forked from OSchip/llvm-project
1396 lines
51 KiB
C++
1396 lines
51 KiB
C++
//===-- llvm/lib/Target/AMDGPU/AMDGPUCallLowering.cpp - Call lowering -----===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
///
|
|
/// \file
|
|
/// This file implements the lowering of LLVM calls to machine code calls for
|
|
/// GlobalISel.
|
|
///
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "AMDGPUCallLowering.h"
|
|
#include "AMDGPU.h"
|
|
#include "AMDGPULegalizerInfo.h"
|
|
#include "AMDGPUSubtarget.h"
|
|
#include "AMDGPUTargetMachine.h"
|
|
#include "SIMachineFunctionInfo.h"
|
|
#include "SIRegisterInfo.h"
|
|
#include "llvm/CodeGen/Analysis.h"
|
|
#include "llvm/CodeGen/FunctionLoweringInfo.h"
|
|
#include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
|
|
#include "llvm/IR/IntrinsicsAMDGPU.h"
|
|
|
|
#define DEBUG_TYPE "amdgpu-call-lowering"
|
|
|
|
using namespace llvm;
|
|
|
|
namespace {
|
|
|
|
struct AMDGPUValueHandler : public CallLowering::ValueHandler {
|
|
AMDGPUValueHandler(bool IsIncoming, MachineIRBuilder &B,
|
|
MachineRegisterInfo &MRI, CCAssignFn *AssignFn)
|
|
: ValueHandler(IsIncoming, B, MRI, AssignFn) {}
|
|
|
|
/// Wrapper around extendRegister to ensure we extend to a full 32-bit
|
|
/// register.
|
|
Register extendRegisterMin32(Register ValVReg, CCValAssign &VA) {
|
|
if (VA.getLocVT().getSizeInBits() < 32) {
|
|
// 16-bit types are reported as legal for 32-bit registers. We need to
|
|
// extend and do a 32-bit copy to avoid the verifier complaining about it.
|
|
return MIRBuilder.buildAnyExt(LLT::scalar(32), ValVReg).getReg(0);
|
|
}
|
|
|
|
return extendRegister(ValVReg, VA);
|
|
}
|
|
};
|
|
|
|
struct AMDGPUOutgoingValueHandler : public AMDGPUValueHandler {
|
|
AMDGPUOutgoingValueHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI,
|
|
MachineInstrBuilder MIB, CCAssignFn *AssignFn)
|
|
: AMDGPUValueHandler(false, B, MRI, AssignFn), MIB(MIB) {}
|
|
|
|
MachineInstrBuilder MIB;
|
|
|
|
Register getStackAddress(uint64_t Size, int64_t Offset,
|
|
MachinePointerInfo &MPO) override {
|
|
llvm_unreachable("not implemented");
|
|
}
|
|
|
|
void assignValueToAddress(Register ValVReg, Register Addr, uint64_t Size,
|
|
MachinePointerInfo &MPO, CCValAssign &VA) override {
|
|
llvm_unreachable("not implemented");
|
|
}
|
|
|
|
void assignValueToReg(Register ValVReg, Register PhysReg,
|
|
CCValAssign &VA) override {
|
|
Register ExtReg = extendRegisterMin32(ValVReg, VA);
|
|
|
|
// If this is a scalar return, insert a readfirstlane just in case the value
|
|
// ends up in a VGPR.
|
|
// FIXME: Assert this is a shader return.
|
|
const SIRegisterInfo *TRI
|
|
= static_cast<const SIRegisterInfo *>(MRI.getTargetRegisterInfo());
|
|
if (TRI->isSGPRReg(MRI, PhysReg)) {
|
|
auto ToSGPR = MIRBuilder.buildIntrinsic(Intrinsic::amdgcn_readfirstlane,
|
|
{MRI.getType(ExtReg)}, false)
|
|
.addReg(ExtReg);
|
|
ExtReg = ToSGPR.getReg(0);
|
|
}
|
|
|
|
MIRBuilder.buildCopy(PhysReg, ExtReg);
|
|
MIB.addUse(PhysReg, RegState::Implicit);
|
|
}
|
|
|
|
bool assignArg(unsigned ValNo, MVT ValVT, MVT LocVT,
|
|
CCValAssign::LocInfo LocInfo,
|
|
const CallLowering::ArgInfo &Info,
|
|
ISD::ArgFlagsTy Flags,
|
|
CCState &State) override {
|
|
return AssignFn(ValNo, ValVT, LocVT, LocInfo, Flags, State);
|
|
}
|
|
};
|
|
|
|
struct AMDGPUIncomingArgHandler : public AMDGPUValueHandler {
|
|
uint64_t StackUsed = 0;
|
|
|
|
AMDGPUIncomingArgHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI,
|
|
CCAssignFn *AssignFn)
|
|
: AMDGPUValueHandler(true, B, MRI, AssignFn) {}
|
|
|
|
Register getStackAddress(uint64_t Size, int64_t Offset,
|
|
MachinePointerInfo &MPO) override {
|
|
auto &MFI = MIRBuilder.getMF().getFrameInfo();
|
|
int FI = MFI.CreateFixedObject(Size, Offset, true);
|
|
MPO = MachinePointerInfo::getFixedStack(MIRBuilder.getMF(), FI);
|
|
auto AddrReg = MIRBuilder.buildFrameIndex(
|
|
LLT::pointer(AMDGPUAS::PRIVATE_ADDRESS, 32), FI);
|
|
StackUsed = std::max(StackUsed, Size + Offset);
|
|
return AddrReg.getReg(0);
|
|
}
|
|
|
|
void assignValueToReg(Register ValVReg, Register PhysReg,
|
|
CCValAssign &VA) override {
|
|
markPhysRegUsed(PhysReg);
|
|
|
|
if (VA.getLocVT().getSizeInBits() < 32) {
|
|
// 16-bit types are reported as legal for 32-bit registers. We need to do
|
|
// a 32-bit copy, and truncate to avoid the verifier complaining about it.
|
|
auto Copy = MIRBuilder.buildCopy(LLT::scalar(32), PhysReg);
|
|
MIRBuilder.buildTrunc(ValVReg, Copy);
|
|
return;
|
|
}
|
|
|
|
switch (VA.getLocInfo()) {
|
|
case CCValAssign::LocInfo::SExt:
|
|
case CCValAssign::LocInfo::ZExt:
|
|
case CCValAssign::LocInfo::AExt: {
|
|
auto Copy = MIRBuilder.buildCopy(LLT{VA.getLocVT()}, PhysReg);
|
|
MIRBuilder.buildTrunc(ValVReg, Copy);
|
|
break;
|
|
}
|
|
default:
|
|
MIRBuilder.buildCopy(ValVReg, PhysReg);
|
|
break;
|
|
}
|
|
}
|
|
|
|
void assignValueToAddress(Register ValVReg, Register Addr, uint64_t MemSize,
|
|
MachinePointerInfo &MPO, CCValAssign &VA) override {
|
|
MachineFunction &MF = MIRBuilder.getMF();
|
|
|
|
// The reported memory location may be wider than the value.
|
|
const LLT RegTy = MRI.getType(ValVReg);
|
|
MemSize = std::min(static_cast<uint64_t>(RegTy.getSizeInBytes()), MemSize);
|
|
|
|
// FIXME: Get alignment
|
|
auto MMO = MF.getMachineMemOperand(
|
|
MPO, MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant, MemSize,
|
|
inferAlignFromPtrInfo(MF, MPO));
|
|
MIRBuilder.buildLoad(ValVReg, Addr, *MMO);
|
|
}
|
|
|
|
/// How the physical register gets marked varies between formal
|
|
/// parameters (it's a basic-block live-in), and a call instruction
|
|
/// (it's an implicit-def of the BL).
|
|
virtual void markPhysRegUsed(unsigned PhysReg) = 0;
|
|
};
|
|
|
|
struct FormalArgHandler : public AMDGPUIncomingArgHandler {
|
|
FormalArgHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI,
|
|
CCAssignFn *AssignFn)
|
|
: AMDGPUIncomingArgHandler(B, MRI, AssignFn) {}
|
|
|
|
void markPhysRegUsed(unsigned PhysReg) override {
|
|
MIRBuilder.getMBB().addLiveIn(PhysReg);
|
|
}
|
|
};
|
|
|
|
struct CallReturnHandler : public AMDGPUIncomingArgHandler {
|
|
CallReturnHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
|
|
MachineInstrBuilder MIB, CCAssignFn *AssignFn)
|
|
: AMDGPUIncomingArgHandler(MIRBuilder, MRI, AssignFn), MIB(MIB) {}
|
|
|
|
void markPhysRegUsed(unsigned PhysReg) override {
|
|
MIB.addDef(PhysReg, RegState::Implicit);
|
|
}
|
|
|
|
MachineInstrBuilder MIB;
|
|
};
|
|
|
|
struct AMDGPUOutgoingArgHandler : public AMDGPUValueHandler {
|
|
MachineInstrBuilder MIB;
|
|
CCAssignFn *AssignFnVarArg;
|
|
|
|
/// For tail calls, the byte offset of the call's argument area from the
|
|
/// callee's. Unused elsewhere.
|
|
int FPDiff;
|
|
|
|
// Cache the SP register vreg if we need it more than once in this call site.
|
|
Register SPReg;
|
|
|
|
bool IsTailCall;
|
|
|
|
AMDGPUOutgoingArgHandler(MachineIRBuilder &MIRBuilder,
|
|
MachineRegisterInfo &MRI, MachineInstrBuilder MIB,
|
|
CCAssignFn *AssignFn, CCAssignFn *AssignFnVarArg,
|
|
bool IsTailCall = false, int FPDiff = 0)
|
|
: AMDGPUValueHandler(false, MIRBuilder, MRI, AssignFn), MIB(MIB),
|
|
AssignFnVarArg(AssignFnVarArg), FPDiff(FPDiff), IsTailCall(IsTailCall) {
|
|
}
|
|
|
|
Register getStackAddress(uint64_t Size, int64_t Offset,
|
|
MachinePointerInfo &MPO) override {
|
|
MachineFunction &MF = MIRBuilder.getMF();
|
|
const LLT PtrTy = LLT::pointer(AMDGPUAS::PRIVATE_ADDRESS, 32);
|
|
const LLT S32 = LLT::scalar(32);
|
|
|
|
if (IsTailCall) {
|
|
llvm_unreachable("implement me");
|
|
}
|
|
|
|
const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
|
|
|
|
if (!SPReg)
|
|
SPReg = MIRBuilder.buildCopy(PtrTy, MFI->getStackPtrOffsetReg()).getReg(0);
|
|
|
|
auto OffsetReg = MIRBuilder.buildConstant(S32, Offset);
|
|
|
|
auto AddrReg = MIRBuilder.buildPtrAdd(PtrTy, SPReg, OffsetReg);
|
|
MPO = MachinePointerInfo::getStack(MF, Offset);
|
|
return AddrReg.getReg(0);
|
|
}
|
|
|
|
void assignValueToReg(Register ValVReg, Register PhysReg,
|
|
CCValAssign &VA) override {
|
|
MIB.addUse(PhysReg, RegState::Implicit);
|
|
Register ExtReg = extendRegisterMin32(ValVReg, VA);
|
|
MIRBuilder.buildCopy(PhysReg, ExtReg);
|
|
}
|
|
|
|
void assignValueToAddress(Register ValVReg, Register Addr, uint64_t Size,
|
|
MachinePointerInfo &MPO, CCValAssign &VA) override {
|
|
MachineFunction &MF = MIRBuilder.getMF();
|
|
uint64_t LocMemOffset = VA.getLocMemOffset();
|
|
const auto &ST = MF.getSubtarget<GCNSubtarget>();
|
|
|
|
auto MMO = MF.getMachineMemOperand(
|
|
MPO, MachineMemOperand::MOStore, Size,
|
|
commonAlignment(ST.getStackAlignment(), LocMemOffset));
|
|
MIRBuilder.buildStore(ValVReg, Addr, *MMO);
|
|
}
|
|
|
|
void assignValueToAddress(const CallLowering::ArgInfo &Arg, Register Addr,
|
|
uint64_t MemSize, MachinePointerInfo &MPO,
|
|
CCValAssign &VA) override {
|
|
Register ValVReg = VA.getLocInfo() != CCValAssign::LocInfo::FPExt
|
|
? extendRegister(Arg.Regs[0], VA)
|
|
: Arg.Regs[0];
|
|
|
|
// If we extended the value type we might need to adjust the MMO's
|
|
// Size. This happens if ComputeValueVTs widened a small type value to a
|
|
// legal register type (e.g. s8->s16)
|
|
const LLT RegTy = MRI.getType(ValVReg);
|
|
MemSize = std::min(MemSize, (uint64_t)RegTy.getSizeInBytes());
|
|
assignValueToAddress(ValVReg, Addr, MemSize, MPO, VA);
|
|
}
|
|
};
|
|
}
|
|
|
|
AMDGPUCallLowering::AMDGPUCallLowering(const AMDGPUTargetLowering &TLI)
|
|
: CallLowering(&TLI) {
|
|
}
|
|
|
|
// FIXME: Compatability shim
|
|
static ISD::NodeType extOpcodeToISDExtOpcode(unsigned MIOpc) {
|
|
switch (MIOpc) {
|
|
case TargetOpcode::G_SEXT:
|
|
return ISD::SIGN_EXTEND;
|
|
case TargetOpcode::G_ZEXT:
|
|
return ISD::ZERO_EXTEND;
|
|
case TargetOpcode::G_ANYEXT:
|
|
return ISD::ANY_EXTEND;
|
|
default:
|
|
llvm_unreachable("not an extend opcode");
|
|
}
|
|
}
|
|
|
|
// FIXME: This should move to generic code.
|
|
void AMDGPUCallLowering::splitToValueTypes(MachineIRBuilder &B,
|
|
const ArgInfo &OrigArg,
|
|
SmallVectorImpl<ArgInfo> &SplitArgs,
|
|
const DataLayout &DL,
|
|
CallingConv::ID CallConv) const {
|
|
const SITargetLowering &TLI = *getTLI<SITargetLowering>();
|
|
LLVMContext &Ctx = OrigArg.Ty->getContext();
|
|
|
|
SmallVector<EVT, 4> SplitVTs;
|
|
ComputeValueVTs(TLI, DL, OrigArg.Ty, SplitVTs);
|
|
|
|
assert(OrigArg.Regs.size() == SplitVTs.size());
|
|
|
|
if (SplitVTs.size() == 0)
|
|
return;
|
|
|
|
if (SplitVTs.size() == 1) {
|
|
// No splitting to do, but we want to replace the original type (e.g. [1 x
|
|
// double] -> double).
|
|
SplitArgs.emplace_back(OrigArg.Regs[0], SplitVTs[0].getTypeForEVT(Ctx),
|
|
OrigArg.Flags[0], OrigArg.IsFixed);
|
|
return;
|
|
}
|
|
|
|
// Create one ArgInfo for each virtual register in the original ArgInfo.
|
|
assert(OrigArg.Regs.size() == SplitVTs.size() && "Regs / types mismatch");
|
|
|
|
bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
|
|
OrigArg.Ty, CallConv, false);
|
|
for (unsigned i = 0, e = SplitVTs.size(); i < e; ++i) {
|
|
Type *SplitTy = SplitVTs[i].getTypeForEVT(Ctx);
|
|
SplitArgs.emplace_back(OrigArg.Regs[i], SplitTy, OrigArg.Flags[0],
|
|
OrigArg.IsFixed);
|
|
if (NeedsRegBlock)
|
|
SplitArgs.back().Flags[0].setInConsecutiveRegs();
|
|
}
|
|
|
|
SplitArgs.back().Flags[0].setInConsecutiveRegsLast();
|
|
}
|
|
|
|
void AMDGPUCallLowering::processSplitArgs(
|
|
MachineIRBuilder &B, const ArgInfo &OrigArg,
|
|
const SmallVectorImpl<ArgInfo> &SplitArg,
|
|
SmallVectorImpl<ArgInfo> &SplitArgs, const DataLayout &DL,
|
|
CallingConv::ID CallConv, bool IsOutgoing,
|
|
SplitArgTy PerformArgSplit) const {
|
|
LLVMContext &Ctx = OrigArg.Ty->getContext();
|
|
const SITargetLowering &TLI = *getTLI<SITargetLowering>();
|
|
|
|
// FIXME: This is mostly nasty pre-processing before handleAssignments. Most
|
|
// of this should be performed by handleAssignments.
|
|
|
|
for (int SplitIdx = 0, e = SplitArg.size(); SplitIdx != e; ++SplitIdx) {
|
|
const ArgInfo &CurSplitArg = SplitArg[SplitIdx];
|
|
Register Reg = OrigArg.Regs[SplitIdx];
|
|
EVT VT = EVT::getEVT(CurSplitArg.Ty);
|
|
LLT LLTy = getLLTForType(*CurSplitArg.Ty, DL);
|
|
|
|
unsigned NumParts = TLI.getNumRegistersForCallingConv(Ctx, CallConv, VT);
|
|
MVT RegVT = TLI.getRegisterTypeForCallingConv(Ctx, CallConv, VT);
|
|
|
|
if (NumParts == 1) {
|
|
// No splitting to do, but we want to replace the original type (e.g. [1 x
|
|
// double] -> double).
|
|
SplitArgs.emplace_back(Reg, CurSplitArg.Ty, OrigArg.Flags,
|
|
OrigArg.IsFixed);
|
|
continue;
|
|
}
|
|
|
|
SmallVector<Register, 8> SplitRegs;
|
|
Type *PartTy = EVT(RegVT).getTypeForEVT(Ctx);
|
|
LLT PartLLT = getLLTForType(*PartTy, DL);
|
|
MachineRegisterInfo &MRI = *B.getMRI();
|
|
|
|
// FIXME: Should we be reporting all of the part registers for a single
|
|
// argument, and let handleAssignments take care of the repacking?
|
|
for (unsigned i = 0; i < NumParts; ++i) {
|
|
Register PartReg = MRI.createGenericVirtualRegister(PartLLT);
|
|
SplitRegs.push_back(PartReg);
|
|
SplitArgs.emplace_back(ArrayRef<Register>(PartReg), PartTy, OrigArg.Flags);
|
|
}
|
|
|
|
PerformArgSplit(SplitRegs, Reg, LLTy, PartLLT, SplitIdx);
|
|
}
|
|
}
|
|
|
|
// TODO: Move to generic code
|
|
static void unpackRegsToOrigType(MachineIRBuilder &B,
|
|
ArrayRef<Register> DstRegs,
|
|
Register SrcReg,
|
|
const CallLowering::ArgInfo &Info,
|
|
LLT SrcTy,
|
|
LLT PartTy) {
|
|
assert(DstRegs.size() > 1 && "Nothing to unpack");
|
|
|
|
const unsigned PartSize = PartTy.getSizeInBits();
|
|
|
|
if (SrcTy.isVector() && !PartTy.isVector() &&
|
|
PartSize > SrcTy.getElementType().getSizeInBits()) {
|
|
// Vector was scalarized, and the elements extended.
|
|
auto UnmergeToEltTy = B.buildUnmerge(SrcTy.getElementType(), SrcReg);
|
|
for (int i = 0, e = DstRegs.size(); i != e; ++i)
|
|
B.buildAnyExt(DstRegs[i], UnmergeToEltTy.getReg(i));
|
|
return;
|
|
}
|
|
|
|
LLT GCDTy = getGCDType(SrcTy, PartTy);
|
|
if (GCDTy == PartTy) {
|
|
// If this already evenly divisible, we can create a simple unmerge.
|
|
B.buildUnmerge(DstRegs, SrcReg);
|
|
return;
|
|
}
|
|
|
|
MachineRegisterInfo &MRI = *B.getMRI();
|
|
LLT DstTy = MRI.getType(DstRegs[0]);
|
|
LLT LCMTy = getLCMType(SrcTy, PartTy);
|
|
|
|
const unsigned LCMSize = LCMTy.getSizeInBits();
|
|
const unsigned DstSize = DstTy.getSizeInBits();
|
|
const unsigned SrcSize = SrcTy.getSizeInBits();
|
|
|
|
Register UnmergeSrc = SrcReg;
|
|
if (LCMSize != SrcSize) {
|
|
// Widen to the common type.
|
|
Register Undef = B.buildUndef(SrcTy).getReg(0);
|
|
SmallVector<Register, 8> MergeParts(1, SrcReg);
|
|
for (unsigned Size = SrcSize; Size != LCMSize; Size += SrcSize)
|
|
MergeParts.push_back(Undef);
|
|
|
|
UnmergeSrc = B.buildMerge(LCMTy, MergeParts).getReg(0);
|
|
}
|
|
|
|
// Unmerge to the original registers and pad with dead defs.
|
|
SmallVector<Register, 8> UnmergeResults(DstRegs.begin(), DstRegs.end());
|
|
for (unsigned Size = DstSize * DstRegs.size(); Size != LCMSize;
|
|
Size += DstSize) {
|
|
UnmergeResults.push_back(MRI.createGenericVirtualRegister(DstTy));
|
|
}
|
|
|
|
B.buildUnmerge(UnmergeResults, UnmergeSrc);
|
|
}
|
|
|
|
bool AMDGPUCallLowering::canLowerReturn(MachineFunction &MF,
|
|
CallingConv::ID CallConv,
|
|
SmallVectorImpl<BaseArgInfo> &Outs,
|
|
bool IsVarArg) const {
|
|
// For shaders. Vector types should be explicitly handled by CC.
|
|
if (AMDGPU::isEntryFunctionCC(CallConv))
|
|
return true;
|
|
|
|
SmallVector<CCValAssign, 16> ArgLocs;
|
|
const SITargetLowering &TLI = *getTLI<SITargetLowering>();
|
|
CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs,
|
|
MF.getFunction().getContext());
|
|
|
|
return checkReturn(CCInfo, Outs, TLI.CCAssignFnForReturn(CallConv, IsVarArg));
|
|
}
|
|
|
|
/// Lower the return value for the already existing \p Ret. This assumes that
|
|
/// \p B's insertion point is correct.
|
|
bool AMDGPUCallLowering::lowerReturnVal(MachineIRBuilder &B,
|
|
const Value *Val, ArrayRef<Register> VRegs,
|
|
MachineInstrBuilder &Ret) const {
|
|
if (!Val)
|
|
return true;
|
|
|
|
auto &MF = B.getMF();
|
|
const auto &F = MF.getFunction();
|
|
const DataLayout &DL = MF.getDataLayout();
|
|
MachineRegisterInfo *MRI = B.getMRI();
|
|
LLVMContext &Ctx = F.getContext();
|
|
|
|
CallingConv::ID CC = F.getCallingConv();
|
|
const SITargetLowering &TLI = *getTLI<SITargetLowering>();
|
|
|
|
SmallVector<EVT, 8> SplitEVTs;
|
|
ComputeValueVTs(TLI, DL, Val->getType(), SplitEVTs);
|
|
assert(VRegs.size() == SplitEVTs.size() &&
|
|
"For each split Type there should be exactly one VReg.");
|
|
|
|
// We pre-process the return value decomposed into EVTs.
|
|
SmallVector<ArgInfo, 8> PreSplitRetInfos;
|
|
|
|
// Further processing is applied to split the arguments from PreSplitRetInfos
|
|
// into 32-bit pieces in SplitRetInfos before passing off to
|
|
// handleAssignments.
|
|
SmallVector<ArgInfo, 8> SplitRetInfos;
|
|
|
|
for (unsigned i = 0; i < SplitEVTs.size(); ++i) {
|
|
EVT VT = SplitEVTs[i];
|
|
Register Reg = VRegs[i];
|
|
ArgInfo RetInfo(Reg, VT.getTypeForEVT(Ctx));
|
|
setArgFlags(RetInfo, AttributeList::ReturnIndex, DL, F);
|
|
|
|
if (VT.isScalarInteger()) {
|
|
unsigned ExtendOp = TargetOpcode::G_ANYEXT;
|
|
if (RetInfo.Flags[0].isSExt()) {
|
|
assert(RetInfo.Regs.size() == 1 && "expect only simple return values");
|
|
ExtendOp = TargetOpcode::G_SEXT;
|
|
} else if (RetInfo.Flags[0].isZExt()) {
|
|
assert(RetInfo.Regs.size() == 1 && "expect only simple return values");
|
|
ExtendOp = TargetOpcode::G_ZEXT;
|
|
}
|
|
|
|
EVT ExtVT = TLI.getTypeForExtReturn(Ctx, VT,
|
|
extOpcodeToISDExtOpcode(ExtendOp));
|
|
if (ExtVT != VT) {
|
|
RetInfo.Ty = ExtVT.getTypeForEVT(Ctx);
|
|
LLT ExtTy = getLLTForType(*RetInfo.Ty, DL);
|
|
Reg = B.buildInstr(ExtendOp, {ExtTy}, {Reg}).getReg(0);
|
|
}
|
|
}
|
|
|
|
if (Reg != RetInfo.Regs[0]) {
|
|
RetInfo.Regs[0] = Reg;
|
|
// Reset the arg flags after modifying Reg.
|
|
setArgFlags(RetInfo, AttributeList::ReturnIndex, DL, F);
|
|
}
|
|
|
|
splitToValueTypes(B, RetInfo, PreSplitRetInfos, DL, CC);
|
|
|
|
// FIXME: This splitting should mostly be done by handleAssignments
|
|
processSplitArgs(B, RetInfo,
|
|
PreSplitRetInfos, SplitRetInfos, DL, CC, true,
|
|
[&](ArrayRef<Register> Regs, Register SrcReg, LLT LLTy,
|
|
LLT PartLLT, int VTSplitIdx) {
|
|
unpackRegsToOrigType(B, Regs, SrcReg,
|
|
PreSplitRetInfos[VTSplitIdx], LLTy,
|
|
PartLLT);
|
|
});
|
|
PreSplitRetInfos.clear();
|
|
}
|
|
|
|
CCAssignFn *AssignFn = TLI.CCAssignFnForReturn(CC, F.isVarArg());
|
|
AMDGPUOutgoingValueHandler RetHandler(B, *MRI, Ret, AssignFn);
|
|
return handleAssignments(B, SplitRetInfos, RetHandler);
|
|
}
|
|
|
|
bool AMDGPUCallLowering::lowerReturn(MachineIRBuilder &B, const Value *Val,
|
|
ArrayRef<Register> VRegs,
|
|
FunctionLoweringInfo &FLI) const {
|
|
|
|
MachineFunction &MF = B.getMF();
|
|
MachineRegisterInfo &MRI = MF.getRegInfo();
|
|
SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
|
|
MFI->setIfReturnsVoid(!Val);
|
|
|
|
assert(!Val == VRegs.empty() && "Return value without a vreg");
|
|
|
|
CallingConv::ID CC = B.getMF().getFunction().getCallingConv();
|
|
const bool IsShader = AMDGPU::isShader(CC);
|
|
const bool IsWaveEnd =
|
|
(IsShader && MFI->returnsVoid()) || AMDGPU::isKernel(CC);
|
|
if (IsWaveEnd) {
|
|
B.buildInstr(AMDGPU::S_ENDPGM)
|
|
.addImm(0);
|
|
return true;
|
|
}
|
|
|
|
auto const &ST = MF.getSubtarget<GCNSubtarget>();
|
|
|
|
unsigned ReturnOpc =
|
|
IsShader ? AMDGPU::SI_RETURN_TO_EPILOG : AMDGPU::S_SETPC_B64_return;
|
|
|
|
auto Ret = B.buildInstrNoInsert(ReturnOpc);
|
|
Register ReturnAddrVReg;
|
|
if (ReturnOpc == AMDGPU::S_SETPC_B64_return) {
|
|
ReturnAddrVReg = MRI.createVirtualRegister(&AMDGPU::CCR_SGPR_64RegClass);
|
|
Ret.addUse(ReturnAddrVReg);
|
|
}
|
|
|
|
if (!FLI.CanLowerReturn)
|
|
insertSRetStores(B, Val->getType(), VRegs, FLI.DemoteRegister);
|
|
else if (!lowerReturnVal(B, Val, VRegs, Ret))
|
|
return false;
|
|
|
|
if (ReturnOpc == AMDGPU::S_SETPC_B64_return) {
|
|
const SIRegisterInfo *TRI = ST.getRegisterInfo();
|
|
Register LiveInReturn = MF.addLiveIn(TRI->getReturnAddressReg(MF),
|
|
&AMDGPU::SGPR_64RegClass);
|
|
B.buildCopy(ReturnAddrVReg, LiveInReturn);
|
|
}
|
|
|
|
// TODO: Handle CalleeSavedRegsViaCopy.
|
|
|
|
B.insertInstr(Ret);
|
|
return true;
|
|
}
|
|
|
|
void AMDGPUCallLowering::lowerParameterPtr(Register DstReg, MachineIRBuilder &B,
|
|
Type *ParamTy,
|
|
uint64_t Offset) const {
|
|
MachineFunction &MF = B.getMF();
|
|
const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
|
|
MachineRegisterInfo &MRI = MF.getRegInfo();
|
|
Register KernArgSegmentPtr =
|
|
MFI->getPreloadedReg(AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR);
|
|
Register KernArgSegmentVReg = MRI.getLiveInVirtReg(KernArgSegmentPtr);
|
|
|
|
auto OffsetReg = B.buildConstant(LLT::scalar(64), Offset);
|
|
|
|
B.buildPtrAdd(DstReg, KernArgSegmentVReg, OffsetReg);
|
|
}
|
|
|
|
void AMDGPUCallLowering::lowerParameter(MachineIRBuilder &B, Type *ParamTy,
|
|
uint64_t Offset, Align Alignment,
|
|
Register DstReg) const {
|
|
MachineFunction &MF = B.getMF();
|
|
const Function &F = MF.getFunction();
|
|
const DataLayout &DL = F.getParent()->getDataLayout();
|
|
MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS);
|
|
unsigned TypeSize = DL.getTypeStoreSize(ParamTy);
|
|
|
|
LLT PtrTy = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64);
|
|
Register PtrReg = B.getMRI()->createGenericVirtualRegister(PtrTy);
|
|
lowerParameterPtr(PtrReg, B, ParamTy, Offset);
|
|
|
|
MachineMemOperand *MMO = MF.getMachineMemOperand(
|
|
PtrInfo,
|
|
MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable |
|
|
MachineMemOperand::MOInvariant,
|
|
TypeSize, Alignment);
|
|
|
|
B.buildLoad(DstReg, PtrReg, *MMO);
|
|
}
|
|
|
|
// Allocate special inputs passed in user SGPRs.
|
|
static void allocateHSAUserSGPRs(CCState &CCInfo,
|
|
MachineIRBuilder &B,
|
|
MachineFunction &MF,
|
|
const SIRegisterInfo &TRI,
|
|
SIMachineFunctionInfo &Info) {
|
|
// FIXME: How should these inputs interact with inreg / custom SGPR inputs?
|
|
if (Info.hasPrivateSegmentBuffer()) {
|
|
Register PrivateSegmentBufferReg = Info.addPrivateSegmentBuffer(TRI);
|
|
MF.addLiveIn(PrivateSegmentBufferReg, &AMDGPU::SGPR_128RegClass);
|
|
CCInfo.AllocateReg(PrivateSegmentBufferReg);
|
|
}
|
|
|
|
if (Info.hasDispatchPtr()) {
|
|
Register DispatchPtrReg = Info.addDispatchPtr(TRI);
|
|
MF.addLiveIn(DispatchPtrReg, &AMDGPU::SGPR_64RegClass);
|
|
CCInfo.AllocateReg(DispatchPtrReg);
|
|
}
|
|
|
|
if (Info.hasQueuePtr()) {
|
|
Register QueuePtrReg = Info.addQueuePtr(TRI);
|
|
MF.addLiveIn(QueuePtrReg, &AMDGPU::SGPR_64RegClass);
|
|
CCInfo.AllocateReg(QueuePtrReg);
|
|
}
|
|
|
|
if (Info.hasKernargSegmentPtr()) {
|
|
MachineRegisterInfo &MRI = MF.getRegInfo();
|
|
Register InputPtrReg = Info.addKernargSegmentPtr(TRI);
|
|
const LLT P4 = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64);
|
|
Register VReg = MRI.createGenericVirtualRegister(P4);
|
|
MRI.addLiveIn(InputPtrReg, VReg);
|
|
B.getMBB().addLiveIn(InputPtrReg);
|
|
B.buildCopy(VReg, InputPtrReg);
|
|
CCInfo.AllocateReg(InputPtrReg);
|
|
}
|
|
|
|
if (Info.hasDispatchID()) {
|
|
Register DispatchIDReg = Info.addDispatchID(TRI);
|
|
MF.addLiveIn(DispatchIDReg, &AMDGPU::SGPR_64RegClass);
|
|
CCInfo.AllocateReg(DispatchIDReg);
|
|
}
|
|
|
|
if (Info.hasFlatScratchInit()) {
|
|
Register FlatScratchInitReg = Info.addFlatScratchInit(TRI);
|
|
MF.addLiveIn(FlatScratchInitReg, &AMDGPU::SGPR_64RegClass);
|
|
CCInfo.AllocateReg(FlatScratchInitReg);
|
|
}
|
|
|
|
// TODO: Add GridWorkGroupCount user SGPRs when used. For now with HSA we read
|
|
// these from the dispatch pointer.
|
|
}
|
|
|
|
bool AMDGPUCallLowering::lowerFormalArgumentsKernel(
|
|
MachineIRBuilder &B, const Function &F,
|
|
ArrayRef<ArrayRef<Register>> VRegs) const {
|
|
MachineFunction &MF = B.getMF();
|
|
const GCNSubtarget *Subtarget = &MF.getSubtarget<GCNSubtarget>();
|
|
MachineRegisterInfo &MRI = MF.getRegInfo();
|
|
SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
|
|
const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
|
|
const SITargetLowering &TLI = *getTLI<SITargetLowering>();
|
|
|
|
const DataLayout &DL = F.getParent()->getDataLayout();
|
|
|
|
SmallVector<CCValAssign, 16> ArgLocs;
|
|
CCState CCInfo(F.getCallingConv(), F.isVarArg(), MF, ArgLocs, F.getContext());
|
|
|
|
allocateHSAUserSGPRs(CCInfo, B, MF, *TRI, *Info);
|
|
|
|
unsigned i = 0;
|
|
const Align KernArgBaseAlign(16);
|
|
const unsigned BaseOffset = Subtarget->getExplicitKernelArgOffset(F);
|
|
uint64_t ExplicitArgOffset = 0;
|
|
|
|
// TODO: Align down to dword alignment and extract bits for extending loads.
|
|
for (auto &Arg : F.args()) {
|
|
const bool IsByRef = Arg.hasByRefAttr();
|
|
Type *ArgTy = IsByRef ? Arg.getParamByRefType() : Arg.getType();
|
|
unsigned AllocSize = DL.getTypeAllocSize(ArgTy);
|
|
if (AllocSize == 0)
|
|
continue;
|
|
|
|
MaybeAlign ABIAlign = IsByRef ? Arg.getParamAlign() : None;
|
|
if (!ABIAlign)
|
|
ABIAlign = DL.getABITypeAlign(ArgTy);
|
|
|
|
uint64_t ArgOffset = alignTo(ExplicitArgOffset, ABIAlign) + BaseOffset;
|
|
ExplicitArgOffset = alignTo(ExplicitArgOffset, ABIAlign) + AllocSize;
|
|
|
|
if (Arg.use_empty()) {
|
|
++i;
|
|
continue;
|
|
}
|
|
|
|
Align Alignment = commonAlignment(KernArgBaseAlign, ArgOffset);
|
|
|
|
if (IsByRef) {
|
|
unsigned ByRefAS = cast<PointerType>(Arg.getType())->getAddressSpace();
|
|
|
|
assert(VRegs[i].size() == 1 &&
|
|
"expected only one register for byval pointers");
|
|
if (ByRefAS == AMDGPUAS::CONSTANT_ADDRESS) {
|
|
lowerParameterPtr(VRegs[i][0], B, ArgTy, ArgOffset);
|
|
} else {
|
|
const LLT ConstPtrTy = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64);
|
|
Register PtrReg = MRI.createGenericVirtualRegister(ConstPtrTy);
|
|
lowerParameterPtr(PtrReg, B, ArgTy, ArgOffset);
|
|
|
|
B.buildAddrSpaceCast(VRegs[i][0], PtrReg);
|
|
}
|
|
} else {
|
|
ArrayRef<Register> OrigArgRegs = VRegs[i];
|
|
Register ArgReg =
|
|
OrigArgRegs.size() == 1
|
|
? OrigArgRegs[0]
|
|
: MRI.createGenericVirtualRegister(getLLTForType(*ArgTy, DL));
|
|
|
|
lowerParameter(B, ArgTy, ArgOffset, Alignment, ArgReg);
|
|
if (OrigArgRegs.size() > 1)
|
|
unpackRegs(OrigArgRegs, ArgReg, ArgTy, B);
|
|
}
|
|
|
|
++i;
|
|
}
|
|
|
|
TLI.allocateSpecialEntryInputVGPRs(CCInfo, MF, *TRI, *Info);
|
|
TLI.allocateSystemSGPRs(CCInfo, MF, *Info, F.getCallingConv(), false);
|
|
return true;
|
|
}
|
|
|
|
/// Pack values \p SrcRegs to cover the vector type result \p DstRegs.
|
|
static MachineInstrBuilder mergeVectorRegsToResultRegs(
|
|
MachineIRBuilder &B, ArrayRef<Register> DstRegs, ArrayRef<Register> SrcRegs) {
|
|
MachineRegisterInfo &MRI = *B.getMRI();
|
|
LLT LLTy = MRI.getType(DstRegs[0]);
|
|
LLT PartLLT = MRI.getType(SrcRegs[0]);
|
|
|
|
// Deal with v3s16 split into v2s16
|
|
LLT LCMTy = getLCMType(LLTy, PartLLT);
|
|
if (LCMTy == LLTy) {
|
|
// Common case where no padding is needed.
|
|
assert(DstRegs.size() == 1);
|
|
return B.buildConcatVectors(DstRegs[0], SrcRegs);
|
|
}
|
|
|
|
const int NumWide = LCMTy.getSizeInBits() / PartLLT.getSizeInBits();
|
|
Register Undef = B.buildUndef(PartLLT).getReg(0);
|
|
|
|
// Build vector of undefs.
|
|
SmallVector<Register, 8> WidenedSrcs(NumWide, Undef);
|
|
|
|
// Replace the first sources with the real registers.
|
|
std::copy(SrcRegs.begin(), SrcRegs.end(), WidenedSrcs.begin());
|
|
|
|
auto Widened = B.buildConcatVectors(LCMTy, WidenedSrcs);
|
|
int NumDst = LCMTy.getSizeInBits() / LLTy.getSizeInBits();
|
|
|
|
SmallVector<Register, 8> PadDstRegs(NumDst);
|
|
std::copy(DstRegs.begin(), DstRegs.end(), PadDstRegs.begin());
|
|
|
|
// Create the excess dead defs for the unmerge.
|
|
for (int I = DstRegs.size(); I != NumDst; ++I)
|
|
PadDstRegs[I] = MRI.createGenericVirtualRegister(LLTy);
|
|
|
|
return B.buildUnmerge(PadDstRegs, Widened);
|
|
}
|
|
|
|
// TODO: Move this to generic code
|
|
static void packSplitRegsToOrigType(MachineIRBuilder &B,
|
|
ArrayRef<Register> OrigRegs,
|
|
ArrayRef<Register> Regs,
|
|
LLT LLTy,
|
|
LLT PartLLT) {
|
|
MachineRegisterInfo &MRI = *B.getMRI();
|
|
|
|
if (!LLTy.isVector() && !PartLLT.isVector()) {
|
|
assert(OrigRegs.size() == 1);
|
|
LLT OrigTy = MRI.getType(OrigRegs[0]);
|
|
|
|
unsigned SrcSize = PartLLT.getSizeInBits() * Regs.size();
|
|
if (SrcSize == OrigTy.getSizeInBits())
|
|
B.buildMerge(OrigRegs[0], Regs);
|
|
else {
|
|
auto Widened = B.buildMerge(LLT::scalar(SrcSize), Regs);
|
|
B.buildTrunc(OrigRegs[0], Widened);
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
if (LLTy.isVector() && PartLLT.isVector()) {
|
|
assert(OrigRegs.size() == 1);
|
|
assert(LLTy.getElementType() == PartLLT.getElementType());
|
|
mergeVectorRegsToResultRegs(B, OrigRegs, Regs);
|
|
return;
|
|
}
|
|
|
|
assert(LLTy.isVector() && !PartLLT.isVector());
|
|
|
|
LLT DstEltTy = LLTy.getElementType();
|
|
|
|
// Pointer information was discarded. We'll need to coerce some register types
|
|
// to avoid violating type constraints.
|
|
LLT RealDstEltTy = MRI.getType(OrigRegs[0]).getElementType();
|
|
|
|
assert(DstEltTy.getSizeInBits() == RealDstEltTy.getSizeInBits());
|
|
|
|
if (DstEltTy == PartLLT) {
|
|
// Vector was trivially scalarized.
|
|
|
|
if (RealDstEltTy.isPointer()) {
|
|
for (Register Reg : Regs)
|
|
MRI.setType(Reg, RealDstEltTy);
|
|
}
|
|
|
|
B.buildBuildVector(OrigRegs[0], Regs);
|
|
} else if (DstEltTy.getSizeInBits() > PartLLT.getSizeInBits()) {
|
|
// Deal with vector with 64-bit elements decomposed to 32-bit
|
|
// registers. Need to create intermediate 64-bit elements.
|
|
SmallVector<Register, 8> EltMerges;
|
|
int PartsPerElt = DstEltTy.getSizeInBits() / PartLLT.getSizeInBits();
|
|
|
|
assert(DstEltTy.getSizeInBits() % PartLLT.getSizeInBits() == 0);
|
|
|
|
for (int I = 0, NumElts = LLTy.getNumElements(); I != NumElts; ++I) {
|
|
auto Merge = B.buildMerge(RealDstEltTy, Regs.take_front(PartsPerElt));
|
|
// Fix the type in case this is really a vector of pointers.
|
|
MRI.setType(Merge.getReg(0), RealDstEltTy);
|
|
EltMerges.push_back(Merge.getReg(0));
|
|
Regs = Regs.drop_front(PartsPerElt);
|
|
}
|
|
|
|
B.buildBuildVector(OrigRegs[0], EltMerges);
|
|
} else {
|
|
// Vector was split, and elements promoted to a wider type.
|
|
LLT BVType = LLT::vector(LLTy.getNumElements(), PartLLT);
|
|
auto BV = B.buildBuildVector(BVType, Regs);
|
|
B.buildTrunc(OrigRegs[0], BV);
|
|
}
|
|
}
|
|
|
|
bool AMDGPUCallLowering::lowerFormalArguments(
|
|
MachineIRBuilder &B, const Function &F, ArrayRef<ArrayRef<Register>> VRegs,
|
|
FunctionLoweringInfo &FLI) const {
|
|
CallingConv::ID CC = F.getCallingConv();
|
|
|
|
// The infrastructure for normal calling convention lowering is essentially
|
|
// useless for kernels. We want to avoid any kind of legalization or argument
|
|
// splitting.
|
|
if (CC == CallingConv::AMDGPU_KERNEL)
|
|
return lowerFormalArgumentsKernel(B, F, VRegs);
|
|
|
|
const bool IsGraphics = AMDGPU::isGraphics(CC);
|
|
const bool IsEntryFunc = AMDGPU::isEntryFunctionCC(CC);
|
|
|
|
MachineFunction &MF = B.getMF();
|
|
MachineBasicBlock &MBB = B.getMBB();
|
|
MachineRegisterInfo &MRI = MF.getRegInfo();
|
|
SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
|
|
const GCNSubtarget &Subtarget = MF.getSubtarget<GCNSubtarget>();
|
|
const SIRegisterInfo *TRI = Subtarget.getRegisterInfo();
|
|
const DataLayout &DL = F.getParent()->getDataLayout();
|
|
|
|
|
|
SmallVector<CCValAssign, 16> ArgLocs;
|
|
CCState CCInfo(CC, F.isVarArg(), MF, ArgLocs, F.getContext());
|
|
|
|
if (!IsEntryFunc) {
|
|
Register ReturnAddrReg = TRI->getReturnAddressReg(MF);
|
|
Register LiveInReturn = MF.addLiveIn(ReturnAddrReg,
|
|
&AMDGPU::SGPR_64RegClass);
|
|
MBB.addLiveIn(ReturnAddrReg);
|
|
B.buildCopy(LiveInReturn, ReturnAddrReg);
|
|
}
|
|
|
|
if (Info->hasImplicitBufferPtr()) {
|
|
Register ImplicitBufferPtrReg = Info->addImplicitBufferPtr(*TRI);
|
|
MF.addLiveIn(ImplicitBufferPtrReg, &AMDGPU::SGPR_64RegClass);
|
|
CCInfo.AllocateReg(ImplicitBufferPtrReg);
|
|
}
|
|
|
|
SmallVector<ArgInfo, 8> SplitArg;
|
|
SmallVector<ArgInfo, 32> SplitArgs;
|
|
unsigned Idx = 0;
|
|
unsigned PSInputNum = 0;
|
|
|
|
// Insert the hidden sret parameter if the return value won't fit in the
|
|
// return registers.
|
|
if (!FLI.CanLowerReturn)
|
|
insertSRetIncomingArgument(F, SplitArgs, FLI.DemoteRegister, MRI, DL);
|
|
|
|
for (auto &Arg : F.args()) {
|
|
if (DL.getTypeStoreSize(Arg.getType()) == 0)
|
|
continue;
|
|
|
|
const bool InReg = Arg.hasAttribute(Attribute::InReg);
|
|
|
|
// SGPR arguments to functions not implemented.
|
|
if (!IsGraphics && InReg)
|
|
return false;
|
|
|
|
if (Arg.hasAttribute(Attribute::SwiftSelf) ||
|
|
Arg.hasAttribute(Attribute::SwiftError) ||
|
|
Arg.hasAttribute(Attribute::Nest))
|
|
return false;
|
|
|
|
if (CC == CallingConv::AMDGPU_PS && !InReg && PSInputNum <= 15) {
|
|
const bool ArgUsed = !Arg.use_empty();
|
|
bool SkipArg = !ArgUsed && !Info->isPSInputAllocated(PSInputNum);
|
|
|
|
if (!SkipArg) {
|
|
Info->markPSInputAllocated(PSInputNum);
|
|
if (ArgUsed)
|
|
Info->markPSInputEnabled(PSInputNum);
|
|
}
|
|
|
|
++PSInputNum;
|
|
|
|
if (SkipArg) {
|
|
for (int I = 0, E = VRegs[Idx].size(); I != E; ++I)
|
|
B.buildUndef(VRegs[Idx][I]);
|
|
|
|
++Idx;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
ArgInfo OrigArg(VRegs[Idx], Arg.getType());
|
|
const unsigned OrigArgIdx = Idx + AttributeList::FirstArgIndex;
|
|
setArgFlags(OrigArg, OrigArgIdx, DL, F);
|
|
|
|
SplitArg.clear();
|
|
splitToValueTypes(B, OrigArg, SplitArg, DL, CC);
|
|
|
|
processSplitArgs(B, OrigArg, SplitArg, SplitArgs, DL, CC, false,
|
|
// FIXME: We should probably be passing multiple registers
|
|
// to handleAssignments to do this
|
|
[&](ArrayRef<Register> Regs, Register DstReg, LLT LLTy,
|
|
LLT PartLLT, int VTSplitIdx) {
|
|
assert(DstReg == VRegs[Idx][VTSplitIdx]);
|
|
packSplitRegsToOrigType(B, VRegs[Idx][VTSplitIdx], Regs,
|
|
LLTy, PartLLT);
|
|
});
|
|
|
|
++Idx;
|
|
}
|
|
|
|
// At least one interpolation mode must be enabled or else the GPU will
|
|
// hang.
|
|
//
|
|
// Check PSInputAddr instead of PSInputEnable. The idea is that if the user
|
|
// set PSInputAddr, the user wants to enable some bits after the compilation
|
|
// based on run-time states. Since we can't know what the final PSInputEna
|
|
// will look like, so we shouldn't do anything here and the user should take
|
|
// responsibility for the correct programming.
|
|
//
|
|
// Otherwise, the following restrictions apply:
|
|
// - At least one of PERSP_* (0xF) or LINEAR_* (0x70) must be enabled.
|
|
// - If POS_W_FLOAT (11) is enabled, at least one of PERSP_* must be
|
|
// enabled too.
|
|
if (CC == CallingConv::AMDGPU_PS) {
|
|
if ((Info->getPSInputAddr() & 0x7F) == 0 ||
|
|
((Info->getPSInputAddr() & 0xF) == 0 &&
|
|
Info->isPSInputAllocated(11))) {
|
|
CCInfo.AllocateReg(AMDGPU::VGPR0);
|
|
CCInfo.AllocateReg(AMDGPU::VGPR1);
|
|
Info->markPSInputAllocated(0);
|
|
Info->markPSInputEnabled(0);
|
|
}
|
|
|
|
if (Subtarget.isAmdPalOS()) {
|
|
// For isAmdPalOS, the user does not enable some bits after compilation
|
|
// based on run-time states; the register values being generated here are
|
|
// the final ones set in hardware. Therefore we need to apply the
|
|
// workaround to PSInputAddr and PSInputEnable together. (The case where
|
|
// a bit is set in PSInputAddr but not PSInputEnable is where the frontend
|
|
// set up an input arg for a particular interpolation mode, but nothing
|
|
// uses that input arg. Really we should have an earlier pass that removes
|
|
// such an arg.)
|
|
unsigned PsInputBits = Info->getPSInputAddr() & Info->getPSInputEnable();
|
|
if ((PsInputBits & 0x7F) == 0 ||
|
|
((PsInputBits & 0xF) == 0 &&
|
|
(PsInputBits >> 11 & 1)))
|
|
Info->markPSInputEnabled(
|
|
countTrailingZeros(Info->getPSInputAddr(), ZB_Undefined));
|
|
}
|
|
}
|
|
|
|
const SITargetLowering &TLI = *getTLI<SITargetLowering>();
|
|
CCAssignFn *AssignFn = TLI.CCAssignFnForCall(CC, F.isVarArg());
|
|
|
|
if (!MBB.empty())
|
|
B.setInstr(*MBB.begin());
|
|
|
|
if (!IsEntryFunc) {
|
|
// For the fixed ABI, pass workitem IDs in the last argument register.
|
|
if (AMDGPUTargetMachine::EnableFixedFunctionABI)
|
|
TLI.allocateSpecialInputVGPRsFixed(CCInfo, MF, *TRI, *Info);
|
|
}
|
|
|
|
FormalArgHandler Handler(B, MRI, AssignFn);
|
|
if (!handleAssignments(CCInfo, ArgLocs, B, SplitArgs, Handler))
|
|
return false;
|
|
|
|
if (!IsEntryFunc && !AMDGPUTargetMachine::EnableFixedFunctionABI) {
|
|
// Special inputs come after user arguments.
|
|
TLI.allocateSpecialInputVGPRs(CCInfo, MF, *TRI, *Info);
|
|
}
|
|
|
|
// Start adding system SGPRs.
|
|
if (IsEntryFunc) {
|
|
TLI.allocateSystemSGPRs(CCInfo, MF, *Info, CC, IsGraphics);
|
|
} else {
|
|
if (!Subtarget.enableFlatScratch())
|
|
CCInfo.AllocateReg(Info->getScratchRSrcReg());
|
|
TLI.allocateSpecialInputSGPRs(CCInfo, MF, *TRI, *Info);
|
|
}
|
|
|
|
// Move back to the end of the basic block.
|
|
B.setMBB(MBB);
|
|
|
|
return true;
|
|
}
|
|
|
|
bool AMDGPUCallLowering::passSpecialInputs(MachineIRBuilder &MIRBuilder,
|
|
CCState &CCInfo,
|
|
SmallVectorImpl<std::pair<MCRegister, Register>> &ArgRegs,
|
|
CallLoweringInfo &Info) const {
|
|
MachineFunction &MF = MIRBuilder.getMF();
|
|
|
|
const AMDGPUFunctionArgInfo *CalleeArgInfo
|
|
= &AMDGPUArgumentUsageInfo::FixedABIFunctionInfo;
|
|
|
|
const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
|
|
const AMDGPUFunctionArgInfo &CallerArgInfo = MFI->getArgInfo();
|
|
|
|
|
|
// TODO: Unify with private memory register handling. This is complicated by
|
|
// the fact that at least in kernels, the input argument is not necessarily
|
|
// in the same location as the input.
|
|
AMDGPUFunctionArgInfo::PreloadedValue InputRegs[] = {
|
|
AMDGPUFunctionArgInfo::DISPATCH_PTR,
|
|
AMDGPUFunctionArgInfo::QUEUE_PTR,
|
|
AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR,
|
|
AMDGPUFunctionArgInfo::DISPATCH_ID,
|
|
AMDGPUFunctionArgInfo::WORKGROUP_ID_X,
|
|
AMDGPUFunctionArgInfo::WORKGROUP_ID_Y,
|
|
AMDGPUFunctionArgInfo::WORKGROUP_ID_Z
|
|
};
|
|
|
|
MachineRegisterInfo &MRI = MF.getRegInfo();
|
|
|
|
const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
|
|
const AMDGPULegalizerInfo *LI
|
|
= static_cast<const AMDGPULegalizerInfo*>(ST.getLegalizerInfo());
|
|
|
|
for (auto InputID : InputRegs) {
|
|
const ArgDescriptor *OutgoingArg;
|
|
const TargetRegisterClass *ArgRC;
|
|
LLT ArgTy;
|
|
|
|
std::tie(OutgoingArg, ArgRC, ArgTy) =
|
|
CalleeArgInfo->getPreloadedValue(InputID);
|
|
if (!OutgoingArg)
|
|
continue;
|
|
|
|
const ArgDescriptor *IncomingArg;
|
|
const TargetRegisterClass *IncomingArgRC;
|
|
std::tie(IncomingArg, IncomingArgRC, ArgTy) =
|
|
CallerArgInfo.getPreloadedValue(InputID);
|
|
assert(IncomingArgRC == ArgRC);
|
|
|
|
Register InputReg = MRI.createGenericVirtualRegister(ArgTy);
|
|
|
|
if (IncomingArg) {
|
|
LI->loadInputValue(InputReg, MIRBuilder, IncomingArg, ArgRC, ArgTy);
|
|
} else {
|
|
assert(InputID == AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR);
|
|
LI->getImplicitArgPtr(InputReg, MRI, MIRBuilder);
|
|
}
|
|
|
|
if (OutgoingArg->isRegister()) {
|
|
ArgRegs.emplace_back(OutgoingArg->getRegister(), InputReg);
|
|
if (!CCInfo.AllocateReg(OutgoingArg->getRegister()))
|
|
report_fatal_error("failed to allocate implicit input argument");
|
|
} else {
|
|
LLVM_DEBUG(dbgs() << "Unhandled stack passed implicit input argument\n");
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Pack workitem IDs into a single register or pass it as is if already
|
|
// packed.
|
|
const ArgDescriptor *OutgoingArg;
|
|
const TargetRegisterClass *ArgRC;
|
|
LLT ArgTy;
|
|
|
|
std::tie(OutgoingArg, ArgRC, ArgTy) =
|
|
CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X);
|
|
if (!OutgoingArg)
|
|
std::tie(OutgoingArg, ArgRC, ArgTy) =
|
|
CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y);
|
|
if (!OutgoingArg)
|
|
std::tie(OutgoingArg, ArgRC, ArgTy) =
|
|
CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z);
|
|
if (!OutgoingArg)
|
|
return false;
|
|
|
|
auto WorkitemIDX =
|
|
CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X);
|
|
auto WorkitemIDY =
|
|
CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y);
|
|
auto WorkitemIDZ =
|
|
CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z);
|
|
|
|
const ArgDescriptor *IncomingArgX = std::get<0>(WorkitemIDX);
|
|
const ArgDescriptor *IncomingArgY = std::get<0>(WorkitemIDY);
|
|
const ArgDescriptor *IncomingArgZ = std::get<0>(WorkitemIDZ);
|
|
const LLT S32 = LLT::scalar(32);
|
|
|
|
// If incoming ids are not packed we need to pack them.
|
|
// FIXME: Should consider known workgroup size to eliminate known 0 cases.
|
|
Register InputReg;
|
|
if (IncomingArgX && !IncomingArgX->isMasked() && CalleeArgInfo->WorkItemIDX) {
|
|
InputReg = MRI.createGenericVirtualRegister(S32);
|
|
LI->loadInputValue(InputReg, MIRBuilder, IncomingArgX,
|
|
std::get<1>(WorkitemIDX), std::get<2>(WorkitemIDX));
|
|
}
|
|
|
|
if (IncomingArgY && !IncomingArgY->isMasked() && CalleeArgInfo->WorkItemIDY) {
|
|
Register Y = MRI.createGenericVirtualRegister(S32);
|
|
LI->loadInputValue(Y, MIRBuilder, IncomingArgY, std::get<1>(WorkitemIDY),
|
|
std::get<2>(WorkitemIDY));
|
|
|
|
Y = MIRBuilder.buildShl(S32, Y, MIRBuilder.buildConstant(S32, 10)).getReg(0);
|
|
InputReg = InputReg ? MIRBuilder.buildOr(S32, InputReg, Y).getReg(0) : Y;
|
|
}
|
|
|
|
if (IncomingArgZ && !IncomingArgZ->isMasked() && CalleeArgInfo->WorkItemIDZ) {
|
|
Register Z = MRI.createGenericVirtualRegister(S32);
|
|
LI->loadInputValue(Z, MIRBuilder, IncomingArgZ, std::get<1>(WorkitemIDZ),
|
|
std::get<2>(WorkitemIDZ));
|
|
|
|
Z = MIRBuilder.buildShl(S32, Z, MIRBuilder.buildConstant(S32, 20)).getReg(0);
|
|
InputReg = InputReg ? MIRBuilder.buildOr(S32, InputReg, Z).getReg(0) : Z;
|
|
}
|
|
|
|
if (!InputReg) {
|
|
InputReg = MRI.createGenericVirtualRegister(S32);
|
|
|
|
// Workitem ids are already packed, any of present incoming arguments will
|
|
// carry all required fields.
|
|
ArgDescriptor IncomingArg = ArgDescriptor::createArg(
|
|
IncomingArgX ? *IncomingArgX :
|
|
IncomingArgY ? *IncomingArgY : *IncomingArgZ, ~0u);
|
|
LI->loadInputValue(InputReg, MIRBuilder, &IncomingArg,
|
|
&AMDGPU::VGPR_32RegClass, S32);
|
|
}
|
|
|
|
if (OutgoingArg->isRegister()) {
|
|
ArgRegs.emplace_back(OutgoingArg->getRegister(), InputReg);
|
|
if (!CCInfo.AllocateReg(OutgoingArg->getRegister()))
|
|
report_fatal_error("failed to allocate implicit input argument");
|
|
} else {
|
|
LLVM_DEBUG(dbgs() << "Unhandled stack passed implicit input argument\n");
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Returns a pair containing the fixed CCAssignFn and the vararg CCAssignFn for
|
|
/// CC.
|
|
static std::pair<CCAssignFn *, CCAssignFn *>
|
|
getAssignFnsForCC(CallingConv::ID CC, const SITargetLowering &TLI) {
|
|
return {TLI.CCAssignFnForCall(CC, false), TLI.CCAssignFnForCall(CC, true)};
|
|
}
|
|
|
|
static unsigned getCallOpcode(const MachineFunction &CallerF, bool IsIndirect,
|
|
bool IsTailCall) {
|
|
return AMDGPU::SI_CALL;
|
|
}
|
|
|
|
// Add operands to call instruction to track the callee.
|
|
static bool addCallTargetOperands(MachineInstrBuilder &CallInst,
|
|
MachineIRBuilder &MIRBuilder,
|
|
AMDGPUCallLowering::CallLoweringInfo &Info) {
|
|
if (Info.Callee.isReg()) {
|
|
CallInst.addReg(Info.Callee.getReg());
|
|
CallInst.addImm(0);
|
|
} else if (Info.Callee.isGlobal() && Info.Callee.getOffset() == 0) {
|
|
// The call lowering lightly assumed we can directly encode a call target in
|
|
// the instruction, which is not the case. Materialize the address here.
|
|
const GlobalValue *GV = Info.Callee.getGlobal();
|
|
auto Ptr = MIRBuilder.buildGlobalValue(
|
|
LLT::pointer(GV->getAddressSpace(), 64), GV);
|
|
CallInst.addReg(Ptr.getReg(0));
|
|
CallInst.add(Info.Callee);
|
|
} else
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
bool AMDGPUCallLowering::lowerCall(MachineIRBuilder &MIRBuilder,
|
|
CallLoweringInfo &Info) const {
|
|
if (Info.IsVarArg) {
|
|
LLVM_DEBUG(dbgs() << "Variadic functions not implemented\n");
|
|
return false;
|
|
}
|
|
|
|
MachineFunction &MF = MIRBuilder.getMF();
|
|
const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
|
|
const SIRegisterInfo *TRI = ST.getRegisterInfo();
|
|
|
|
const Function &F = MF.getFunction();
|
|
MachineRegisterInfo &MRI = MF.getRegInfo();
|
|
const SITargetLowering &TLI = *getTLI<SITargetLowering>();
|
|
const DataLayout &DL = F.getParent()->getDataLayout();
|
|
CallingConv::ID CallConv = F.getCallingConv();
|
|
|
|
if (!AMDGPUTargetMachine::EnableFixedFunctionABI &&
|
|
CallConv != CallingConv::AMDGPU_Gfx) {
|
|
LLVM_DEBUG(dbgs() << "Variable function ABI not implemented\n");
|
|
return false;
|
|
}
|
|
|
|
if (AMDGPU::isShader(CallConv)) {
|
|
LLVM_DEBUG(dbgs() << "Unhandled call from graphics shader\n");
|
|
return false;
|
|
}
|
|
|
|
SmallVector<ArgInfo, 8> OutArgs;
|
|
|
|
SmallVector<ArgInfo, 8> SplitArg;
|
|
for (auto &OrigArg : Info.OrigArgs) {
|
|
splitToValueTypes(MIRBuilder, OrigArg, SplitArg, DL, Info.CallConv);
|
|
|
|
processSplitArgs(
|
|
MIRBuilder, OrigArg, SplitArg, OutArgs, DL, Info.CallConv, true,
|
|
// FIXME: We should probably be passing multiple registers to
|
|
// handleAssignments to do this
|
|
[&](ArrayRef<Register> Regs, Register SrcReg, LLT LLTy, LLT PartLLT,
|
|
int VTSplitIdx) {
|
|
unpackRegsToOrigType(MIRBuilder, Regs, SrcReg, OrigArg, LLTy, PartLLT);
|
|
});
|
|
|
|
SplitArg.clear();
|
|
}
|
|
|
|
// If we can lower as a tail call, do that instead.
|
|
bool CanTailCallOpt = false;
|
|
|
|
// We must emit a tail call if we have musttail.
|
|
if (Info.IsMustTailCall && !CanTailCallOpt) {
|
|
LLVM_DEBUG(dbgs() << "Failed to lower musttail call as tail call\n");
|
|
return false;
|
|
}
|
|
|
|
// Find out which ABI gets to decide where things go.
|
|
CCAssignFn *AssignFnFixed;
|
|
CCAssignFn *AssignFnVarArg;
|
|
std::tie(AssignFnFixed, AssignFnVarArg) =
|
|
getAssignFnsForCC(Info.CallConv, TLI);
|
|
|
|
MIRBuilder.buildInstr(AMDGPU::ADJCALLSTACKUP)
|
|
.addImm(0)
|
|
.addImm(0);
|
|
|
|
// Create a temporarily-floating call instruction so we can add the implicit
|
|
// uses of arg registers.
|
|
unsigned Opc = getCallOpcode(MF, Info.Callee.isReg(), false);
|
|
|
|
auto MIB = MIRBuilder.buildInstrNoInsert(Opc);
|
|
MIB.addDef(TRI->getReturnAddressReg(MF));
|
|
|
|
if (!addCallTargetOperands(MIB, MIRBuilder, Info))
|
|
return false;
|
|
|
|
// Tell the call which registers are clobbered.
|
|
const uint32_t *Mask = TRI->getCallPreservedMask(MF, Info.CallConv);
|
|
MIB.addRegMask(Mask);
|
|
|
|
SmallVector<CCValAssign, 16> ArgLocs;
|
|
CCState CCInfo(Info.CallConv, Info.IsVarArg, MF, ArgLocs, F.getContext());
|
|
|
|
// We could pass MIB and directly add the implicit uses to the call
|
|
// now. However, as an aesthetic choice, place implicit argument operands
|
|
// after the ordinary user argument registers.
|
|
SmallVector<std::pair<MCRegister, Register>, 12> ImplicitArgRegs;
|
|
|
|
if (AMDGPUTargetMachine::EnableFixedFunctionABI) {
|
|
// With a fixed ABI, allocate fixed registers before user arguments.
|
|
if (!passSpecialInputs(MIRBuilder, CCInfo, ImplicitArgRegs, Info))
|
|
return false;
|
|
}
|
|
|
|
// Do the actual argument marshalling.
|
|
SmallVector<Register, 8> PhysRegs;
|
|
AMDGPUOutgoingArgHandler Handler(MIRBuilder, MRI, MIB, AssignFnFixed,
|
|
AssignFnVarArg, false);
|
|
if (!handleAssignments(CCInfo, ArgLocs, MIRBuilder, OutArgs, Handler))
|
|
return false;
|
|
|
|
const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
|
|
|
|
if (!ST.enableFlatScratch()) {
|
|
// Insert copies for the SRD. In the HSA case, this should be an identity
|
|
// copy.
|
|
auto ScratchRSrcReg = MIRBuilder.buildCopy(LLT::vector(4, 32),
|
|
MFI->getScratchRSrcReg());
|
|
MIRBuilder.buildCopy(AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3, ScratchRSrcReg);
|
|
MIB.addReg(AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3, RegState::Implicit);
|
|
}
|
|
|
|
for (std::pair<MCRegister, Register> ArgReg : ImplicitArgRegs) {
|
|
MIRBuilder.buildCopy((Register)ArgReg.first, ArgReg.second);
|
|
MIB.addReg(ArgReg.first, RegState::Implicit);
|
|
}
|
|
|
|
// Get a count of how many bytes are to be pushed on the stack.
|
|
unsigned NumBytes = CCInfo.getNextStackOffset();
|
|
|
|
// If Callee is a reg, since it is used by a target specific
|
|
// instruction, it must have a register class matching the
|
|
// constraint of that instruction.
|
|
|
|
// FIXME: We should define regbankselectable call instructions to handle
|
|
// divergent call targets.
|
|
if (MIB->getOperand(1).isReg()) {
|
|
MIB->getOperand(1).setReg(constrainOperandRegClass(
|
|
MF, *TRI, MRI, *ST.getInstrInfo(),
|
|
*ST.getRegBankInfo(), *MIB, MIB->getDesc(), MIB->getOperand(1),
|
|
1));
|
|
}
|
|
|
|
auto OrigInsertPt = MIRBuilder.getInsertPt();
|
|
|
|
// Now we can add the actual call instruction to the correct position.
|
|
MIRBuilder.insertInstr(MIB);
|
|
|
|
// Insert this now to give us an anchor point for managing the insert point.
|
|
MachineInstrBuilder CallSeqEnd =
|
|
MIRBuilder.buildInstr(AMDGPU::ADJCALLSTACKDOWN);
|
|
|
|
SmallVector<ArgInfo, 8> InArgs;
|
|
if (!Info.CanLowerReturn) {
|
|
insertSRetLoads(MIRBuilder, Info.OrigRet.Ty, Info.OrigRet.Regs,
|
|
Info.DemoteRegister, Info.DemoteStackIndex);
|
|
} else if (!Info.OrigRet.Ty->isVoidTy()) {
|
|
SmallVector<ArgInfo, 8> PreSplitRetInfos;
|
|
|
|
splitToValueTypes(
|
|
MIRBuilder, Info.OrigRet, PreSplitRetInfos/*InArgs*/, DL, Info.CallConv);
|
|
|
|
processSplitArgs(MIRBuilder, Info.OrigRet,
|
|
PreSplitRetInfos, InArgs/*SplitRetInfos*/, DL, Info.CallConv, false,
|
|
[&](ArrayRef<Register> Regs, Register DstReg,
|
|
LLT LLTy, LLT PartLLT, int VTSplitIdx) {
|
|
assert(DstReg == Info.OrigRet.Regs[VTSplitIdx]);
|
|
packSplitRegsToOrigType(MIRBuilder, Info.OrigRet.Regs[VTSplitIdx],
|
|
Regs, LLTy, PartLLT);
|
|
});
|
|
}
|
|
|
|
// Make sure the raw argument copies are inserted before the marshalling to
|
|
// the original types.
|
|
MIRBuilder.setInsertPt(MIRBuilder.getMBB(), CallSeqEnd);
|
|
|
|
// Finally we can copy the returned value back into its virtual-register. In
|
|
// symmetry with the arguments, the physical register must be an
|
|
// implicit-define of the call instruction.
|
|
if (Info.CanLowerReturn && !Info.OrigRet.Ty->isVoidTy()) {
|
|
CCAssignFn *RetAssignFn = TLI.CCAssignFnForReturn(Info.CallConv,
|
|
Info.IsVarArg);
|
|
CallReturnHandler Handler(MIRBuilder, MRI, MIB, RetAssignFn);
|
|
if (!handleAssignments(MIRBuilder, InArgs, Handler))
|
|
return false;
|
|
}
|
|
|
|
uint64_t CalleePopBytes = NumBytes;
|
|
CallSeqEnd.addImm(0)
|
|
.addImm(CalleePopBytes);
|
|
|
|
// Restore the insert point to after the call sequence.
|
|
MIRBuilder.setInsertPt(MIRBuilder.getMBB(), OrigInsertPt);
|
|
return true;
|
|
}
|