Handling.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// LookUpIdentifierInfo - Given a tok::identifier token, look up the
|
|
/// identifier information for the token and install it into the token.
|
|
IdentifierInfo *Preprocessor::LookUpIdentifierInfo(Token &Identifier,
|
|
const char *BufPtr) {
|
|
assert(Identifier.is(tok::identifier) && "Not an identifier!");
|
|
assert(Identifier.getIdentifierInfo() == 0 && "Identinfo already exists!");
|
|
|
|
// Look up this token, see if it is a macro, or if it is a language keyword.
|
|
IdentifierInfo *II;
|
|
if (BufPtr && !Identifier.needsCleaning()) {
|
|
// No cleaning needed, just use the characters from the lexed buffer.
|
|
II = getIdentifierInfo(BufPtr, BufPtr+Identifier.getLength());
|
|
} else {
|
|
// Cleaning needed, alloca a buffer, clean into it, then use the buffer.
|
|
llvm::SmallVector<char, 64> IdentifierBuffer;
|
|
IdentifierBuffer.resize(Identifier.getLength());
|
|
const char *TmpBuf = &IdentifierBuffer[0];
|
|
unsigned Size = getSpelling(Identifier, TmpBuf);
|
|
II = getIdentifierInfo(TmpBuf, TmpBuf+Size);
|
|
}
|
|
Identifier.setIdentifierInfo(II);
|
|
return II;
|
|
}
|
|
|
|
|
|
/// HandleIdentifier - This callback is invoked when the lexer reads an
|
|
/// identifier. This callback looks up the identifier in the map and/or
|
|
/// potentially macro expands it or turns it into a named token (like 'for').
|
|
void Preprocessor::HandleIdentifier(Token &Identifier) {
|
|
assert(Identifier.getIdentifierInfo() &&
|
|
"Can't handle identifiers without identifier info!");
|
|
|
|
IdentifierInfo &II = *Identifier.getIdentifierInfo();
|
|
|
|
// If this identifier was poisoned, and if it was not produced from a macro
|
|
// expansion, emit an error.
|
|
if (II.isPoisoned() && CurLexer) {
|
|
if (&II != Ident__VA_ARGS__) // We warn about __VA_ARGS__ with poisoning.
|
|
Diag(Identifier, diag::err_pp_used_poisoned_id);
|
|
else
|
|
Diag(Identifier, diag::ext_pp_bad_vaargs_use);
|
|
}
|
|
|
|
// If this is a macro to be expanded, do it.
|
|
if (MacroInfo *MI = getMacroInfo(&II)) {
|
|
if (!DisableMacroExpansion && !Identifier.isExpandDisabled()) {
|
|
if (MI->isEnabled()) {
|
|
if (!HandleMacroExpandedIdentifier(Identifier, MI))
|
|
return;
|
|
} else {
|
|
// C99 6.10.3.4p2 says that a disabled macro may never again be
|
|
// expanded, even if it's in a context where it could be expanded in the
|
|
// future.
|
|
Identifier.setFlag(Token::DisableExpand);
|
|
}
|
|
}
|
|
}
|
|
|
|
// C++ 2.11p2: If this is an alternative representation of a C++ operator,
|
|
// then we act as if it is the actual operator and not the textual
|
|
// representation of it.
|
|
if (II.isCPlusPlusOperatorKeyword())
|
|
Identifier.setIdentifierInfo(0);
|
|
|
|
// Change the kind of this identifier to the appropriate token kind, e.g.
|
|
// turning "for" into a keyword.
|
|
Identifier.setKind(II.getTokenID());
|
|
|
|
// If this is an extension token, diagnose its use.
|
|
// We avoid diagnosing tokens that originate from macro definitions.
|
|
if (II.isExtensionToken() && Features.C99 && !DisableMacroExpansion)
|
|
Diag(Identifier, diag::ext_token_used);
|
|
}
|