llvm-project/llvm/lib/Target/AMDGPU/SIInsertSkips.cpp

504 lines
16 KiB
C++

//===-- SIInsertSkips.cpp - Use predicates for control flow ---------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file
/// This pass inserts branches on the 0 exec mask over divergent branches
/// branches when it's expected that jumping over the untaken control flow will
/// be cheaper than having every workitem no-op through it.
//
//===----------------------------------------------------------------------===//
#include "AMDGPU.h"
#include "AMDGPUSubtarget.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/InitializePasses.h"
using namespace llvm;
#define DEBUG_TYPE "si-insert-skips"
static cl::opt<unsigned> SkipThresholdFlag(
"amdgpu-skip-threshold-legacy",
cl::desc("Number of instructions before jumping over divergent control flow"),
cl::init(12), cl::Hidden);
namespace {
class SIInsertSkips : public MachineFunctionPass {
private:
const SIRegisterInfo *TRI = nullptr;
const SIInstrInfo *TII = nullptr;
unsigned SkipThreshold = 0;
MachineDominatorTree *MDT = nullptr;
MachineBasicBlock *EarlyExitBlock = nullptr;
bool EarlyExitClearsExec = false;
bool shouldSkip(const MachineBasicBlock &From,
const MachineBasicBlock &To) const;
bool dominatesAllReachable(MachineBasicBlock &MBB);
void ensureEarlyExitBlock(MachineBasicBlock &MBB, bool ClearExec);
void skipIfDead(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
DebugLoc DL);
bool kill(MachineInstr &MI);
void earlyTerm(MachineInstr &MI);
bool skipMaskBranch(MachineInstr &MI, MachineBasicBlock &MBB);
public:
static char ID;
SIInsertSkips() : MachineFunctionPass(ID) {}
bool runOnMachineFunction(MachineFunction &MF) override;
StringRef getPassName() const override {
return "SI insert s_cbranch_execz instructions";
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<MachineDominatorTree>();
AU.addPreserved<MachineDominatorTree>();
MachineFunctionPass::getAnalysisUsage(AU);
}
};
} // end anonymous namespace
char SIInsertSkips::ID = 0;
INITIALIZE_PASS_BEGIN(SIInsertSkips, DEBUG_TYPE,
"SI insert s_cbranch_execz instructions", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
INITIALIZE_PASS_END(SIInsertSkips, DEBUG_TYPE,
"SI insert s_cbranch_execz instructions", false, false)
char &llvm::SIInsertSkipsPassID = SIInsertSkips::ID;
static bool opcodeEmitsNoInsts(const MachineInstr &MI) {
if (MI.isMetaInstruction())
return true;
// Handle target specific opcodes.
switch (MI.getOpcode()) {
case AMDGPU::SI_MASK_BRANCH:
return true;
default:
return false;
}
}
bool SIInsertSkips::shouldSkip(const MachineBasicBlock &From,
const MachineBasicBlock &To) const {
unsigned NumInstr = 0;
const MachineFunction *MF = From.getParent();
for (MachineFunction::const_iterator MBBI(&From), ToI(&To), End = MF->end();
MBBI != End && MBBI != ToI; ++MBBI) {
const MachineBasicBlock &MBB = *MBBI;
for (MachineBasicBlock::const_iterator I = MBB.begin(), E = MBB.end();
NumInstr < SkipThreshold && I != E; ++I) {
if (opcodeEmitsNoInsts(*I))
continue;
// FIXME: Since this is required for correctness, this should be inserted
// during SILowerControlFlow.
// When a uniform loop is inside non-uniform control flow, the branch
// leaving the loop might be an S_CBRANCH_VCCNZ, which is never taken
// when EXEC = 0. We should skip the loop lest it becomes infinite.
if (I->getOpcode() == AMDGPU::S_CBRANCH_VCCNZ ||
I->getOpcode() == AMDGPU::S_CBRANCH_VCCZ)
return true;
if (TII->hasUnwantedEffectsWhenEXECEmpty(*I))
return true;
// These instructions are potentially expensive even if EXEC = 0.
if (TII->isSMRD(*I) || TII->isVMEM(*I) || TII->isFLAT(*I) ||
I->getOpcode() == AMDGPU::S_WAITCNT)
return true;
++NumInstr;
if (NumInstr >= SkipThreshold)
return true;
}
}
return false;
}
/// Check whether \p MBB dominates all blocks that are reachable from it.
bool SIInsertSkips::dominatesAllReachable(MachineBasicBlock &MBB) {
for (MachineBasicBlock *Other : depth_first(&MBB)) {
if (!MDT->dominates(&MBB, Other))
return false;
}
return true;
}
static void generateEndPgm(MachineBasicBlock &MBB,
MachineBasicBlock::iterator I, DebugLoc DL,
const SIInstrInfo *TII, bool IsPS) {
// "null export"
if (IsPS) {
BuildMI(MBB, I, DL, TII->get(AMDGPU::EXP_DONE))
.addImm(AMDGPU::Exp::ET_NULL)
.addReg(AMDGPU::VGPR0, RegState::Undef)
.addReg(AMDGPU::VGPR0, RegState::Undef)
.addReg(AMDGPU::VGPR0, RegState::Undef)
.addReg(AMDGPU::VGPR0, RegState::Undef)
.addImm(1) // vm
.addImm(0) // compr
.addImm(0); // en
}
// s_endpgm
BuildMI(MBB, I, DL, TII->get(AMDGPU::S_ENDPGM)).addImm(0);
}
void SIInsertSkips::ensureEarlyExitBlock(MachineBasicBlock &MBB,
bool ClearExec) {
MachineFunction *MF = MBB.getParent();
DebugLoc DL;
if (!EarlyExitBlock) {
EarlyExitBlock = MF->CreateMachineBasicBlock();
MF->insert(MF->end(), EarlyExitBlock);
generateEndPgm(*EarlyExitBlock, EarlyExitBlock->end(), DL, TII,
MF->getFunction().getCallingConv() ==
CallingConv::AMDGPU_PS);
EarlyExitClearsExec = false;
}
if (ClearExec && !EarlyExitClearsExec) {
const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
unsigned Mov = ST.isWave32() ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64;
Register Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC;
auto ExitI = EarlyExitBlock->getFirstNonPHI();
BuildMI(*EarlyExitBlock, ExitI, DL, TII->get(Mov), Exec).addImm(0);
EarlyExitClearsExec = true;
}
}
static void splitBlock(MachineBasicBlock &MBB, MachineInstr &MI,
MachineDominatorTree *MDT) {
MachineBasicBlock *SplitBB = MBB.splitAt(MI, /*UpdateLiveIns*/ true);
// Update dominator tree
using DomTreeT = DomTreeBase<MachineBasicBlock>;
SmallVector<DomTreeT::UpdateType, 16> DTUpdates;
for (MachineBasicBlock *Succ : SplitBB->successors()) {
DTUpdates.push_back({DomTreeT::Insert, SplitBB, Succ});
DTUpdates.push_back({DomTreeT::Delete, &MBB, Succ});
}
DTUpdates.push_back({DomTreeT::Insert, &MBB, SplitBB});
MDT->getBase().applyUpdates(DTUpdates);
}
/// Insert an "if exec=0 { null export; s_endpgm }" sequence before the given
/// iterator. Only applies to pixel shaders.
void SIInsertSkips::skipIfDead(MachineBasicBlock &MBB,
MachineBasicBlock::iterator I, DebugLoc DL) {
MachineFunction *MF = MBB.getParent();
(void)MF;
assert(MF->getFunction().getCallingConv() == CallingConv::AMDGPU_PS);
// It is possible for an SI_KILL_*_TERMINATOR to sit at the bottom of a
// basic block that has no further successors (e.g., there was an
// `unreachable` there in IR). This can happen with original source of the
// form:
//
// if (uniform_condition) {
// write_to_memory();
// discard;
// }
//
// In this case, we write the "null_export; s_endpgm" skip code in the
// already-existing basic block.
auto NextBBI = std::next(MBB.getIterator());
bool NoSuccessor =
I == MBB.end() && !llvm::is_contained(MBB.successors(), &*NextBBI);
if (NoSuccessor) {
generateEndPgm(MBB, I, DL, TII, true);
} else {
ensureEarlyExitBlock(MBB, false);
MachineInstr *BranchMI =
BuildMI(MBB, I, DL, TII->get(AMDGPU::S_CBRANCH_EXECZ))
.addMBB(EarlyExitBlock);
// Split the block if the branch will not come at the end.
auto Next = std::next(BranchMI->getIterator());
if (Next != MBB.end() && !Next->isTerminator())
splitBlock(MBB, *BranchMI, MDT);
MBB.addSuccessor(EarlyExitBlock);
MDT->getBase().insertEdge(&MBB, EarlyExitBlock);
}
}
/// Translate a SI_KILL_*_TERMINATOR into exec-manipulating instructions.
/// Return true unless the terminator is a no-op.
bool SIInsertSkips::kill(MachineInstr &MI) {
MachineBasicBlock &MBB = *MI.getParent();
DebugLoc DL = MI.getDebugLoc();
switch (MI.getOpcode()) {
case AMDGPU::SI_KILL_F32_COND_IMM_TERMINATOR: {
unsigned Opcode = 0;
// The opcodes are inverted because the inline immediate has to be
// the first operand, e.g. from "x < imm" to "imm > x"
switch (MI.getOperand(2).getImm()) {
case ISD::SETOEQ:
case ISD::SETEQ:
Opcode = AMDGPU::V_CMPX_EQ_F32_e64;
break;
case ISD::SETOGT:
case ISD::SETGT:
Opcode = AMDGPU::V_CMPX_LT_F32_e64;
break;
case ISD::SETOGE:
case ISD::SETGE:
Opcode = AMDGPU::V_CMPX_LE_F32_e64;
break;
case ISD::SETOLT:
case ISD::SETLT:
Opcode = AMDGPU::V_CMPX_GT_F32_e64;
break;
case ISD::SETOLE:
case ISD::SETLE:
Opcode = AMDGPU::V_CMPX_GE_F32_e64;
break;
case ISD::SETONE:
case ISD::SETNE:
Opcode = AMDGPU::V_CMPX_LG_F32_e64;
break;
case ISD::SETO:
Opcode = AMDGPU::V_CMPX_O_F32_e64;
break;
case ISD::SETUO:
Opcode = AMDGPU::V_CMPX_U_F32_e64;
break;
case ISD::SETUEQ:
Opcode = AMDGPU::V_CMPX_NLG_F32_e64;
break;
case ISD::SETUGT:
Opcode = AMDGPU::V_CMPX_NGE_F32_e64;
break;
case ISD::SETUGE:
Opcode = AMDGPU::V_CMPX_NGT_F32_e64;
break;
case ISD::SETULT:
Opcode = AMDGPU::V_CMPX_NLE_F32_e64;
break;
case ISD::SETULE:
Opcode = AMDGPU::V_CMPX_NLT_F32_e64;
break;
case ISD::SETUNE:
Opcode = AMDGPU::V_CMPX_NEQ_F32_e64;
break;
default:
llvm_unreachable("invalid ISD:SET cond code");
}
const GCNSubtarget &ST = MBB.getParent()->getSubtarget<GCNSubtarget>();
if (ST.hasNoSdstCMPX())
Opcode = AMDGPU::getVCMPXNoSDstOp(Opcode);
assert(MI.getOperand(0).isReg());
if (TRI->isVGPR(MBB.getParent()->getRegInfo(),
MI.getOperand(0).getReg())) {
Opcode = AMDGPU::getVOPe32(Opcode);
BuildMI(MBB, &MI, DL, TII->get(Opcode))
.add(MI.getOperand(1))
.add(MI.getOperand(0));
} else {
auto I = BuildMI(MBB, &MI, DL, TII->get(Opcode));
if (!ST.hasNoSdstCMPX())
I.addReg(AMDGPU::VCC, RegState::Define);
I.addImm(0) // src0 modifiers
.add(MI.getOperand(1))
.addImm(0) // src1 modifiers
.add(MI.getOperand(0));
I.addImm(0); // omod
}
return true;
}
case AMDGPU::SI_KILL_I1_TERMINATOR: {
const MachineFunction *MF = MI.getParent()->getParent();
const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC;
const MachineOperand &Op = MI.getOperand(0);
int64_t KillVal = MI.getOperand(1).getImm();
assert(KillVal == 0 || KillVal == -1);
// Kill all threads if Op0 is an immediate and equal to the Kill value.
if (Op.isImm()) {
int64_t Imm = Op.getImm();
assert(Imm == 0 || Imm == -1);
if (Imm == KillVal) {
BuildMI(MBB, &MI, DL, TII->get(ST.isWave32() ? AMDGPU::S_MOV_B32
: AMDGPU::S_MOV_B64), Exec)
.addImm(0);
return true;
}
return false;
}
unsigned Opcode = KillVal ? AMDGPU::S_ANDN2_B64 : AMDGPU::S_AND_B64;
if (ST.isWave32())
Opcode = KillVal ? AMDGPU::S_ANDN2_B32 : AMDGPU::S_AND_B32;
BuildMI(MBB, &MI, DL, TII->get(Opcode), Exec)
.addReg(Exec)
.add(Op);
return true;
}
default:
llvm_unreachable("invalid opcode, expected SI_KILL_*_TERMINATOR");
}
}
void SIInsertSkips::earlyTerm(MachineInstr &MI) {
MachineBasicBlock &MBB = *MI.getParent();
const DebugLoc DL = MI.getDebugLoc();
ensureEarlyExitBlock(MBB, true);
auto BranchMI = BuildMI(MBB, MI, DL, TII->get(AMDGPU::S_CBRANCH_SCC0))
.addMBB(EarlyExitBlock);
auto Next = std::next(MI.getIterator());
if (Next != MBB.end() && !Next->isTerminator())
splitBlock(MBB, *BranchMI, MDT);
MBB.addSuccessor(EarlyExitBlock);
MDT->getBase().insertEdge(&MBB, EarlyExitBlock);
}
// Returns true if a branch over the block was inserted.
bool SIInsertSkips::skipMaskBranch(MachineInstr &MI,
MachineBasicBlock &SrcMBB) {
MachineBasicBlock *DestBB = MI.getOperand(0).getMBB();
if (!shouldSkip(**SrcMBB.succ_begin(), *DestBB))
return false;
const DebugLoc &DL = MI.getDebugLoc();
MachineBasicBlock::iterator InsPt = std::next(MI.getIterator());
BuildMI(SrcMBB, InsPt, DL, TII->get(AMDGPU::S_CBRANCH_EXECZ))
.addMBB(DestBB);
return true;
}
bool SIInsertSkips::runOnMachineFunction(MachineFunction &MF) {
const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
TII = ST.getInstrInfo();
TRI = &TII->getRegisterInfo();
MDT = &getAnalysis<MachineDominatorTree>();
SkipThreshold = SkipThresholdFlag;
SmallVector<MachineInstr *, 4> KillInstrs;
SmallVector<MachineInstr *, 4> EarlyTermInstrs;
bool MadeChange = false;
for (MachineBasicBlock &MBB : MF) {
MachineBasicBlock::iterator I, Next;
for (I = MBB.begin(); I != MBB.end(); I = Next) {
Next = std::next(I);
MachineInstr &MI = *I;
switch (MI.getOpcode()) {
case AMDGPU::SI_MASK_BRANCH:
MadeChange |= skipMaskBranch(MI, MBB);
break;
case AMDGPU::S_BRANCH:
// Optimize out branches to the next block.
// FIXME: Shouldn't this be handled by BranchFolding?
if (MBB.isLayoutSuccessor(MI.getOperand(0).getMBB())) {
assert(&MI == &MBB.back());
MI.eraseFromParent();
MadeChange = true;
}
break;
case AMDGPU::SI_KILL_F32_COND_IMM_TERMINATOR:
case AMDGPU::SI_KILL_I1_TERMINATOR: {
MadeChange = true;
bool CanKill = kill(MI);
// Check if we can add an early "if exec=0 { end shader }".
//
// Note that we _always_ do this if it is correct, even if the kill
// happens fairly late in the shader, because the null export should
// generally still be cheaper than normal export(s).
//
// TODO: The dominatesAllReachable check is conservative: if the
// dominance is only missing due to _uniform_ branches, we could
// in fact insert the early-exit as well.
if (CanKill &&
MF.getFunction().getCallingConv() == CallingConv::AMDGPU_PS &&
dominatesAllReachable(MBB)) {
// Mark the instruction for kill-if-dead insertion. We delay this
// change because it modifies the CFG.
KillInstrs.push_back(&MI);
} else {
MI.eraseFromParent();
}
break;
}
case AMDGPU::SI_KILL_CLEANUP:
if (MF.getFunction().getCallingConv() == CallingConv::AMDGPU_PS &&
dominatesAllReachable(MBB)) {
KillInstrs.push_back(&MI);
} else {
MI.eraseFromParent();
}
break;
case AMDGPU::SI_EARLY_TERMINATE_SCC0:
EarlyTermInstrs.push_back(&MI);
break;
default:
break;
}
}
}
for (MachineInstr *Instr : EarlyTermInstrs) {
// Early termination in GS does nothing
if (MF.getFunction().getCallingConv() != CallingConv::AMDGPU_GS)
earlyTerm(*Instr);
Instr->eraseFromParent();
}
for (MachineInstr *Kill : KillInstrs) {
skipIfDead(*Kill->getParent(), std::next(Kill->getIterator()),
Kill->getDebugLoc());
Kill->eraseFromParent();
}
KillInstrs.clear();
EarlyTermInstrs.clear();
EarlyExitBlock = nullptr;
return MadeChange;
}