forked from OSchip/llvm-project
722 lines
25 KiB
C++
722 lines
25 KiB
C++
//=- ReachableCodePathInsensitive.cpp ---------------------------*- C++ --*-==//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements a flow-sensitive, path-insensitive analysis of
|
|
// determining reachable blocks within a CFG.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "clang/Analysis/Analyses/ReachableCode.h"
|
|
#include "clang/AST/Expr.h"
|
|
#include "clang/AST/ExprCXX.h"
|
|
#include "clang/AST/ExprObjC.h"
|
|
#include "clang/AST/ParentMap.h"
|
|
#include "clang/AST/StmtCXX.h"
|
|
#include "clang/Analysis/AnalysisDeclContext.h"
|
|
#include "clang/Analysis/CFG.h"
|
|
#include "clang/Basic/SourceManager.h"
|
|
#include "clang/Lex/Preprocessor.h"
|
|
#include "llvm/ADT/BitVector.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
|
|
using namespace clang;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Core Reachability Analysis routines.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static bool isEnumConstant(const Expr *Ex) {
|
|
const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Ex);
|
|
if (!DR)
|
|
return false;
|
|
return isa<EnumConstantDecl>(DR->getDecl());
|
|
}
|
|
|
|
static bool isTrivialExpression(const Expr *Ex) {
|
|
Ex = Ex->IgnoreParenCasts();
|
|
return isa<IntegerLiteral>(Ex) || isa<StringLiteral>(Ex) ||
|
|
isa<CXXBoolLiteralExpr>(Ex) || isa<ObjCBoolLiteralExpr>(Ex) ||
|
|
isa<CharacterLiteral>(Ex) ||
|
|
isEnumConstant(Ex);
|
|
}
|
|
|
|
static bool isTrivialDoWhile(const CFGBlock *B, const Stmt *S) {
|
|
// Check if the block ends with a do...while() and see if 'S' is the
|
|
// condition.
|
|
if (const Stmt *Term = B->getTerminator()) {
|
|
if (const DoStmt *DS = dyn_cast<DoStmt>(Term)) {
|
|
const Expr *Cond = DS->getCond()->IgnoreParenCasts();
|
|
return Cond == S && isTrivialExpression(Cond);
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static bool isBuiltinUnreachable(const Stmt *S) {
|
|
if (const auto *DRE = dyn_cast<DeclRefExpr>(S))
|
|
if (const auto *FDecl = dyn_cast<FunctionDecl>(DRE->getDecl()))
|
|
return FDecl->getIdentifier() &&
|
|
FDecl->getBuiltinID() == Builtin::BI__builtin_unreachable;
|
|
return false;
|
|
}
|
|
|
|
static bool isBuiltinAssumeFalse(const CFGBlock *B, const Stmt *S,
|
|
ASTContext &C) {
|
|
if (B->empty()) {
|
|
// Happens if S is B's terminator and B contains nothing else
|
|
// (e.g. a CFGBlock containing only a goto).
|
|
return false;
|
|
}
|
|
if (Optional<CFGStmt> CS = B->back().getAs<CFGStmt>()) {
|
|
if (const auto *CE = dyn_cast<CallExpr>(CS->getStmt())) {
|
|
return CE->getCallee()->IgnoreCasts() == S && CE->isBuiltinAssumeFalse(C);
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static bool isDeadReturn(const CFGBlock *B, const Stmt *S) {
|
|
// Look to see if the current control flow ends with a 'return', and see if
|
|
// 'S' is a substatement. The 'return' may not be the last element in the
|
|
// block, or may be in a subsequent block because of destructors.
|
|
const CFGBlock *Current = B;
|
|
while (true) {
|
|
for (CFGBlock::const_reverse_iterator I = Current->rbegin(),
|
|
E = Current->rend();
|
|
I != E; ++I) {
|
|
if (Optional<CFGStmt> CS = I->getAs<CFGStmt>()) {
|
|
if (const ReturnStmt *RS = dyn_cast<ReturnStmt>(CS->getStmt())) {
|
|
if (RS == S)
|
|
return true;
|
|
if (const Expr *RE = RS->getRetValue()) {
|
|
RE = RE->IgnoreParenCasts();
|
|
if (RE == S)
|
|
return true;
|
|
ParentMap PM(const_cast<Expr *>(RE));
|
|
// If 'S' is in the ParentMap, it is a subexpression of
|
|
// the return statement.
|
|
return PM.getParent(S);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
// Note also that we are restricting the search for the return statement
|
|
// to stop at control-flow; only part of a return statement may be dead,
|
|
// without the whole return statement being dead.
|
|
if (Current->getTerminator().isTemporaryDtorsBranch()) {
|
|
// Temporary destructors have a predictable control flow, thus we want to
|
|
// look into the next block for the return statement.
|
|
// We look into the false branch, as we know the true branch only contains
|
|
// the call to the destructor.
|
|
assert(Current->succ_size() == 2);
|
|
Current = *(Current->succ_begin() + 1);
|
|
} else if (!Current->getTerminator() && Current->succ_size() == 1) {
|
|
// If there is only one successor, we're not dealing with outgoing control
|
|
// flow. Thus, look into the next block.
|
|
Current = *Current->succ_begin();
|
|
if (Current->pred_size() > 1) {
|
|
// If there is more than one predecessor, we're dealing with incoming
|
|
// control flow - if the return statement is in that block, it might
|
|
// well be reachable via a different control flow, thus it's not dead.
|
|
return false;
|
|
}
|
|
} else {
|
|
// We hit control flow or a dead end. Stop searching.
|
|
return false;
|
|
}
|
|
}
|
|
llvm_unreachable("Broke out of infinite loop.");
|
|
}
|
|
|
|
static SourceLocation getTopMostMacro(SourceLocation Loc, SourceManager &SM) {
|
|
assert(Loc.isMacroID());
|
|
SourceLocation Last;
|
|
while (Loc.isMacroID()) {
|
|
Last = Loc;
|
|
Loc = SM.getImmediateMacroCallerLoc(Loc);
|
|
}
|
|
return Last;
|
|
}
|
|
|
|
/// Returns true if the statement is expanded from a configuration macro.
|
|
static bool isExpandedFromConfigurationMacro(const Stmt *S,
|
|
Preprocessor &PP,
|
|
bool IgnoreYES_NO = false) {
|
|
// FIXME: This is not very precise. Here we just check to see if the
|
|
// value comes from a macro, but we can do much better. This is likely
|
|
// to be over conservative. This logic is factored into a separate function
|
|
// so that we can refine it later.
|
|
SourceLocation L = S->getLocStart();
|
|
if (L.isMacroID()) {
|
|
SourceManager &SM = PP.getSourceManager();
|
|
if (IgnoreYES_NO) {
|
|
// The Objective-C constant 'YES' and 'NO'
|
|
// are defined as macros. Do not treat them
|
|
// as configuration values.
|
|
SourceLocation TopL = getTopMostMacro(L, SM);
|
|
StringRef MacroName = PP.getImmediateMacroName(TopL);
|
|
if (MacroName == "YES" || MacroName == "NO")
|
|
return false;
|
|
} else if (!PP.getLangOpts().CPlusPlus) {
|
|
// Do not treat C 'false' and 'true' macros as configuration values.
|
|
SourceLocation TopL = getTopMostMacro(L, SM);
|
|
StringRef MacroName = PP.getImmediateMacroName(TopL);
|
|
if (MacroName == "false" || MacroName == "true")
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static bool isConfigurationValue(const ValueDecl *D, Preprocessor &PP);
|
|
|
|
/// Returns true if the statement represents a configuration value.
|
|
///
|
|
/// A configuration value is something usually determined at compile-time
|
|
/// to conditionally always execute some branch. Such guards are for
|
|
/// "sometimes unreachable" code. Such code is usually not interesting
|
|
/// to report as unreachable, and may mask truly unreachable code within
|
|
/// those blocks.
|
|
static bool isConfigurationValue(const Stmt *S,
|
|
Preprocessor &PP,
|
|
SourceRange *SilenceableCondVal = nullptr,
|
|
bool IncludeIntegers = true,
|
|
bool WrappedInParens = false) {
|
|
if (!S)
|
|
return false;
|
|
|
|
S = S->IgnoreImplicit();
|
|
|
|
if (const Expr *Ex = dyn_cast<Expr>(S))
|
|
S = Ex->IgnoreCasts();
|
|
|
|
// Special case looking for the sigil '()' around an integer literal.
|
|
if (const ParenExpr *PE = dyn_cast<ParenExpr>(S))
|
|
if (!PE->getLocStart().isMacroID())
|
|
return isConfigurationValue(PE->getSubExpr(), PP, SilenceableCondVal,
|
|
IncludeIntegers, true);
|
|
|
|
if (const Expr *Ex = dyn_cast<Expr>(S))
|
|
S = Ex->IgnoreCasts();
|
|
|
|
bool IgnoreYES_NO = false;
|
|
|
|
switch (S->getStmtClass()) {
|
|
case Stmt::CallExprClass: {
|
|
const FunctionDecl *Callee =
|
|
dyn_cast_or_null<FunctionDecl>(cast<CallExpr>(S)->getCalleeDecl());
|
|
return Callee ? Callee->isConstexpr() : false;
|
|
}
|
|
case Stmt::DeclRefExprClass:
|
|
return isConfigurationValue(cast<DeclRefExpr>(S)->getDecl(), PP);
|
|
case Stmt::ObjCBoolLiteralExprClass:
|
|
IgnoreYES_NO = true;
|
|
// Fallthrough.
|
|
case Stmt::CXXBoolLiteralExprClass:
|
|
case Stmt::IntegerLiteralClass: {
|
|
const Expr *E = cast<Expr>(S);
|
|
if (IncludeIntegers) {
|
|
if (SilenceableCondVal && !SilenceableCondVal->getBegin().isValid())
|
|
*SilenceableCondVal = E->getSourceRange();
|
|
return WrappedInParens || isExpandedFromConfigurationMacro(E, PP, IgnoreYES_NO);
|
|
}
|
|
return false;
|
|
}
|
|
case Stmt::MemberExprClass:
|
|
return isConfigurationValue(cast<MemberExpr>(S)->getMemberDecl(), PP);
|
|
case Stmt::UnaryExprOrTypeTraitExprClass:
|
|
return true;
|
|
case Stmt::BinaryOperatorClass: {
|
|
const BinaryOperator *B = cast<BinaryOperator>(S);
|
|
// Only include raw integers (not enums) as configuration
|
|
// values if they are used in a logical or comparison operator
|
|
// (not arithmetic).
|
|
IncludeIntegers &= (B->isLogicalOp() || B->isComparisonOp());
|
|
return isConfigurationValue(B->getLHS(), PP, SilenceableCondVal,
|
|
IncludeIntegers) ||
|
|
isConfigurationValue(B->getRHS(), PP, SilenceableCondVal,
|
|
IncludeIntegers);
|
|
}
|
|
case Stmt::UnaryOperatorClass: {
|
|
const UnaryOperator *UO = cast<UnaryOperator>(S);
|
|
if (UO->getOpcode() != UO_LNot)
|
|
return false;
|
|
bool SilenceableCondValNotSet =
|
|
SilenceableCondVal && SilenceableCondVal->getBegin().isInvalid();
|
|
bool IsSubExprConfigValue =
|
|
isConfigurationValue(UO->getSubExpr(), PP, SilenceableCondVal,
|
|
IncludeIntegers, WrappedInParens);
|
|
// Update the silenceable condition value source range only if the range
|
|
// was set directly by the child expression.
|
|
if (SilenceableCondValNotSet &&
|
|
SilenceableCondVal->getBegin().isValid() &&
|
|
*SilenceableCondVal ==
|
|
UO->getSubExpr()->IgnoreCasts()->getSourceRange())
|
|
*SilenceableCondVal = UO->getSourceRange();
|
|
return IsSubExprConfigValue;
|
|
}
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
static bool isConfigurationValue(const ValueDecl *D, Preprocessor &PP) {
|
|
if (const EnumConstantDecl *ED = dyn_cast<EnumConstantDecl>(D))
|
|
return isConfigurationValue(ED->getInitExpr(), PP);
|
|
if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
|
|
// As a heuristic, treat globals as configuration values. Note
|
|
// that we only will get here if Sema evaluated this
|
|
// condition to a constant expression, which means the global
|
|
// had to be declared in a way to be a truly constant value.
|
|
// We could generalize this to local variables, but it isn't
|
|
// clear if those truly represent configuration values that
|
|
// gate unreachable code.
|
|
if (!VD->hasLocalStorage())
|
|
return true;
|
|
|
|
// As a heuristic, locals that have been marked 'const' explicitly
|
|
// can be treated as configuration values as well.
|
|
return VD->getType().isLocalConstQualified();
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// Returns true if we should always explore all successors of a block.
|
|
static bool shouldTreatSuccessorsAsReachable(const CFGBlock *B,
|
|
Preprocessor &PP) {
|
|
if (const Stmt *Term = B->getTerminator()) {
|
|
if (isa<SwitchStmt>(Term))
|
|
return true;
|
|
// Specially handle '||' and '&&'.
|
|
if (isa<BinaryOperator>(Term)) {
|
|
return isConfigurationValue(Term, PP);
|
|
}
|
|
}
|
|
|
|
const Stmt *Cond = B->getTerminatorCondition(/* stripParens */ false);
|
|
return isConfigurationValue(Cond, PP);
|
|
}
|
|
|
|
static unsigned scanFromBlock(const CFGBlock *Start,
|
|
llvm::BitVector &Reachable,
|
|
Preprocessor *PP,
|
|
bool IncludeSometimesUnreachableEdges) {
|
|
unsigned count = 0;
|
|
|
|
// Prep work queue
|
|
SmallVector<const CFGBlock*, 32> WL;
|
|
|
|
// The entry block may have already been marked reachable
|
|
// by the caller.
|
|
if (!Reachable[Start->getBlockID()]) {
|
|
++count;
|
|
Reachable[Start->getBlockID()] = true;
|
|
}
|
|
|
|
WL.push_back(Start);
|
|
|
|
// Find the reachable blocks from 'Start'.
|
|
while (!WL.empty()) {
|
|
const CFGBlock *item = WL.pop_back_val();
|
|
|
|
// There are cases where we want to treat all successors as reachable.
|
|
// The idea is that some "sometimes unreachable" code is not interesting,
|
|
// and that we should forge ahead and explore those branches anyway.
|
|
// This allows us to potentially uncover some "always unreachable" code
|
|
// within the "sometimes unreachable" code.
|
|
// Look at the successors and mark then reachable.
|
|
Optional<bool> TreatAllSuccessorsAsReachable;
|
|
if (!IncludeSometimesUnreachableEdges)
|
|
TreatAllSuccessorsAsReachable = false;
|
|
|
|
for (CFGBlock::const_succ_iterator I = item->succ_begin(),
|
|
E = item->succ_end(); I != E; ++I) {
|
|
const CFGBlock *B = *I;
|
|
if (!B) do {
|
|
const CFGBlock *UB = I->getPossiblyUnreachableBlock();
|
|
if (!UB)
|
|
break;
|
|
|
|
if (!TreatAllSuccessorsAsReachable.hasValue()) {
|
|
assert(PP);
|
|
TreatAllSuccessorsAsReachable =
|
|
shouldTreatSuccessorsAsReachable(item, *PP);
|
|
}
|
|
|
|
if (TreatAllSuccessorsAsReachable.getValue()) {
|
|
B = UB;
|
|
break;
|
|
}
|
|
}
|
|
while (false);
|
|
|
|
if (B) {
|
|
unsigned blockID = B->getBlockID();
|
|
if (!Reachable[blockID]) {
|
|
Reachable.set(blockID);
|
|
WL.push_back(B);
|
|
++count;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return count;
|
|
}
|
|
|
|
static unsigned scanMaybeReachableFromBlock(const CFGBlock *Start,
|
|
Preprocessor &PP,
|
|
llvm::BitVector &Reachable) {
|
|
return scanFromBlock(Start, Reachable, &PP, true);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Dead Code Scanner.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
class DeadCodeScan {
|
|
llvm::BitVector Visited;
|
|
llvm::BitVector &Reachable;
|
|
SmallVector<const CFGBlock *, 10> WorkList;
|
|
Preprocessor &PP;
|
|
ASTContext &C;
|
|
|
|
typedef SmallVector<std::pair<const CFGBlock *, const Stmt *>, 12>
|
|
DeferredLocsTy;
|
|
|
|
DeferredLocsTy DeferredLocs;
|
|
|
|
public:
|
|
DeadCodeScan(llvm::BitVector &reachable, Preprocessor &PP, ASTContext &C)
|
|
: Visited(reachable.size()),
|
|
Reachable(reachable),
|
|
PP(PP), C(C) {}
|
|
|
|
void enqueue(const CFGBlock *block);
|
|
unsigned scanBackwards(const CFGBlock *Start,
|
|
clang::reachable_code::Callback &CB);
|
|
|
|
bool isDeadCodeRoot(const CFGBlock *Block);
|
|
|
|
const Stmt *findDeadCode(const CFGBlock *Block);
|
|
|
|
void reportDeadCode(const CFGBlock *B,
|
|
const Stmt *S,
|
|
clang::reachable_code::Callback &CB);
|
|
};
|
|
}
|
|
|
|
void DeadCodeScan::enqueue(const CFGBlock *block) {
|
|
unsigned blockID = block->getBlockID();
|
|
if (Reachable[blockID] || Visited[blockID])
|
|
return;
|
|
Visited[blockID] = true;
|
|
WorkList.push_back(block);
|
|
}
|
|
|
|
bool DeadCodeScan::isDeadCodeRoot(const clang::CFGBlock *Block) {
|
|
bool isDeadRoot = true;
|
|
|
|
for (CFGBlock::const_pred_iterator I = Block->pred_begin(),
|
|
E = Block->pred_end(); I != E; ++I) {
|
|
if (const CFGBlock *PredBlock = *I) {
|
|
unsigned blockID = PredBlock->getBlockID();
|
|
if (Visited[blockID]) {
|
|
isDeadRoot = false;
|
|
continue;
|
|
}
|
|
if (!Reachable[blockID]) {
|
|
isDeadRoot = false;
|
|
Visited[blockID] = true;
|
|
WorkList.push_back(PredBlock);
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
|
|
return isDeadRoot;
|
|
}
|
|
|
|
static bool isValidDeadStmt(const Stmt *S) {
|
|
if (S->getLocStart().isInvalid())
|
|
return false;
|
|
if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(S))
|
|
return BO->getOpcode() != BO_Comma;
|
|
return true;
|
|
}
|
|
|
|
const Stmt *DeadCodeScan::findDeadCode(const clang::CFGBlock *Block) {
|
|
for (CFGBlock::const_iterator I = Block->begin(), E = Block->end(); I!=E; ++I)
|
|
if (Optional<CFGStmt> CS = I->getAs<CFGStmt>()) {
|
|
const Stmt *S = CS->getStmt();
|
|
if (isValidDeadStmt(S))
|
|
return S;
|
|
}
|
|
|
|
if (CFGTerminator T = Block->getTerminator()) {
|
|
if (!T.isTemporaryDtorsBranch()) {
|
|
const Stmt *S = T.getStmt();
|
|
if (isValidDeadStmt(S))
|
|
return S;
|
|
}
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
static int SrcCmp(const std::pair<const CFGBlock *, const Stmt *> *p1,
|
|
const std::pair<const CFGBlock *, const Stmt *> *p2) {
|
|
if (p1->second->getLocStart() < p2->second->getLocStart())
|
|
return -1;
|
|
if (p2->second->getLocStart() < p1->second->getLocStart())
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
unsigned DeadCodeScan::scanBackwards(const clang::CFGBlock *Start,
|
|
clang::reachable_code::Callback &CB) {
|
|
|
|
unsigned count = 0;
|
|
enqueue(Start);
|
|
|
|
while (!WorkList.empty()) {
|
|
const CFGBlock *Block = WorkList.pop_back_val();
|
|
|
|
// It is possible that this block has been marked reachable after
|
|
// it was enqueued.
|
|
if (Reachable[Block->getBlockID()])
|
|
continue;
|
|
|
|
// Look for any dead code within the block.
|
|
const Stmt *S = findDeadCode(Block);
|
|
|
|
if (!S) {
|
|
// No dead code. Possibly an empty block. Look at dead predecessors.
|
|
for (CFGBlock::const_pred_iterator I = Block->pred_begin(),
|
|
E = Block->pred_end(); I != E; ++I) {
|
|
if (const CFGBlock *predBlock = *I)
|
|
enqueue(predBlock);
|
|
}
|
|
continue;
|
|
}
|
|
|
|
// Specially handle macro-expanded code.
|
|
if (S->getLocStart().isMacroID()) {
|
|
count += scanMaybeReachableFromBlock(Block, PP, Reachable);
|
|
continue;
|
|
}
|
|
|
|
if (isDeadCodeRoot(Block)) {
|
|
reportDeadCode(Block, S, CB);
|
|
count += scanMaybeReachableFromBlock(Block, PP, Reachable);
|
|
}
|
|
else {
|
|
// Record this statement as the possibly best location in a
|
|
// strongly-connected component of dead code for emitting a
|
|
// warning.
|
|
DeferredLocs.push_back(std::make_pair(Block, S));
|
|
}
|
|
}
|
|
|
|
// If we didn't find a dead root, then report the dead code with the
|
|
// earliest location.
|
|
if (!DeferredLocs.empty()) {
|
|
llvm::array_pod_sort(DeferredLocs.begin(), DeferredLocs.end(), SrcCmp);
|
|
for (DeferredLocsTy::iterator I = DeferredLocs.begin(),
|
|
E = DeferredLocs.end(); I != E; ++I) {
|
|
const CFGBlock *Block = I->first;
|
|
if (Reachable[Block->getBlockID()])
|
|
continue;
|
|
reportDeadCode(Block, I->second, CB);
|
|
count += scanMaybeReachableFromBlock(Block, PP, Reachable);
|
|
}
|
|
}
|
|
|
|
return count;
|
|
}
|
|
|
|
static SourceLocation GetUnreachableLoc(const Stmt *S,
|
|
SourceRange &R1,
|
|
SourceRange &R2) {
|
|
R1 = R2 = SourceRange();
|
|
|
|
if (const Expr *Ex = dyn_cast<Expr>(S))
|
|
S = Ex->IgnoreParenImpCasts();
|
|
|
|
switch (S->getStmtClass()) {
|
|
case Expr::BinaryOperatorClass: {
|
|
const BinaryOperator *BO = cast<BinaryOperator>(S);
|
|
return BO->getOperatorLoc();
|
|
}
|
|
case Expr::UnaryOperatorClass: {
|
|
const UnaryOperator *UO = cast<UnaryOperator>(S);
|
|
R1 = UO->getSubExpr()->getSourceRange();
|
|
return UO->getOperatorLoc();
|
|
}
|
|
case Expr::CompoundAssignOperatorClass: {
|
|
const CompoundAssignOperator *CAO = cast<CompoundAssignOperator>(S);
|
|
R1 = CAO->getLHS()->getSourceRange();
|
|
R2 = CAO->getRHS()->getSourceRange();
|
|
return CAO->getOperatorLoc();
|
|
}
|
|
case Expr::BinaryConditionalOperatorClass:
|
|
case Expr::ConditionalOperatorClass: {
|
|
const AbstractConditionalOperator *CO =
|
|
cast<AbstractConditionalOperator>(S);
|
|
return CO->getQuestionLoc();
|
|
}
|
|
case Expr::MemberExprClass: {
|
|
const MemberExpr *ME = cast<MemberExpr>(S);
|
|
R1 = ME->getSourceRange();
|
|
return ME->getMemberLoc();
|
|
}
|
|
case Expr::ArraySubscriptExprClass: {
|
|
const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(S);
|
|
R1 = ASE->getLHS()->getSourceRange();
|
|
R2 = ASE->getRHS()->getSourceRange();
|
|
return ASE->getRBracketLoc();
|
|
}
|
|
case Expr::CStyleCastExprClass: {
|
|
const CStyleCastExpr *CSC = cast<CStyleCastExpr>(S);
|
|
R1 = CSC->getSubExpr()->getSourceRange();
|
|
return CSC->getLParenLoc();
|
|
}
|
|
case Expr::CXXFunctionalCastExprClass: {
|
|
const CXXFunctionalCastExpr *CE = cast <CXXFunctionalCastExpr>(S);
|
|
R1 = CE->getSubExpr()->getSourceRange();
|
|
return CE->getLocStart();
|
|
}
|
|
case Stmt::CXXTryStmtClass: {
|
|
return cast<CXXTryStmt>(S)->getHandler(0)->getCatchLoc();
|
|
}
|
|
case Expr::ObjCBridgedCastExprClass: {
|
|
const ObjCBridgedCastExpr *CSC = cast<ObjCBridgedCastExpr>(S);
|
|
R1 = CSC->getSubExpr()->getSourceRange();
|
|
return CSC->getLParenLoc();
|
|
}
|
|
default: ;
|
|
}
|
|
R1 = S->getSourceRange();
|
|
return S->getLocStart();
|
|
}
|
|
|
|
void DeadCodeScan::reportDeadCode(const CFGBlock *B,
|
|
const Stmt *S,
|
|
clang::reachable_code::Callback &CB) {
|
|
// Classify the unreachable code found, or suppress it in some cases.
|
|
reachable_code::UnreachableKind UK = reachable_code::UK_Other;
|
|
|
|
if (isa<BreakStmt>(S)) {
|
|
UK = reachable_code::UK_Break;
|
|
} else if (isTrivialDoWhile(B, S) || isBuiltinUnreachable(S) ||
|
|
isBuiltinAssumeFalse(B, S, C)) {
|
|
return;
|
|
}
|
|
else if (isDeadReturn(B, S)) {
|
|
UK = reachable_code::UK_Return;
|
|
}
|
|
|
|
SourceRange SilenceableCondVal;
|
|
|
|
if (UK == reachable_code::UK_Other) {
|
|
// Check if the dead code is part of the "loop target" of
|
|
// a for/for-range loop. This is the block that contains
|
|
// the increment code.
|
|
if (const Stmt *LoopTarget = B->getLoopTarget()) {
|
|
SourceLocation Loc = LoopTarget->getLocStart();
|
|
SourceRange R1(Loc, Loc), R2;
|
|
|
|
if (const ForStmt *FS = dyn_cast<ForStmt>(LoopTarget)) {
|
|
const Expr *Inc = FS->getInc();
|
|
Loc = Inc->getLocStart();
|
|
R2 = Inc->getSourceRange();
|
|
}
|
|
|
|
CB.HandleUnreachable(reachable_code::UK_Loop_Increment,
|
|
Loc, SourceRange(), SourceRange(Loc, Loc), R2);
|
|
return;
|
|
}
|
|
|
|
// Check if the dead block has a predecessor whose branch has
|
|
// a configuration value that *could* be modified to
|
|
// silence the warning.
|
|
CFGBlock::const_pred_iterator PI = B->pred_begin();
|
|
if (PI != B->pred_end()) {
|
|
if (const CFGBlock *PredBlock = PI->getPossiblyUnreachableBlock()) {
|
|
const Stmt *TermCond =
|
|
PredBlock->getTerminatorCondition(/* strip parens */ false);
|
|
isConfigurationValue(TermCond, PP, &SilenceableCondVal);
|
|
}
|
|
}
|
|
}
|
|
|
|
SourceRange R1, R2;
|
|
SourceLocation Loc = GetUnreachableLoc(S, R1, R2);
|
|
CB.HandleUnreachable(UK, Loc, SilenceableCondVal, R1, R2);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Reachability APIs.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace clang { namespace reachable_code {
|
|
|
|
void Callback::anchor() { }
|
|
|
|
unsigned ScanReachableFromBlock(const CFGBlock *Start,
|
|
llvm::BitVector &Reachable) {
|
|
return scanFromBlock(Start, Reachable, /* SourceManager* */ nullptr, false);
|
|
}
|
|
|
|
void FindUnreachableCode(AnalysisDeclContext &AC, Preprocessor &PP,
|
|
Callback &CB) {
|
|
|
|
CFG *cfg = AC.getCFG();
|
|
if (!cfg)
|
|
return;
|
|
|
|
// Scan for reachable blocks from the entrance of the CFG.
|
|
// If there are no unreachable blocks, we're done.
|
|
llvm::BitVector reachable(cfg->getNumBlockIDs());
|
|
unsigned numReachable =
|
|
scanMaybeReachableFromBlock(&cfg->getEntry(), PP, reachable);
|
|
if (numReachable == cfg->getNumBlockIDs())
|
|
return;
|
|
|
|
// If there aren't explicit EH edges, we should include the 'try' dispatch
|
|
// blocks as roots.
|
|
if (!AC.getCFGBuildOptions().AddEHEdges) {
|
|
for (CFG::try_block_iterator I = cfg->try_blocks_begin(),
|
|
E = cfg->try_blocks_end() ; I != E; ++I) {
|
|
numReachable += scanMaybeReachableFromBlock(*I, PP, reachable);
|
|
}
|
|
if (numReachable == cfg->getNumBlockIDs())
|
|
return;
|
|
}
|
|
|
|
// There are some unreachable blocks. We need to find the root blocks that
|
|
// contain code that should be considered unreachable.
|
|
for (CFG::iterator I = cfg->begin(), E = cfg->end(); I != E; ++I) {
|
|
const CFGBlock *block = *I;
|
|
// A block may have been marked reachable during this loop.
|
|
if (reachable[block->getBlockID()])
|
|
continue;
|
|
|
|
DeadCodeScan DS(reachable, PP, AC.getASTContext());
|
|
numReachable += DS.scanBackwards(block, CB);
|
|
|
|
if (numReachable == cfg->getNumBlockIDs())
|
|
return;
|
|
}
|
|
}
|
|
|
|
}} // end namespace clang::reachable_code
|