llvm-project/clang-tools-extra/clangd/AST.cpp

483 lines
17 KiB
C++

//===--- AST.cpp - Utility AST functions -----------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "AST.h"
#include "FindTarget.h"
#include "SourceCode.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/ASTTypeTraits.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclBase.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/DeclarationName.h"
#include "clang/AST/NestedNameSpecifier.h"
#include "clang/AST/PrettyPrinter.h"
#include "clang/AST/RecursiveASTVisitor.h"
#include "clang/AST/TemplateBase.h"
#include "clang/Basic/SourceLocation.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Basic/Specifiers.h"
#include "clang/Index/USRGeneration.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/ScopedPrinter.h"
#include "llvm/Support/raw_ostream.h"
#include <string>
#include <vector>
namespace clang {
namespace clangd {
namespace {
llvm::Optional<llvm::ArrayRef<TemplateArgumentLoc>>
getTemplateSpecializationArgLocs(const NamedDecl &ND) {
if (auto *Func = llvm::dyn_cast<FunctionDecl>(&ND)) {
if (const ASTTemplateArgumentListInfo *Args =
Func->getTemplateSpecializationArgsAsWritten())
return Args->arguments();
} else if (auto *Cls =
llvm::dyn_cast<ClassTemplatePartialSpecializationDecl>(&ND)) {
if (auto *Args = Cls->getTemplateArgsAsWritten())
return Args->arguments();
} else if (auto *Var =
llvm::dyn_cast<VarTemplatePartialSpecializationDecl>(&ND)) {
if (auto *Args = Var->getTemplateArgsAsWritten())
return Args->arguments();
} else if (auto *Var = llvm::dyn_cast<VarTemplateSpecializationDecl>(&ND))
return Var->getTemplateArgsInfo().arguments();
// We return None for ClassTemplateSpecializationDecls because it does not
// contain TemplateArgumentLoc information.
return llvm::None;
}
template <class T>
bool isTemplateSpecializationKind(const NamedDecl *D,
TemplateSpecializationKind Kind) {
if (const auto *TD = dyn_cast<T>(D))
return TD->getTemplateSpecializationKind() == Kind;
return false;
}
bool isTemplateSpecializationKind(const NamedDecl *D,
TemplateSpecializationKind Kind) {
return isTemplateSpecializationKind<FunctionDecl>(D, Kind) ||
isTemplateSpecializationKind<CXXRecordDecl>(D, Kind) ||
isTemplateSpecializationKind<VarDecl>(D, Kind);
}
// Store all UsingDirectiveDecls in parent contexts of DestContext, that were
// introduced before InsertionPoint.
llvm::DenseSet<const NamespaceDecl *>
getUsingNamespaceDirectives(const DeclContext *DestContext,
SourceLocation Until) {
const auto &SM = DestContext->getParentASTContext().getSourceManager();
llvm::DenseSet<const NamespaceDecl *> VisibleNamespaceDecls;
for (const auto *DC = DestContext; DC; DC = DC->getLookupParent()) {
for (const auto *D : DC->decls()) {
if (!SM.isWrittenInSameFile(D->getLocation(), Until) ||
!SM.isBeforeInTranslationUnit(D->getLocation(), Until))
continue;
if (auto *UDD = llvm::dyn_cast<UsingDirectiveDecl>(D))
VisibleNamespaceDecls.insert(
UDD->getNominatedNamespace()->getCanonicalDecl());
}
}
return VisibleNamespaceDecls;
}
// Goes over all parents of SourceContext until we find a common ancestor for
// DestContext and SourceContext. Any qualifier including and above common
// ancestor is redundant, therefore we stop at lowest common ancestor.
// In addition to that stops early whenever IsVisible returns true. This can be
// used to implement support for "using namespace" decls.
std::string
getQualification(ASTContext &Context, const DeclContext *DestContext,
const DeclContext *SourceContext,
llvm::function_ref<bool(NestedNameSpecifier *)> IsVisible) {
std::vector<const NestedNameSpecifier *> Parents;
bool ReachedNS = false;
for (const DeclContext *CurContext = SourceContext; CurContext;
CurContext = CurContext->getLookupParent()) {
// Stop once we reach a common ancestor.
if (CurContext->Encloses(DestContext))
break;
NestedNameSpecifier *NNS = nullptr;
if (auto *TD = llvm::dyn_cast<TagDecl>(CurContext)) {
// There can't be any more tag parents after hitting a namespace.
assert(!ReachedNS);
(void)ReachedNS;
NNS = NestedNameSpecifier::Create(Context, nullptr, false,
TD->getTypeForDecl());
} else {
ReachedNS = true;
auto *NSD = llvm::cast<NamespaceDecl>(CurContext);
NNS = NestedNameSpecifier::Create(Context, nullptr, NSD);
// Anonymous and inline namespace names are not spelled while qualifying a
// name, so skip those.
if (NSD->isAnonymousNamespace() || NSD->isInlineNamespace())
continue;
}
// Stop if this namespace is already visible at DestContext.
if (IsVisible(NNS))
break;
Parents.push_back(NNS);
}
// Go over name-specifiers in reverse order to create necessary qualification,
// since we stored inner-most parent first.
std::string Result;
llvm::raw_string_ostream OS(Result);
for (const auto *Parent : llvm::reverse(Parents))
Parent->print(OS, Context.getPrintingPolicy());
return OS.str();
}
} // namespace
bool isImplicitTemplateInstantiation(const NamedDecl *D) {
return isTemplateSpecializationKind(D, TSK_ImplicitInstantiation);
}
bool isExplicitTemplateSpecialization(const NamedDecl *D) {
return isTemplateSpecializationKind(D, TSK_ExplicitSpecialization);
}
bool isImplementationDetail(const Decl *D) {
return !isSpelledInSource(D->getLocation(),
D->getASTContext().getSourceManager());
}
SourceLocation nameLocation(const clang::Decl &D, const SourceManager &SM) {
auto L = D.getLocation();
if (isSpelledInSource(L, SM))
return SM.getSpellingLoc(L);
return SM.getExpansionLoc(L);
}
std::string printQualifiedName(const NamedDecl &ND) {
std::string QName;
llvm::raw_string_ostream OS(QName);
PrintingPolicy Policy(ND.getASTContext().getLangOpts());
// Note that inline namespaces are treated as transparent scopes. This
// reflects the way they're most commonly used for lookup. Ideally we'd
// include them, but at query time it's hard to find all the inline
// namespaces to query: the preamble doesn't have a dedicated list.
Policy.SuppressUnwrittenScope = true;
ND.printQualifiedName(OS, Policy);
OS.flush();
assert(!StringRef(QName).startswith("::"));
return QName;
}
static bool isAnonymous(const DeclarationName &N) {
return N.isIdentifier() && !N.getAsIdentifierInfo();
}
NestedNameSpecifierLoc getQualifierLoc(const NamedDecl &ND) {
if (auto *V = llvm::dyn_cast<DeclaratorDecl>(&ND))
return V->getQualifierLoc();
if (auto *T = llvm::dyn_cast<TagDecl>(&ND))
return T->getQualifierLoc();
return NestedNameSpecifierLoc();
}
std::string printUsingNamespaceName(const ASTContext &Ctx,
const UsingDirectiveDecl &D) {
PrintingPolicy PP(Ctx.getLangOpts());
std::string Name;
llvm::raw_string_ostream Out(Name);
if (auto *Qual = D.getQualifier())
Qual->print(Out, PP);
D.getNominatedNamespaceAsWritten()->printName(Out);
return Out.str();
}
std::string printName(const ASTContext &Ctx, const NamedDecl &ND) {
std::string Name;
llvm::raw_string_ostream Out(Name);
PrintingPolicy PP(Ctx.getLangOpts());
// We don't consider a class template's args part of the constructor name.
PP.SuppressTemplateArgsInCXXConstructors = true;
// Handle 'using namespace'. They all have the same name - <using-directive>.
if (auto *UD = llvm::dyn_cast<UsingDirectiveDecl>(&ND)) {
Out << "using namespace ";
if (auto *Qual = UD->getQualifier())
Qual->print(Out, PP);
UD->getNominatedNamespaceAsWritten()->printName(Out);
return Out.str();
}
if (isAnonymous(ND.getDeclName())) {
// Come up with a presentation for an anonymous entity.
if (isa<NamespaceDecl>(ND))
return "(anonymous namespace)";
if (auto *Cls = llvm::dyn_cast<RecordDecl>(&ND)) {
if (Cls->isLambda())
return "(lambda)";
return ("(anonymous " + Cls->getKindName() + ")").str();
}
if (isa<EnumDecl>(ND))
return "(anonymous enum)";
return "(anonymous)";
}
// Print nested name qualifier if it was written in the source code.
if (auto *Qualifier = getQualifierLoc(ND).getNestedNameSpecifier())
Qualifier->print(Out, PP);
// Print the name itself.
ND.getDeclName().print(Out, PP);
// Print template arguments.
Out << printTemplateSpecializationArgs(ND);
return Out.str();
}
std::string printTemplateSpecializationArgs(const NamedDecl &ND) {
std::string TemplateArgs;
llvm::raw_string_ostream OS(TemplateArgs);
PrintingPolicy Policy(ND.getASTContext().getLangOpts());
if (llvm::Optional<llvm::ArrayRef<TemplateArgumentLoc>> Args =
getTemplateSpecializationArgLocs(ND)) {
printTemplateArgumentList(OS, *Args, Policy);
} else if (auto *Cls = llvm::dyn_cast<ClassTemplateSpecializationDecl>(&ND)) {
if (const TypeSourceInfo *TSI = Cls->getTypeAsWritten()) {
// ClassTemplateSpecializationDecls do not contain
// TemplateArgumentTypeLocs, they only have TemplateArgumentTypes. So we
// create a new argument location list from TypeSourceInfo.
auto STL = TSI->getTypeLoc().getAs<TemplateSpecializationTypeLoc>();
llvm::SmallVector<TemplateArgumentLoc> ArgLocs;
ArgLocs.reserve(STL.getNumArgs());
for (unsigned I = 0; I < STL.getNumArgs(); ++I)
ArgLocs.push_back(STL.getArgLoc(I));
printTemplateArgumentList(OS, ArgLocs, Policy);
} else {
// FIXME: Fix cases when getTypeAsWritten returns null inside clang AST,
// e.g. friend decls. Currently we fallback to Template Arguments without
// location information.
printTemplateArgumentList(OS, Cls->getTemplateArgs().asArray(), Policy);
}
}
OS.flush();
return TemplateArgs;
}
std::string printNamespaceScope(const DeclContext &DC) {
for (const auto *Ctx = &DC; Ctx != nullptr; Ctx = Ctx->getParent())
if (const auto *NS = dyn_cast<NamespaceDecl>(Ctx))
if (!NS->isAnonymousNamespace() && !NS->isInlineNamespace())
return printQualifiedName(*NS) + "::";
return "";
}
SymbolID getSymbolID(const Decl *D) {
llvm::SmallString<128> USR;
if (index::generateUSRForDecl(D, USR))
return {};
return SymbolID(USR);
}
SymbolID getSymbolID(const llvm::StringRef MacroName, const MacroInfo *MI,
const SourceManager &SM) {
if (MI == nullptr)
return {};
llvm::SmallString<128> USR;
if (index::generateUSRForMacro(MacroName, MI->getDefinitionLoc(), SM, USR))
return {};
return SymbolID(USR);
}
std::string printType(const QualType QT, const DeclContext &CurContext) {
std::string Result;
llvm::raw_string_ostream OS(Result);
PrintingPolicy PP(CurContext.getParentASTContext().getPrintingPolicy());
PP.SuppressTagKeyword = true;
PP.SuppressUnwrittenScope = true;
class PrintCB : public PrintingCallbacks {
public:
PrintCB(const DeclContext *CurContext) : CurContext(CurContext) {}
virtual ~PrintCB() {}
virtual bool isScopeVisible(const DeclContext *DC) const override {
return DC->Encloses(CurContext);
}
private:
const DeclContext *CurContext;
};
PrintCB PCB(&CurContext);
PP.Callbacks = &PCB;
QT.print(OS, PP);
return OS.str();
}
QualType declaredType(const TypeDecl *D) {
if (const auto *CTSD = llvm::dyn_cast<ClassTemplateSpecializationDecl>(D))
if (const auto *TSI = CTSD->getTypeAsWritten())
return TSI->getType();
return D->getASTContext().getTypeDeclType(D);
}
namespace {
/// Computes the deduced type at a given location by visiting the relevant
/// nodes. We use this to display the actual type when hovering over an "auto"
/// keyword or "decltype()" expression.
/// FIXME: This could have been a lot simpler by visiting AutoTypeLocs but it
/// seems that the AutoTypeLocs that can be visited along with their AutoType do
/// not have the deduced type set. Instead, we have to go to the appropriate
/// DeclaratorDecl/FunctionDecl and work our back to the AutoType that does have
/// a deduced type set. The AST should be improved to simplify this scenario.
class DeducedTypeVisitor : public RecursiveASTVisitor<DeducedTypeVisitor> {
SourceLocation SearchedLocation;
public:
DeducedTypeVisitor(SourceLocation SearchedLocation)
: SearchedLocation(SearchedLocation) {}
// Handle auto initializers:
//- auto i = 1;
//- decltype(auto) i = 1;
//- auto& i = 1;
//- auto* i = &a;
bool VisitDeclaratorDecl(DeclaratorDecl *D) {
if (!D->getTypeSourceInfo() ||
D->getTypeSourceInfo()->getTypeLoc().getBeginLoc() != SearchedLocation)
return true;
if (auto *AT = D->getType()->getContainedAutoType()) {
DeducedType = AT->desugar();
}
return true;
}
// Handle auto return types:
//- auto foo() {}
//- auto& foo() {}
//- auto foo() -> int {}
//- auto foo() -> decltype(1+1) {}
//- operator auto() const { return 10; }
bool VisitFunctionDecl(FunctionDecl *D) {
if (!D->getTypeSourceInfo())
return true;
// Loc of auto in return type (c++14).
auto CurLoc = D->getReturnTypeSourceRange().getBegin();
// Loc of "auto" in operator auto()
if (CurLoc.isInvalid() && isa<CXXConversionDecl>(D))
CurLoc = D->getTypeSourceInfo()->getTypeLoc().getBeginLoc();
// Loc of "auto" in function with trailing return type (c++11).
if (CurLoc.isInvalid())
CurLoc = D->getSourceRange().getBegin();
if (CurLoc != SearchedLocation)
return true;
const AutoType *AT = D->getReturnType()->getContainedAutoType();
if (AT && !AT->getDeducedType().isNull()) {
DeducedType = AT->getDeducedType();
} else if (auto DT = dyn_cast<DecltypeType>(D->getReturnType())) {
// auto in a trailing return type just points to a DecltypeType and
// getContainedAutoType does not unwrap it.
if (!DT->getUnderlyingType().isNull())
DeducedType = DT->getUnderlyingType();
} else if (!D->getReturnType().isNull()) {
DeducedType = D->getReturnType();
}
return true;
}
// Handle non-auto decltype, e.g.:
// - auto foo() -> decltype(expr) {}
// - decltype(expr);
bool VisitDecltypeTypeLoc(DecltypeTypeLoc TL) {
if (TL.getBeginLoc() != SearchedLocation)
return true;
// A DecltypeType's underlying type can be another DecltypeType! E.g.
// int I = 0;
// decltype(I) J = I;
// decltype(J) K = J;
const DecltypeType *DT = dyn_cast<DecltypeType>(TL.getTypePtr());
while (DT && !DT->getUnderlyingType().isNull()) {
DeducedType = DT->getUnderlyingType();
DT = dyn_cast<DecltypeType>(DeducedType.getTypePtr());
}
return true;
}
QualType DeducedType;
};
} // namespace
llvm::Optional<QualType> getDeducedType(ASTContext &ASTCtx,
SourceLocation Loc) {
if (!Loc.isValid())
return {};
DeducedTypeVisitor V(Loc);
V.TraverseAST(ASTCtx);
if (V.DeducedType.isNull())
return llvm::None;
return V.DeducedType;
}
std::string getQualification(ASTContext &Context,
const DeclContext *DestContext,
SourceLocation InsertionPoint,
const NamedDecl *ND) {
auto VisibleNamespaceDecls =
getUsingNamespaceDirectives(DestContext, InsertionPoint);
return getQualification(
Context, DestContext, ND->getDeclContext(),
[&](NestedNameSpecifier *NNS) {
if (NNS->getKind() != NestedNameSpecifier::Namespace)
return false;
const auto *CanonNSD = NNS->getAsNamespace()->getCanonicalDecl();
return llvm::any_of(VisibleNamespaceDecls,
[CanonNSD](const NamespaceDecl *NSD) {
return NSD->getCanonicalDecl() == CanonNSD;
});
});
}
std::string getQualification(ASTContext &Context,
const DeclContext *DestContext,
const NamedDecl *ND,
llvm::ArrayRef<std::string> VisibleNamespaces) {
for (llvm::StringRef NS : VisibleNamespaces) {
assert(NS.endswith("::"));
(void)NS;
}
return getQualification(
Context, DestContext, ND->getDeclContext(),
[&](NestedNameSpecifier *NNS) {
return llvm::any_of(VisibleNamespaces, [&](llvm::StringRef Namespace) {
std::string NS;
llvm::raw_string_ostream OS(NS);
NNS->print(OS, Context.getPrintingPolicy());
return OS.str() == Namespace;
});
});
}
bool hasUnstableLinkage(const Decl *D) {
// Linkage of a ValueDecl depends on the type.
// If that's not deduced yet, deducing it may change the linkage.
auto *VD = llvm::dyn_cast_or_null<ValueDecl>(D);
return VD && !VD->getType().isNull() && VD->getType()->isUndeducedType();
}
} // namespace clangd
} // namespace clang