llvm-project/clang/lib/Sema/SemaDeclAttr.cpp

4810 lines
172 KiB
C++

//===--- SemaDeclAttr.cpp - Declaration Attribute Handling ----------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements decl-related attribute processing.
//
//===----------------------------------------------------------------------===//
#include "clang/Sema/SemaInternal.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/CXXInheritance.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/Expr.h"
#include "clang/AST/Mangle.h"
#include "clang/Basic/CharInfo.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/Lex/Preprocessor.h"
#include "clang/Sema/DeclSpec.h"
#include "clang/Sema/DelayedDiagnostic.h"
#include "clang/Sema/Lookup.h"
#include "clang/Sema/Scope.h"
#include "llvm/ADT/StringExtras.h"
using namespace clang;
using namespace sema;
namespace AttributeLangSupport {
enum LANG {
C,
Cpp,
ObjC
};
}
//===----------------------------------------------------------------------===//
// Helper functions
//===----------------------------------------------------------------------===//
/// isFunctionOrMethod - Return true if the given decl has function
/// type (function or function-typed variable) or an Objective-C
/// method.
static bool isFunctionOrMethod(const Decl *D) {
return (D->getFunctionType() != NULL) || isa<ObjCMethodDecl>(D);
}
/// Return true if the given decl has a declarator that should have
/// been processed by Sema::GetTypeForDeclarator.
static bool hasDeclarator(const Decl *D) {
// In some sense, TypedefDecl really *ought* to be a DeclaratorDecl.
return isa<DeclaratorDecl>(D) || isa<BlockDecl>(D) || isa<TypedefNameDecl>(D) ||
isa<ObjCPropertyDecl>(D);
}
/// hasFunctionProto - Return true if the given decl has a argument
/// information. This decl should have already passed
/// isFunctionOrMethod or isFunctionOrMethodOrBlock.
static bool hasFunctionProto(const Decl *D) {
if (const FunctionType *FnTy = D->getFunctionType())
return isa<FunctionProtoType>(FnTy);
return isa<ObjCMethodDecl>(D) || isa<BlockDecl>(D);
}
/// getFunctionOrMethodNumParams - Return number of function or method
/// parameters. It is an error to call this on a K&R function (use
/// hasFunctionProto first).
static unsigned getFunctionOrMethodNumParams(const Decl *D) {
if (const FunctionType *FnTy = D->getFunctionType())
return cast<FunctionProtoType>(FnTy)->getNumParams();
if (const BlockDecl *BD = dyn_cast<BlockDecl>(D))
return BD->getNumParams();
return cast<ObjCMethodDecl>(D)->param_size();
}
static QualType getFunctionOrMethodParamType(const Decl *D, unsigned Idx) {
if (const FunctionType *FnTy = D->getFunctionType())
return cast<FunctionProtoType>(FnTy)->getParamType(Idx);
if (const BlockDecl *BD = dyn_cast<BlockDecl>(D))
return BD->getParamDecl(Idx)->getType();
return cast<ObjCMethodDecl>(D)->param_begin()[Idx]->getType();
}
static QualType getFunctionOrMethodResultType(const Decl *D) {
if (const FunctionType *FnTy = D->getFunctionType())
return cast<FunctionProtoType>(FnTy)->getReturnType();
return cast<ObjCMethodDecl>(D)->getReturnType();
}
static bool isFunctionOrMethodVariadic(const Decl *D) {
if (const FunctionType *FnTy = D->getFunctionType()) {
const FunctionProtoType *proto = cast<FunctionProtoType>(FnTy);
return proto->isVariadic();
} else if (const BlockDecl *BD = dyn_cast<BlockDecl>(D))
return BD->isVariadic();
else {
return cast<ObjCMethodDecl>(D)->isVariadic();
}
}
static bool isInstanceMethod(const Decl *D) {
if (const CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(D))
return MethodDecl->isInstance();
return false;
}
static inline bool isNSStringType(QualType T, ASTContext &Ctx) {
const ObjCObjectPointerType *PT = T->getAs<ObjCObjectPointerType>();
if (!PT)
return false;
ObjCInterfaceDecl *Cls = PT->getObjectType()->getInterface();
if (!Cls)
return false;
IdentifierInfo* ClsName = Cls->getIdentifier();
// FIXME: Should we walk the chain of classes?
return ClsName == &Ctx.Idents.get("NSString") ||
ClsName == &Ctx.Idents.get("NSMutableString");
}
static inline bool isCFStringType(QualType T, ASTContext &Ctx) {
const PointerType *PT = T->getAs<PointerType>();
if (!PT)
return false;
const RecordType *RT = PT->getPointeeType()->getAs<RecordType>();
if (!RT)
return false;
const RecordDecl *RD = RT->getDecl();
if (RD->getTagKind() != TTK_Struct)
return false;
return RD->getIdentifier() == &Ctx.Idents.get("__CFString");
}
static unsigned getNumAttributeArgs(const AttributeList &Attr) {
// FIXME: Include the type in the argument list.
return Attr.getNumArgs() + Attr.hasParsedType();
}
/// \brief Check if the attribute has exactly as many args as Num. May
/// output an error.
static bool checkAttributeNumArgs(Sema &S, const AttributeList &Attr,
unsigned Num) {
if (getNumAttributeArgs(Attr) != Num) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
<< Attr.getName() << Num;
return false;
}
return true;
}
/// \brief Check if the attribute has at least as many args as Num. May
/// output an error.
static bool checkAttributeAtLeastNumArgs(Sema &S, const AttributeList &Attr,
unsigned Num) {
if (getNumAttributeArgs(Attr) < Num) {
S.Diag(Attr.getLoc(), diag::err_attribute_too_few_arguments)
<< Attr.getName() << Num;
return false;
}
return true;
}
/// \brief If Expr is a valid integer constant, get the value of the integer
/// expression and return success or failure. May output an error.
static bool checkUInt32Argument(Sema &S, const AttributeList &Attr,
const Expr *Expr, uint32_t &Val,
unsigned Idx = UINT_MAX) {
llvm::APSInt I(32);
if (Expr->isTypeDependent() || Expr->isValueDependent() ||
!Expr->isIntegerConstantExpr(I, S.Context)) {
if (Idx != UINT_MAX)
S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_type)
<< Attr.getName() << Idx << AANT_ArgumentIntegerConstant
<< Expr->getSourceRange();
else
S.Diag(Attr.getLoc(), diag::err_attribute_argument_type)
<< Attr.getName() << AANT_ArgumentIntegerConstant
<< Expr->getSourceRange();
return false;
}
Val = (uint32_t)I.getZExtValue();
return true;
}
/// \brief Diagnose mutually exclusive attributes when present on a given
/// declaration. Returns true if diagnosed.
template <typename AttrTy>
static bool checkAttrMutualExclusion(Sema &S, Decl *D,
const AttributeList &Attr) {
if (AttrTy *A = D->getAttr<AttrTy>()) {
S.Diag(Attr.getLoc(), diag::err_attributes_are_not_compatible)
<< Attr.getName() << A;
return true;
}
return false;
}
/// \brief Check if IdxExpr is a valid parameter index for a function or
/// instance method D. May output an error.
///
/// \returns true if IdxExpr is a valid index.
static bool checkFunctionOrMethodParameterIndex(Sema &S, const Decl *D,
const AttributeList &Attr,
unsigned AttrArgNum,
const Expr *IdxExpr,
uint64_t &Idx) {
assert(isFunctionOrMethod(D));
// In C++ the implicit 'this' function parameter also counts.
// Parameters are counted from one.
bool HP = hasFunctionProto(D);
bool HasImplicitThisParam = isInstanceMethod(D);
bool IV = HP && isFunctionOrMethodVariadic(D);
unsigned NumParams =
(HP ? getFunctionOrMethodNumParams(D) : 0) + HasImplicitThisParam;
llvm::APSInt IdxInt;
if (IdxExpr->isTypeDependent() || IdxExpr->isValueDependent() ||
!IdxExpr->isIntegerConstantExpr(IdxInt, S.Context)) {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_type)
<< Attr.getName() << AttrArgNum << AANT_ArgumentIntegerConstant
<< IdxExpr->getSourceRange();
return false;
}
Idx = IdxInt.getLimitedValue();
if (Idx < 1 || (!IV && Idx > NumParams)) {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_out_of_bounds)
<< Attr.getName() << AttrArgNum << IdxExpr->getSourceRange();
return false;
}
Idx--; // Convert to zero-based.
if (HasImplicitThisParam) {
if (Idx == 0) {
S.Diag(Attr.getLoc(),
diag::err_attribute_invalid_implicit_this_argument)
<< Attr.getName() << IdxExpr->getSourceRange();
return false;
}
--Idx;
}
return true;
}
/// \brief Check if the argument \p ArgNum of \p Attr is a ASCII string literal.
/// If not emit an error and return false. If the argument is an identifier it
/// will emit an error with a fixit hint and treat it as if it was a string
/// literal.
bool Sema::checkStringLiteralArgumentAttr(const AttributeList &Attr,
unsigned ArgNum, StringRef &Str,
SourceLocation *ArgLocation) {
// Look for identifiers. If we have one emit a hint to fix it to a literal.
if (Attr.isArgIdent(ArgNum)) {
IdentifierLoc *Loc = Attr.getArgAsIdent(ArgNum);
Diag(Loc->Loc, diag::err_attribute_argument_type)
<< Attr.getName() << AANT_ArgumentString
<< FixItHint::CreateInsertion(Loc->Loc, "\"")
<< FixItHint::CreateInsertion(PP.getLocForEndOfToken(Loc->Loc), "\"");
Str = Loc->Ident->getName();
if (ArgLocation)
*ArgLocation = Loc->Loc;
return true;
}
// Now check for an actual string literal.
Expr *ArgExpr = Attr.getArgAsExpr(ArgNum);
StringLiteral *Literal = dyn_cast<StringLiteral>(ArgExpr->IgnoreParenCasts());
if (ArgLocation)
*ArgLocation = ArgExpr->getLocStart();
if (!Literal || !Literal->isAscii()) {
Diag(ArgExpr->getLocStart(), diag::err_attribute_argument_type)
<< Attr.getName() << AANT_ArgumentString;
return false;
}
Str = Literal->getString();
return true;
}
/// \brief Applies the given attribute to the Decl without performing any
/// additional semantic checking.
template <typename AttrType>
static void handleSimpleAttribute(Sema &S, Decl *D,
const AttributeList &Attr) {
D->addAttr(::new (S.Context) AttrType(Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex()));
}
/// \brief Check if the passed-in expression is of type int or bool.
static bool isIntOrBool(Expr *Exp) {
QualType QT = Exp->getType();
return QT->isBooleanType() || QT->isIntegerType();
}
// Check to see if the type is a smart pointer of some kind. We assume
// it's a smart pointer if it defines both operator-> and operator*.
static bool threadSafetyCheckIsSmartPointer(Sema &S, const RecordType* RT) {
DeclContextLookupConstResult Res1 = RT->getDecl()->lookup(
S.Context.DeclarationNames.getCXXOperatorName(OO_Star));
if (Res1.empty())
return false;
DeclContextLookupConstResult Res2 = RT->getDecl()->lookup(
S.Context.DeclarationNames.getCXXOperatorName(OO_Arrow));
if (Res2.empty())
return false;
return true;
}
/// \brief Check if passed in Decl is a pointer type.
/// Note that this function may produce an error message.
/// \return true if the Decl is a pointer type; false otherwise
static bool threadSafetyCheckIsPointer(Sema &S, const Decl *D,
const AttributeList &Attr) {
const ValueDecl *vd = cast<ValueDecl>(D);
QualType QT = vd->getType();
if (QT->isAnyPointerType())
return true;
if (const RecordType *RT = QT->getAs<RecordType>()) {
// If it's an incomplete type, it could be a smart pointer; skip it.
// (We don't want to force template instantiation if we can avoid it,
// since that would alter the order in which templates are instantiated.)
if (RT->isIncompleteType())
return true;
if (threadSafetyCheckIsSmartPointer(S, RT))
return true;
}
S.Diag(Attr.getLoc(), diag::warn_thread_attribute_decl_not_pointer)
<< Attr.getName() << QT;
return false;
}
/// \brief Checks that the passed in QualType either is of RecordType or points
/// to RecordType. Returns the relevant RecordType, null if it does not exit.
static const RecordType *getRecordType(QualType QT) {
if (const RecordType *RT = QT->getAs<RecordType>())
return RT;
// Now check if we point to record type.
if (const PointerType *PT = QT->getAs<PointerType>())
return PT->getPointeeType()->getAs<RecordType>();
return 0;
}
static bool checkBaseClassIsLockableCallback(const CXXBaseSpecifier *Specifier,
CXXBasePath &Path, void *Unused) {
const RecordType *RT = Specifier->getType()->getAs<RecordType>();
return RT->getDecl()->hasAttr<CapabilityAttr>();
}
/// \brief Thread Safety Analysis: Checks that the passed in RecordType
/// resolves to a lockable object.
static void checkForLockableRecord(Sema &S, Decl *D, const AttributeList &Attr,
QualType Ty) {
const RecordType *RT = getRecordType(Ty);
// Warn if could not get record type for this argument.
if (!RT) {
S.Diag(Attr.getLoc(), diag::warn_thread_attribute_argument_not_class)
<< Attr.getName() << Ty;
return;
}
// Don't check for lockable if the class hasn't been defined yet.
if (RT->isIncompleteType())
return;
// Allow smart pointers to be used as lockable objects.
// FIXME -- Check the type that the smart pointer points to.
if (threadSafetyCheckIsSmartPointer(S, RT))
return;
// Check if the type is lockable.
RecordDecl *RD = RT->getDecl();
if (RD->hasAttr<CapabilityAttr>())
return;
// Else check if any base classes are lockable.
if (CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
CXXBasePaths BPaths(false, false);
if (CRD->lookupInBases(checkBaseClassIsLockableCallback, 0, BPaths))
return;
}
S.Diag(Attr.getLoc(), diag::warn_thread_attribute_argument_not_lockable)
<< Attr.getName() << Ty;
}
/// \brief Thread Safety Analysis: Checks that all attribute arguments, starting
/// from Sidx, resolve to a lockable object.
/// \param Sidx The attribute argument index to start checking with.
/// \param ParamIdxOk Whether an argument can be indexing into a function
/// parameter list.
static void checkAttrArgsAreLockableObjs(Sema &S, Decl *D,
const AttributeList &Attr,
SmallVectorImpl<Expr*> &Args,
int Sidx = 0,
bool ParamIdxOk = false) {
for(unsigned Idx = Sidx; Idx < Attr.getNumArgs(); ++Idx) {
Expr *ArgExp = Attr.getArgAsExpr(Idx);
if (ArgExp->isTypeDependent()) {
// FIXME -- need to check this again on template instantiation
Args.push_back(ArgExp);
continue;
}
if (StringLiteral *StrLit = dyn_cast<StringLiteral>(ArgExp)) {
if (StrLit->getLength() == 0 ||
(StrLit->isAscii() && StrLit->getString() == StringRef("*"))) {
// Pass empty strings to the analyzer without warnings.
// Treat "*" as the universal lock.
Args.push_back(ArgExp);
continue;
}
// We allow constant strings to be used as a placeholder for expressions
// that are not valid C++ syntax, but warn that they are ignored.
S.Diag(Attr.getLoc(), diag::warn_thread_attribute_ignored) <<
Attr.getName();
Args.push_back(ArgExp);
continue;
}
QualType ArgTy = ArgExp->getType();
// A pointer to member expression of the form &MyClass::mu is treated
// specially -- we need to look at the type of the member.
if (UnaryOperator *UOp = dyn_cast<UnaryOperator>(ArgExp))
if (UOp->getOpcode() == UO_AddrOf)
if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(UOp->getSubExpr()))
if (DRE->getDecl()->isCXXInstanceMember())
ArgTy = DRE->getDecl()->getType();
// First see if we can just cast to record type, or point to record type.
const RecordType *RT = getRecordType(ArgTy);
// Now check if we index into a record type function param.
if(!RT && ParamIdxOk) {
FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
IntegerLiteral *IL = dyn_cast<IntegerLiteral>(ArgExp);
if(FD && IL) {
unsigned int NumParams = FD->getNumParams();
llvm::APInt ArgValue = IL->getValue();
uint64_t ParamIdxFromOne = ArgValue.getZExtValue();
uint64_t ParamIdxFromZero = ParamIdxFromOne - 1;
if(!ArgValue.isStrictlyPositive() || ParamIdxFromOne > NumParams) {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_out_of_range)
<< Attr.getName() << Idx + 1 << NumParams;
continue;
}
ArgTy = FD->getParamDecl(ParamIdxFromZero)->getType();
}
}
checkForLockableRecord(S, D, Attr, ArgTy);
Args.push_back(ArgExp);
}
}
//===----------------------------------------------------------------------===//
// Attribute Implementations
//===----------------------------------------------------------------------===//
// FIXME: All this manual attribute parsing code is gross. At the
// least add some helper functions to check most argument patterns (#
// and types of args).
static void handlePtGuardedVarAttr(Sema &S, Decl *D,
const AttributeList &Attr) {
if (!threadSafetyCheckIsPointer(S, D, Attr))
return;
D->addAttr(::new (S.Context)
PtGuardedVarAttr(Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex()));
}
static bool checkGuardedByAttrCommon(Sema &S, Decl *D,
const AttributeList &Attr,
Expr* &Arg) {
SmallVector<Expr*, 1> Args;
// check that all arguments are lockable objects
checkAttrArgsAreLockableObjs(S, D, Attr, Args);
unsigned Size = Args.size();
if (Size != 1)
return false;
Arg = Args[0];
return true;
}
static void handleGuardedByAttr(Sema &S, Decl *D, const AttributeList &Attr) {
Expr *Arg = 0;
if (!checkGuardedByAttrCommon(S, D, Attr, Arg))
return;
D->addAttr(::new (S.Context) GuardedByAttr(Attr.getRange(), S.Context, Arg,
Attr.getAttributeSpellingListIndex()));
}
static void handlePtGuardedByAttr(Sema &S, Decl *D,
const AttributeList &Attr) {
Expr *Arg = 0;
if (!checkGuardedByAttrCommon(S, D, Attr, Arg))
return;
if (!threadSafetyCheckIsPointer(S, D, Attr))
return;
D->addAttr(::new (S.Context) PtGuardedByAttr(Attr.getRange(),
S.Context, Arg,
Attr.getAttributeSpellingListIndex()));
}
static bool checkAcquireOrderAttrCommon(Sema &S, Decl *D,
const AttributeList &Attr,
SmallVectorImpl<Expr *> &Args) {
if (!checkAttributeAtLeastNumArgs(S, Attr, 1))
return false;
// Check that this attribute only applies to lockable types.
QualType QT = cast<ValueDecl>(D)->getType();
if (!QT->isDependentType()) {
const RecordType *RT = getRecordType(QT);
if (!RT || !RT->getDecl()->hasAttr<CapabilityAttr>()) {
S.Diag(Attr.getLoc(), diag::warn_thread_attribute_decl_not_lockable)
<< Attr.getName();
return false;
}
}
// Check that all arguments are lockable objects.
checkAttrArgsAreLockableObjs(S, D, Attr, Args);
if (Args.empty())
return false;
return true;
}
static void handleAcquiredAfterAttr(Sema &S, Decl *D,
const AttributeList &Attr) {
SmallVector<Expr*, 1> Args;
if (!checkAcquireOrderAttrCommon(S, D, Attr, Args))
return;
Expr **StartArg = &Args[0];
D->addAttr(::new (S.Context)
AcquiredAfterAttr(Attr.getRange(), S.Context,
StartArg, Args.size(),
Attr.getAttributeSpellingListIndex()));
}
static void handleAcquiredBeforeAttr(Sema &S, Decl *D,
const AttributeList &Attr) {
SmallVector<Expr*, 1> Args;
if (!checkAcquireOrderAttrCommon(S, D, Attr, Args))
return;
Expr **StartArg = &Args[0];
D->addAttr(::new (S.Context)
AcquiredBeforeAttr(Attr.getRange(), S.Context,
StartArg, Args.size(),
Attr.getAttributeSpellingListIndex()));
}
static bool checkLockFunAttrCommon(Sema &S, Decl *D,
const AttributeList &Attr,
SmallVectorImpl<Expr *> &Args) {
// zero or more arguments ok
// check that all arguments are lockable objects
checkAttrArgsAreLockableObjs(S, D, Attr, Args, 0, /*ParamIdxOk=*/true);
return true;
}
static void handleSharedLockFunctionAttr(Sema &S, Decl *D,
const AttributeList &Attr) {
SmallVector<Expr*, 1> Args;
if (!checkLockFunAttrCommon(S, D, Attr, Args))
return;
unsigned Size = Args.size();
Expr **StartArg = Size == 0 ? 0 : &Args[0];
D->addAttr(::new (S.Context)
SharedLockFunctionAttr(Attr.getRange(), S.Context, StartArg, Size,
Attr.getAttributeSpellingListIndex()));
}
static void handleExclusiveLockFunctionAttr(Sema &S, Decl *D,
const AttributeList &Attr) {
SmallVector<Expr*, 1> Args;
if (!checkLockFunAttrCommon(S, D, Attr, Args))
return;
unsigned Size = Args.size();
Expr **StartArg = Size == 0 ? 0 : &Args[0];
D->addAttr(::new (S.Context)
ExclusiveLockFunctionAttr(Attr.getRange(), S.Context,
StartArg, Size,
Attr.getAttributeSpellingListIndex()));
}
static void handleAssertSharedLockAttr(Sema &S, Decl *D,
const AttributeList &Attr) {
SmallVector<Expr*, 1> Args;
if (!checkLockFunAttrCommon(S, D, Attr, Args))
return;
unsigned Size = Args.size();
Expr **StartArg = Size == 0 ? 0 : &Args[0];
D->addAttr(::new (S.Context)
AssertSharedLockAttr(Attr.getRange(), S.Context, StartArg, Size,
Attr.getAttributeSpellingListIndex()));
}
static void handleAssertExclusiveLockAttr(Sema &S, Decl *D,
const AttributeList &Attr) {
SmallVector<Expr*, 1> Args;
if (!checkLockFunAttrCommon(S, D, Attr, Args))
return;
unsigned Size = Args.size();
Expr **StartArg = Size == 0 ? 0 : &Args[0];
D->addAttr(::new (S.Context)
AssertExclusiveLockAttr(Attr.getRange(), S.Context,
StartArg, Size,
Attr.getAttributeSpellingListIndex()));
}
static bool checkTryLockFunAttrCommon(Sema &S, Decl *D,
const AttributeList &Attr,
SmallVectorImpl<Expr *> &Args) {
if (!checkAttributeAtLeastNumArgs(S, Attr, 1))
return false;
if (!isIntOrBool(Attr.getArgAsExpr(0))) {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_type)
<< Attr.getName() << 1 << AANT_ArgumentIntOrBool;
return false;
}
// check that all arguments are lockable objects
checkAttrArgsAreLockableObjs(S, D, Attr, Args, 1);
return true;
}
static void handleSharedTrylockFunctionAttr(Sema &S, Decl *D,
const AttributeList &Attr) {
SmallVector<Expr*, 2> Args;
if (!checkTryLockFunAttrCommon(S, D, Attr, Args))
return;
D->addAttr(::new (S.Context)
SharedTrylockFunctionAttr(Attr.getRange(), S.Context,
Attr.getArgAsExpr(0),
Args.data(), Args.size(),
Attr.getAttributeSpellingListIndex()));
}
static void handleExclusiveTrylockFunctionAttr(Sema &S, Decl *D,
const AttributeList &Attr) {
SmallVector<Expr*, 2> Args;
if (!checkTryLockFunAttrCommon(S, D, Attr, Args))
return;
D->addAttr(::new (S.Context)
ExclusiveTrylockFunctionAttr(Attr.getRange(), S.Context,
Attr.getArgAsExpr(0),
Args.data(), Args.size(),
Attr.getAttributeSpellingListIndex()));
}
static void handleUnlockFunAttr(Sema &S, Decl *D,
const AttributeList &Attr) {
// zero or more arguments ok
// check that all arguments are lockable objects
SmallVector<Expr*, 1> Args;
checkAttrArgsAreLockableObjs(S, D, Attr, Args, 0, /*ParamIdxOk=*/true);
unsigned Size = Args.size();
Expr **StartArg = Size == 0 ? 0 : &Args[0];
D->addAttr(::new (S.Context)
UnlockFunctionAttr(Attr.getRange(), S.Context, StartArg, Size,
Attr.getAttributeSpellingListIndex()));
}
static void handleLockReturnedAttr(Sema &S, Decl *D,
const AttributeList &Attr) {
// check that the argument is lockable object
SmallVector<Expr*, 1> Args;
checkAttrArgsAreLockableObjs(S, D, Attr, Args);
unsigned Size = Args.size();
if (Size == 0)
return;
D->addAttr(::new (S.Context)
LockReturnedAttr(Attr.getRange(), S.Context, Args[0],
Attr.getAttributeSpellingListIndex()));
}
static void handleLocksExcludedAttr(Sema &S, Decl *D,
const AttributeList &Attr) {
if (!checkAttributeAtLeastNumArgs(S, Attr, 1))
return;
// check that all arguments are lockable objects
SmallVector<Expr*, 1> Args;
checkAttrArgsAreLockableObjs(S, D, Attr, Args);
unsigned Size = Args.size();
if (Size == 0)
return;
Expr **StartArg = &Args[0];
D->addAttr(::new (S.Context)
LocksExcludedAttr(Attr.getRange(), S.Context, StartArg, Size,
Attr.getAttributeSpellingListIndex()));
}
static void handleEnableIfAttr(Sema &S, Decl *D, const AttributeList &Attr) {
Expr *Cond = Attr.getArgAsExpr(0);
if (!Cond->isTypeDependent()) {
ExprResult Converted = S.PerformContextuallyConvertToBool(Cond);
if (Converted.isInvalid())
return;
Cond = Converted.take();
}
StringRef Msg;
if (!S.checkStringLiteralArgumentAttr(Attr, 1, Msg))
return;
SmallVector<PartialDiagnosticAt, 8> Diags;
if (!Cond->isValueDependent() &&
!Expr::isPotentialConstantExprUnevaluated(Cond, cast<FunctionDecl>(D),
Diags)) {
S.Diag(Attr.getLoc(), diag::err_enable_if_never_constant_expr);
for (int I = 0, N = Diags.size(); I != N; ++I)
S.Diag(Diags[I].first, Diags[I].second);
return;
}
D->addAttr(::new (S.Context)
EnableIfAttr(Attr.getRange(), S.Context, Cond, Msg,
Attr.getAttributeSpellingListIndex()));
}
static void handleConsumableAttr(Sema &S, Decl *D, const AttributeList &Attr) {
ConsumableAttr::ConsumedState DefaultState;
if (Attr.isArgIdent(0)) {
IdentifierLoc *IL = Attr.getArgAsIdent(0);
if (!ConsumableAttr::ConvertStrToConsumedState(IL->Ident->getName(),
DefaultState)) {
S.Diag(IL->Loc, diag::warn_attribute_type_not_supported)
<< Attr.getName() << IL->Ident;
return;
}
} else {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_type)
<< Attr.getName() << AANT_ArgumentIdentifier;
return;
}
D->addAttr(::new (S.Context)
ConsumableAttr(Attr.getRange(), S.Context, DefaultState,
Attr.getAttributeSpellingListIndex()));
}
static bool checkForConsumableClass(Sema &S, const CXXMethodDecl *MD,
const AttributeList &Attr) {
ASTContext &CurrContext = S.getASTContext();
QualType ThisType = MD->getThisType(CurrContext)->getPointeeType();
if (const CXXRecordDecl *RD = ThisType->getAsCXXRecordDecl()) {
if (!RD->hasAttr<ConsumableAttr>()) {
S.Diag(Attr.getLoc(), diag::warn_attr_on_unconsumable_class) <<
RD->getNameAsString();
return false;
}
}
return true;
}
static void handleCallableWhenAttr(Sema &S, Decl *D,
const AttributeList &Attr) {
if (!checkAttributeAtLeastNumArgs(S, Attr, 1))
return;
if (!checkForConsumableClass(S, cast<CXXMethodDecl>(D), Attr))
return;
SmallVector<CallableWhenAttr::ConsumedState, 3> States;
for (unsigned ArgIndex = 0; ArgIndex < Attr.getNumArgs(); ++ArgIndex) {
CallableWhenAttr::ConsumedState CallableState;
StringRef StateString;
SourceLocation Loc;
if (!S.checkStringLiteralArgumentAttr(Attr, ArgIndex, StateString, &Loc))
return;
if (!CallableWhenAttr::ConvertStrToConsumedState(StateString,
CallableState)) {
S.Diag(Loc, diag::warn_attribute_type_not_supported)
<< Attr.getName() << StateString;
return;
}
States.push_back(CallableState);
}
D->addAttr(::new (S.Context)
CallableWhenAttr(Attr.getRange(), S.Context, States.data(),
States.size(), Attr.getAttributeSpellingListIndex()));
}
static void handleParamTypestateAttr(Sema &S, Decl *D,
const AttributeList &Attr) {
if (!checkAttributeNumArgs(S, Attr, 1)) return;
ParamTypestateAttr::ConsumedState ParamState;
if (Attr.isArgIdent(0)) {
IdentifierLoc *Ident = Attr.getArgAsIdent(0);
StringRef StateString = Ident->Ident->getName();
if (!ParamTypestateAttr::ConvertStrToConsumedState(StateString,
ParamState)) {
S.Diag(Ident->Loc, diag::warn_attribute_type_not_supported)
<< Attr.getName() << StateString;
return;
}
} else {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_type) <<
Attr.getName() << AANT_ArgumentIdentifier;
return;
}
// FIXME: This check is currently being done in the analysis. It can be
// enabled here only after the parser propagates attributes at
// template specialization definition, not declaration.
//QualType ReturnType = cast<ParmVarDecl>(D)->getType();
//const CXXRecordDecl *RD = ReturnType->getAsCXXRecordDecl();
//
//if (!RD || !RD->hasAttr<ConsumableAttr>()) {
// S.Diag(Attr.getLoc(), diag::warn_return_state_for_unconsumable_type) <<
// ReturnType.getAsString();
// return;
//}
D->addAttr(::new (S.Context)
ParamTypestateAttr(Attr.getRange(), S.Context, ParamState,
Attr.getAttributeSpellingListIndex()));
}
static void handleReturnTypestateAttr(Sema &S, Decl *D,
const AttributeList &Attr) {
if (!checkAttributeNumArgs(S, Attr, 1)) return;
ReturnTypestateAttr::ConsumedState ReturnState;
if (Attr.isArgIdent(0)) {
IdentifierLoc *IL = Attr.getArgAsIdent(0);
if (!ReturnTypestateAttr::ConvertStrToConsumedState(IL->Ident->getName(),
ReturnState)) {
S.Diag(IL->Loc, diag::warn_attribute_type_not_supported)
<< Attr.getName() << IL->Ident;
return;
}
} else {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_type) <<
Attr.getName() << AANT_ArgumentIdentifier;
return;
}
// FIXME: This check is currently being done in the analysis. It can be
// enabled here only after the parser propagates attributes at
// template specialization definition, not declaration.
//QualType ReturnType;
//
//if (const ParmVarDecl *Param = dyn_cast<ParmVarDecl>(D)) {
// ReturnType = Param->getType();
//
//} else if (const CXXConstructorDecl *Constructor =
// dyn_cast<CXXConstructorDecl>(D)) {
// ReturnType = Constructor->getThisType(S.getASTContext())->getPointeeType();
//
//} else {
//
// ReturnType = cast<FunctionDecl>(D)->getCallResultType();
//}
//
//const CXXRecordDecl *RD = ReturnType->getAsCXXRecordDecl();
//
//if (!RD || !RD->hasAttr<ConsumableAttr>()) {
// S.Diag(Attr.getLoc(), diag::warn_return_state_for_unconsumable_type) <<
// ReturnType.getAsString();
// return;
//}
D->addAttr(::new (S.Context)
ReturnTypestateAttr(Attr.getRange(), S.Context, ReturnState,
Attr.getAttributeSpellingListIndex()));
}
static void handleSetTypestateAttr(Sema &S, Decl *D, const AttributeList &Attr) {
if (!checkAttributeNumArgs(S, Attr, 1))
return;
if (!checkForConsumableClass(S, cast<CXXMethodDecl>(D), Attr))
return;
SetTypestateAttr::ConsumedState NewState;
if (Attr.isArgIdent(0)) {
IdentifierLoc *Ident = Attr.getArgAsIdent(0);
StringRef Param = Ident->Ident->getName();
if (!SetTypestateAttr::ConvertStrToConsumedState(Param, NewState)) {
S.Diag(Ident->Loc, diag::warn_attribute_type_not_supported)
<< Attr.getName() << Param;
return;
}
} else {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_type) <<
Attr.getName() << AANT_ArgumentIdentifier;
return;
}
D->addAttr(::new (S.Context)
SetTypestateAttr(Attr.getRange(), S.Context, NewState,
Attr.getAttributeSpellingListIndex()));
}
static void handleTestTypestateAttr(Sema &S, Decl *D,
const AttributeList &Attr) {
if (!checkAttributeNumArgs(S, Attr, 1))
return;
if (!checkForConsumableClass(S, cast<CXXMethodDecl>(D), Attr))
return;
TestTypestateAttr::ConsumedState TestState;
if (Attr.isArgIdent(0)) {
IdentifierLoc *Ident = Attr.getArgAsIdent(0);
StringRef Param = Ident->Ident->getName();
if (!TestTypestateAttr::ConvertStrToConsumedState(Param, TestState)) {
S.Diag(Ident->Loc, diag::warn_attribute_type_not_supported)
<< Attr.getName() << Param;
return;
}
} else {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_type) <<
Attr.getName() << AANT_ArgumentIdentifier;
return;
}
D->addAttr(::new (S.Context)
TestTypestateAttr(Attr.getRange(), S.Context, TestState,
Attr.getAttributeSpellingListIndex()));
}
static void handleExtVectorTypeAttr(Sema &S, Scope *scope, Decl *D,
const AttributeList &Attr) {
// Remember this typedef decl, we will need it later for diagnostics.
S.ExtVectorDecls.push_back(cast<TypedefNameDecl>(D));
}
static void handlePackedAttr(Sema &S, Decl *D, const AttributeList &Attr) {
if (TagDecl *TD = dyn_cast<TagDecl>(D))
TD->addAttr(::new (S.Context) PackedAttr(Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex()));
else if (FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
// If the alignment is less than or equal to 8 bits, the packed attribute
// has no effect.
if (!FD->getType()->isDependentType() &&
!FD->getType()->isIncompleteType() &&
S.Context.getTypeAlign(FD->getType()) <= 8)
S.Diag(Attr.getLoc(), diag::warn_attribute_ignored_for_field_of_type)
<< Attr.getName() << FD->getType();
else
FD->addAttr(::new (S.Context)
PackedAttr(Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex()));
} else
S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << Attr.getName();
}
static bool checkIBOutletCommon(Sema &S, Decl *D, const AttributeList &Attr) {
// The IBOutlet/IBOutletCollection attributes only apply to instance
// variables or properties of Objective-C classes. The outlet must also
// have an object reference type.
if (const ObjCIvarDecl *VD = dyn_cast<ObjCIvarDecl>(D)) {
if (!VD->getType()->getAs<ObjCObjectPointerType>()) {
S.Diag(Attr.getLoc(), diag::warn_iboutlet_object_type)
<< Attr.getName() << VD->getType() << 0;
return false;
}
}
else if (const ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(D)) {
if (!PD->getType()->getAs<ObjCObjectPointerType>()) {
S.Diag(Attr.getLoc(), diag::warn_iboutlet_object_type)
<< Attr.getName() << PD->getType() << 1;
return false;
}
}
else {
S.Diag(Attr.getLoc(), diag::warn_attribute_iboutlet) << Attr.getName();
return false;
}
return true;
}
static void handleIBOutlet(Sema &S, Decl *D, const AttributeList &Attr) {
if (!checkIBOutletCommon(S, D, Attr))
return;
D->addAttr(::new (S.Context)
IBOutletAttr(Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex()));
}
static void handleIBOutletCollection(Sema &S, Decl *D,
const AttributeList &Attr) {
// The iboutletcollection attribute can have zero or one arguments.
if (Attr.getNumArgs() > 1) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
<< Attr.getName() << 1;
return;
}
if (!checkIBOutletCommon(S, D, Attr))
return;
ParsedType PT;
if (Attr.hasParsedType())
PT = Attr.getTypeArg();
else {
PT = S.getTypeName(S.Context.Idents.get("NSObject"), Attr.getLoc(),
S.getScopeForContext(D->getDeclContext()->getParent()));
if (!PT) {
S.Diag(Attr.getLoc(), diag::err_iboutletcollection_type) << "NSObject";
return;
}
}
TypeSourceInfo *QTLoc = 0;
QualType QT = S.GetTypeFromParser(PT, &QTLoc);
if (!QTLoc)
QTLoc = S.Context.getTrivialTypeSourceInfo(QT, Attr.getLoc());
// Diagnose use of non-object type in iboutletcollection attribute.
// FIXME. Gnu attribute extension ignores use of builtin types in
// attributes. So, __attribute__((iboutletcollection(char))) will be
// treated as __attribute__((iboutletcollection())).
if (!QT->isObjCIdType() && !QT->isObjCObjectType()) {
S.Diag(Attr.getLoc(),
QT->isBuiltinType() ? diag::err_iboutletcollection_builtintype
: diag::err_iboutletcollection_type) << QT;
return;
}
D->addAttr(::new (S.Context)
IBOutletCollectionAttr(Attr.getRange(), S.Context, QTLoc,
Attr.getAttributeSpellingListIndex()));
}
static void possibleTransparentUnionPointerType(QualType &T) {
if (const RecordType *UT = T->getAsUnionType())
if (UT && UT->getDecl()->hasAttr<TransparentUnionAttr>()) {
RecordDecl *UD = UT->getDecl();
for (RecordDecl::field_iterator it = UD->field_begin(),
itend = UD->field_end(); it != itend; ++it) {
QualType QT = it->getType();
if (QT->isAnyPointerType() || QT->isBlockPointerType()) {
T = QT;
return;
}
}
}
}
static bool attrNonNullArgCheck(Sema &S, QualType T, const AttributeList &Attr,
SourceRange R, bool isReturnValue = false) {
T = T.getNonReferenceType();
possibleTransparentUnionPointerType(T);
if (!T->isAnyPointerType() && !T->isBlockPointerType()) {
S.Diag(Attr.getLoc(),
isReturnValue ? diag::warn_attribute_return_pointers_only
: diag::warn_attribute_pointers_only)
<< Attr.getName() << R;
return false;
}
return true;
}
static void handleNonNullAttr(Sema &S, Decl *D, const AttributeList &Attr) {
SmallVector<unsigned, 8> NonNullArgs;
for (unsigned i = 0; i < Attr.getNumArgs(); ++i) {
Expr *Ex = Attr.getArgAsExpr(i);
uint64_t Idx;
if (!checkFunctionOrMethodParameterIndex(S, D, Attr, i + 1, Ex, Idx))
return;
// Is the function argument a pointer type?
// FIXME: Should also highlight argument in decl in the diagnostic.
if (!attrNonNullArgCheck(S, getFunctionOrMethodParamType(D, Idx), Attr,
Ex->getSourceRange()))
continue;
NonNullArgs.push_back(Idx);
}
// If no arguments were specified to __attribute__((nonnull)) then all pointer
// arguments have a nonnull attribute.
if (NonNullArgs.empty()) {
for (unsigned i = 0, e = getFunctionOrMethodNumParams(D); i != e; ++i) {
QualType T = getFunctionOrMethodParamType(D, i).getNonReferenceType();
possibleTransparentUnionPointerType(T);
if (T->isAnyPointerType() || T->isBlockPointerType())
NonNullArgs.push_back(i);
}
// No pointer arguments?
if (NonNullArgs.empty()) {
// Warn the trivial case only if attribute is not coming from a
// macro instantiation.
if (Attr.getLoc().isFileID())
S.Diag(Attr.getLoc(), diag::warn_attribute_nonnull_no_pointers);
return;
}
}
unsigned *start = &NonNullArgs[0];
unsigned size = NonNullArgs.size();
llvm::array_pod_sort(start, start + size);
D->addAttr(::new (S.Context)
NonNullAttr(Attr.getRange(), S.Context, start, size,
Attr.getAttributeSpellingListIndex()));
}
static void handleNonNullAttrParameter(Sema &S, ParmVarDecl *D,
const AttributeList &Attr) {
if (Attr.getNumArgs() > 0) {
if (D->getFunctionType()) {
handleNonNullAttr(S, D, Attr);
} else {
S.Diag(Attr.getLoc(), diag::warn_attribute_nonnull_parm_no_args)
<< D->getSourceRange();
}
return;
}
// Is the argument a pointer type?
if (!attrNonNullArgCheck(S, D->getType(), Attr, D->getSourceRange()))
return;
D->addAttr(::new (S.Context)
NonNullAttr(Attr.getRange(), S.Context, 0, 0,
Attr.getAttributeSpellingListIndex()));
}
static void handleReturnsNonNullAttr(Sema &S, Decl *D,
const AttributeList &Attr) {
QualType ResultType = getFunctionOrMethodResultType(D);
if (!attrNonNullArgCheck(S, ResultType, Attr, Attr.getRange(),
/* isReturnValue */ true))
return;
D->addAttr(::new (S.Context)
ReturnsNonNullAttr(Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex()));
}
static void handleOwnershipAttr(Sema &S, Decl *D, const AttributeList &AL) {
// This attribute must be applied to a function declaration. The first
// argument to the attribute must be an identifier, the name of the resource,
// for example: malloc. The following arguments must be argument indexes, the
// arguments must be of integer type for Returns, otherwise of pointer type.
// The difference between Holds and Takes is that a pointer may still be used
// after being held. free() should be __attribute((ownership_takes)), whereas
// a list append function may well be __attribute((ownership_holds)).
if (!AL.isArgIdent(0)) {
S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
<< AL.getName() << 1 << AANT_ArgumentIdentifier;
return;
}
// Figure out our Kind.
OwnershipAttr::OwnershipKind K =
OwnershipAttr(AL.getLoc(), S.Context, 0, 0, 0,
AL.getAttributeSpellingListIndex()).getOwnKind();
// Check arguments.
switch (K) {
case OwnershipAttr::Takes:
case OwnershipAttr::Holds:
if (AL.getNumArgs() < 2) {
S.Diag(AL.getLoc(), diag::err_attribute_too_few_arguments)
<< AL.getName() << 2;
return;
}
break;
case OwnershipAttr::Returns:
if (AL.getNumArgs() > 2) {
S.Diag(AL.getLoc(), diag::err_attribute_too_many_arguments)
<< AL.getName() << 1;
return;
}
break;
}
IdentifierInfo *Module = AL.getArgAsIdent(0)->Ident;
// Normalize the argument, __foo__ becomes foo.
StringRef ModuleName = Module->getName();
if (ModuleName.startswith("__") && ModuleName.endswith("__") &&
ModuleName.size() > 4) {
ModuleName = ModuleName.drop_front(2).drop_back(2);
Module = &S.PP.getIdentifierTable().get(ModuleName);
}
SmallVector<unsigned, 8> OwnershipArgs;
for (unsigned i = 1; i < AL.getNumArgs(); ++i) {
Expr *Ex = AL.getArgAsExpr(i);
uint64_t Idx;
if (!checkFunctionOrMethodParameterIndex(S, D, AL, i, Ex, Idx))
return;
// Is the function argument a pointer type?
QualType T = getFunctionOrMethodParamType(D, Idx);
int Err = -1; // No error
switch (K) {
case OwnershipAttr::Takes:
case OwnershipAttr::Holds:
if (!T->isAnyPointerType() && !T->isBlockPointerType())
Err = 0;
break;
case OwnershipAttr::Returns:
if (!T->isIntegerType())
Err = 1;
break;
}
if (-1 != Err) {
S.Diag(AL.getLoc(), diag::err_ownership_type) << AL.getName() << Err
<< Ex->getSourceRange();
return;
}
// Check we don't have a conflict with another ownership attribute.
for (specific_attr_iterator<OwnershipAttr>
i = D->specific_attr_begin<OwnershipAttr>(),
e = D->specific_attr_end<OwnershipAttr>(); i != e; ++i) {
// FIXME: A returns attribute should conflict with any returns attribute
// with a different index too.
if ((*i)->getOwnKind() != K && (*i)->args_end() !=
std::find((*i)->args_begin(), (*i)->args_end(), Idx)) {
S.Diag(AL.getLoc(), diag::err_attributes_are_not_compatible)
<< AL.getName() << *i;
return;
}
}
OwnershipArgs.push_back(Idx);
}
unsigned* start = OwnershipArgs.data();
unsigned size = OwnershipArgs.size();
llvm::array_pod_sort(start, start + size);
D->addAttr(::new (S.Context)
OwnershipAttr(AL.getLoc(), S.Context, Module, start, size,
AL.getAttributeSpellingListIndex()));
}
static void handleWeakRefAttr(Sema &S, Decl *D, const AttributeList &Attr) {
// Check the attribute arguments.
if (Attr.getNumArgs() > 1) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
<< Attr.getName() << 1;
return;
}
NamedDecl *nd = cast<NamedDecl>(D);
// gcc rejects
// class c {
// static int a __attribute__((weakref ("v2")));
// static int b() __attribute__((weakref ("f3")));
// };
// and ignores the attributes of
// void f(void) {
// static int a __attribute__((weakref ("v2")));
// }
// we reject them
const DeclContext *Ctx = D->getDeclContext()->getRedeclContext();
if (!Ctx->isFileContext()) {
S.Diag(Attr.getLoc(), diag::err_attribute_weakref_not_global_context)
<< nd;
return;
}
// The GCC manual says
//
// At present, a declaration to which `weakref' is attached can only
// be `static'.
//
// It also says
//
// Without a TARGET,
// given as an argument to `weakref' or to `alias', `weakref' is
// equivalent to `weak'.
//
// gcc 4.4.1 will accept
// int a7 __attribute__((weakref));
// as
// int a7 __attribute__((weak));
// This looks like a bug in gcc. We reject that for now. We should revisit
// it if this behaviour is actually used.
// GCC rejects
// static ((alias ("y"), weakref)).
// Should we? How to check that weakref is before or after alias?
// FIXME: it would be good for us to keep the WeakRefAttr as-written instead
// of transforming it into an AliasAttr. The WeakRefAttr never uses the
// StringRef parameter it was given anyway.
StringRef Str;
if (Attr.getNumArgs() && S.checkStringLiteralArgumentAttr(Attr, 0, Str))
// GCC will accept anything as the argument of weakref. Should we
// check for an existing decl?
D->addAttr(::new (S.Context) AliasAttr(Attr.getRange(), S.Context, Str,
Attr.getAttributeSpellingListIndex()));
D->addAttr(::new (S.Context)
WeakRefAttr(Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex()));
}
static void handleAliasAttr(Sema &S, Decl *D, const AttributeList &Attr) {
StringRef Str;
if (!S.checkStringLiteralArgumentAttr(Attr, 0, Str))
return;
if (S.Context.getTargetInfo().getTriple().isOSDarwin()) {
S.Diag(Attr.getLoc(), diag::err_alias_not_supported_on_darwin);
return;
}
// FIXME: check if target symbol exists in current file
D->addAttr(::new (S.Context) AliasAttr(Attr.getRange(), S.Context, Str,
Attr.getAttributeSpellingListIndex()));
}
static void handleColdAttr(Sema &S, Decl *D, const AttributeList &Attr) {
if (checkAttrMutualExclusion<HotAttr>(S, D, Attr))
return;
D->addAttr(::new (S.Context) ColdAttr(Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex()));
}
static void handleHotAttr(Sema &S, Decl *D, const AttributeList &Attr) {
if (checkAttrMutualExclusion<ColdAttr>(S, D, Attr))
return;
D->addAttr(::new (S.Context) HotAttr(Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex()));
}
static void handleTLSModelAttr(Sema &S, Decl *D,
const AttributeList &Attr) {
StringRef Model;
SourceLocation LiteralLoc;
// Check that it is a string.
if (!S.checkStringLiteralArgumentAttr(Attr, 0, Model, &LiteralLoc))
return;
// Check that the value.
if (Model != "global-dynamic" && Model != "local-dynamic"
&& Model != "initial-exec" && Model != "local-exec") {
S.Diag(LiteralLoc, diag::err_attr_tlsmodel_arg);
return;
}
D->addAttr(::new (S.Context)
TLSModelAttr(Attr.getRange(), S.Context, Model,
Attr.getAttributeSpellingListIndex()));
}
static void handleMallocAttr(Sema &S, Decl *D, const AttributeList &Attr) {
if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
QualType RetTy = FD->getReturnType();
if (RetTy->isAnyPointerType() || RetTy->isBlockPointerType()) {
D->addAttr(::new (S.Context)
MallocAttr(Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex()));
return;
}
}
S.Diag(Attr.getLoc(), diag::warn_attribute_malloc_pointer_only);
}
static void handleCommonAttr(Sema &S, Decl *D, const AttributeList &Attr) {
if (S.LangOpts.CPlusPlus) {
S.Diag(Attr.getLoc(), diag::err_attribute_not_supported_in_lang)
<< Attr.getName() << AttributeLangSupport::Cpp;
return;
}
D->addAttr(::new (S.Context) CommonAttr(Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex()));
}
static void handleNoReturnAttr(Sema &S, Decl *D, const AttributeList &attr) {
if (hasDeclarator(D)) return;
if (S.CheckNoReturnAttr(attr)) return;
if (!isa<ObjCMethodDecl>(D)) {
S.Diag(attr.getLoc(), diag::warn_attribute_wrong_decl_type)
<< attr.getName() << ExpectedFunctionOrMethod;
return;
}
D->addAttr(::new (S.Context)
NoReturnAttr(attr.getRange(), S.Context,
attr.getAttributeSpellingListIndex()));
}
bool Sema::CheckNoReturnAttr(const AttributeList &attr) {
if (!checkAttributeNumArgs(*this, attr, 0)) {
attr.setInvalid();
return true;
}
return false;
}
static void handleAnalyzerNoReturnAttr(Sema &S, Decl *D,
const AttributeList &Attr) {
// The checking path for 'noreturn' and 'analyzer_noreturn' are different
// because 'analyzer_noreturn' does not impact the type.
if (!isFunctionOrMethod(D) && !isa<BlockDecl>(D)) {
ValueDecl *VD = dyn_cast<ValueDecl>(D);
if (VD == 0 || (!VD->getType()->isBlockPointerType()
&& !VD->getType()->isFunctionPointerType())) {
S.Diag(Attr.getLoc(),
Attr.isCXX11Attribute() ? diag::err_attribute_wrong_decl_type
: diag::warn_attribute_wrong_decl_type)
<< Attr.getName() << ExpectedFunctionMethodOrBlock;
return;
}
}
D->addAttr(::new (S.Context)
AnalyzerNoReturnAttr(Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex()));
}
// PS3 PPU-specific.
static void handleVecReturnAttr(Sema &S, Decl *D, const AttributeList &Attr) {
/*
Returning a Vector Class in Registers
According to the PPU ABI specifications, a class with a single member of
vector type is returned in memory when used as the return value of a function.
This results in inefficient code when implementing vector classes. To return
the value in a single vector register, add the vecreturn attribute to the
class definition. This attribute is also applicable to struct types.
Example:
struct Vector
{
__vector float xyzw;
} __attribute__((vecreturn));
Vector Add(Vector lhs, Vector rhs)
{
Vector result;
result.xyzw = vec_add(lhs.xyzw, rhs.xyzw);
return result; // This will be returned in a register
}
*/
if (VecReturnAttr *A = D->getAttr<VecReturnAttr>()) {
S.Diag(Attr.getLoc(), diag::err_repeat_attribute) << A;
return;
}
RecordDecl *record = cast<RecordDecl>(D);
int count = 0;
if (!isa<CXXRecordDecl>(record)) {
S.Diag(Attr.getLoc(), diag::err_attribute_vecreturn_only_vector_member);
return;
}
if (!cast<CXXRecordDecl>(record)->isPOD()) {
S.Diag(Attr.getLoc(), diag::err_attribute_vecreturn_only_pod_record);
return;
}
for (RecordDecl::field_iterator iter = record->field_begin();
iter != record->field_end(); iter++) {
if ((count == 1) || !iter->getType()->isVectorType()) {
S.Diag(Attr.getLoc(), diag::err_attribute_vecreturn_only_vector_member);
return;
}
count++;
}
D->addAttr(::new (S.Context)
VecReturnAttr(Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex()));
}
static void handleDependencyAttr(Sema &S, Scope *Scope, Decl *D,
const AttributeList &Attr) {
if (isa<ParmVarDecl>(D)) {
// [[carries_dependency]] can only be applied to a parameter if it is a
// parameter of a function declaration or lambda.
if (!(Scope->getFlags() & clang::Scope::FunctionDeclarationScope)) {
S.Diag(Attr.getLoc(),
diag::err_carries_dependency_param_not_function_decl);
return;
}
}
D->addAttr(::new (S.Context) CarriesDependencyAttr(
Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex()));
}
static void handleUsedAttr(Sema &S, Decl *D, const AttributeList &Attr) {
if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
if (VD->hasLocalStorage()) {
S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << Attr.getName();
return;
}
} else if (!isFunctionOrMethod(D)) {
S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
<< Attr.getName() << ExpectedVariableOrFunction;
return;
}
D->addAttr(::new (S.Context)
UsedAttr(Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex()));
}
static void handleConstructorAttr(Sema &S, Decl *D, const AttributeList &Attr) {
// check the attribute arguments.
if (Attr.getNumArgs() > 1) {
S.Diag(Attr.getLoc(), diag::err_attribute_too_many_arguments)
<< Attr.getName() << 1;
return;
}
uint32_t priority = ConstructorAttr::DefaultPriority;
if (Attr.getNumArgs() > 0 &&
!checkUInt32Argument(S, Attr, Attr.getArgAsExpr(0), priority))
return;
D->addAttr(::new (S.Context)
ConstructorAttr(Attr.getRange(), S.Context, priority,
Attr.getAttributeSpellingListIndex()));
}
static void handleDestructorAttr(Sema &S, Decl *D, const AttributeList &Attr) {
// check the attribute arguments.
if (Attr.getNumArgs() > 1) {
S.Diag(Attr.getLoc(), diag::err_attribute_too_many_arguments)
<< Attr.getName() << 1;
return;
}
uint32_t priority = DestructorAttr::DefaultPriority;
if (Attr.getNumArgs() > 0 &&
!checkUInt32Argument(S, Attr, Attr.getArgAsExpr(0), priority))
return;
D->addAttr(::new (S.Context)
DestructorAttr(Attr.getRange(), S.Context, priority,
Attr.getAttributeSpellingListIndex()));
}
template <typename AttrTy>
static void handleAttrWithMessage(Sema &S, Decl *D,
const AttributeList &Attr) {
unsigned NumArgs = Attr.getNumArgs();
if (NumArgs > 1) {
S.Diag(Attr.getLoc(), diag::err_attribute_too_many_arguments)
<< Attr.getName() << 1;
return;
}
// Handle the case where the attribute has a text message.
StringRef Str;
if (NumArgs == 1 && !S.checkStringLiteralArgumentAttr(Attr, 0, Str))
return;
D->addAttr(::new (S.Context) AttrTy(Attr.getRange(), S.Context, Str,
Attr.getAttributeSpellingListIndex()));
}
static void handleObjCSuppresProtocolAttr(Sema &S, Decl *D,
const AttributeList &Attr) {
if (!cast<ObjCProtocolDecl>(D)->isThisDeclarationADefinition()) {
S.Diag(Attr.getLoc(), diag::err_objc_attr_protocol_requires_definition)
<< Attr.getName() << Attr.getRange();
return;
}
D->addAttr(::new (S.Context)
ObjCExplicitProtocolImplAttr(Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex()));
}
static bool checkAvailabilityAttr(Sema &S, SourceRange Range,
IdentifierInfo *Platform,
VersionTuple Introduced,
VersionTuple Deprecated,
VersionTuple Obsoleted) {
StringRef PlatformName
= AvailabilityAttr::getPrettyPlatformName(Platform->getName());
if (PlatformName.empty())
PlatformName = Platform->getName();
// Ensure that Introduced <= Deprecated <= Obsoleted (although not all
// of these steps are needed).
if (!Introduced.empty() && !Deprecated.empty() &&
!(Introduced <= Deprecated)) {
S.Diag(Range.getBegin(), diag::warn_availability_version_ordering)
<< 1 << PlatformName << Deprecated.getAsString()
<< 0 << Introduced.getAsString();
return true;
}
if (!Introduced.empty() && !Obsoleted.empty() &&
!(Introduced <= Obsoleted)) {
S.Diag(Range.getBegin(), diag::warn_availability_version_ordering)
<< 2 << PlatformName << Obsoleted.getAsString()
<< 0 << Introduced.getAsString();
return true;
}
if (!Deprecated.empty() && !Obsoleted.empty() &&
!(Deprecated <= Obsoleted)) {
S.Diag(Range.getBegin(), diag::warn_availability_version_ordering)
<< 2 << PlatformName << Obsoleted.getAsString()
<< 1 << Deprecated.getAsString();
return true;
}
return false;
}
/// \brief Check whether the two versions match.
///
/// If either version tuple is empty, then they are assumed to match. If
/// \p BeforeIsOkay is true, then \p X can be less than or equal to \p Y.
static bool versionsMatch(const VersionTuple &X, const VersionTuple &Y,
bool BeforeIsOkay) {
if (X.empty() || Y.empty())
return true;
if (X == Y)
return true;
if (BeforeIsOkay && X < Y)
return true;
return false;
}
AvailabilityAttr *Sema::mergeAvailabilityAttr(NamedDecl *D, SourceRange Range,
IdentifierInfo *Platform,
VersionTuple Introduced,
VersionTuple Deprecated,
VersionTuple Obsoleted,
bool IsUnavailable,
StringRef Message,
bool Override,
unsigned AttrSpellingListIndex) {
VersionTuple MergedIntroduced = Introduced;
VersionTuple MergedDeprecated = Deprecated;
VersionTuple MergedObsoleted = Obsoleted;
bool FoundAny = false;
if (D->hasAttrs()) {
AttrVec &Attrs = D->getAttrs();
for (unsigned i = 0, e = Attrs.size(); i != e;) {
const AvailabilityAttr *OldAA = dyn_cast<AvailabilityAttr>(Attrs[i]);
if (!OldAA) {
++i;
continue;
}
IdentifierInfo *OldPlatform = OldAA->getPlatform();
if (OldPlatform != Platform) {
++i;
continue;
}
FoundAny = true;
VersionTuple OldIntroduced = OldAA->getIntroduced();
VersionTuple OldDeprecated = OldAA->getDeprecated();
VersionTuple OldObsoleted = OldAA->getObsoleted();
bool OldIsUnavailable = OldAA->getUnavailable();
if (!versionsMatch(OldIntroduced, Introduced, Override) ||
!versionsMatch(Deprecated, OldDeprecated, Override) ||
!versionsMatch(Obsoleted, OldObsoleted, Override) ||
!(OldIsUnavailable == IsUnavailable ||
(Override && !OldIsUnavailable && IsUnavailable))) {
if (Override) {
int Which = -1;
VersionTuple FirstVersion;
VersionTuple SecondVersion;
if (!versionsMatch(OldIntroduced, Introduced, Override)) {
Which = 0;
FirstVersion = OldIntroduced;
SecondVersion = Introduced;
} else if (!versionsMatch(Deprecated, OldDeprecated, Override)) {
Which = 1;
FirstVersion = Deprecated;
SecondVersion = OldDeprecated;
} else if (!versionsMatch(Obsoleted, OldObsoleted, Override)) {
Which = 2;
FirstVersion = Obsoleted;
SecondVersion = OldObsoleted;
}
if (Which == -1) {
Diag(OldAA->getLocation(),
diag::warn_mismatched_availability_override_unavail)
<< AvailabilityAttr::getPrettyPlatformName(Platform->getName());
} else {
Diag(OldAA->getLocation(),
diag::warn_mismatched_availability_override)
<< Which
<< AvailabilityAttr::getPrettyPlatformName(Platform->getName())
<< FirstVersion.getAsString() << SecondVersion.getAsString();
}
Diag(Range.getBegin(), diag::note_overridden_method);
} else {
Diag(OldAA->getLocation(), diag::warn_mismatched_availability);
Diag(Range.getBegin(), diag::note_previous_attribute);
}
Attrs.erase(Attrs.begin() + i);
--e;
continue;
}
VersionTuple MergedIntroduced2 = MergedIntroduced;
VersionTuple MergedDeprecated2 = MergedDeprecated;
VersionTuple MergedObsoleted2 = MergedObsoleted;
if (MergedIntroduced2.empty())
MergedIntroduced2 = OldIntroduced;
if (MergedDeprecated2.empty())
MergedDeprecated2 = OldDeprecated;
if (MergedObsoleted2.empty())
MergedObsoleted2 = OldObsoleted;
if (checkAvailabilityAttr(*this, OldAA->getRange(), Platform,
MergedIntroduced2, MergedDeprecated2,
MergedObsoleted2)) {
Attrs.erase(Attrs.begin() + i);
--e;
continue;
}
MergedIntroduced = MergedIntroduced2;
MergedDeprecated = MergedDeprecated2;
MergedObsoleted = MergedObsoleted2;
++i;
}
}
if (FoundAny &&
MergedIntroduced == Introduced &&
MergedDeprecated == Deprecated &&
MergedObsoleted == Obsoleted)
return NULL;
// Only create a new attribute if !Override, but we want to do
// the checking.
if (!checkAvailabilityAttr(*this, Range, Platform, MergedIntroduced,
MergedDeprecated, MergedObsoleted) &&
!Override) {
return ::new (Context) AvailabilityAttr(Range, Context, Platform,
Introduced, Deprecated,
Obsoleted, IsUnavailable, Message,
AttrSpellingListIndex);
}
return NULL;
}
static void handleAvailabilityAttr(Sema &S, Decl *D,
const AttributeList &Attr) {
if (!checkAttributeNumArgs(S, Attr, 1))
return;
IdentifierLoc *Platform = Attr.getArgAsIdent(0);
unsigned Index = Attr.getAttributeSpellingListIndex();
IdentifierInfo *II = Platform->Ident;
if (AvailabilityAttr::getPrettyPlatformName(II->getName()).empty())
S.Diag(Platform->Loc, diag::warn_availability_unknown_platform)
<< Platform->Ident;
NamedDecl *ND = dyn_cast<NamedDecl>(D);
if (!ND) {
S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << Attr.getName();
return;
}
AvailabilityChange Introduced = Attr.getAvailabilityIntroduced();
AvailabilityChange Deprecated = Attr.getAvailabilityDeprecated();
AvailabilityChange Obsoleted = Attr.getAvailabilityObsoleted();
bool IsUnavailable = Attr.getUnavailableLoc().isValid();
StringRef Str;
if (const StringLiteral *SE =
dyn_cast_or_null<StringLiteral>(Attr.getMessageExpr()))
Str = SE->getString();
AvailabilityAttr *NewAttr = S.mergeAvailabilityAttr(ND, Attr.getRange(), II,
Introduced.Version,
Deprecated.Version,
Obsoleted.Version,
IsUnavailable, Str,
/*Override=*/false,
Index);
if (NewAttr)
D->addAttr(NewAttr);
}
template <class T>
static T *mergeVisibilityAttr(Sema &S, Decl *D, SourceRange range,
typename T::VisibilityType value,
unsigned attrSpellingListIndex) {
T *existingAttr = D->getAttr<T>();
if (existingAttr) {
typename T::VisibilityType existingValue = existingAttr->getVisibility();
if (existingValue == value)
return NULL;
S.Diag(existingAttr->getLocation(), diag::err_mismatched_visibility);
S.Diag(range.getBegin(), diag::note_previous_attribute);
D->dropAttr<T>();
}
return ::new (S.Context) T(range, S.Context, value, attrSpellingListIndex);
}
VisibilityAttr *Sema::mergeVisibilityAttr(Decl *D, SourceRange Range,
VisibilityAttr::VisibilityType Vis,
unsigned AttrSpellingListIndex) {
return ::mergeVisibilityAttr<VisibilityAttr>(*this, D, Range, Vis,
AttrSpellingListIndex);
}
TypeVisibilityAttr *Sema::mergeTypeVisibilityAttr(Decl *D, SourceRange Range,
TypeVisibilityAttr::VisibilityType Vis,
unsigned AttrSpellingListIndex) {
return ::mergeVisibilityAttr<TypeVisibilityAttr>(*this, D, Range, Vis,
AttrSpellingListIndex);
}
static void handleVisibilityAttr(Sema &S, Decl *D, const AttributeList &Attr,
bool isTypeVisibility) {
// Visibility attributes don't mean anything on a typedef.
if (isa<TypedefNameDecl>(D)) {
S.Diag(Attr.getRange().getBegin(), diag::warn_attribute_ignored)
<< Attr.getName();
return;
}
// 'type_visibility' can only go on a type or namespace.
if (isTypeVisibility &&
!(isa<TagDecl>(D) ||
isa<ObjCInterfaceDecl>(D) ||
isa<NamespaceDecl>(D))) {
S.Diag(Attr.getRange().getBegin(), diag::err_attribute_wrong_decl_type)
<< Attr.getName() << ExpectedTypeOrNamespace;
return;
}
// Check that the argument is a string literal.
StringRef TypeStr;
SourceLocation LiteralLoc;
if (!S.checkStringLiteralArgumentAttr(Attr, 0, TypeStr, &LiteralLoc))
return;
VisibilityAttr::VisibilityType type;
if (!VisibilityAttr::ConvertStrToVisibilityType(TypeStr, type)) {
S.Diag(LiteralLoc, diag::warn_attribute_type_not_supported)
<< Attr.getName() << TypeStr;
return;
}
// Complain about attempts to use protected visibility on targets
// (like Darwin) that don't support it.
if (type == VisibilityAttr::Protected &&
!S.Context.getTargetInfo().hasProtectedVisibility()) {
S.Diag(Attr.getLoc(), diag::warn_attribute_protected_visibility);
type = VisibilityAttr::Default;
}
unsigned Index = Attr.getAttributeSpellingListIndex();
clang::Attr *newAttr;
if (isTypeVisibility) {
newAttr = S.mergeTypeVisibilityAttr(D, Attr.getRange(),
(TypeVisibilityAttr::VisibilityType) type,
Index);
} else {
newAttr = S.mergeVisibilityAttr(D, Attr.getRange(), type, Index);
}
if (newAttr)
D->addAttr(newAttr);
}
static void handleObjCMethodFamilyAttr(Sema &S, Decl *decl,
const AttributeList &Attr) {
ObjCMethodDecl *method = cast<ObjCMethodDecl>(decl);
if (!Attr.isArgIdent(0)) {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_type)
<< Attr.getName() << 1 << AANT_ArgumentIdentifier;
return;
}
IdentifierLoc *IL = Attr.getArgAsIdent(0);
ObjCMethodFamilyAttr::FamilyKind F;
if (!ObjCMethodFamilyAttr::ConvertStrToFamilyKind(IL->Ident->getName(), F)) {
S.Diag(IL->Loc, diag::warn_attribute_type_not_supported) << Attr.getName()
<< IL->Ident;
return;
}
if (F == ObjCMethodFamilyAttr::OMF_init &&
!method->getReturnType()->isObjCObjectPointerType()) {
S.Diag(method->getLocation(), diag::err_init_method_bad_return_type)
<< method->getReturnType();
// Ignore the attribute.
return;
}
method->addAttr(new (S.Context) ObjCMethodFamilyAttr(Attr.getRange(),
S.Context, F,
Attr.getAttributeSpellingListIndex()));
}
static void handleObjCNSObject(Sema &S, Decl *D, const AttributeList &Attr) {
if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D)) {
QualType T = TD->getUnderlyingType();
if (!T->isCARCBridgableType()) {
S.Diag(TD->getLocation(), diag::err_nsobject_attribute);
return;
}
}
else if (ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(D)) {
QualType T = PD->getType();
if (!T->isCARCBridgableType()) {
S.Diag(PD->getLocation(), diag::err_nsobject_attribute);
return;
}
}
else {
// It is okay to include this attribute on properties, e.g.:
//
// @property (retain, nonatomic) struct Bork *Q __attribute__((NSObject));
//
// In this case it follows tradition and suppresses an error in the above
// case.
S.Diag(D->getLocation(), diag::warn_nsobject_attribute);
}
D->addAttr(::new (S.Context)
ObjCNSObjectAttr(Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex()));
}
static void handleBlocksAttr(Sema &S, Decl *D, const AttributeList &Attr) {
if (!Attr.isArgIdent(0)) {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_type)
<< Attr.getName() << 1 << AANT_ArgumentIdentifier;
return;
}
IdentifierInfo *II = Attr.getArgAsIdent(0)->Ident;
BlocksAttr::BlockType type;
if (!BlocksAttr::ConvertStrToBlockType(II->getName(), type)) {
S.Diag(Attr.getLoc(), diag::warn_attribute_type_not_supported)
<< Attr.getName() << II;
return;
}
D->addAttr(::new (S.Context)
BlocksAttr(Attr.getRange(), S.Context, type,
Attr.getAttributeSpellingListIndex()));
}
static void handleSentinelAttr(Sema &S, Decl *D, const AttributeList &Attr) {
// check the attribute arguments.
if (Attr.getNumArgs() > 2) {
S.Diag(Attr.getLoc(), diag::err_attribute_too_many_arguments)
<< Attr.getName() << 2;
return;
}
unsigned sentinel = (unsigned)SentinelAttr::DefaultSentinel;
if (Attr.getNumArgs() > 0) {
Expr *E = Attr.getArgAsExpr(0);
llvm::APSInt Idx(32);
if (E->isTypeDependent() || E->isValueDependent() ||
!E->isIntegerConstantExpr(Idx, S.Context)) {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_type)
<< Attr.getName() << 1 << AANT_ArgumentIntegerConstant
<< E->getSourceRange();
return;
}
if (Idx.isSigned() && Idx.isNegative()) {
S.Diag(Attr.getLoc(), diag::err_attribute_sentinel_less_than_zero)
<< E->getSourceRange();
return;
}
sentinel = Idx.getZExtValue();
}
unsigned nullPos = (unsigned)SentinelAttr::DefaultNullPos;
if (Attr.getNumArgs() > 1) {
Expr *E = Attr.getArgAsExpr(1);
llvm::APSInt Idx(32);
if (E->isTypeDependent() || E->isValueDependent() ||
!E->isIntegerConstantExpr(Idx, S.Context)) {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_type)
<< Attr.getName() << 2 << AANT_ArgumentIntegerConstant
<< E->getSourceRange();
return;
}
nullPos = Idx.getZExtValue();
if ((Idx.isSigned() && Idx.isNegative()) || nullPos > 1) {
// FIXME: This error message could be improved, it would be nice
// to say what the bounds actually are.
S.Diag(Attr.getLoc(), diag::err_attribute_sentinel_not_zero_or_one)
<< E->getSourceRange();
return;
}
}
if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
const FunctionType *FT = FD->getType()->castAs<FunctionType>();
if (isa<FunctionNoProtoType>(FT)) {
S.Diag(Attr.getLoc(), diag::warn_attribute_sentinel_named_arguments);
return;
}
if (!cast<FunctionProtoType>(FT)->isVariadic()) {
S.Diag(Attr.getLoc(), diag::warn_attribute_sentinel_not_variadic) << 0;
return;
}
} else if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
if (!MD->isVariadic()) {
S.Diag(Attr.getLoc(), diag::warn_attribute_sentinel_not_variadic) << 0;
return;
}
} else if (BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
if (!BD->isVariadic()) {
S.Diag(Attr.getLoc(), diag::warn_attribute_sentinel_not_variadic) << 1;
return;
}
} else if (const VarDecl *V = dyn_cast<VarDecl>(D)) {
QualType Ty = V->getType();
if (Ty->isBlockPointerType() || Ty->isFunctionPointerType()) {
const FunctionType *FT = Ty->isFunctionPointerType()
? D->getFunctionType()
: Ty->getAs<BlockPointerType>()->getPointeeType()->getAs<FunctionType>();
if (!cast<FunctionProtoType>(FT)->isVariadic()) {
int m = Ty->isFunctionPointerType() ? 0 : 1;
S.Diag(Attr.getLoc(), diag::warn_attribute_sentinel_not_variadic) << m;
return;
}
} else {
S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
<< Attr.getName() << ExpectedFunctionMethodOrBlock;
return;
}
} else {
S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
<< Attr.getName() << ExpectedFunctionMethodOrBlock;
return;
}
D->addAttr(::new (S.Context)
SentinelAttr(Attr.getRange(), S.Context, sentinel, nullPos,
Attr.getAttributeSpellingListIndex()));
}
static void handleWarnUnusedResult(Sema &S, Decl *D, const AttributeList &Attr) {
if (D->getFunctionType() &&
D->getFunctionType()->getReturnType()->isVoidType()) {
S.Diag(Attr.getLoc(), diag::warn_attribute_void_function_method)
<< Attr.getName() << 0;
return;
}
if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D))
if (MD->getReturnType()->isVoidType()) {
S.Diag(Attr.getLoc(), diag::warn_attribute_void_function_method)
<< Attr.getName() << 1;
return;
}
D->addAttr(::new (S.Context)
WarnUnusedResultAttr(Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex()));
}
static void handleWeakImportAttr(Sema &S, Decl *D, const AttributeList &Attr) {
// weak_import only applies to variable & function declarations.
bool isDef = false;
if (!D->canBeWeakImported(isDef)) {
if (isDef)
S.Diag(Attr.getLoc(), diag::warn_attribute_invalid_on_definition)
<< "weak_import";
else if (isa<ObjCPropertyDecl>(D) || isa<ObjCMethodDecl>(D) ||
(S.Context.getTargetInfo().getTriple().isOSDarwin() &&
(isa<ObjCInterfaceDecl>(D) || isa<EnumDecl>(D)))) {
// Nothing to warn about here.
} else
S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
<< Attr.getName() << ExpectedVariableOrFunction;
return;
}
D->addAttr(::new (S.Context)
WeakImportAttr(Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex()));
}
// Handles reqd_work_group_size and work_group_size_hint.
template <typename WorkGroupAttr>
static void handleWorkGroupSize(Sema &S, Decl *D,
const AttributeList &Attr) {
uint32_t WGSize[3];
for (unsigned i = 0; i < 3; ++i)
if (!checkUInt32Argument(S, Attr, Attr.getArgAsExpr(i), WGSize[i], i))
return;
WorkGroupAttr *Existing = D->getAttr<WorkGroupAttr>();
if (Existing && !(Existing->getXDim() == WGSize[0] &&
Existing->getYDim() == WGSize[1] &&
Existing->getZDim() == WGSize[2]))
S.Diag(Attr.getLoc(), diag::warn_duplicate_attribute) << Attr.getName();
D->addAttr(::new (S.Context) WorkGroupAttr(Attr.getRange(), S.Context,
WGSize[0], WGSize[1], WGSize[2],
Attr.getAttributeSpellingListIndex()));
}
static void handleVecTypeHint(Sema &S, Decl *D, const AttributeList &Attr) {
if (!Attr.hasParsedType()) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
<< Attr.getName() << 1;
return;
}
TypeSourceInfo *ParmTSI = 0;
QualType ParmType = S.GetTypeFromParser(Attr.getTypeArg(), &ParmTSI);
assert(ParmTSI && "no type source info for attribute argument");
if (!ParmType->isExtVectorType() && !ParmType->isFloatingType() &&
(ParmType->isBooleanType() ||
!ParmType->isIntegralType(S.getASTContext()))) {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_vec_type_hint)
<< ParmType;
return;
}
if (VecTypeHintAttr *A = D->getAttr<VecTypeHintAttr>()) {
if (!S.Context.hasSameType(A->getTypeHint(), ParmType)) {
S.Diag(Attr.getLoc(), diag::warn_duplicate_attribute) << Attr.getName();
return;
}
}
D->addAttr(::new (S.Context) VecTypeHintAttr(Attr.getLoc(), S.Context,
ParmTSI,
Attr.getAttributeSpellingListIndex()));
}
SectionAttr *Sema::mergeSectionAttr(Decl *D, SourceRange Range,
StringRef Name,
unsigned AttrSpellingListIndex) {
if (SectionAttr *ExistingAttr = D->getAttr<SectionAttr>()) {
if (ExistingAttr->getName() == Name)
return NULL;
Diag(ExistingAttr->getLocation(), diag::warn_mismatched_section);
Diag(Range.getBegin(), diag::note_previous_attribute);
return NULL;
}
return ::new (Context) SectionAttr(Range, Context, Name,
AttrSpellingListIndex);
}
static void handleSectionAttr(Sema &S, Decl *D, const AttributeList &Attr) {
// Make sure that there is a string literal as the sections's single
// argument.
StringRef Str;
SourceLocation LiteralLoc;
if (!S.checkStringLiteralArgumentAttr(Attr, 0, Str, &LiteralLoc))
return;
// If the target wants to validate the section specifier, make it happen.
std::string Error = S.Context.getTargetInfo().isValidSectionSpecifier(Str);
if (!Error.empty()) {
S.Diag(LiteralLoc, diag::err_attribute_section_invalid_for_target)
<< Error;
return;
}
unsigned Index = Attr.getAttributeSpellingListIndex();
SectionAttr *NewAttr = S.mergeSectionAttr(D, Attr.getRange(), Str, Index);
if (NewAttr)
D->addAttr(NewAttr);
}
static void handleCleanupAttr(Sema &S, Decl *D, const AttributeList &Attr) {
VarDecl *VD = cast<VarDecl>(D);
if (!VD->hasLocalStorage()) {
S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << Attr.getName();
return;
}
Expr *E = Attr.getArgAsExpr(0);
SourceLocation Loc = E->getExprLoc();
FunctionDecl *FD = 0;
DeclarationNameInfo NI;
// gcc only allows for simple identifiers. Since we support more than gcc, we
// will warn the user.
if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
if (DRE->hasQualifier())
S.Diag(Loc, diag::warn_cleanup_ext);
FD = dyn_cast<FunctionDecl>(DRE->getDecl());
NI = DRE->getNameInfo();
if (!FD) {
S.Diag(Loc, diag::err_attribute_cleanup_arg_not_function) << 1
<< NI.getName();
return;
}
} else if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
if (ULE->hasExplicitTemplateArgs())
S.Diag(Loc, diag::warn_cleanup_ext);
FD = S.ResolveSingleFunctionTemplateSpecialization(ULE, true);
NI = ULE->getNameInfo();
if (!FD) {
S.Diag(Loc, diag::err_attribute_cleanup_arg_not_function) << 2
<< NI.getName();
if (ULE->getType() == S.Context.OverloadTy)
S.NoteAllOverloadCandidates(ULE);
return;
}
} else {
S.Diag(Loc, diag::err_attribute_cleanup_arg_not_function) << 0;
return;
}
if (FD->getNumParams() != 1) {
S.Diag(Loc, diag::err_attribute_cleanup_func_must_take_one_arg)
<< NI.getName();
return;
}
// We're currently more strict than GCC about what function types we accept.
// If this ever proves to be a problem it should be easy to fix.
QualType Ty = S.Context.getPointerType(VD->getType());
QualType ParamTy = FD->getParamDecl(0)->getType();
if (S.CheckAssignmentConstraints(FD->getParamDecl(0)->getLocation(),
ParamTy, Ty) != Sema::Compatible) {
S.Diag(Loc, diag::err_attribute_cleanup_func_arg_incompatible_type)
<< NI.getName() << ParamTy << Ty;
return;
}
D->addAttr(::new (S.Context)
CleanupAttr(Attr.getRange(), S.Context, FD,
Attr.getAttributeSpellingListIndex()));
}
/// Handle __attribute__((format_arg((idx)))) attribute based on
/// http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html
static void handleFormatArgAttr(Sema &S, Decl *D, const AttributeList &Attr) {
Expr *IdxExpr = Attr.getArgAsExpr(0);
uint64_t Idx;
if (!checkFunctionOrMethodParameterIndex(S, D, Attr, 1, IdxExpr, Idx))
return;
// make sure the format string is really a string
QualType Ty = getFunctionOrMethodParamType(D, Idx);
bool not_nsstring_type = !isNSStringType(Ty, S.Context);
if (not_nsstring_type &&
!isCFStringType(Ty, S.Context) &&
(!Ty->isPointerType() ||
!Ty->getAs<PointerType>()->getPointeeType()->isCharType())) {
// FIXME: Should highlight the actual expression that has the wrong type.
S.Diag(Attr.getLoc(), diag::err_format_attribute_not)
<< (not_nsstring_type ? "a string type" : "an NSString")
<< IdxExpr->getSourceRange();
return;
}
Ty = getFunctionOrMethodResultType(D);
if (!isNSStringType(Ty, S.Context) &&
!isCFStringType(Ty, S.Context) &&
(!Ty->isPointerType() ||
!Ty->getAs<PointerType>()->getPointeeType()->isCharType())) {
// FIXME: Should highlight the actual expression that has the wrong type.
S.Diag(Attr.getLoc(), diag::err_format_attribute_result_not)
<< (not_nsstring_type ? "string type" : "NSString")
<< IdxExpr->getSourceRange();
return;
}
// We cannot use the Idx returned from checkFunctionOrMethodParameterIndex
// because that has corrected for the implicit this parameter, and is zero-
// based. The attribute expects what the user wrote explicitly.
llvm::APSInt Val;
IdxExpr->EvaluateAsInt(Val, S.Context);
D->addAttr(::new (S.Context)
FormatArgAttr(Attr.getRange(), S.Context, Val.getZExtValue(),
Attr.getAttributeSpellingListIndex()));
}
enum FormatAttrKind {
CFStringFormat,
NSStringFormat,
StrftimeFormat,
SupportedFormat,
IgnoredFormat,
InvalidFormat
};
/// getFormatAttrKind - Map from format attribute names to supported format
/// types.
static FormatAttrKind getFormatAttrKind(StringRef Format) {
return llvm::StringSwitch<FormatAttrKind>(Format)
// Check for formats that get handled specially.
.Case("NSString", NSStringFormat)
.Case("CFString", CFStringFormat)
.Case("strftime", StrftimeFormat)
// Otherwise, check for supported formats.
.Cases("scanf", "printf", "printf0", "strfmon", SupportedFormat)
.Cases("cmn_err", "vcmn_err", "zcmn_err", SupportedFormat)
.Case("kprintf", SupportedFormat) // OpenBSD.
.Cases("gcc_diag", "gcc_cdiag", "gcc_cxxdiag", "gcc_tdiag", IgnoredFormat)
.Default(InvalidFormat);
}
/// Handle __attribute__((init_priority(priority))) attributes based on
/// http://gcc.gnu.org/onlinedocs/gcc/C_002b_002b-Attributes.html
static void handleInitPriorityAttr(Sema &S, Decl *D,
const AttributeList &Attr) {
if (!S.getLangOpts().CPlusPlus) {
S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << Attr.getName();
return;
}
if (S.getCurFunctionOrMethodDecl()) {
S.Diag(Attr.getLoc(), diag::err_init_priority_object_attr);
Attr.setInvalid();
return;
}
QualType T = cast<VarDecl>(D)->getType();
if (S.Context.getAsArrayType(T))
T = S.Context.getBaseElementType(T);
if (!T->getAs<RecordType>()) {
S.Diag(Attr.getLoc(), diag::err_init_priority_object_attr);
Attr.setInvalid();
return;
}
Expr *E = Attr.getArgAsExpr(0);
uint32_t prioritynum;
if (!checkUInt32Argument(S, Attr, E, prioritynum)) {
Attr.setInvalid();
return;
}
if (prioritynum < 101 || prioritynum > 65535) {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_outof_range)
<< E->getSourceRange();
Attr.setInvalid();
return;
}
D->addAttr(::new (S.Context)
InitPriorityAttr(Attr.getRange(), S.Context, prioritynum,
Attr.getAttributeSpellingListIndex()));
}
FormatAttr *Sema::mergeFormatAttr(Decl *D, SourceRange Range,
IdentifierInfo *Format, int FormatIdx,
int FirstArg,
unsigned AttrSpellingListIndex) {
// Check whether we already have an equivalent format attribute.
for (specific_attr_iterator<FormatAttr>
i = D->specific_attr_begin<FormatAttr>(),
e = D->specific_attr_end<FormatAttr>();
i != e ; ++i) {
FormatAttr *f = *i;
if (f->getType() == Format &&
f->getFormatIdx() == FormatIdx &&
f->getFirstArg() == FirstArg) {
// If we don't have a valid location for this attribute, adopt the
// location.
if (f->getLocation().isInvalid())
f->setRange(Range);
return NULL;
}
}
return ::new (Context) FormatAttr(Range, Context, Format, FormatIdx,
FirstArg, AttrSpellingListIndex);
}
/// Handle __attribute__((format(type,idx,firstarg))) attributes based on
/// http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html
static void handleFormatAttr(Sema &S, Decl *D, const AttributeList &Attr) {
if (!Attr.isArgIdent(0)) {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_type)
<< Attr.getName() << 1 << AANT_ArgumentIdentifier;
return;
}
// In C++ the implicit 'this' function parameter also counts, and they are
// counted from one.
bool HasImplicitThisParam = isInstanceMethod(D);
unsigned NumArgs = getFunctionOrMethodNumParams(D) + HasImplicitThisParam;
IdentifierInfo *II = Attr.getArgAsIdent(0)->Ident;
StringRef Format = II->getName();
// Normalize the argument, __foo__ becomes foo.
if (Format.startswith("__") && Format.endswith("__")) {
Format = Format.substr(2, Format.size() - 4);
// If we've modified the string name, we need a new identifier for it.
II = &S.Context.Idents.get(Format);
}
// Check for supported formats.
FormatAttrKind Kind = getFormatAttrKind(Format);
if (Kind == IgnoredFormat)
return;
if (Kind == InvalidFormat) {
S.Diag(Attr.getLoc(), diag::warn_attribute_type_not_supported)
<< Attr.getName() << II->getName();
return;
}
// checks for the 2nd argument
Expr *IdxExpr = Attr.getArgAsExpr(1);
uint32_t Idx;
if (!checkUInt32Argument(S, Attr, IdxExpr, Idx, 2))
return;
if (Idx < 1 || Idx > NumArgs) {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_out_of_bounds)
<< Attr.getName() << 2 << IdxExpr->getSourceRange();
return;
}
// FIXME: Do we need to bounds check?
unsigned ArgIdx = Idx - 1;
if (HasImplicitThisParam) {
if (ArgIdx == 0) {
S.Diag(Attr.getLoc(),
diag::err_format_attribute_implicit_this_format_string)
<< IdxExpr->getSourceRange();
return;
}
ArgIdx--;
}
// make sure the format string is really a string
QualType Ty = getFunctionOrMethodParamType(D, ArgIdx);
if (Kind == CFStringFormat) {
if (!isCFStringType(Ty, S.Context)) {
S.Diag(Attr.getLoc(), diag::err_format_attribute_not)
<< "a CFString" << IdxExpr->getSourceRange();
return;
}
} else if (Kind == NSStringFormat) {
// FIXME: do we need to check if the type is NSString*? What are the
// semantics?
if (!isNSStringType(Ty, S.Context)) {
// FIXME: Should highlight the actual expression that has the wrong type.
S.Diag(Attr.getLoc(), diag::err_format_attribute_not)
<< "an NSString" << IdxExpr->getSourceRange();
return;
}
} else if (!Ty->isPointerType() ||
!Ty->getAs<PointerType>()->getPointeeType()->isCharType()) {
// FIXME: Should highlight the actual expression that has the wrong type.
S.Diag(Attr.getLoc(), diag::err_format_attribute_not)
<< "a string type" << IdxExpr->getSourceRange();
return;
}
// check the 3rd argument
Expr *FirstArgExpr = Attr.getArgAsExpr(2);
uint32_t FirstArg;
if (!checkUInt32Argument(S, Attr, FirstArgExpr, FirstArg, 3))
return;
// check if the function is variadic if the 3rd argument non-zero
if (FirstArg != 0) {
if (isFunctionOrMethodVariadic(D)) {
++NumArgs; // +1 for ...
} else {
S.Diag(D->getLocation(), diag::err_format_attribute_requires_variadic);
return;
}
}
// strftime requires FirstArg to be 0 because it doesn't read from any
// variable the input is just the current time + the format string.
if (Kind == StrftimeFormat) {
if (FirstArg != 0) {
S.Diag(Attr.getLoc(), diag::err_format_strftime_third_parameter)
<< FirstArgExpr->getSourceRange();
return;
}
// if 0 it disables parameter checking (to use with e.g. va_list)
} else if (FirstArg != 0 && FirstArg != NumArgs) {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_out_of_bounds)
<< Attr.getName() << 3 << FirstArgExpr->getSourceRange();
return;
}
FormatAttr *NewAttr = S.mergeFormatAttr(D, Attr.getRange(), II,
Idx, FirstArg,
Attr.getAttributeSpellingListIndex());
if (NewAttr)
D->addAttr(NewAttr);
}
static void handleTransparentUnionAttr(Sema &S, Decl *D,
const AttributeList &Attr) {
// Try to find the underlying union declaration.
RecordDecl *RD = 0;
TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D);
if (TD && TD->getUnderlyingType()->isUnionType())
RD = TD->getUnderlyingType()->getAsUnionType()->getDecl();
else
RD = dyn_cast<RecordDecl>(D);
if (!RD || !RD->isUnion()) {
S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
<< Attr.getName() << ExpectedUnion;
return;
}
if (!RD->isCompleteDefinition()) {
S.Diag(Attr.getLoc(),
diag::warn_transparent_union_attribute_not_definition);
return;
}
RecordDecl::field_iterator Field = RD->field_begin(),
FieldEnd = RD->field_end();
if (Field == FieldEnd) {
S.Diag(Attr.getLoc(), diag::warn_transparent_union_attribute_zero_fields);
return;
}
FieldDecl *FirstField = *Field;
QualType FirstType = FirstField->getType();
if (FirstType->hasFloatingRepresentation() || FirstType->isVectorType()) {
S.Diag(FirstField->getLocation(),
diag::warn_transparent_union_attribute_floating)
<< FirstType->isVectorType() << FirstType;
return;
}
uint64_t FirstSize = S.Context.getTypeSize(FirstType);
uint64_t FirstAlign = S.Context.getTypeAlign(FirstType);
for (; Field != FieldEnd; ++Field) {
QualType FieldType = Field->getType();
// FIXME: this isn't fully correct; we also need to test whether the
// members of the union would all have the same calling convention as the
// first member of the union. Checking just the size and alignment isn't
// sufficient (consider structs passed on the stack instead of in registers
// as an example).
if (S.Context.getTypeSize(FieldType) != FirstSize ||
S.Context.getTypeAlign(FieldType) > FirstAlign) {
// Warn if we drop the attribute.
bool isSize = S.Context.getTypeSize(FieldType) != FirstSize;
unsigned FieldBits = isSize? S.Context.getTypeSize(FieldType)
: S.Context.getTypeAlign(FieldType);
S.Diag(Field->getLocation(),
diag::warn_transparent_union_attribute_field_size_align)
<< isSize << Field->getDeclName() << FieldBits;
unsigned FirstBits = isSize? FirstSize : FirstAlign;
S.Diag(FirstField->getLocation(),
diag::note_transparent_union_first_field_size_align)
<< isSize << FirstBits;
return;
}
}
RD->addAttr(::new (S.Context)
TransparentUnionAttr(Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex()));
}
static void handleAnnotateAttr(Sema &S, Decl *D, const AttributeList &Attr) {
// Make sure that there is a string literal as the annotation's single
// argument.
StringRef Str;
if (!S.checkStringLiteralArgumentAttr(Attr, 0, Str))
return;
// Don't duplicate annotations that are already set.
for (specific_attr_iterator<AnnotateAttr>
i = D->specific_attr_begin<AnnotateAttr>(),
e = D->specific_attr_end<AnnotateAttr>(); i != e; ++i) {
if ((*i)->getAnnotation() == Str)
return;
}
D->addAttr(::new (S.Context)
AnnotateAttr(Attr.getRange(), S.Context, Str,
Attr.getAttributeSpellingListIndex()));
}
static void handleAlignedAttr(Sema &S, Decl *D, const AttributeList &Attr) {
// check the attribute arguments.
if (Attr.getNumArgs() > 1) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
<< Attr.getName() << 1;
return;
}
if (Attr.getNumArgs() == 0) {
D->addAttr(::new (S.Context) AlignedAttr(Attr.getRange(), S.Context,
true, 0, Attr.getAttributeSpellingListIndex()));
return;
}
Expr *E = Attr.getArgAsExpr(0);
if (Attr.isPackExpansion() && !E->containsUnexpandedParameterPack()) {
S.Diag(Attr.getEllipsisLoc(),
diag::err_pack_expansion_without_parameter_packs);
return;
}
if (!Attr.isPackExpansion() && S.DiagnoseUnexpandedParameterPack(E))
return;
S.AddAlignedAttr(Attr.getRange(), D, E, Attr.getAttributeSpellingListIndex(),
Attr.isPackExpansion());
}
void Sema::AddAlignedAttr(SourceRange AttrRange, Decl *D, Expr *E,
unsigned SpellingListIndex, bool IsPackExpansion) {
AlignedAttr TmpAttr(AttrRange, Context, true, E, SpellingListIndex);
SourceLocation AttrLoc = AttrRange.getBegin();
// C++11 alignas(...) and C11 _Alignas(...) have additional requirements.
if (TmpAttr.isAlignas()) {
// C++11 [dcl.align]p1:
// An alignment-specifier may be applied to a variable or to a class
// data member, but it shall not be applied to a bit-field, a function
// parameter, the formal parameter of a catch clause, or a variable
// declared with the register storage class specifier. An
// alignment-specifier may also be applied to the declaration of a class
// or enumeration type.
// C11 6.7.5/2:
// An alignment attribute shall not be specified in a declaration of
// a typedef, or a bit-field, or a function, or a parameter, or an
// object declared with the register storage-class specifier.
int DiagKind = -1;
if (isa<ParmVarDecl>(D)) {
DiagKind = 0;
} else if (VarDecl *VD = dyn_cast<VarDecl>(D)) {
if (VD->getStorageClass() == SC_Register)
DiagKind = 1;
if (VD->isExceptionVariable())
DiagKind = 2;
} else if (FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
if (FD->isBitField())
DiagKind = 3;
} else if (!isa<TagDecl>(D)) {
Diag(AttrLoc, diag::err_attribute_wrong_decl_type) << &TmpAttr
<< (TmpAttr.isC11() ? ExpectedVariableOrField
: ExpectedVariableFieldOrTag);
return;
}
if (DiagKind != -1) {
Diag(AttrLoc, diag::err_alignas_attribute_wrong_decl_type)
<< &TmpAttr << DiagKind;
return;
}
}
if (E->isTypeDependent() || E->isValueDependent()) {
// Save dependent expressions in the AST to be instantiated.
AlignedAttr *AA = ::new (Context) AlignedAttr(TmpAttr);
AA->setPackExpansion(IsPackExpansion);
D->addAttr(AA);
return;
}
// FIXME: Cache the number on the Attr object?
llvm::APSInt Alignment(32);
ExprResult ICE
= VerifyIntegerConstantExpression(E, &Alignment,
diag::err_aligned_attribute_argument_not_int,
/*AllowFold*/ false);
if (ICE.isInvalid())
return;
// C++11 [dcl.align]p2:
// -- if the constant expression evaluates to zero, the alignment
// specifier shall have no effect
// C11 6.7.5p6:
// An alignment specification of zero has no effect.
if (!(TmpAttr.isAlignas() && !Alignment) &&
!llvm::isPowerOf2_64(Alignment.getZExtValue())) {
Diag(AttrLoc, diag::err_attribute_aligned_not_power_of_two)
<< E->getSourceRange();
return;
}
// Alignment calculations can wrap around if it's greater than 2**28.
unsigned MaxValidAlignment = TmpAttr.isDeclspec() ? 8192 : 268435456;
if (Alignment.getZExtValue() > MaxValidAlignment) {
Diag(AttrLoc, diag::err_attribute_aligned_too_great) << MaxValidAlignment
<< E->getSourceRange();
return;
}
AlignedAttr *AA = ::new (Context) AlignedAttr(AttrRange, Context, true,
ICE.take(), SpellingListIndex);
AA->setPackExpansion(IsPackExpansion);
D->addAttr(AA);
}
void Sema::AddAlignedAttr(SourceRange AttrRange, Decl *D, TypeSourceInfo *TS,
unsigned SpellingListIndex, bool IsPackExpansion) {
// FIXME: Cache the number on the Attr object if non-dependent?
// FIXME: Perform checking of type validity
AlignedAttr *AA = ::new (Context) AlignedAttr(AttrRange, Context, false, TS,
SpellingListIndex);
AA->setPackExpansion(IsPackExpansion);
D->addAttr(AA);
}
void Sema::CheckAlignasUnderalignment(Decl *D) {
assert(D->hasAttrs() && "no attributes on decl");
QualType Ty;
if (ValueDecl *VD = dyn_cast<ValueDecl>(D))
Ty = VD->getType();
else
Ty = Context.getTagDeclType(cast<TagDecl>(D));
if (Ty->isDependentType() || Ty->isIncompleteType())
return;
// C++11 [dcl.align]p5, C11 6.7.5/4:
// The combined effect of all alignment attributes in a declaration shall
// not specify an alignment that is less strict than the alignment that
// would otherwise be required for the entity being declared.
AlignedAttr *AlignasAttr = 0;
unsigned Align = 0;
for (specific_attr_iterator<AlignedAttr>
I = D->specific_attr_begin<AlignedAttr>(),
E = D->specific_attr_end<AlignedAttr>(); I != E; ++I) {
if (I->isAlignmentDependent())
return;
if (I->isAlignas())
AlignasAttr = *I;
Align = std::max(Align, I->getAlignment(Context));
}
if (AlignasAttr && Align) {
CharUnits RequestedAlign = Context.toCharUnitsFromBits(Align);
CharUnits NaturalAlign = Context.getTypeAlignInChars(Ty);
if (NaturalAlign > RequestedAlign)
Diag(AlignasAttr->getLocation(), diag::err_alignas_underaligned)
<< Ty << (unsigned)NaturalAlign.getQuantity();
}
}
bool Sema::checkMSInheritanceAttrOnDefinition(
CXXRecordDecl *RD, SourceRange Range, bool BestCase,
MSInheritanceAttr::Spelling SemanticSpelling) {
assert(RD->hasDefinition() && "RD has no definition!");
// We may not have seen base specifiers or any virtual methods yet. We will
// have to wait until the record is defined to catch any mismatches.
if (!RD->getDefinition()->isCompleteDefinition())
return false;
// The unspecified model never matches what a definition could need.
if (SemanticSpelling == MSInheritanceAttr::Keyword_unspecified_inheritance)
return false;
if (BestCase) {
if (RD->calculateInheritanceModel() == SemanticSpelling)
return false;
} else {
if (RD->calculateInheritanceModel() <= SemanticSpelling)
return false;
}
Diag(Range.getBegin(), diag::err_mismatched_ms_inheritance)
<< 0 /*definition*/;
Diag(RD->getDefinition()->getLocation(), diag::note_defined_here)
<< RD->getNameAsString();
return true;
}
/// handleModeAttr - This attribute modifies the width of a decl with primitive
/// type.
///
/// Despite what would be logical, the mode attribute is a decl attribute, not a
/// type attribute: 'int ** __attribute((mode(HI))) *G;' tries to make 'G' be
/// HImode, not an intermediate pointer.
static void handleModeAttr(Sema &S, Decl *D, const AttributeList &Attr) {
// This attribute isn't documented, but glibc uses it. It changes
// the width of an int or unsigned int to the specified size.
if (!Attr.isArgIdent(0)) {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_type) << Attr.getName()
<< AANT_ArgumentIdentifier;
return;
}
IdentifierInfo *Name = Attr.getArgAsIdent(0)->Ident;
StringRef Str = Name->getName();
// Normalize the attribute name, __foo__ becomes foo.
if (Str.startswith("__") && Str.endswith("__"))
Str = Str.substr(2, Str.size() - 4);
unsigned DestWidth = 0;
bool IntegerMode = true;
bool ComplexMode = false;
switch (Str.size()) {
case 2:
switch (Str[0]) {
case 'Q': DestWidth = 8; break;
case 'H': DestWidth = 16; break;
case 'S': DestWidth = 32; break;
case 'D': DestWidth = 64; break;
case 'X': DestWidth = 96; break;
case 'T': DestWidth = 128; break;
}
if (Str[1] == 'F') {
IntegerMode = false;
} else if (Str[1] == 'C') {
IntegerMode = false;
ComplexMode = true;
} else if (Str[1] != 'I') {
DestWidth = 0;
}
break;
case 4:
// FIXME: glibc uses 'word' to define register_t; this is narrower than a
// pointer on PIC16 and other embedded platforms.
if (Str == "word")
DestWidth = S.Context.getTargetInfo().getPointerWidth(0);
else if (Str == "byte")
DestWidth = S.Context.getTargetInfo().getCharWidth();
break;
case 7:
if (Str == "pointer")
DestWidth = S.Context.getTargetInfo().getPointerWidth(0);
break;
case 11:
if (Str == "unwind_word")
DestWidth = S.Context.getTargetInfo().getUnwindWordWidth();
break;
}
QualType OldTy;
if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D))
OldTy = TD->getUnderlyingType();
else if (ValueDecl *VD = dyn_cast<ValueDecl>(D))
OldTy = VD->getType();
else {
S.Diag(D->getLocation(), diag::err_attr_wrong_decl)
<< Attr.getName() << Attr.getRange();
return;
}
if (!OldTy->getAs<BuiltinType>() && !OldTy->isComplexType())
S.Diag(Attr.getLoc(), diag::err_mode_not_primitive);
else if (IntegerMode) {
if (!OldTy->isIntegralOrEnumerationType())
S.Diag(Attr.getLoc(), diag::err_mode_wrong_type);
} else if (ComplexMode) {
if (!OldTy->isComplexType())
S.Diag(Attr.getLoc(), diag::err_mode_wrong_type);
} else {
if (!OldTy->isFloatingType())
S.Diag(Attr.getLoc(), diag::err_mode_wrong_type);
}
// FIXME: Sync this with InitializePredefinedMacros; we need to match int8_t
// and friends, at least with glibc.
// FIXME: Make sure floating-point mappings are accurate
// FIXME: Support XF and TF types
if (!DestWidth) {
S.Diag(Attr.getLoc(), diag::err_machine_mode) << 0 /*Unknown*/ << Name;
return;
}
QualType NewTy;
if (IntegerMode)
NewTy = S.Context.getIntTypeForBitwidth(DestWidth,
OldTy->isSignedIntegerType());
else
NewTy = S.Context.getRealTypeForBitwidth(DestWidth);
if (NewTy.isNull()) {
S.Diag(Attr.getLoc(), diag::err_machine_mode) << 1 /*Unsupported*/ << Name;
return;
}
if (ComplexMode) {
NewTy = S.Context.getComplexType(NewTy);
}
// Install the new type.
if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D))
TD->setModedTypeSourceInfo(TD->getTypeSourceInfo(), NewTy);
else
cast<ValueDecl>(D)->setType(NewTy);
D->addAttr(::new (S.Context)
ModeAttr(Attr.getRange(), S.Context, Name,
Attr.getAttributeSpellingListIndex()));
}
static void handleNoDebugAttr(Sema &S, Decl *D, const AttributeList &Attr) {
if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
if (!VD->hasGlobalStorage())
S.Diag(Attr.getLoc(),
diag::warn_attribute_requires_functions_or_static_globals)
<< Attr.getName();
} else if (!isFunctionOrMethod(D)) {
S.Diag(Attr.getLoc(),
diag::warn_attribute_requires_functions_or_static_globals)
<< Attr.getName();
return;
}
D->addAttr(::new (S.Context)
NoDebugAttr(Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex()));
}
static void handleGlobalAttr(Sema &S, Decl *D, const AttributeList &Attr) {
FunctionDecl *FD = cast<FunctionDecl>(D);
if (!FD->getReturnType()->isVoidType()) {
TypeLoc TL = FD->getTypeSourceInfo()->getTypeLoc().IgnoreParens();
if (FunctionTypeLoc FTL = TL.getAs<FunctionTypeLoc>()) {
S.Diag(FD->getTypeSpecStartLoc(), diag::err_kern_type_not_void_return)
<< FD->getType()
<< FixItHint::CreateReplacement(FTL.getReturnLoc().getSourceRange(),
"void");
} else {
S.Diag(FD->getTypeSpecStartLoc(), diag::err_kern_type_not_void_return)
<< FD->getType();
}
return;
}
D->addAttr(::new (S.Context)
CUDAGlobalAttr(Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex()));
}
static void handleGNUInlineAttr(Sema &S, Decl *D, const AttributeList &Attr) {
FunctionDecl *Fn = cast<FunctionDecl>(D);
if (!Fn->isInlineSpecified()) {
S.Diag(Attr.getLoc(), diag::warn_gnu_inline_attribute_requires_inline);
return;
}
D->addAttr(::new (S.Context)
GNUInlineAttr(Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex()));
}
static void handleCallConvAttr(Sema &S, Decl *D, const AttributeList &Attr) {
if (hasDeclarator(D)) return;
const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
// Diagnostic is emitted elsewhere: here we store the (valid) Attr
// in the Decl node for syntactic reasoning, e.g., pretty-printing.
CallingConv CC;
if (S.CheckCallingConvAttr(Attr, CC, FD))
return;
if (!isa<ObjCMethodDecl>(D)) {
S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
<< Attr.getName() << ExpectedFunctionOrMethod;
return;
}
switch (Attr.getKind()) {
case AttributeList::AT_FastCall:
D->addAttr(::new (S.Context)
FastCallAttr(Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex()));
return;
case AttributeList::AT_StdCall:
D->addAttr(::new (S.Context)
StdCallAttr(Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex()));
return;
case AttributeList::AT_ThisCall:
D->addAttr(::new (S.Context)
ThisCallAttr(Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex()));
return;
case AttributeList::AT_CDecl:
D->addAttr(::new (S.Context)
CDeclAttr(Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex()));
return;
case AttributeList::AT_Pascal:
D->addAttr(::new (S.Context)
PascalAttr(Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex()));
return;
case AttributeList::AT_MSABI:
D->addAttr(::new (S.Context)
MSABIAttr(Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex()));
return;
case AttributeList::AT_SysVABI:
D->addAttr(::new (S.Context)
SysVABIAttr(Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex()));
return;
case AttributeList::AT_Pcs: {
PcsAttr::PCSType PCS;
switch (CC) {
case CC_AAPCS:
PCS = PcsAttr::AAPCS;
break;
case CC_AAPCS_VFP:
PCS = PcsAttr::AAPCS_VFP;
break;
default:
llvm_unreachable("unexpected calling convention in pcs attribute");
}
D->addAttr(::new (S.Context)
PcsAttr(Attr.getRange(), S.Context, PCS,
Attr.getAttributeSpellingListIndex()));
return;
}
case AttributeList::AT_PnaclCall:
D->addAttr(::new (S.Context)
PnaclCallAttr(Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex()));
return;
case AttributeList::AT_IntelOclBicc:
D->addAttr(::new (S.Context)
IntelOclBiccAttr(Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex()));
return;
default:
llvm_unreachable("unexpected attribute kind");
}
}
bool Sema::CheckCallingConvAttr(const AttributeList &attr, CallingConv &CC,
const FunctionDecl *FD) {
if (attr.isInvalid())
return true;
unsigned ReqArgs = attr.getKind() == AttributeList::AT_Pcs ? 1 : 0;
if (!checkAttributeNumArgs(*this, attr, ReqArgs)) {
attr.setInvalid();
return true;
}
// TODO: diagnose uses of these conventions on the wrong target.
switch (attr.getKind()) {
case AttributeList::AT_CDecl: CC = CC_C; break;
case AttributeList::AT_FastCall: CC = CC_X86FastCall; break;
case AttributeList::AT_StdCall: CC = CC_X86StdCall; break;
case AttributeList::AT_ThisCall: CC = CC_X86ThisCall; break;
case AttributeList::AT_Pascal: CC = CC_X86Pascal; break;
case AttributeList::AT_MSABI:
CC = Context.getTargetInfo().getTriple().isOSWindows() ? CC_C :
CC_X86_64Win64;
break;
case AttributeList::AT_SysVABI:
CC = Context.getTargetInfo().getTriple().isOSWindows() ? CC_X86_64SysV :
CC_C;
break;
case AttributeList::AT_Pcs: {
StringRef StrRef;
if (!checkStringLiteralArgumentAttr(attr, 0, StrRef)) {
attr.setInvalid();
return true;
}
if (StrRef == "aapcs") {
CC = CC_AAPCS;
break;
} else if (StrRef == "aapcs-vfp") {
CC = CC_AAPCS_VFP;
break;
}
attr.setInvalid();
Diag(attr.getLoc(), diag::err_invalid_pcs);
return true;
}
case AttributeList::AT_PnaclCall: CC = CC_PnaclCall; break;
case AttributeList::AT_IntelOclBicc: CC = CC_IntelOclBicc; break;
default: llvm_unreachable("unexpected attribute kind");
}
const TargetInfo &TI = Context.getTargetInfo();
TargetInfo::CallingConvCheckResult A = TI.checkCallingConvention(CC);
if (A == TargetInfo::CCCR_Warning) {
Diag(attr.getLoc(), diag::warn_cconv_ignored) << attr.getName();
TargetInfo::CallingConvMethodType MT = TargetInfo::CCMT_Unknown;
if (FD)
MT = FD->isCXXInstanceMember() ? TargetInfo::CCMT_Member :
TargetInfo::CCMT_NonMember;
CC = TI.getDefaultCallingConv(MT);
}
return false;
}
/// Checks a regparm attribute, returning true if it is ill-formed and
/// otherwise setting numParams to the appropriate value.
bool Sema::CheckRegparmAttr(const AttributeList &Attr, unsigned &numParams) {
if (Attr.isInvalid())
return true;
if (!checkAttributeNumArgs(*this, Attr, 1)) {
Attr.setInvalid();
return true;
}
uint32_t NP;
Expr *NumParamsExpr = Attr.getArgAsExpr(0);
if (!checkUInt32Argument(*this, Attr, NumParamsExpr, NP)) {
Attr.setInvalid();
return true;
}
if (Context.getTargetInfo().getRegParmMax() == 0) {
Diag(Attr.getLoc(), diag::err_attribute_regparm_wrong_platform)
<< NumParamsExpr->getSourceRange();
Attr.setInvalid();
return true;
}
numParams = NP;
if (numParams > Context.getTargetInfo().getRegParmMax()) {
Diag(Attr.getLoc(), diag::err_attribute_regparm_invalid_number)
<< Context.getTargetInfo().getRegParmMax() << NumParamsExpr->getSourceRange();
Attr.setInvalid();
return true;
}
return false;
}
static void handleLaunchBoundsAttr(Sema &S, Decl *D,
const AttributeList &Attr) {
// check the attribute arguments.
if (Attr.getNumArgs() != 1 && Attr.getNumArgs() != 2) {
// FIXME: 0 is not okay.
S.Diag(Attr.getLoc(), diag::err_attribute_too_many_arguments)
<< Attr.getName() << 2;
return;
}
uint32_t MaxThreads, MinBlocks = 0;
if (!checkUInt32Argument(S, Attr, Attr.getArgAsExpr(0), MaxThreads, 1))
return;
if (Attr.getNumArgs() > 1 && !checkUInt32Argument(S, Attr,
Attr.getArgAsExpr(1),
MinBlocks, 2))
return;
D->addAttr(::new (S.Context)
CUDALaunchBoundsAttr(Attr.getRange(), S.Context,
MaxThreads, MinBlocks,
Attr.getAttributeSpellingListIndex()));
}
static void handleArgumentWithTypeTagAttr(Sema &S, Decl *D,
const AttributeList &Attr) {
if (!Attr.isArgIdent(0)) {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_type)
<< Attr.getName() << /* arg num = */ 1 << AANT_ArgumentIdentifier;
return;
}
if (!checkAttributeNumArgs(S, Attr, 3))
return;
IdentifierInfo *ArgumentKind = Attr.getArgAsIdent(0)->Ident;
if (!isFunctionOrMethod(D) || !hasFunctionProto(D)) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_decl_type)
<< Attr.getName() << ExpectedFunctionOrMethod;
return;
}
uint64_t ArgumentIdx;
if (!checkFunctionOrMethodParameterIndex(S, D, Attr, 2, Attr.getArgAsExpr(1),
ArgumentIdx))
return;
uint64_t TypeTagIdx;
if (!checkFunctionOrMethodParameterIndex(S, D, Attr, 3, Attr.getArgAsExpr(2),
TypeTagIdx))
return;
bool IsPointer = (Attr.getName()->getName() == "pointer_with_type_tag");
if (IsPointer) {
// Ensure that buffer has a pointer type.
QualType BufferTy = getFunctionOrMethodParamType(D, ArgumentIdx);
if (!BufferTy->isPointerType()) {
S.Diag(Attr.getLoc(), diag::err_attribute_pointers_only)
<< Attr.getName();
}
}
D->addAttr(::new (S.Context)
ArgumentWithTypeTagAttr(Attr.getRange(), S.Context, ArgumentKind,
ArgumentIdx, TypeTagIdx, IsPointer,
Attr.getAttributeSpellingListIndex()));
}
static void handleTypeTagForDatatypeAttr(Sema &S, Decl *D,
const AttributeList &Attr) {
if (!Attr.isArgIdent(0)) {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_type)
<< Attr.getName() << 1 << AANT_ArgumentIdentifier;
return;
}
if (!checkAttributeNumArgs(S, Attr, 1))
return;
if (!isa<VarDecl>(D)) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_decl_type)
<< Attr.getName() << ExpectedVariable;
return;
}
IdentifierInfo *PointerKind = Attr.getArgAsIdent(0)->Ident;
TypeSourceInfo *MatchingCTypeLoc = 0;
S.GetTypeFromParser(Attr.getMatchingCType(), &MatchingCTypeLoc);
assert(MatchingCTypeLoc && "no type source info for attribute argument");
D->addAttr(::new (S.Context)
TypeTagForDatatypeAttr(Attr.getRange(), S.Context, PointerKind,
MatchingCTypeLoc,
Attr.getLayoutCompatible(),
Attr.getMustBeNull(),
Attr.getAttributeSpellingListIndex()));
}
//===----------------------------------------------------------------------===//
// Checker-specific attribute handlers.
//===----------------------------------------------------------------------===//
static bool isValidSubjectOfNSAttribute(Sema &S, QualType type) {
return type->isDependentType() ||
type->isObjCObjectPointerType() ||
S.Context.isObjCNSObjectType(type);
}
static bool isValidSubjectOfCFAttribute(Sema &S, QualType type) {
return type->isDependentType() ||
type->isPointerType() ||
isValidSubjectOfNSAttribute(S, type);
}
static void handleNSConsumedAttr(Sema &S, Decl *D, const AttributeList &Attr) {
ParmVarDecl *param = cast<ParmVarDecl>(D);
bool typeOK, cf;
if (Attr.getKind() == AttributeList::AT_NSConsumed) {
typeOK = isValidSubjectOfNSAttribute(S, param->getType());
cf = false;
} else {
typeOK = isValidSubjectOfCFAttribute(S, param->getType());
cf = true;
}
if (!typeOK) {
S.Diag(D->getLocStart(), diag::warn_ns_attribute_wrong_parameter_type)
<< Attr.getRange() << Attr.getName() << cf;
return;
}
if (cf)
param->addAttr(::new (S.Context)
CFConsumedAttr(Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex()));
else
param->addAttr(::new (S.Context)
NSConsumedAttr(Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex()));
}
static void handleNSReturnsRetainedAttr(Sema &S, Decl *D,
const AttributeList &Attr) {
QualType returnType;
if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D))
returnType = MD->getReturnType();
else if (S.getLangOpts().ObjCAutoRefCount && hasDeclarator(D) &&
(Attr.getKind() == AttributeList::AT_NSReturnsRetained))
return; // ignore: was handled as a type attribute
else if (ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(D))
returnType = PD->getType();
else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
returnType = FD->getReturnType();
else {
S.Diag(D->getLocStart(), diag::warn_attribute_wrong_decl_type)
<< Attr.getRange() << Attr.getName()
<< ExpectedFunctionOrMethod;
return;
}
bool typeOK;
bool cf;
switch (Attr.getKind()) {
default: llvm_unreachable("invalid ownership attribute");
case AttributeList::AT_NSReturnsAutoreleased:
case AttributeList::AT_NSReturnsRetained:
case AttributeList::AT_NSReturnsNotRetained:
typeOK = isValidSubjectOfNSAttribute(S, returnType);
cf = false;
break;
case AttributeList::AT_CFReturnsRetained:
case AttributeList::AT_CFReturnsNotRetained:
typeOK = isValidSubjectOfCFAttribute(S, returnType);
cf = true;
break;
}
if (!typeOK) {
S.Diag(D->getLocStart(), diag::warn_ns_attribute_wrong_return_type)
<< Attr.getRange() << Attr.getName() << isa<ObjCMethodDecl>(D) << cf;
return;
}
switch (Attr.getKind()) {
default:
llvm_unreachable("invalid ownership attribute");
case AttributeList::AT_NSReturnsAutoreleased:
D->addAttr(::new (S.Context)
NSReturnsAutoreleasedAttr(Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex()));
return;
case AttributeList::AT_CFReturnsNotRetained:
D->addAttr(::new (S.Context)
CFReturnsNotRetainedAttr(Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex()));
return;
case AttributeList::AT_NSReturnsNotRetained:
D->addAttr(::new (S.Context)
NSReturnsNotRetainedAttr(Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex()));
return;
case AttributeList::AT_CFReturnsRetained:
D->addAttr(::new (S.Context)
CFReturnsRetainedAttr(Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex()));
return;
case AttributeList::AT_NSReturnsRetained:
D->addAttr(::new (S.Context)
NSReturnsRetainedAttr(Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex()));
return;
};
}
static void handleObjCReturnsInnerPointerAttr(Sema &S, Decl *D,
const AttributeList &attr) {
const int EP_ObjCMethod = 1;
const int EP_ObjCProperty = 2;
SourceLocation loc = attr.getLoc();
QualType resultType;
if (isa<ObjCMethodDecl>(D))
resultType = cast<ObjCMethodDecl>(D)->getReturnType();
else
resultType = cast<ObjCPropertyDecl>(D)->getType();
if (!resultType->isReferenceType() &&
(!resultType->isPointerType() || resultType->isObjCRetainableType())) {
S.Diag(D->getLocStart(), diag::warn_ns_attribute_wrong_return_type)
<< SourceRange(loc)
<< attr.getName()
<< (isa<ObjCMethodDecl>(D) ? EP_ObjCMethod : EP_ObjCProperty)
<< /*non-retainable pointer*/ 2;
// Drop the attribute.
return;
}
D->addAttr(::new (S.Context)
ObjCReturnsInnerPointerAttr(attr.getRange(), S.Context,
attr.getAttributeSpellingListIndex()));
}
static void handleObjCRequiresSuperAttr(Sema &S, Decl *D,
const AttributeList &attr) {
ObjCMethodDecl *method = cast<ObjCMethodDecl>(D);
DeclContext *DC = method->getDeclContext();
if (const ObjCProtocolDecl *PDecl = dyn_cast_or_null<ObjCProtocolDecl>(DC)) {
S.Diag(D->getLocStart(), diag::warn_objc_requires_super_protocol)
<< attr.getName() << 0;
S.Diag(PDecl->getLocation(), diag::note_protocol_decl);
return;
}
if (method->getMethodFamily() == OMF_dealloc) {
S.Diag(D->getLocStart(), diag::warn_objc_requires_super_protocol)
<< attr.getName() << 1;
return;
}
method->addAttr(::new (S.Context)
ObjCRequiresSuperAttr(attr.getRange(), S.Context,
attr.getAttributeSpellingListIndex()));
}
static void handleCFAuditedTransferAttr(Sema &S, Decl *D,
const AttributeList &Attr) {
if (checkAttrMutualExclusion<CFUnknownTransferAttr>(S, D, Attr))
return;
D->addAttr(::new (S.Context)
CFAuditedTransferAttr(Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex()));
}
static void handleCFUnknownTransferAttr(Sema &S, Decl *D,
const AttributeList &Attr) {
if (checkAttrMutualExclusion<CFAuditedTransferAttr>(S, D, Attr))
return;
D->addAttr(::new (S.Context)
CFUnknownTransferAttr(Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex()));
}
static void handleObjCBridgeAttr(Sema &S, Scope *Sc, Decl *D,
const AttributeList &Attr) {
IdentifierLoc * Parm = Attr.isArgIdent(0) ? Attr.getArgAsIdent(0) : 0;
if (!Parm) {
S.Diag(D->getLocStart(), diag::err_objc_attr_not_id) << Attr.getName() << 0;
return;
}
D->addAttr(::new (S.Context)
ObjCBridgeAttr(Attr.getRange(), S.Context, Parm->Ident,
Attr.getAttributeSpellingListIndex()));
}
static void handleObjCBridgeMutableAttr(Sema &S, Scope *Sc, Decl *D,
const AttributeList &Attr) {
IdentifierLoc * Parm = Attr.isArgIdent(0) ? Attr.getArgAsIdent(0) : 0;
if (!Parm) {
S.Diag(D->getLocStart(), diag::err_objc_attr_not_id) << Attr.getName() << 0;
return;
}
D->addAttr(::new (S.Context)
ObjCBridgeMutableAttr(Attr.getRange(), S.Context, Parm->Ident,
Attr.getAttributeSpellingListIndex()));
}
static void handleObjCBridgeRelatedAttr(Sema &S, Scope *Sc, Decl *D,
const AttributeList &Attr) {
IdentifierInfo *RelatedClass =
Attr.isArgIdent(0) ? Attr.getArgAsIdent(0)->Ident : 0;
if (!RelatedClass) {
S.Diag(D->getLocStart(), diag::err_objc_attr_not_id) << Attr.getName() << 0;
return;
}
IdentifierInfo *ClassMethod =
Attr.getArgAsIdent(1) ? Attr.getArgAsIdent(1)->Ident : 0;
IdentifierInfo *InstanceMethod =
Attr.getArgAsIdent(2) ? Attr.getArgAsIdent(2)->Ident : 0;
D->addAttr(::new (S.Context)
ObjCBridgeRelatedAttr(Attr.getRange(), S.Context, RelatedClass,
ClassMethod, InstanceMethod,
Attr.getAttributeSpellingListIndex()));
}
static void handleObjCDesignatedInitializer(Sema &S, Decl *D,
const AttributeList &Attr) {
ObjCInterfaceDecl *IFace = cast<ObjCInterfaceDecl>(D->getDeclContext());
IFace->setHasDesignatedInitializers();
D->addAttr(::new (S.Context)
ObjCDesignatedInitializerAttr(Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex()));
}
static void handleObjCOwnershipAttr(Sema &S, Decl *D,
const AttributeList &Attr) {
if (hasDeclarator(D)) return;
S.Diag(D->getLocStart(), diag::err_attribute_wrong_decl_type)
<< Attr.getRange() << Attr.getName() << ExpectedVariable;
}
static void handleObjCPreciseLifetimeAttr(Sema &S, Decl *D,
const AttributeList &Attr) {
ValueDecl *vd = cast<ValueDecl>(D);
QualType type = vd->getType();
if (!type->isDependentType() &&
!type->isObjCLifetimeType()) {
S.Diag(Attr.getLoc(), diag::err_objc_precise_lifetime_bad_type)
<< type;
return;
}
Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
// If we have no lifetime yet, check the lifetime we're presumably
// going to infer.
if (lifetime == Qualifiers::OCL_None && !type->isDependentType())
lifetime = type->getObjCARCImplicitLifetime();
switch (lifetime) {
case Qualifiers::OCL_None:
assert(type->isDependentType() &&
"didn't infer lifetime for non-dependent type?");
break;
case Qualifiers::OCL_Weak: // meaningful
case Qualifiers::OCL_Strong: // meaningful
break;
case Qualifiers::OCL_ExplicitNone:
case Qualifiers::OCL_Autoreleasing:
S.Diag(Attr.getLoc(), diag::warn_objc_precise_lifetime_meaningless)
<< (lifetime == Qualifiers::OCL_Autoreleasing);
break;
}
D->addAttr(::new (S.Context)
ObjCPreciseLifetimeAttr(Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex()));
}
//===----------------------------------------------------------------------===//
// Microsoft specific attribute handlers.
//===----------------------------------------------------------------------===//
static void handleUuidAttr(Sema &S, Decl *D, const AttributeList &Attr) {
if (!S.LangOpts.CPlusPlus) {
S.Diag(Attr.getLoc(), diag::err_attribute_not_supported_in_lang)
<< Attr.getName() << AttributeLangSupport::C;
return;
}
if (!isa<CXXRecordDecl>(D)) {
S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
<< Attr.getName() << ExpectedClass;
return;
}
StringRef StrRef;
SourceLocation LiteralLoc;
if (!S.checkStringLiteralArgumentAttr(Attr, 0, StrRef, &LiteralLoc))
return;
// GUID format is "XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX" or
// "{XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX}", normalize to the former.
if (StrRef.size() == 38 && StrRef.front() == '{' && StrRef.back() == '}')
StrRef = StrRef.drop_front().drop_back();
// Validate GUID length.
if (StrRef.size() != 36) {
S.Diag(LiteralLoc, diag::err_attribute_uuid_malformed_guid);
return;
}
for (unsigned i = 0; i < 36; ++i) {
if (i == 8 || i == 13 || i == 18 || i == 23) {
if (StrRef[i] != '-') {
S.Diag(LiteralLoc, diag::err_attribute_uuid_malformed_guid);
return;
}
} else if (!isHexDigit(StrRef[i])) {
S.Diag(LiteralLoc, diag::err_attribute_uuid_malformed_guid);
return;
}
}
D->addAttr(::new (S.Context) UuidAttr(Attr.getRange(), S.Context, StrRef,
Attr.getAttributeSpellingListIndex()));
}
static void handleMSInheritanceAttr(Sema &S, Decl *D, const AttributeList &Attr) {
if (!S.LangOpts.CPlusPlus) {
S.Diag(Attr.getLoc(), diag::err_attribute_not_supported_in_lang)
<< Attr.getName() << AttributeLangSupport::C;
return;
}
MSInheritanceAttr *IA = S.mergeMSInheritanceAttr(
D, Attr.getRange(), /*BestCase=*/true,
Attr.getAttributeSpellingListIndex(),
(MSInheritanceAttr::Spelling)Attr.getSemanticSpelling());
if (IA)
D->addAttr(IA);
}
static void handleARMInterruptAttr(Sema &S, Decl *D,
const AttributeList &Attr) {
// Check the attribute arguments.
if (Attr.getNumArgs() > 1) {
S.Diag(Attr.getLoc(), diag::err_attribute_too_many_arguments)
<< Attr.getName() << 1;
return;
}
StringRef Str;
SourceLocation ArgLoc;
if (Attr.getNumArgs() == 0)
Str = "";
else if (!S.checkStringLiteralArgumentAttr(Attr, 0, Str, &ArgLoc))
return;
ARMInterruptAttr::InterruptType Kind;
if (!ARMInterruptAttr::ConvertStrToInterruptType(Str, Kind)) {
S.Diag(Attr.getLoc(), diag::warn_attribute_type_not_supported)
<< Attr.getName() << Str << ArgLoc;
return;
}
unsigned Index = Attr.getAttributeSpellingListIndex();
D->addAttr(::new (S.Context)
ARMInterruptAttr(Attr.getLoc(), S.Context, Kind, Index));
}
static void handleMSP430InterruptAttr(Sema &S, Decl *D,
const AttributeList &Attr) {
if (!checkAttributeNumArgs(S, Attr, 1))
return;
if (!Attr.isArgExpr(0)) {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_type) << Attr.getName()
<< AANT_ArgumentIntegerConstant;
return;
}
// FIXME: Check for decl - it should be void ()(void).
Expr *NumParamsExpr = static_cast<Expr *>(Attr.getArgAsExpr(0));
llvm::APSInt NumParams(32);
if (!NumParamsExpr->isIntegerConstantExpr(NumParams, S.Context)) {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_type)
<< Attr.getName() << AANT_ArgumentIntegerConstant
<< NumParamsExpr->getSourceRange();
return;
}
unsigned Num = NumParams.getLimitedValue(255);
if ((Num & 1) || Num > 30) {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_out_of_bounds)
<< Attr.getName() << (int)NumParams.getSExtValue()
<< NumParamsExpr->getSourceRange();
return;
}
D->addAttr(::new (S.Context)
MSP430InterruptAttr(Attr.getLoc(), S.Context, Num,
Attr.getAttributeSpellingListIndex()));
D->addAttr(UsedAttr::CreateImplicit(S.Context));
}
static void handleInterruptAttr(Sema &S, Decl *D, const AttributeList &Attr) {
// Dispatch the interrupt attribute based on the current target.
if (S.Context.getTargetInfo().getTriple().getArch() == llvm::Triple::msp430)
handleMSP430InterruptAttr(S, D, Attr);
else
handleARMInterruptAttr(S, D, Attr);
}
static void handleX86ForceAlignArgPointerAttr(Sema &S, Decl *D,
const AttributeList& Attr) {
// If we try to apply it to a function pointer, don't warn, but don't
// do anything, either. It doesn't matter anyway, because there's nothing
// special about calling a force_align_arg_pointer function.
ValueDecl *VD = dyn_cast<ValueDecl>(D);
if (VD && VD->getType()->isFunctionPointerType())
return;
// Also don't warn on function pointer typedefs.
TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D);
if (TD && (TD->getUnderlyingType()->isFunctionPointerType() ||
TD->getUnderlyingType()->isFunctionType()))
return;
// Attribute can only be applied to function types.
if (!isa<FunctionDecl>(D)) {
S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
<< Attr.getName() << /* function */0;
return;
}
D->addAttr(::new (S.Context)
X86ForceAlignArgPointerAttr(Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex()));
}
DLLImportAttr *Sema::mergeDLLImportAttr(Decl *D, SourceRange Range,
unsigned AttrSpellingListIndex) {
if (D->hasAttr<DLLExportAttr>()) {
Diag(Range.getBegin(), diag::warn_attribute_ignored) << "'dllimport'";
return NULL;
}
if (D->hasAttr<DLLImportAttr>())
return NULL;
return ::new (Context) DLLImportAttr(Range, Context, AttrSpellingListIndex);
}
static void handleDLLImportAttr(Sema &S, Decl *D, const AttributeList &Attr) {
// Attribute can be applied only to functions or variables.
FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
if (!FD && !isa<VarDecl>(D)) {
// Apparently Visual C++ thinks it is okay to not emit a warning
// in this case, so only emit a warning when -fms-extensions is not
// specified.
if (!S.getLangOpts().MicrosoftExt)
S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
<< Attr.getName() << ExpectedVariableOrFunction;
return;
}
// Currently, the dllimport attribute is ignored for inlined functions.
// Warning is emitted.
if (FD && FD->isInlineSpecified()) {
S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << Attr.getName();
return;
}
unsigned Index = Attr.getAttributeSpellingListIndex();
DLLImportAttr *NewAttr = S.mergeDLLImportAttr(D, Attr.getRange(), Index);
if (NewAttr)
D->addAttr(NewAttr);
}
DLLExportAttr *Sema::mergeDLLExportAttr(Decl *D, SourceRange Range,
unsigned AttrSpellingListIndex) {
if (DLLImportAttr *Import = D->getAttr<DLLImportAttr>()) {
Diag(Import->getLocation(), diag::warn_attribute_ignored) << Import;
D->dropAttr<DLLImportAttr>();
}
if (D->hasAttr<DLLExportAttr>())
return NULL;
return ::new (Context) DLLExportAttr(Range, Context, AttrSpellingListIndex);
}
static void handleDLLExportAttr(Sema &S, Decl *D, const AttributeList &Attr) {
// Currently, the dllexport attribute is ignored for inlined functions, unless
// the -fkeep-inline-functions flag has been used. Warning is emitted.
if (isa<FunctionDecl>(D) && cast<FunctionDecl>(D)->isInlineSpecified()) {
// FIXME: ... unless the -fkeep-inline-functions flag has been used.
S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << Attr.getName();
return;
}
unsigned Index = Attr.getAttributeSpellingListIndex();
DLLExportAttr *NewAttr = S.mergeDLLExportAttr(D, Attr.getRange(), Index);
if (NewAttr)
D->addAttr(NewAttr);
}
MSInheritanceAttr *
Sema::mergeMSInheritanceAttr(Decl *D, SourceRange Range, bool BestCase,
unsigned AttrSpellingListIndex,
MSInheritanceAttr::Spelling SemanticSpelling) {
if (MSInheritanceAttr *IA = D->getAttr<MSInheritanceAttr>()) {
if (IA->getSemanticSpelling() == SemanticSpelling)
return 0;
Diag(IA->getLocation(), diag::err_mismatched_ms_inheritance)
<< 1 /*previous declaration*/;
Diag(Range.getBegin(), diag::note_previous_ms_inheritance);
D->dropAttr<MSInheritanceAttr>();
}
CXXRecordDecl *RD = cast<CXXRecordDecl>(D);
if (RD->hasDefinition()) {
if (checkMSInheritanceAttrOnDefinition(RD, Range, BestCase,
SemanticSpelling)) {
return 0;
}
} else {
if (isa<ClassTemplatePartialSpecializationDecl>(RD)) {
Diag(Range.getBegin(), diag::warn_ignored_ms_inheritance)
<< 1 /*partial specialization*/;
return 0;
}
if (RD->getDescribedClassTemplate()) {
Diag(Range.getBegin(), diag::warn_ignored_ms_inheritance)
<< 0 /*primary template*/;
return 0;
}
}
return ::new (Context)
MSInheritanceAttr(Range, Context, BestCase, AttrSpellingListIndex);
}
static void handleCapabilityAttr(Sema &S, Decl *D, const AttributeList &Attr) {
// The capability attributes take a single string parameter for the name of
// the capability they represent. The lockable attribute does not take any
// parameters. However, semantically, both attributes represent the same
// concept, and so they use the same semantic attribute. Eventually, the
// lockable attribute will be removed.
//
// For backwards compatibility, any capability which has no specified string
// literal will be considered a "mutex."
StringRef N("mutex");
SourceLocation LiteralLoc;
if (Attr.getKind() == AttributeList::AT_Capability &&
!S.checkStringLiteralArgumentAttr(Attr, 0, N, &LiteralLoc))
return;
// Currently, there are only two names allowed for a capability: role and
// mutex (case insensitive). Diagnose other capability names.
if (!N.equals_lower("mutex") && !N.equals_lower("role"))
S.Diag(LiteralLoc, diag::warn_invalid_capability_name) << N;
D->addAttr(::new (S.Context) CapabilityAttr(Attr.getRange(), S.Context, N,
Attr.getAttributeSpellingListIndex()));
}
static void handleAssertCapabilityAttr(Sema &S, Decl *D,
const AttributeList &Attr) {
D->addAttr(::new (S.Context) AssertCapabilityAttr(Attr.getRange(), S.Context,
Attr.getArgAsExpr(0),
Attr.getAttributeSpellingListIndex()));
}
static void handleAcquireCapabilityAttr(Sema &S, Decl *D,
const AttributeList &Attr) {
SmallVector<Expr*, 1> Args;
if (!checkAttributeAtLeastNumArgs(S, Attr, 1))
return;
// Check that all arguments are lockable objects.
checkAttrArgsAreLockableObjs(S, D, Attr, Args);
if (Args.empty())
return;
D->addAttr(::new (S.Context) AcquireCapabilityAttr(Attr.getRange(),
S.Context,
Args.data(), Args.size(),
Attr.getAttributeSpellingListIndex()));
}
static void handleTryAcquireCapabilityAttr(Sema &S, Decl *D,
const AttributeList &Attr) {
SmallVector<Expr*, 2> Args;
if (!checkTryLockFunAttrCommon(S, D, Attr, Args))
return;
D->addAttr(::new (S.Context) TryAcquireCapabilityAttr(Attr.getRange(),
S.Context,
Attr.getArgAsExpr(0),
Args.data(),
Args.size(),
Attr.getAttributeSpellingListIndex()));
}
static void handleReleaseCapabilityAttr(Sema &S, Decl *D,
const AttributeList &Attr) {
SmallVector<Expr*, 1> Args;
if (!checkAttributeAtLeastNumArgs(S, Attr, 1))
return;
// Check that all arguments are lockable objects.
checkAttrArgsAreLockableObjs(S, D, Attr, Args);
if (Args.empty())
return;
D->addAttr(::new (S.Context) ReleaseCapabilityAttr(Attr.getRange(),
S.Context,
Args.data(), Args.size(),
Attr.getAttributeSpellingListIndex()));
}
static void handleRequiresCapabilityAttr(Sema &S, Decl *D,
const AttributeList &Attr) {
if (!checkAttributeAtLeastNumArgs(S, Attr, 1))
return;
// check that all arguments are lockable objects
SmallVector<Expr*, 1> Args;
checkAttrArgsAreLockableObjs(S, D, Attr, Args);
if (Args.empty())
return;
RequiresCapabilityAttr *RCA = ::new (S.Context)
RequiresCapabilityAttr(Attr.getRange(), S.Context, Args.data(),
Args.size(), Attr.getAttributeSpellingListIndex());
D->addAttr(RCA);
}
/// Handles semantic checking for features that are common to all attributes,
/// such as checking whether a parameter was properly specified, or the correct
/// number of arguments were passed, etc.
static bool handleCommonAttributeFeatures(Sema &S, Scope *scope, Decl *D,
const AttributeList &Attr) {
// Several attributes carry different semantics than the parsing requires, so
// those are opted out of the common handling.
//
// We also bail on unknown and ignored attributes because those are handled
// as part of the target-specific handling logic.
if (Attr.hasCustomParsing() ||
Attr.getKind() == AttributeList::UnknownAttribute)
return false;
// Check whether the attribute requires specific language extensions to be
// enabled.
if (!Attr.diagnoseLangOpts(S))
return true;
// If there are no optional arguments, then checking for the argument count
// is trivial.
if (Attr.getMinArgs() == Attr.getMaxArgs() &&
!checkAttributeNumArgs(S, Attr, Attr.getMinArgs()))
return true;
// Check whether the attribute appertains to the given subject.
if (!Attr.diagnoseAppertainsTo(S, D))
return true;
return false;
}
//===----------------------------------------------------------------------===//
// Top Level Sema Entry Points
//===----------------------------------------------------------------------===//
/// ProcessDeclAttribute - Apply the specific attribute to the specified decl if
/// the attribute applies to decls. If the attribute is a type attribute, just
/// silently ignore it if a GNU attribute.
static void ProcessDeclAttribute(Sema &S, Scope *scope, Decl *D,
const AttributeList &Attr,
bool IncludeCXX11Attributes) {
if (Attr.isInvalid() || Attr.getKind() == AttributeList::IgnoredAttribute)
return;
// Ignore C++11 attributes on declarator chunks: they appertain to the type
// instead.
if (Attr.isCXX11Attribute() && !IncludeCXX11Attributes)
return;
// Unknown attributes are automatically warned on. Target-specific attributes
// which do not apply to the current target architecture are treated as
// though they were unknown attributes.
if (Attr.getKind() == AttributeList::UnknownAttribute ||
!Attr.existsInTarget(S.Context.getTargetInfo().getTriple())) {
S.Diag(Attr.getLoc(), Attr.isDeclspecAttribute() ?
diag::warn_unhandled_ms_attribute_ignored :
diag::warn_unknown_attribute_ignored) << Attr.getName();
return;
}
if (handleCommonAttributeFeatures(S, scope, D, Attr))
return;
switch (Attr.getKind()) {
default:
// Type attributes are handled elsewhere; silently move on.
assert(Attr.isTypeAttr() && "Non-type attribute not handled");
break;
case AttributeList::AT_Interrupt:
handleInterruptAttr(S, D, Attr); break;
case AttributeList::AT_X86ForceAlignArgPointer:
handleX86ForceAlignArgPointerAttr(S, D, Attr); break;
case AttributeList::AT_DLLExport:
handleDLLExportAttr(S, D, Attr); break;
case AttributeList::AT_DLLImport:
handleDLLImportAttr(S, D, Attr); break;
case AttributeList::AT_Mips16:
handleSimpleAttribute<Mips16Attr>(S, D, Attr); break;
case AttributeList::AT_NoMips16:
handleSimpleAttribute<NoMips16Attr>(S, D, Attr); break;
case AttributeList::AT_IBAction:
handleSimpleAttribute<IBActionAttr>(S, D, Attr); break;
case AttributeList::AT_IBOutlet: handleIBOutlet(S, D, Attr); break;
case AttributeList::AT_IBOutletCollection:
handleIBOutletCollection(S, D, Attr); break;
case AttributeList::AT_Alias: handleAliasAttr (S, D, Attr); break;
case AttributeList::AT_Aligned: handleAlignedAttr (S, D, Attr); break;
case AttributeList::AT_AlwaysInline:
handleSimpleAttribute<AlwaysInlineAttr>(S, D, Attr); break;
case AttributeList::AT_AnalyzerNoReturn:
handleAnalyzerNoReturnAttr (S, D, Attr); break;
case AttributeList::AT_TLSModel: handleTLSModelAttr (S, D, Attr); break;
case AttributeList::AT_Annotate: handleAnnotateAttr (S, D, Attr); break;
case AttributeList::AT_Availability:handleAvailabilityAttr(S, D, Attr); break;
case AttributeList::AT_CarriesDependency:
handleDependencyAttr(S, scope, D, Attr);
break;
case AttributeList::AT_Common: handleCommonAttr (S, D, Attr); break;
case AttributeList::AT_CUDAConstant:
handleSimpleAttribute<CUDAConstantAttr>(S, D, Attr); break;
case AttributeList::AT_Constructor: handleConstructorAttr (S, D, Attr); break;
case AttributeList::AT_CXX11NoReturn:
handleSimpleAttribute<CXX11NoReturnAttr>(S, D, Attr); break;
case AttributeList::AT_Deprecated:
handleAttrWithMessage<DeprecatedAttr>(S, D, Attr);
break;
case AttributeList::AT_Destructor: handleDestructorAttr (S, D, Attr); break;
case AttributeList::AT_EnableIf: handleEnableIfAttr (S, D, Attr); break;
case AttributeList::AT_ExtVectorType:
handleExtVectorTypeAttr(S, scope, D, Attr);
break;
case AttributeList::AT_MinSize:
handleSimpleAttribute<MinSizeAttr>(S, D, Attr);
break;
case AttributeList::AT_Format: handleFormatAttr (S, D, Attr); break;
case AttributeList::AT_FormatArg: handleFormatArgAttr (S, D, Attr); break;
case AttributeList::AT_CUDAGlobal: handleGlobalAttr (S, D, Attr); break;
case AttributeList::AT_CUDADevice:
handleSimpleAttribute<CUDADeviceAttr>(S, D, Attr); break;
case AttributeList::AT_CUDAHost:
handleSimpleAttribute<CUDAHostAttr>(S, D, Attr); break;
case AttributeList::AT_GNUInline: handleGNUInlineAttr (S, D, Attr); break;
case AttributeList::AT_CUDALaunchBounds:
handleLaunchBoundsAttr(S, D, Attr);
break;
case AttributeList::AT_Malloc: handleMallocAttr (S, D, Attr); break;
case AttributeList::AT_MayAlias:
handleSimpleAttribute<MayAliasAttr>(S, D, Attr); break;
case AttributeList::AT_Mode: handleModeAttr (S, D, Attr); break;
case AttributeList::AT_NoCommon:
handleSimpleAttribute<NoCommonAttr>(S, D, Attr); break;
case AttributeList::AT_NonNull:
if (ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(D))
handleNonNullAttrParameter(S, PVD, Attr);
else
handleNonNullAttr(S, D, Attr);
break;
case AttributeList::AT_ReturnsNonNull:
handleReturnsNonNullAttr(S, D, Attr); break;
case AttributeList::AT_Overloadable:
handleSimpleAttribute<OverloadableAttr>(S, D, Attr); break;
case AttributeList::AT_Ownership: handleOwnershipAttr (S, D, Attr); break;
case AttributeList::AT_Cold: handleColdAttr (S, D, Attr); break;
case AttributeList::AT_Hot: handleHotAttr (S, D, Attr); break;
case AttributeList::AT_Naked:
handleSimpleAttribute<NakedAttr>(S, D, Attr); break;
case AttributeList::AT_NoReturn: handleNoReturnAttr (S, D, Attr); break;
case AttributeList::AT_NoThrow:
handleSimpleAttribute<NoThrowAttr>(S, D, Attr); break;
case AttributeList::AT_CUDAShared:
handleSimpleAttribute<CUDASharedAttr>(S, D, Attr); break;
case AttributeList::AT_VecReturn: handleVecReturnAttr (S, D, Attr); break;
case AttributeList::AT_ObjCOwnership:
handleObjCOwnershipAttr(S, D, Attr); break;
case AttributeList::AT_ObjCPreciseLifetime:
handleObjCPreciseLifetimeAttr(S, D, Attr); break;
case AttributeList::AT_ObjCReturnsInnerPointer:
handleObjCReturnsInnerPointerAttr(S, D, Attr); break;
case AttributeList::AT_ObjCRequiresSuper:
handleObjCRequiresSuperAttr(S, D, Attr); break;
case AttributeList::AT_ObjCBridge:
handleObjCBridgeAttr(S, scope, D, Attr); break;
case AttributeList::AT_ObjCBridgeMutable:
handleObjCBridgeMutableAttr(S, scope, D, Attr); break;
case AttributeList::AT_ObjCBridgeRelated:
handleObjCBridgeRelatedAttr(S, scope, D, Attr); break;
case AttributeList::AT_ObjCDesignatedInitializer:
handleObjCDesignatedInitializer(S, D, Attr); break;
case AttributeList::AT_CFAuditedTransfer:
handleCFAuditedTransferAttr(S, D, Attr); break;
case AttributeList::AT_CFUnknownTransfer:
handleCFUnknownTransferAttr(S, D, Attr); break;
case AttributeList::AT_CFConsumed:
case AttributeList::AT_NSConsumed: handleNSConsumedAttr (S, D, Attr); break;
case AttributeList::AT_NSConsumesSelf:
handleSimpleAttribute<NSConsumesSelfAttr>(S, D, Attr); break;
case AttributeList::AT_NSReturnsAutoreleased:
case AttributeList::AT_NSReturnsNotRetained:
case AttributeList::AT_CFReturnsNotRetained:
case AttributeList::AT_NSReturnsRetained:
case AttributeList::AT_CFReturnsRetained:
handleNSReturnsRetainedAttr(S, D, Attr); break;
case AttributeList::AT_WorkGroupSizeHint:
handleWorkGroupSize<WorkGroupSizeHintAttr>(S, D, Attr); break;
case AttributeList::AT_ReqdWorkGroupSize:
handleWorkGroupSize<ReqdWorkGroupSizeAttr>(S, D, Attr); break;
case AttributeList::AT_VecTypeHint:
handleVecTypeHint(S, D, Attr); break;
case AttributeList::AT_InitPriority:
handleInitPriorityAttr(S, D, Attr); break;
case AttributeList::AT_Packed: handlePackedAttr (S, D, Attr); break;
case AttributeList::AT_Section: handleSectionAttr (S, D, Attr); break;
case AttributeList::AT_Unavailable:
handleAttrWithMessage<UnavailableAttr>(S, D, Attr);
break;
case AttributeList::AT_ArcWeakrefUnavailable:
handleSimpleAttribute<ArcWeakrefUnavailableAttr>(S, D, Attr); break;
case AttributeList::AT_ObjCRootClass:
handleSimpleAttribute<ObjCRootClassAttr>(S, D, Attr); break;
case AttributeList::AT_ObjCExplicitProtocolImpl:
handleObjCSuppresProtocolAttr(S, D, Attr);
break;
case AttributeList::AT_ObjCRequiresPropertyDefs:
handleSimpleAttribute<ObjCRequiresPropertyDefsAttr>(S, D, Attr); break;
case AttributeList::AT_Unused:
handleSimpleAttribute<UnusedAttr>(S, D, Attr); break;
case AttributeList::AT_ReturnsTwice:
handleSimpleAttribute<ReturnsTwiceAttr>(S, D, Attr); break;
case AttributeList::AT_Used: handleUsedAttr (S, D, Attr); break;
case AttributeList::AT_Visibility:
handleVisibilityAttr(S, D, Attr, false);
break;
case AttributeList::AT_TypeVisibility:
handleVisibilityAttr(S, D, Attr, true);
break;
case AttributeList::AT_WarnUnused:
handleSimpleAttribute<WarnUnusedAttr>(S, D, Attr); break;
case AttributeList::AT_WarnUnusedResult: handleWarnUnusedResult(S, D, Attr);
break;
case AttributeList::AT_Weak:
handleSimpleAttribute<WeakAttr>(S, D, Attr); break;
case AttributeList::AT_WeakRef: handleWeakRefAttr (S, D, Attr); break;
case AttributeList::AT_WeakImport: handleWeakImportAttr (S, D, Attr); break;
case AttributeList::AT_TransparentUnion:
handleTransparentUnionAttr(S, D, Attr);
break;
case AttributeList::AT_ObjCException:
handleSimpleAttribute<ObjCExceptionAttr>(S, D, Attr); break;
case AttributeList::AT_ObjCMethodFamily:
handleObjCMethodFamilyAttr(S, D, Attr);
break;
case AttributeList::AT_ObjCNSObject:handleObjCNSObject (S, D, Attr); break;
case AttributeList::AT_Blocks: handleBlocksAttr (S, D, Attr); break;
case AttributeList::AT_Sentinel: handleSentinelAttr (S, D, Attr); break;
case AttributeList::AT_Const:
handleSimpleAttribute<ConstAttr>(S, D, Attr); break;
case AttributeList::AT_Pure:
handleSimpleAttribute<PureAttr>(S, D, Attr); break;
case AttributeList::AT_Cleanup: handleCleanupAttr (S, D, Attr); break;
case AttributeList::AT_NoDebug: handleNoDebugAttr (S, D, Attr); break;
case AttributeList::AT_NoDuplicate:
handleSimpleAttribute<NoDuplicateAttr>(S, D, Attr); break;
case AttributeList::AT_NoInline:
handleSimpleAttribute<NoInlineAttr>(S, D, Attr); break;
case AttributeList::AT_NoInstrumentFunction: // Interacts with -pg.
handleSimpleAttribute<NoInstrumentFunctionAttr>(S, D, Attr); break;
case AttributeList::AT_StdCall:
case AttributeList::AT_CDecl:
case AttributeList::AT_FastCall:
case AttributeList::AT_ThisCall:
case AttributeList::AT_Pascal:
case AttributeList::AT_MSABI:
case AttributeList::AT_SysVABI:
case AttributeList::AT_Pcs:
case AttributeList::AT_PnaclCall:
case AttributeList::AT_IntelOclBicc:
handleCallConvAttr(S, D, Attr);
break;
case AttributeList::AT_OpenCLKernel:
handleSimpleAttribute<OpenCLKernelAttr>(S, D, Attr); break;
case AttributeList::AT_OpenCLImageAccess:
handleSimpleAttribute<OpenCLImageAccessAttr>(S, D, Attr); break;
// Microsoft attributes:
case AttributeList::AT_MsStruct:
handleSimpleAttribute<MsStructAttr>(S, D, Attr);
break;
case AttributeList::AT_Uuid:
handleUuidAttr(S, D, Attr);
break;
case AttributeList::AT_MSInheritance:
handleMSInheritanceAttr(S, D, Attr); break;
case AttributeList::AT_SelectAny:
handleSimpleAttribute<SelectAnyAttr>(S, D, Attr); break;
// Thread safety attributes:
case AttributeList::AT_AssertExclusiveLock:
handleAssertExclusiveLockAttr(S, D, Attr);
break;
case AttributeList::AT_AssertSharedLock:
handleAssertSharedLockAttr(S, D, Attr);
break;
case AttributeList::AT_GuardedVar:
handleSimpleAttribute<GuardedVarAttr>(S, D, Attr); break;
case AttributeList::AT_PtGuardedVar:
handlePtGuardedVarAttr(S, D, Attr);
break;
case AttributeList::AT_ScopedLockable:
handleSimpleAttribute<ScopedLockableAttr>(S, D, Attr); break;
case AttributeList::AT_NoSanitizeAddress:
handleSimpleAttribute<NoSanitizeAddressAttr>(S, D, Attr);
break;
case AttributeList::AT_NoThreadSafetyAnalysis:
handleSimpleAttribute<NoThreadSafetyAnalysisAttr>(S, D, Attr);
break;
case AttributeList::AT_NoSanitizeThread:
handleSimpleAttribute<NoSanitizeThreadAttr>(S, D, Attr);
break;
case AttributeList::AT_NoSanitizeMemory:
handleSimpleAttribute<NoSanitizeMemoryAttr>(S, D, Attr);
break;
case AttributeList::AT_GuardedBy:
handleGuardedByAttr(S, D, Attr);
break;
case AttributeList::AT_PtGuardedBy:
handlePtGuardedByAttr(S, D, Attr);
break;
case AttributeList::AT_ExclusiveLockFunction:
handleExclusiveLockFunctionAttr(S, D, Attr);
break;
case AttributeList::AT_ExclusiveTrylockFunction:
handleExclusiveTrylockFunctionAttr(S, D, Attr);
break;
case AttributeList::AT_LockReturned:
handleLockReturnedAttr(S, D, Attr);
break;
case AttributeList::AT_LocksExcluded:
handleLocksExcludedAttr(S, D, Attr);
break;
case AttributeList::AT_SharedLockFunction:
handleSharedLockFunctionAttr(S, D, Attr);
break;
case AttributeList::AT_SharedTrylockFunction:
handleSharedTrylockFunctionAttr(S, D, Attr);
break;
case AttributeList::AT_UnlockFunction:
handleUnlockFunAttr(S, D, Attr);
break;
case AttributeList::AT_AcquiredBefore:
handleAcquiredBeforeAttr(S, D, Attr);
break;
case AttributeList::AT_AcquiredAfter:
handleAcquiredAfterAttr(S, D, Attr);
break;
// Capability analysis attributes.
case AttributeList::AT_Capability:
case AttributeList::AT_Lockable:
handleCapabilityAttr(S, D, Attr); break;
case AttributeList::AT_RequiresCapability:
handleRequiresCapabilityAttr(S, D, Attr); break;
case AttributeList::AT_AssertCapability:
handleAssertCapabilityAttr(S, D, Attr); break;
case AttributeList::AT_AcquireCapability:
handleAcquireCapabilityAttr(S, D, Attr); break;
case AttributeList::AT_ReleaseCapability:
handleReleaseCapabilityAttr(S, D, Attr); break;
case AttributeList::AT_TryAcquireCapability:
handleTryAcquireCapabilityAttr(S, D, Attr); break;
// Consumed analysis attributes.
case AttributeList::AT_Consumable:
handleConsumableAttr(S, D, Attr);
break;
case AttributeList::AT_ConsumableAutoCast:
handleSimpleAttribute<ConsumableAutoCastAttr>(S, D, Attr); break;
break;
case AttributeList::AT_ConsumableSetOnRead:
handleSimpleAttribute<ConsumableSetOnReadAttr>(S, D, Attr); break;
break;
case AttributeList::AT_CallableWhen:
handleCallableWhenAttr(S, D, Attr);
break;
case AttributeList::AT_ParamTypestate:
handleParamTypestateAttr(S, D, Attr);
break;
case AttributeList::AT_ReturnTypestate:
handleReturnTypestateAttr(S, D, Attr);
break;
case AttributeList::AT_SetTypestate:
handleSetTypestateAttr(S, D, Attr);
break;
case AttributeList::AT_TestTypestate:
handleTestTypestateAttr(S, D, Attr);
break;
// Type safety attributes.
case AttributeList::AT_ArgumentWithTypeTag:
handleArgumentWithTypeTagAttr(S, D, Attr);
break;
case AttributeList::AT_TypeTagForDatatype:
handleTypeTagForDatatypeAttr(S, D, Attr);
break;
}
}
/// ProcessDeclAttributeList - Apply all the decl attributes in the specified
/// attribute list to the specified decl, ignoring any type attributes.
void Sema::ProcessDeclAttributeList(Scope *S, Decl *D,
const AttributeList *AttrList,
bool IncludeCXX11Attributes) {
for (const AttributeList* l = AttrList; l; l = l->getNext())
ProcessDeclAttribute(*this, S, D, *l, IncludeCXX11Attributes);
// FIXME: We should be able to handle these cases in TableGen.
// GCC accepts
// static int a9 __attribute__((weakref));
// but that looks really pointless. We reject it.
if (D->hasAttr<WeakRefAttr>() && !D->hasAttr<AliasAttr>()) {
Diag(AttrList->getLoc(), diag::err_attribute_weakref_without_alias)
<< cast<NamedDecl>(D);
D->dropAttr<WeakRefAttr>();
return;
}
if (!D->hasAttr<OpenCLKernelAttr>()) {
// These attributes cannot be applied to a non-kernel function.
if (Attr *A = D->getAttr<ReqdWorkGroupSizeAttr>()) {
Diag(D->getLocation(), diag::err_opencl_kernel_attr) << A;
D->setInvalidDecl();
}
if (Attr *A = D->getAttr<WorkGroupSizeHintAttr>()) {
Diag(D->getLocation(), diag::err_opencl_kernel_attr) << A;
D->setInvalidDecl();
}
if (Attr *A = D->getAttr<VecTypeHintAttr>()) {
Diag(D->getLocation(), diag::err_opencl_kernel_attr) << A;
D->setInvalidDecl();
}
}
}
// Annotation attributes are the only attributes allowed after an access
// specifier.
bool Sema::ProcessAccessDeclAttributeList(AccessSpecDecl *ASDecl,
const AttributeList *AttrList) {
for (const AttributeList* l = AttrList; l; l = l->getNext()) {
if (l->getKind() == AttributeList::AT_Annotate) {
handleAnnotateAttr(*this, ASDecl, *l);
} else {
Diag(l->getLoc(), diag::err_only_annotate_after_access_spec);
return true;
}
}
return false;
}
/// checkUnusedDeclAttributes - Check a list of attributes to see if it
/// contains any decl attributes that we should warn about.
static void checkUnusedDeclAttributes(Sema &S, const AttributeList *A) {
for ( ; A; A = A->getNext()) {
// Only warn if the attribute is an unignored, non-type attribute.
if (A->isUsedAsTypeAttr() || A->isInvalid()) continue;
if (A->getKind() == AttributeList::IgnoredAttribute) continue;
if (A->getKind() == AttributeList::UnknownAttribute) {
S.Diag(A->getLoc(), diag::warn_unknown_attribute_ignored)
<< A->getName() << A->getRange();
} else {
S.Diag(A->getLoc(), diag::warn_attribute_not_on_decl)
<< A->getName() << A->getRange();
}
}
}
/// checkUnusedDeclAttributes - Given a declarator which is not being
/// used to build a declaration, complain about any decl attributes
/// which might be lying around on it.
void Sema::checkUnusedDeclAttributes(Declarator &D) {
::checkUnusedDeclAttributes(*this, D.getDeclSpec().getAttributes().getList());
::checkUnusedDeclAttributes(*this, D.getAttributes());
for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i)
::checkUnusedDeclAttributes(*this, D.getTypeObject(i).getAttrs());
}
/// DeclClonePragmaWeak - clone existing decl (maybe definition),
/// \#pragma weak needs a non-definition decl and source may not have one.
NamedDecl * Sema::DeclClonePragmaWeak(NamedDecl *ND, IdentifierInfo *II,
SourceLocation Loc) {
assert(isa<FunctionDecl>(ND) || isa<VarDecl>(ND));
NamedDecl *NewD = 0;
if (FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) {
FunctionDecl *NewFD;
// FIXME: Missing call to CheckFunctionDeclaration().
// FIXME: Mangling?
// FIXME: Is the qualifier info correct?
// FIXME: Is the DeclContext correct?
NewFD = FunctionDecl::Create(FD->getASTContext(), FD->getDeclContext(),
Loc, Loc, DeclarationName(II),
FD->getType(), FD->getTypeSourceInfo(),
SC_None, false/*isInlineSpecified*/,
FD->hasPrototype(),
false/*isConstexprSpecified*/);
NewD = NewFD;
if (FD->getQualifier())
NewFD->setQualifierInfo(FD->getQualifierLoc());
// Fake up parameter variables; they are declared as if this were
// a typedef.
QualType FDTy = FD->getType();
if (const FunctionProtoType *FT = FDTy->getAs<FunctionProtoType>()) {
SmallVector<ParmVarDecl*, 16> Params;
for (FunctionProtoType::param_type_iterator AI = FT->param_type_begin(),
AE = FT->param_type_end();
AI != AE; ++AI) {
ParmVarDecl *Param = BuildParmVarDeclForTypedef(NewFD, Loc, *AI);
Param->setScopeInfo(0, Params.size());
Params.push_back(Param);
}
NewFD->setParams(Params);
}
} else if (VarDecl *VD = dyn_cast<VarDecl>(ND)) {
NewD = VarDecl::Create(VD->getASTContext(), VD->getDeclContext(),
VD->getInnerLocStart(), VD->getLocation(), II,
VD->getType(), VD->getTypeSourceInfo(),
VD->getStorageClass());
if (VD->getQualifier()) {
VarDecl *NewVD = cast<VarDecl>(NewD);
NewVD->setQualifierInfo(VD->getQualifierLoc());
}
}
return NewD;
}
/// DeclApplyPragmaWeak - A declaration (maybe definition) needs \#pragma weak
/// applied to it, possibly with an alias.
void Sema::DeclApplyPragmaWeak(Scope *S, NamedDecl *ND, WeakInfo &W) {
if (W.getUsed()) return; // only do this once
W.setUsed(true);
if (W.getAlias()) { // clone decl, impersonate __attribute(weak,alias(...))
IdentifierInfo *NDId = ND->getIdentifier();
NamedDecl *NewD = DeclClonePragmaWeak(ND, W.getAlias(), W.getLocation());
NewD->addAttr(AliasAttr::CreateImplicit(Context, NDId->getName(),
W.getLocation()));
NewD->addAttr(WeakAttr::CreateImplicit(Context, W.getLocation()));
WeakTopLevelDecl.push_back(NewD);
// FIXME: "hideous" code from Sema::LazilyCreateBuiltin
// to insert Decl at TU scope, sorry.
DeclContext *SavedContext = CurContext;
CurContext = Context.getTranslationUnitDecl();
PushOnScopeChains(NewD, S);
CurContext = SavedContext;
} else { // just add weak to existing
ND->addAttr(WeakAttr::CreateImplicit(Context, W.getLocation()));
}
}
void Sema::ProcessPragmaWeak(Scope *S, Decl *D) {
// It's valid to "forward-declare" #pragma weak, in which case we
// have to do this.
LoadExternalWeakUndeclaredIdentifiers();
if (!WeakUndeclaredIdentifiers.empty()) {
NamedDecl *ND = NULL;
if (VarDecl *VD = dyn_cast<VarDecl>(D))
if (VD->isExternC())
ND = VD;
if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
if (FD->isExternC())
ND = FD;
if (ND) {
if (IdentifierInfo *Id = ND->getIdentifier()) {
llvm::DenseMap<IdentifierInfo*,WeakInfo>::iterator I
= WeakUndeclaredIdentifiers.find(Id);
if (I != WeakUndeclaredIdentifiers.end()) {
WeakInfo W = I->second;
DeclApplyPragmaWeak(S, ND, W);
WeakUndeclaredIdentifiers[Id] = W;
}
}
}
}
}
/// ProcessDeclAttributes - Given a declarator (PD) with attributes indicated in
/// it, apply them to D. This is a bit tricky because PD can have attributes
/// specified in many different places, and we need to find and apply them all.
void Sema::ProcessDeclAttributes(Scope *S, Decl *D, const Declarator &PD) {
// Apply decl attributes from the DeclSpec if present.
if (const AttributeList *Attrs = PD.getDeclSpec().getAttributes().getList())
ProcessDeclAttributeList(S, D, Attrs);
// Walk the declarator structure, applying decl attributes that were in a type
// position to the decl itself. This handles cases like:
// int *__attr__(x)** D;
// when X is a decl attribute.
for (unsigned i = 0, e = PD.getNumTypeObjects(); i != e; ++i)
if (const AttributeList *Attrs = PD.getTypeObject(i).getAttrs())
ProcessDeclAttributeList(S, D, Attrs, /*IncludeCXX11Attributes=*/false);
// Finally, apply any attributes on the decl itself.
if (const AttributeList *Attrs = PD.getAttributes())
ProcessDeclAttributeList(S, D, Attrs);
}
/// Is the given declaration allowed to use a forbidden type?
static bool isForbiddenTypeAllowed(Sema &S, Decl *decl) {
// Private ivars are always okay. Unfortunately, people don't
// always properly make their ivars private, even in system headers.
// Plus we need to make fields okay, too.
// Function declarations in sys headers will be marked unavailable.
if (!isa<FieldDecl>(decl) && !isa<ObjCPropertyDecl>(decl) &&
!isa<FunctionDecl>(decl))
return false;
// Require it to be declared in a system header.
return S.Context.getSourceManager().isInSystemHeader(decl->getLocation());
}
/// Handle a delayed forbidden-type diagnostic.
static void handleDelayedForbiddenType(Sema &S, DelayedDiagnostic &diag,
Decl *decl) {
if (decl && isForbiddenTypeAllowed(S, decl)) {
decl->addAttr(UnavailableAttr::CreateImplicit(S.Context,
"this system declaration uses an unsupported type",
diag.Loc));
return;
}
if (S.getLangOpts().ObjCAutoRefCount)
if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(decl)) {
// FIXME: we may want to suppress diagnostics for all
// kind of forbidden type messages on unavailable functions.
if (FD->hasAttr<UnavailableAttr>() &&
diag.getForbiddenTypeDiagnostic() ==
diag::err_arc_array_param_no_ownership) {
diag.Triggered = true;
return;
}
}
S.Diag(diag.Loc, diag.getForbiddenTypeDiagnostic())
<< diag.getForbiddenTypeOperand() << diag.getForbiddenTypeArgument();
diag.Triggered = true;
}
void Sema::PopParsingDeclaration(ParsingDeclState state, Decl *decl) {
assert(DelayedDiagnostics.getCurrentPool());
DelayedDiagnosticPool &poppedPool = *DelayedDiagnostics.getCurrentPool();
DelayedDiagnostics.popWithoutEmitting(state);
// When delaying diagnostics to run in the context of a parsed
// declaration, we only want to actually emit anything if parsing
// succeeds.
if (!decl) return;
// We emit all the active diagnostics in this pool or any of its
// parents. In general, we'll get one pool for the decl spec
// and a child pool for each declarator; in a decl group like:
// deprecated_typedef foo, *bar, baz();
// only the declarator pops will be passed decls. This is correct;
// we really do need to consider delayed diagnostics from the decl spec
// for each of the different declarations.
const DelayedDiagnosticPool *pool = &poppedPool;
do {
for (DelayedDiagnosticPool::pool_iterator
i = pool->pool_begin(), e = pool->pool_end(); i != e; ++i) {
// This const_cast is a bit lame. Really, Triggered should be mutable.
DelayedDiagnostic &diag = const_cast<DelayedDiagnostic&>(*i);
if (diag.Triggered)
continue;
switch (diag.Kind) {
case DelayedDiagnostic::Deprecation:
case DelayedDiagnostic::Unavailable:
// Don't bother giving deprecation/unavailable diagnostics if
// the decl is invalid.
if (!decl->isInvalidDecl())
HandleDelayedAvailabilityCheck(diag, decl);
break;
case DelayedDiagnostic::Access:
HandleDelayedAccessCheck(diag, decl);
break;
case DelayedDiagnostic::ForbiddenType:
handleDelayedForbiddenType(*this, diag, decl);
break;
}
}
} while ((pool = pool->getParent()));
}
/// Given a set of delayed diagnostics, re-emit them as if they had
/// been delayed in the current context instead of in the given pool.
/// Essentially, this just moves them to the current pool.
void Sema::redelayDiagnostics(DelayedDiagnosticPool &pool) {
DelayedDiagnosticPool *curPool = DelayedDiagnostics.getCurrentPool();
assert(curPool && "re-emitting in undelayed context not supported");
curPool->steal(pool);
}
static bool isDeclDeprecated(Decl *D) {
do {
if (D->isDeprecated())
return true;
// A category implicitly has the availability of the interface.
if (const ObjCCategoryDecl *CatD = dyn_cast<ObjCCategoryDecl>(D))
return CatD->getClassInterface()->isDeprecated();
} while ((D = cast_or_null<Decl>(D->getDeclContext())));
return false;
}
static bool isDeclUnavailable(Decl *D) {
do {
if (D->isUnavailable())
return true;
// A category implicitly has the availability of the interface.
if (const ObjCCategoryDecl *CatD = dyn_cast<ObjCCategoryDecl>(D))
return CatD->getClassInterface()->isUnavailable();
} while ((D = cast_or_null<Decl>(D->getDeclContext())));
return false;
}
static void
DoEmitAvailabilityWarning(Sema &S,
DelayedDiagnostic::DDKind K,
Decl *Ctx,
const NamedDecl *D,
StringRef Message,
SourceLocation Loc,
const ObjCInterfaceDecl *UnknownObjCClass,
const ObjCPropertyDecl *ObjCProperty) {
// Diagnostics for deprecated or unavailable.
unsigned diag, diag_message, diag_fwdclass_message;
// Matches 'diag::note_property_attribute' options.
unsigned property_note_select;
// Matches diag::note_availability_specified_here.
unsigned available_here_select_kind;
// Don't warn if our current context is deprecated or unavailable.
switch (K) {
case DelayedDiagnostic::Deprecation:
if (isDeclDeprecated(Ctx))
return;
diag = diag::warn_deprecated;
diag_message = diag::warn_deprecated_message;
diag_fwdclass_message = diag::warn_deprecated_fwdclass_message;
property_note_select = /* deprecated */ 0;
available_here_select_kind = /* deprecated */ 2;
break;
case DelayedDiagnostic::Unavailable:
if (isDeclUnavailable(Ctx))
return;
diag = diag::err_unavailable;
diag_message = diag::err_unavailable_message;
diag_fwdclass_message = diag::warn_unavailable_fwdclass_message;
property_note_select = /* unavailable */ 1;
available_here_select_kind = /* unavailable */ 0;
break;
default:
llvm_unreachable("Neither a deprecation or unavailable kind");
}
DeclarationName Name = D->getDeclName();
if (!Message.empty()) {
S.Diag(Loc, diag_message) << Name << Message;
if (ObjCProperty)
S.Diag(ObjCProperty->getLocation(), diag::note_property_attribute)
<< ObjCProperty->getDeclName() << property_note_select;
} else if (!UnknownObjCClass) {
S.Diag(Loc, diag) << Name;
if (ObjCProperty)
S.Diag(ObjCProperty->getLocation(), diag::note_property_attribute)
<< ObjCProperty->getDeclName() << property_note_select;
} else {
S.Diag(Loc, diag_fwdclass_message) << Name;
S.Diag(UnknownObjCClass->getLocation(), diag::note_forward_class);
}
S.Diag(D->getLocation(), diag::note_availability_specified_here)
<< D << available_here_select_kind;
}
void Sema::HandleDelayedAvailabilityCheck(DelayedDiagnostic &DD,
Decl *Ctx) {
DD.Triggered = true;
DoEmitAvailabilityWarning(*this,
(DelayedDiagnostic::DDKind) DD.Kind,
Ctx,
DD.getDeprecationDecl(),
DD.getDeprecationMessage(),
DD.Loc,
DD.getUnknownObjCClass(),
DD.getObjCProperty());
}
void Sema::EmitAvailabilityWarning(AvailabilityDiagnostic AD,
NamedDecl *D, StringRef Message,
SourceLocation Loc,
const ObjCInterfaceDecl *UnknownObjCClass,
const ObjCPropertyDecl *ObjCProperty) {
// Delay if we're currently parsing a declaration.
if (DelayedDiagnostics.shouldDelayDiagnostics()) {
DelayedDiagnostics.add(DelayedDiagnostic::makeAvailability(AD, Loc, D,
UnknownObjCClass,
ObjCProperty,
Message));
return;
}
Decl *Ctx = cast<Decl>(getCurLexicalContext());
DelayedDiagnostic::DDKind K;
switch (AD) {
case AD_Deprecation:
K = DelayedDiagnostic::Deprecation;
break;
case AD_Unavailable:
K = DelayedDiagnostic::Unavailable;
break;
}
DoEmitAvailabilityWarning(*this, K, Ctx, D, Message, Loc,
UnknownObjCClass, ObjCProperty);
}