forked from OSchip/llvm-project
1100 lines
38 KiB
C++
1100 lines
38 KiB
C++
//===-- MemorySSA.cpp - Memory SSA Builder---------------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------===//
|
|
//
|
|
// This file implements the MemorySSA class.
|
|
//
|
|
//===----------------------------------------------------------------===//
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/DenseSet.h"
|
|
#include "llvm/ADT/DepthFirstIterator.h"
|
|
#include "llvm/ADT/GraphTraits.h"
|
|
#include "llvm/ADT/PostOrderIterator.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/SmallSet.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Analysis/AliasAnalysis.h"
|
|
#include "llvm/Analysis/CFG.h"
|
|
#include "llvm/Analysis/GlobalsModRef.h"
|
|
#include "llvm/Analysis/IteratedDominanceFrontier.h"
|
|
#include "llvm/Analysis/MemoryLocation.h"
|
|
#include "llvm/Analysis/PHITransAddr.h"
|
|
#include "llvm/IR/AssemblyAnnotationWriter.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/Dominators.h"
|
|
#include "llvm/IR/GlobalVariable.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/IR/LLVMContext.h"
|
|
#include "llvm/IR/Metadata.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/PatternMatch.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/FormattedStream.h"
|
|
#include "llvm/Transforms/Scalar.h"
|
|
#include "llvm/Transforms/Utils/MemorySSA.h"
|
|
#include <algorithm>
|
|
|
|
#define DEBUG_TYPE "memoryssa"
|
|
using namespace llvm;
|
|
STATISTIC(NumClobberCacheLookups, "Number of Memory SSA version cache lookups");
|
|
STATISTIC(NumClobberCacheHits, "Number of Memory SSA version cache hits");
|
|
STATISTIC(NumClobberCacheInserts, "Number of MemorySSA version cache inserts");
|
|
INITIALIZE_PASS_WITH_OPTIONS_BEGIN(MemorySSAPrinterPass, "print-memoryssa",
|
|
"Memory SSA", true, true)
|
|
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
|
|
INITIALIZE_PASS_END(MemorySSAPrinterPass, "print-memoryssa", "Memory SSA", true,
|
|
true)
|
|
INITIALIZE_PASS(MemorySSALazy, "memoryssalazy", "Memory SSA", true, true)
|
|
|
|
namespace llvm {
|
|
|
|
/// \brief An assembly annotator class to print Memory SSA information in
|
|
/// comments.
|
|
class MemorySSAAnnotatedWriter : public AssemblyAnnotationWriter {
|
|
friend class MemorySSA;
|
|
const MemorySSA *MSSA;
|
|
|
|
public:
|
|
MemorySSAAnnotatedWriter(const MemorySSA *M) : MSSA(M) {}
|
|
|
|
virtual void emitBasicBlockStartAnnot(const BasicBlock *BB,
|
|
formatted_raw_ostream &OS) {
|
|
if (MemoryAccess *MA = MSSA->getMemoryAccess(BB))
|
|
OS << "; " << *MA << "\n";
|
|
}
|
|
|
|
virtual void emitInstructionAnnot(const Instruction *I,
|
|
formatted_raw_ostream &OS) {
|
|
if (MemoryAccess *MA = MSSA->getMemoryAccess(I))
|
|
OS << "; " << *MA << "\n";
|
|
}
|
|
};
|
|
}
|
|
|
|
namespace {
|
|
struct RenamePassData {
|
|
DomTreeNode *DTN;
|
|
DomTreeNode::const_iterator ChildIt;
|
|
MemoryAccess *IncomingVal;
|
|
|
|
RenamePassData(DomTreeNode *D, DomTreeNode::const_iterator It,
|
|
MemoryAccess *M)
|
|
: DTN(D), ChildIt(It), IncomingVal(M) {}
|
|
void swap(RenamePassData &RHS) {
|
|
std::swap(DTN, RHS.DTN);
|
|
std::swap(ChildIt, RHS.ChildIt);
|
|
std::swap(IncomingVal, RHS.IncomingVal);
|
|
}
|
|
};
|
|
}
|
|
|
|
namespace llvm {
|
|
/// \brief Rename a single basic block into MemorySSA form.
|
|
/// Uses the standard SSA renaming algorithm.
|
|
/// \returns The new incoming value.
|
|
MemoryAccess *MemorySSA::renameBlock(BasicBlock *BB,
|
|
MemoryAccess *IncomingVal) {
|
|
auto It = PerBlockAccesses.find(BB);
|
|
// Skip most processing if the list is empty.
|
|
if (It != PerBlockAccesses.end()) {
|
|
AccessListType *Accesses = It->second.get();
|
|
for (MemoryAccess &L : *Accesses) {
|
|
switch (L.getValueID()) {
|
|
case Value::MemoryUseVal:
|
|
cast<MemoryUse>(&L)->setDefiningAccess(IncomingVal);
|
|
break;
|
|
case Value::MemoryDefVal:
|
|
// We can't legally optimize defs, because we only allow single
|
|
// memory phis/uses on operations, and if we optimize these, we can
|
|
// end up with multiple reaching defs. Uses do not have this
|
|
// problem, since they do not produce a value
|
|
cast<MemoryDef>(&L)->setDefiningAccess(IncomingVal);
|
|
IncomingVal = &L;
|
|
break;
|
|
case Value::MemoryPhiVal:
|
|
IncomingVal = &L;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Pass through values to our successors
|
|
for (const BasicBlock *S : successors(BB)) {
|
|
auto It = PerBlockAccesses.find(S);
|
|
// Rename the phi nodes in our successor block
|
|
if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front()))
|
|
continue;
|
|
AccessListType *Accesses = It->second.get();
|
|
auto *Phi = cast<MemoryPhi>(&Accesses->front());
|
|
assert(std::find(succ_begin(BB), succ_end(BB), S) != succ_end(BB) &&
|
|
"Must be at least one edge from Succ to BB!");
|
|
Phi->addIncoming(IncomingVal, BB);
|
|
}
|
|
|
|
return IncomingVal;
|
|
}
|
|
|
|
/// \brief This is the standard SSA renaming algorithm.
|
|
///
|
|
/// We walk the dominator tree in preorder, renaming accesses, and then filling
|
|
/// in phi nodes in our successors.
|
|
void MemorySSA::renamePass(DomTreeNode *Root, MemoryAccess *IncomingVal,
|
|
SmallPtrSet<BasicBlock *, 16> &Visited) {
|
|
SmallVector<RenamePassData, 32> WorkStack;
|
|
IncomingVal = renameBlock(Root->getBlock(), IncomingVal);
|
|
WorkStack.push_back({Root, Root->begin(), IncomingVal});
|
|
Visited.insert(Root->getBlock());
|
|
|
|
while (!WorkStack.empty()) {
|
|
DomTreeNode *Node = WorkStack.back().DTN;
|
|
DomTreeNode::const_iterator ChildIt = WorkStack.back().ChildIt;
|
|
IncomingVal = WorkStack.back().IncomingVal;
|
|
|
|
if (ChildIt == Node->end()) {
|
|
WorkStack.pop_back();
|
|
} else {
|
|
DomTreeNode *Child = *ChildIt;
|
|
++WorkStack.back().ChildIt;
|
|
BasicBlock *BB = Child->getBlock();
|
|
Visited.insert(BB);
|
|
IncomingVal = renameBlock(BB, IncomingVal);
|
|
WorkStack.push_back({Child, Child->begin(), IncomingVal});
|
|
}
|
|
}
|
|
}
|
|
|
|
/// \brief Compute dominator levels, used by the phi insertion algorithm above.
|
|
void MemorySSA::computeDomLevels(DenseMap<DomTreeNode *, unsigned> &DomLevels) {
|
|
for (auto DFI = df_begin(DT->getRootNode()), DFE = df_end(DT->getRootNode());
|
|
DFI != DFE; ++DFI)
|
|
DomLevels[*DFI] = DFI.getPathLength() - 1;
|
|
}
|
|
|
|
/// \brief This handles unreachable block acccesses by deleting phi nodes in
|
|
/// unreachable blocks, and marking all other unreachable MemoryAccess's as
|
|
/// being uses of the live on entry definition.
|
|
void MemorySSA::markUnreachableAsLiveOnEntry(BasicBlock *BB) {
|
|
assert(!DT->isReachableFromEntry(BB) &&
|
|
"Reachable block found while handling unreachable blocks");
|
|
|
|
auto It = PerBlockAccesses.find(BB);
|
|
if (It == PerBlockAccesses.end())
|
|
return;
|
|
|
|
auto &Accesses = It->second;
|
|
for (auto AI = Accesses->begin(), AE = Accesses->end(); AI != AE;) {
|
|
auto Next = std::next(AI);
|
|
// If we have a phi, just remove it. We are going to replace all
|
|
// users with live on entry.
|
|
if (auto *UseOrDef = dyn_cast<MemoryUseOrDef>(AI))
|
|
UseOrDef->setDefiningAccess(LiveOnEntryDef.get());
|
|
else
|
|
Accesses->erase(AI);
|
|
AI = Next;
|
|
}
|
|
}
|
|
|
|
MemorySSA::MemorySSA(Function &Func)
|
|
: AA(nullptr), DT(nullptr), F(Func), LiveOnEntryDef(nullptr),
|
|
Walker(nullptr), NextID(0) {}
|
|
|
|
MemorySSA::~MemorySSA() {
|
|
// Drop all our references
|
|
for (const auto &Pair : PerBlockAccesses)
|
|
for (MemoryAccess &MA : *Pair.second)
|
|
MA.dropAllReferences();
|
|
}
|
|
|
|
MemorySSA::AccessListType *MemorySSA::getOrCreateAccessList(BasicBlock *BB) {
|
|
auto Res = PerBlockAccesses.insert(std::make_pair(BB, nullptr));
|
|
|
|
if (Res.second)
|
|
Res.first->second = make_unique<AccessListType>();
|
|
return Res.first->second.get();
|
|
}
|
|
|
|
MemorySSAWalker *MemorySSA::buildMemorySSA(AliasAnalysis *AA,
|
|
DominatorTree *DT) {
|
|
if (Walker)
|
|
return Walker;
|
|
|
|
assert(!this->AA && !this->DT &&
|
|
"MemorySSA without a walker already has AA or DT?");
|
|
|
|
Walker = new CachingMemorySSAWalker(this, AA, DT);
|
|
this->AA = AA;
|
|
this->DT = DT;
|
|
|
|
// We create an access to represent "live on entry", for things like
|
|
// arguments or users of globals, where the memory they use is defined before
|
|
// the beginning of the function. We do not actually insert it into the IR.
|
|
// We do not define a live on exit for the immediate uses, and thus our
|
|
// semantics do *not* imply that something with no immediate uses can simply
|
|
// be removed.
|
|
BasicBlock &StartingPoint = F.getEntryBlock();
|
|
LiveOnEntryDef = make_unique<MemoryDef>(F.getContext(), nullptr, nullptr,
|
|
&StartingPoint, NextID++);
|
|
|
|
// We maintain lists of memory accesses per-block, trading memory for time. We
|
|
// could just look up the memory access for every possible instruction in the
|
|
// stream.
|
|
SmallPtrSet<BasicBlock *, 32> DefiningBlocks;
|
|
SmallPtrSet<BasicBlock *, 32> DefUseBlocks;
|
|
// Go through each block, figure out where defs occur, and chain together all
|
|
// the accesses.
|
|
for (BasicBlock &B : F) {
|
|
bool InsertIntoDef = false;
|
|
AccessListType *Accesses = nullptr;
|
|
for (Instruction &I : B) {
|
|
MemoryUseOrDef *MUD = createNewAccess(&I, true);
|
|
if (!MUD)
|
|
continue;
|
|
InsertIntoDef |= isa<MemoryDef>(MUD);
|
|
|
|
if (!Accesses)
|
|
Accesses = getOrCreateAccessList(&B);
|
|
Accesses->push_back(MUD);
|
|
}
|
|
if (InsertIntoDef)
|
|
DefiningBlocks.insert(&B);
|
|
if (Accesses)
|
|
DefUseBlocks.insert(&B);
|
|
}
|
|
|
|
// Compute live-in.
|
|
// Live in is normally defined as "all the blocks on the path from each def to
|
|
// each of it's uses".
|
|
// MemoryDef's are implicit uses of previous state, so they are also uses.
|
|
// This means we don't really have def-only instructions. The only
|
|
// MemoryDef's that are not really uses are those that are of the LiveOnEntry
|
|
// variable (because LiveOnEntry can reach anywhere, and every def is a
|
|
// must-kill of LiveOnEntry).
|
|
// In theory, you could precisely compute live-in by using alias-analysis to
|
|
// disambiguate defs and uses to see which really pair up with which.
|
|
// In practice, this would be really expensive and difficult. So we simply
|
|
// assume all defs are also uses that need to be kept live.
|
|
// Because of this, the end result of this live-in computation will be "the
|
|
// entire set of basic blocks that reach any use".
|
|
|
|
SmallPtrSet<BasicBlock *, 32> LiveInBlocks;
|
|
SmallVector<BasicBlock *, 64> LiveInBlockWorklist(DefUseBlocks.begin(),
|
|
DefUseBlocks.end());
|
|
// Now that we have a set of blocks where a value is live-in, recursively add
|
|
// predecessors until we find the full region the value is live.
|
|
while (!LiveInBlockWorklist.empty()) {
|
|
BasicBlock *BB = LiveInBlockWorklist.pop_back_val();
|
|
|
|
// The block really is live in here, insert it into the set. If already in
|
|
// the set, then it has already been processed.
|
|
if (!LiveInBlocks.insert(BB).second)
|
|
continue;
|
|
|
|
// Since the value is live into BB, it is either defined in a predecessor or
|
|
// live into it to.
|
|
LiveInBlockWorklist.append(pred_begin(BB), pred_end(BB));
|
|
}
|
|
|
|
// Determine where our MemoryPhi's should go
|
|
IDFCalculator IDFs(*DT);
|
|
IDFs.setDefiningBlocks(DefiningBlocks);
|
|
IDFs.setLiveInBlocks(LiveInBlocks);
|
|
SmallVector<BasicBlock *, 32> IDFBlocks;
|
|
IDFs.calculate(IDFBlocks);
|
|
|
|
// Now place MemoryPhi nodes.
|
|
for (auto &BB : IDFBlocks) {
|
|
// Insert phi node
|
|
AccessListType *Accesses = getOrCreateAccessList(BB);
|
|
MemoryPhi *Phi = new MemoryPhi(F.getContext(), BB, NextID++);
|
|
ValueToMemoryAccess.insert(std::make_pair(BB, Phi));
|
|
// Phi's always are placed at the front of the block.
|
|
Accesses->push_front(Phi);
|
|
}
|
|
|
|
// Now do regular SSA renaming on the MemoryDef/MemoryUse. Visited will get
|
|
// filled in with all blocks.
|
|
SmallPtrSet<BasicBlock *, 16> Visited;
|
|
renamePass(DT->getRootNode(), LiveOnEntryDef.get(), Visited);
|
|
|
|
// Now optimize the MemoryUse's defining access to point to the nearest
|
|
// dominating clobbering def.
|
|
// This ensures that MemoryUse's that are killed by the same store are
|
|
// immediate users of that store, one of the invariants we guarantee.
|
|
for (auto DomNode : depth_first(DT)) {
|
|
BasicBlock *BB = DomNode->getBlock();
|
|
auto AI = PerBlockAccesses.find(BB);
|
|
if (AI == PerBlockAccesses.end())
|
|
continue;
|
|
AccessListType *Accesses = AI->second.get();
|
|
for (auto &MA : *Accesses) {
|
|
if (auto *MU = dyn_cast<MemoryUse>(&MA)) {
|
|
Instruction *Inst = MU->getMemoryInst();
|
|
MU->setDefiningAccess(Walker->getClobberingMemoryAccess(Inst));
|
|
}
|
|
}
|
|
}
|
|
|
|
// Mark the uses in unreachable blocks as live on entry, so that they go
|
|
// somewhere.
|
|
for (auto &BB : F)
|
|
if (!Visited.count(&BB))
|
|
markUnreachableAsLiveOnEntry(&BB);
|
|
|
|
return Walker;
|
|
}
|
|
|
|
/// \brief Helper function to create new memory accesses
|
|
MemoryUseOrDef *MemorySSA::createNewAccess(Instruction *I,
|
|
bool IgnoreNonMemory) {
|
|
// Find out what affect this instruction has on memory.
|
|
ModRefInfo ModRef = AA->getModRefInfo(I);
|
|
bool Def = bool(ModRef & MRI_Mod);
|
|
bool Use = bool(ModRef & MRI_Ref);
|
|
|
|
// It's possible for an instruction to not modify memory at all. During
|
|
// construction, we ignore them.
|
|
if (IgnoreNonMemory && !Def && !Use)
|
|
return nullptr;
|
|
|
|
assert((Def || Use) &&
|
|
"Trying to create a memory access with a non-memory instruction");
|
|
|
|
MemoryUseOrDef *MUD;
|
|
if (Def)
|
|
MUD = new MemoryDef(I->getContext(), nullptr, I, I->getParent(), NextID++);
|
|
else
|
|
MUD = new MemoryUse(I->getContext(), nullptr, I, I->getParent());
|
|
ValueToMemoryAccess.insert(std::make_pair(I, MUD));
|
|
return MUD;
|
|
}
|
|
|
|
MemoryAccess *MemorySSA::findDominatingDef(BasicBlock *UseBlock,
|
|
enum InsertionPlace Where) {
|
|
// Handle the initial case
|
|
if (Where == Beginning)
|
|
// The only thing that could define us at the beginning is a phi node
|
|
if (MemoryPhi *Phi = getMemoryAccess(UseBlock))
|
|
return Phi;
|
|
|
|
DomTreeNode *CurrNode = DT->getNode(UseBlock);
|
|
// Need to be defined by our dominator
|
|
if (Where == Beginning)
|
|
CurrNode = CurrNode->getIDom();
|
|
Where = End;
|
|
while (CurrNode) {
|
|
auto It = PerBlockAccesses.find(CurrNode->getBlock());
|
|
if (It != PerBlockAccesses.end()) {
|
|
auto &Accesses = It->second;
|
|
for (auto RAI = Accesses->rbegin(), RAE = Accesses->rend(); RAI != RAE;
|
|
++RAI) {
|
|
if (isa<MemoryDef>(*RAI) || isa<MemoryPhi>(*RAI))
|
|
return &*RAI;
|
|
}
|
|
}
|
|
CurrNode = CurrNode->getIDom();
|
|
}
|
|
return LiveOnEntryDef.get();
|
|
}
|
|
|
|
/// \brief Returns true if \p Replacer dominates \p Replacee .
|
|
bool MemorySSA::dominatesUse(const MemoryAccess *Replacer,
|
|
const MemoryAccess *Replacee) const {
|
|
if (isa<MemoryUseOrDef>(Replacee))
|
|
return DT->dominates(Replacer->getBlock(), Replacee->getBlock());
|
|
const auto *MP = cast<MemoryPhi>(Replacee);
|
|
// For a phi node, the use occurs in the predecessor block of the phi node.
|
|
// Since we may occur multiple times in the phi node, we have to check each
|
|
// operand to ensure Replacer dominates each operand where Replacee occurs.
|
|
for (const Use &Arg : MP->operands()) {
|
|
if (Arg.get() != Replacee &&
|
|
!DT->dominates(Replacer->getBlock(), MP->getIncomingBlock(Arg)))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// \brief If all arguments of a MemoryPHI are defined by the same incoming
|
|
/// argument, return that argument.
|
|
static MemoryAccess *onlySingleValue(MemoryPhi *MP) {
|
|
MemoryAccess *MA = nullptr;
|
|
|
|
for (auto &Arg : MP->operands()) {
|
|
if (!MA)
|
|
MA = cast<MemoryAccess>(Arg);
|
|
else if (MA != Arg)
|
|
return nullptr;
|
|
}
|
|
return MA;
|
|
}
|
|
|
|
/// \brief Properly remove \p MA from all of MemorySSA's lookup tables.
|
|
///
|
|
/// Because of the way the intrusive list and use lists work, it is important to
|
|
/// do removal in the right order.
|
|
void MemorySSA::removeFromLookups(MemoryAccess *MA) {
|
|
assert(MA->use_empty() &&
|
|
"Trying to remove memory access that still has uses");
|
|
if (MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(MA))
|
|
MUD->setDefiningAccess(nullptr);
|
|
// Invalidate our walker's cache if necessary
|
|
if (!isa<MemoryUse>(MA))
|
|
Walker->invalidateInfo(MA);
|
|
// The call below to erase will destroy MA, so we can't change the order we
|
|
// are doing things here
|
|
Value *MemoryInst;
|
|
if (MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(MA)) {
|
|
MemoryInst = MUD->getMemoryInst();
|
|
} else {
|
|
MemoryInst = MA->getBlock();
|
|
}
|
|
ValueToMemoryAccess.erase(MemoryInst);
|
|
|
|
auto AccessIt = PerBlockAccesses.find(MA->getBlock());
|
|
std::unique_ptr<AccessListType> &Accesses = AccessIt->second;
|
|
Accesses->erase(MA);
|
|
if (Accesses->empty())
|
|
PerBlockAccesses.erase(AccessIt);
|
|
}
|
|
|
|
void MemorySSA::removeMemoryAccess(MemoryAccess *MA) {
|
|
assert(!isLiveOnEntryDef(MA) && "Trying to remove the live on entry def");
|
|
// We can only delete phi nodes if they have no uses, or we can replace all
|
|
// uses with a single definition.
|
|
MemoryAccess *NewDefTarget = nullptr;
|
|
if (MemoryPhi *MP = dyn_cast<MemoryPhi>(MA)) {
|
|
// Note that it is sufficient to know that all edges of the phi node have
|
|
// the same argument. If they do, by the definition of dominance frontiers
|
|
// (which we used to place this phi), that argument must dominate this phi,
|
|
// and thus, must dominate the phi's uses, and so we will not hit the assert
|
|
// below.
|
|
NewDefTarget = onlySingleValue(MP);
|
|
assert((NewDefTarget || MP->use_empty()) &&
|
|
"We can't delete this memory phi");
|
|
} else {
|
|
NewDefTarget = cast<MemoryUseOrDef>(MA)->getDefiningAccess();
|
|
}
|
|
|
|
// Re-point the uses at our defining access
|
|
if (!MA->use_empty())
|
|
MA->replaceAllUsesWith(NewDefTarget);
|
|
|
|
// The call below to erase will destroy MA, so we can't change the order we
|
|
// are doing things here
|
|
removeFromLookups(MA);
|
|
}
|
|
|
|
void MemorySSA::print(raw_ostream &OS) const {
|
|
MemorySSAAnnotatedWriter Writer(this);
|
|
F.print(OS, &Writer);
|
|
}
|
|
|
|
void MemorySSA::dump() const {
|
|
MemorySSAAnnotatedWriter Writer(this);
|
|
F.print(dbgs(), &Writer);
|
|
}
|
|
|
|
void MemorySSA::verifyMemorySSA() const {
|
|
verifyDefUses(F);
|
|
verifyDomination(F);
|
|
}
|
|
|
|
/// \brief Verify the domination properties of MemorySSA by checking that each
|
|
/// definition dominates all of its uses.
|
|
void MemorySSA::verifyDomination(Function &F) const {
|
|
for (BasicBlock &B : F) {
|
|
// Phi nodes are attached to basic blocks
|
|
if (MemoryPhi *MP = getMemoryAccess(&B)) {
|
|
for (User *U : MP->users()) {
|
|
BasicBlock *UseBlock;
|
|
// Phi operands are used on edges, we simulate the right domination by
|
|
// acting as if the use occurred at the end of the predecessor block.
|
|
if (MemoryPhi *P = dyn_cast<MemoryPhi>(U)) {
|
|
for (const auto &Arg : P->operands()) {
|
|
if (Arg == MP) {
|
|
UseBlock = P->getIncomingBlock(Arg);
|
|
break;
|
|
}
|
|
}
|
|
} else {
|
|
UseBlock = cast<MemoryAccess>(U)->getBlock();
|
|
}
|
|
(void)UseBlock;
|
|
assert(DT->dominates(MP->getBlock(), UseBlock) &&
|
|
"Memory PHI does not dominate it's uses");
|
|
}
|
|
}
|
|
|
|
for (Instruction &I : B) {
|
|
MemoryAccess *MD = dyn_cast_or_null<MemoryDef>(getMemoryAccess(&I));
|
|
if (!MD)
|
|
continue;
|
|
|
|
for (User *U : MD->users()) {
|
|
BasicBlock *UseBlock; (void)UseBlock;
|
|
// Things are allowed to flow to phi nodes over their predecessor edge.
|
|
if (auto *P = dyn_cast<MemoryPhi>(U)) {
|
|
for (const auto &Arg : P->operands()) {
|
|
if (Arg == MD) {
|
|
UseBlock = P->getIncomingBlock(Arg);
|
|
break;
|
|
}
|
|
}
|
|
} else {
|
|
UseBlock = cast<MemoryAccess>(U)->getBlock();
|
|
}
|
|
assert(DT->dominates(MD->getBlock(), UseBlock) &&
|
|
"Memory Def does not dominate it's uses");
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// \brief Verify the def-use lists in MemorySSA, by verifying that \p Use
|
|
/// appears in the use list of \p Def.
|
|
///
|
|
/// llvm_unreachable is used instead of asserts because this may be called in
|
|
/// a build without asserts. In that case, we don't want this to turn into a
|
|
/// nop.
|
|
void MemorySSA::verifyUseInDefs(MemoryAccess *Def, MemoryAccess *Use) const {
|
|
// The live on entry use may cause us to get a NULL def here
|
|
if (!Def) {
|
|
if (!isLiveOnEntryDef(Use))
|
|
llvm_unreachable("Null def but use not point to live on entry def");
|
|
} else if (std::find(Def->user_begin(), Def->user_end(), Use) ==
|
|
Def->user_end()) {
|
|
llvm_unreachable("Did not find use in def's use list");
|
|
}
|
|
}
|
|
|
|
/// \brief Verify the immediate use information, by walking all the memory
|
|
/// accesses and verifying that, for each use, it appears in the
|
|
/// appropriate def's use list
|
|
void MemorySSA::verifyDefUses(Function &F) const {
|
|
for (BasicBlock &B : F) {
|
|
// Phi nodes are attached to basic blocks
|
|
if (MemoryPhi *Phi = getMemoryAccess(&B))
|
|
for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I)
|
|
verifyUseInDefs(Phi->getIncomingValue(I), Phi);
|
|
|
|
for (Instruction &I : B) {
|
|
if (MemoryAccess *MA = getMemoryAccess(&I)) {
|
|
assert(isa<MemoryUseOrDef>(MA) &&
|
|
"Found a phi node not attached to a bb");
|
|
verifyUseInDefs(cast<MemoryUseOrDef>(MA)->getDefiningAccess(), MA);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
MemoryAccess *MemorySSA::getMemoryAccess(const Value *I) const {
|
|
return ValueToMemoryAccess.lookup(I);
|
|
}
|
|
|
|
MemoryPhi *MemorySSA::getMemoryAccess(const BasicBlock *BB) const {
|
|
return cast_or_null<MemoryPhi>(getMemoryAccess((const Value *)BB));
|
|
}
|
|
|
|
/// \brief Determine, for two memory accesses in the same block,
|
|
/// whether \p Dominator dominates \p Dominatee.
|
|
/// \returns True if \p Dominator dominates \p Dominatee.
|
|
bool MemorySSA::locallyDominates(const MemoryAccess *Dominator,
|
|
const MemoryAccess *Dominatee) const {
|
|
|
|
assert((Dominator->getBlock() == Dominatee->getBlock()) &&
|
|
"Asking for local domination when accesses are in different blocks!");
|
|
// Get the access list for the block
|
|
const AccessListType *AccessList = getBlockAccesses(Dominator->getBlock());
|
|
AccessListType::const_reverse_iterator It(Dominator->getIterator());
|
|
|
|
// If we hit the beginning of the access list before we hit dominatee, we must
|
|
// dominate it
|
|
return std::none_of(It, AccessList->rend(),
|
|
[&](const MemoryAccess &MA) { return &MA == Dominatee; });
|
|
}
|
|
|
|
const static char LiveOnEntryStr[] = "liveOnEntry";
|
|
|
|
void MemoryDef::print(raw_ostream &OS) const {
|
|
MemoryAccess *UO = getDefiningAccess();
|
|
|
|
OS << getID() << " = MemoryDef(";
|
|
if (UO && UO->getID())
|
|
OS << UO->getID();
|
|
else
|
|
OS << LiveOnEntryStr;
|
|
OS << ')';
|
|
}
|
|
|
|
void MemoryPhi::print(raw_ostream &OS) const {
|
|
bool First = true;
|
|
OS << getID() << " = MemoryPhi(";
|
|
for (const auto &Op : operands()) {
|
|
BasicBlock *BB = getIncomingBlock(Op);
|
|
MemoryAccess *MA = cast<MemoryAccess>(Op);
|
|
if (!First)
|
|
OS << ',';
|
|
else
|
|
First = false;
|
|
|
|
OS << '{';
|
|
if (BB->hasName())
|
|
OS << BB->getName();
|
|
else
|
|
BB->printAsOperand(OS, false);
|
|
OS << ',';
|
|
if (unsigned ID = MA->getID())
|
|
OS << ID;
|
|
else
|
|
OS << LiveOnEntryStr;
|
|
OS << '}';
|
|
}
|
|
OS << ')';
|
|
}
|
|
|
|
MemoryAccess::~MemoryAccess() {}
|
|
|
|
void MemoryUse::print(raw_ostream &OS) const {
|
|
MemoryAccess *UO = getDefiningAccess();
|
|
OS << "MemoryUse(";
|
|
if (UO && UO->getID())
|
|
OS << UO->getID();
|
|
else
|
|
OS << LiveOnEntryStr;
|
|
OS << ')';
|
|
}
|
|
|
|
void MemoryAccess::dump() const {
|
|
print(dbgs());
|
|
dbgs() << "\n";
|
|
}
|
|
|
|
char MemorySSAPrinterPass::ID = 0;
|
|
|
|
MemorySSAPrinterPass::MemorySSAPrinterPass() : FunctionPass(ID) {
|
|
initializeMemorySSAPrinterPassPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
void MemorySSAPrinterPass::releaseMemory() {
|
|
// Subtlety: Be sure to delete the walker before MSSA, because the walker's
|
|
// dtor may try to access MemorySSA.
|
|
Walker.reset();
|
|
MSSA.reset();
|
|
}
|
|
|
|
void MemorySSAPrinterPass::getAnalysisUsage(AnalysisUsage &AU) const {
|
|
AU.setPreservesAll();
|
|
AU.addRequired<AAResultsWrapperPass>();
|
|
AU.addRequired<DominatorTreeWrapperPass>();
|
|
AU.addPreserved<DominatorTreeWrapperPass>();
|
|
AU.addPreserved<GlobalsAAWrapperPass>();
|
|
}
|
|
|
|
bool MemorySSAPrinterPass::doInitialization(Module &M) {
|
|
VerifyMemorySSA = M.getContext()
|
|
.getOption<bool, MemorySSAPrinterPass,
|
|
&MemorySSAPrinterPass::VerifyMemorySSA>();
|
|
return false;
|
|
}
|
|
|
|
void MemorySSAPrinterPass::registerOptions() {
|
|
OptionRegistry::registerOption<bool, MemorySSAPrinterPass,
|
|
&MemorySSAPrinterPass::VerifyMemorySSA>(
|
|
"verify-memoryssa", "Run the Memory SSA verifier", false);
|
|
}
|
|
|
|
void MemorySSAPrinterPass::print(raw_ostream &OS, const Module *M) const {
|
|
MSSA->print(OS);
|
|
}
|
|
|
|
bool MemorySSAPrinterPass::runOnFunction(Function &F) {
|
|
this->F = &F;
|
|
MSSA.reset(new MemorySSA(F));
|
|
AliasAnalysis *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
|
|
DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
|
|
Walker.reset(MSSA->buildMemorySSA(AA, DT));
|
|
|
|
if (VerifyMemorySSA) {
|
|
MSSA->verifyMemorySSA();
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
char MemorySSALazy::ID = 0;
|
|
|
|
MemorySSALazy::MemorySSALazy() : FunctionPass(ID) {
|
|
initializeMemorySSALazyPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
void MemorySSALazy::releaseMemory() { MSSA.reset(); }
|
|
|
|
bool MemorySSALazy::runOnFunction(Function &F) {
|
|
MSSA.reset(new MemorySSA(F));
|
|
return false;
|
|
}
|
|
|
|
MemorySSAWalker::MemorySSAWalker(MemorySSA *M) : MSSA(M) {}
|
|
|
|
CachingMemorySSAWalker::CachingMemorySSAWalker(MemorySSA *M, AliasAnalysis *A,
|
|
DominatorTree *D)
|
|
: MemorySSAWalker(M), AA(A), DT(D) {}
|
|
|
|
CachingMemorySSAWalker::~CachingMemorySSAWalker() {}
|
|
|
|
struct CachingMemorySSAWalker::UpwardsMemoryQuery {
|
|
// True if we saw a phi whose predecessor was a backedge
|
|
bool SawBackedgePhi;
|
|
// True if our original query started off as a call
|
|
bool IsCall;
|
|
// The pointer location we started the query with. This will be empty if
|
|
// IsCall is true.
|
|
MemoryLocation StartingLoc;
|
|
// This is the instruction we were querying about.
|
|
const Instruction *Inst;
|
|
// Set of visited Instructions for this query.
|
|
DenseSet<MemoryAccessPair> Visited;
|
|
// Vector of visited call accesses for this query. This is separated out
|
|
// because you can always cache and lookup the result of call queries (IE when
|
|
// IsCall == true) for every call in the chain. The calls have no AA location
|
|
// associated with them with them, and thus, no context dependence.
|
|
SmallVector<const MemoryAccess *, 32> VisitedCalls;
|
|
// The MemoryAccess we actually got called with, used to test local domination
|
|
const MemoryAccess *OriginalAccess;
|
|
// The Datalayout for the module we started in
|
|
const DataLayout *DL;
|
|
|
|
UpwardsMemoryQuery()
|
|
: SawBackedgePhi(false), IsCall(false), Inst(nullptr),
|
|
OriginalAccess(nullptr), DL(nullptr) {}
|
|
};
|
|
|
|
void CachingMemorySSAWalker::invalidateInfo(MemoryAccess *MA) {
|
|
|
|
// TODO: We can do much better cache invalidation with differently stored
|
|
// caches. For now, for MemoryUses, we simply remove them
|
|
// from the cache, and kill the entire call/non-call cache for everything
|
|
// else. The problem is for phis or defs, currently we'd need to follow use
|
|
// chains down and invalidate anything below us in the chain that currently
|
|
// terminates at this access.
|
|
|
|
// See if this is a MemoryUse, if so, just remove the cached info. MemoryUse
|
|
// is by definition never a barrier, so nothing in the cache could point to
|
|
// this use. In that case, we only need invalidate the info for the use
|
|
// itself.
|
|
|
|
if (MemoryUse *MU = dyn_cast<MemoryUse>(MA)) {
|
|
UpwardsMemoryQuery Q;
|
|
Instruction *I = MU->getMemoryInst();
|
|
Q.IsCall = bool(ImmutableCallSite(I));
|
|
Q.Inst = I;
|
|
if (!Q.IsCall)
|
|
Q.StartingLoc = MemoryLocation::get(I);
|
|
doCacheRemove(MA, Q, Q.StartingLoc);
|
|
return;
|
|
}
|
|
// If it is not a use, the best we can do right now is destroy the cache.
|
|
bool IsCall = false;
|
|
|
|
if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA)) {
|
|
Instruction *I = MUD->getMemoryInst();
|
|
IsCall = bool(ImmutableCallSite(I));
|
|
}
|
|
if (IsCall)
|
|
CachedUpwardsClobberingCall.clear();
|
|
else
|
|
CachedUpwardsClobberingAccess.clear();
|
|
}
|
|
|
|
void CachingMemorySSAWalker::doCacheRemove(const MemoryAccess *M,
|
|
const UpwardsMemoryQuery &Q,
|
|
const MemoryLocation &Loc) {
|
|
if (Q.IsCall)
|
|
CachedUpwardsClobberingCall.erase(M);
|
|
else
|
|
CachedUpwardsClobberingAccess.erase({M, Loc});
|
|
}
|
|
|
|
void CachingMemorySSAWalker::doCacheInsert(const MemoryAccess *M,
|
|
MemoryAccess *Result,
|
|
const UpwardsMemoryQuery &Q,
|
|
const MemoryLocation &Loc) {
|
|
++NumClobberCacheInserts;
|
|
if (Q.IsCall)
|
|
CachedUpwardsClobberingCall[M] = Result;
|
|
else
|
|
CachedUpwardsClobberingAccess[{M, Loc}] = Result;
|
|
}
|
|
|
|
MemoryAccess *CachingMemorySSAWalker::doCacheLookup(const MemoryAccess *M,
|
|
const UpwardsMemoryQuery &Q,
|
|
const MemoryLocation &Loc) {
|
|
++NumClobberCacheLookups;
|
|
MemoryAccess *Result = nullptr;
|
|
|
|
if (Q.IsCall)
|
|
Result = CachedUpwardsClobberingCall.lookup(M);
|
|
else
|
|
Result = CachedUpwardsClobberingAccess.lookup({M, Loc});
|
|
|
|
if (Result)
|
|
++NumClobberCacheHits;
|
|
return Result;
|
|
}
|
|
|
|
bool CachingMemorySSAWalker::instructionClobbersQuery(
|
|
const MemoryDef *MD, UpwardsMemoryQuery &Q,
|
|
const MemoryLocation &Loc) const {
|
|
Instruction *DefMemoryInst = MD->getMemoryInst();
|
|
assert(DefMemoryInst && "Defining instruction not actually an instruction");
|
|
|
|
if (!Q.IsCall)
|
|
return AA->getModRefInfo(DefMemoryInst, Loc) & MRI_Mod;
|
|
|
|
// If this is a call, mark it for caching
|
|
if (ImmutableCallSite(DefMemoryInst))
|
|
Q.VisitedCalls.push_back(MD);
|
|
ModRefInfo I = AA->getModRefInfo(DefMemoryInst, ImmutableCallSite(Q.Inst));
|
|
return I != MRI_NoModRef;
|
|
}
|
|
|
|
MemoryAccessPair CachingMemorySSAWalker::UpwardsDFSWalk(
|
|
MemoryAccess *StartingAccess, const MemoryLocation &Loc,
|
|
UpwardsMemoryQuery &Q, bool FollowingBackedge) {
|
|
MemoryAccess *ModifyingAccess = nullptr;
|
|
|
|
auto DFI = df_begin(StartingAccess);
|
|
for (auto DFE = df_end(StartingAccess); DFI != DFE;) {
|
|
MemoryAccess *CurrAccess = *DFI;
|
|
if (MSSA->isLiveOnEntryDef(CurrAccess))
|
|
return {CurrAccess, Loc};
|
|
if (auto CacheResult = doCacheLookup(CurrAccess, Q, Loc))
|
|
return {CacheResult, Loc};
|
|
// If this is a MemoryDef, check whether it clobbers our current query.
|
|
if (auto *MD = dyn_cast<MemoryDef>(CurrAccess)) {
|
|
// If we hit the top, stop following this path.
|
|
// While we can do lookups, we can't sanely do inserts here unless we were
|
|
// to track everything we saw along the way, since we don't know where we
|
|
// will stop.
|
|
if (instructionClobbersQuery(MD, Q, Loc)) {
|
|
ModifyingAccess = CurrAccess;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// We need to know whether it is a phi so we can track backedges.
|
|
// Otherwise, walk all upward defs.
|
|
if (!isa<MemoryPhi>(CurrAccess)) {
|
|
++DFI;
|
|
continue;
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
// The loop below visits the phi's children for us. Because phis are the
|
|
// only things with multiple edges, skipping the children should always lead
|
|
// us to the end of the loop.
|
|
//
|
|
// Use a copy of DFI because skipChildren would kill our search stack, which
|
|
// would make caching anything on the way back impossible.
|
|
auto DFICopy = DFI;
|
|
assert(DFICopy.skipChildren() == DFE &&
|
|
"Skipping phi's children doesn't end the DFS?");
|
|
#endif
|
|
|
|
const MemoryAccessPair PHIPair(CurrAccess, Loc);
|
|
|
|
// Don't try to optimize this phi again if we've already tried to do so.
|
|
if (!Q.Visited.insert(PHIPair).second) {
|
|
ModifyingAccess = CurrAccess;
|
|
break;
|
|
}
|
|
|
|
std::size_t InitialVisitedCallSize = Q.VisitedCalls.size();
|
|
|
|
// Recurse on PHI nodes, since we need to change locations.
|
|
// TODO: Allow graphtraits on pairs, which would turn this whole function
|
|
// into a normal single depth first walk.
|
|
MemoryAccess *FirstDef = nullptr;
|
|
for (auto MPI = upward_defs_begin(PHIPair), MPE = upward_defs_end();
|
|
MPI != MPE; ++MPI) {
|
|
bool Backedge =
|
|
!FollowingBackedge &&
|
|
DT->dominates(CurrAccess->getBlock(), MPI.getPhiArgBlock());
|
|
|
|
MemoryAccessPair CurrentPair =
|
|
UpwardsDFSWalk(MPI->first, MPI->second, Q, Backedge);
|
|
// All the phi arguments should reach the same point if we can bypass
|
|
// this phi. The alternative is that they hit this phi node, which
|
|
// means we can skip this argument.
|
|
if (FirstDef && CurrentPair.first != PHIPair.first &&
|
|
CurrentPair.first != FirstDef) {
|
|
ModifyingAccess = CurrAccess;
|
|
break;
|
|
}
|
|
|
|
if (!FirstDef)
|
|
FirstDef = CurrentPair.first;
|
|
}
|
|
|
|
// If we exited the loop early, go with the result it gave us.
|
|
if (!ModifyingAccess) {
|
|
assert(FirstDef && "Found a Phi with no upward defs?");
|
|
ModifyingAccess = FirstDef;
|
|
} else {
|
|
// If we can't optimize this Phi, then we can't safely cache any of the
|
|
// calls we visited when trying to optimize it. Wipe them out now.
|
|
Q.VisitedCalls.resize(InitialVisitedCallSize);
|
|
}
|
|
break;
|
|
}
|
|
|
|
if (!ModifyingAccess)
|
|
return {MSSA->getLiveOnEntryDef(), Q.StartingLoc};
|
|
|
|
const BasicBlock *OriginalBlock = StartingAccess->getBlock();
|
|
unsigned N = DFI.getPathLength();
|
|
for (; N != 0; --N) {
|
|
MemoryAccess *CacheAccess = DFI.getPath(N - 1);
|
|
BasicBlock *CurrBlock = CacheAccess->getBlock();
|
|
if (!FollowingBackedge)
|
|
doCacheInsert(CacheAccess, ModifyingAccess, Q, Loc);
|
|
if (DT->dominates(CurrBlock, OriginalBlock) &&
|
|
(CurrBlock != OriginalBlock || !FollowingBackedge ||
|
|
MSSA->locallyDominates(CacheAccess, StartingAccess)))
|
|
break;
|
|
}
|
|
|
|
// Cache everything else on the way back. The caller should cache
|
|
// Q.OriginalAccess for us.
|
|
for (; N != 0; --N) {
|
|
MemoryAccess *CacheAccess = DFI.getPath(N - 1);
|
|
doCacheInsert(CacheAccess, ModifyingAccess, Q, Loc);
|
|
}
|
|
assert(Q.Visited.size() < 1000 && "Visited too much");
|
|
|
|
return {ModifyingAccess, Loc};
|
|
}
|
|
|
|
/// \brief Walk the use-def chains starting at \p MA and find
|
|
/// the MemoryAccess that actually clobbers Loc.
|
|
///
|
|
/// \returns our clobbering memory access
|
|
MemoryAccess *
|
|
CachingMemorySSAWalker::getClobberingMemoryAccess(MemoryAccess *StartingAccess,
|
|
UpwardsMemoryQuery &Q) {
|
|
return UpwardsDFSWalk(StartingAccess, Q.StartingLoc, Q, false).first;
|
|
}
|
|
|
|
MemoryAccess *
|
|
CachingMemorySSAWalker::getClobberingMemoryAccess(MemoryAccess *StartingAccess,
|
|
MemoryLocation &Loc) {
|
|
if (isa<MemoryPhi>(StartingAccess))
|
|
return StartingAccess;
|
|
|
|
auto *StartingUseOrDef = cast<MemoryUseOrDef>(StartingAccess);
|
|
if (MSSA->isLiveOnEntryDef(StartingUseOrDef))
|
|
return StartingUseOrDef;
|
|
|
|
Instruction *I = StartingUseOrDef->getMemoryInst();
|
|
|
|
// Conservatively, fences are always clobbers, so don't perform the walk if we
|
|
// hit a fence.
|
|
if (isa<FenceInst>(I))
|
|
return StartingUseOrDef;
|
|
|
|
UpwardsMemoryQuery Q;
|
|
Q.OriginalAccess = StartingUseOrDef;
|
|
Q.StartingLoc = Loc;
|
|
Q.Inst = StartingUseOrDef->getMemoryInst();
|
|
Q.IsCall = false;
|
|
Q.DL = &Q.Inst->getModule()->getDataLayout();
|
|
|
|
if (auto CacheResult = doCacheLookup(StartingUseOrDef, Q, Q.StartingLoc))
|
|
return CacheResult;
|
|
|
|
// Unlike the other function, do not walk to the def of a def, because we are
|
|
// handed something we already believe is the clobbering access.
|
|
MemoryAccess *DefiningAccess = isa<MemoryUse>(StartingUseOrDef)
|
|
? StartingUseOrDef->getDefiningAccess()
|
|
: StartingUseOrDef;
|
|
|
|
MemoryAccess *Clobber = getClobberingMemoryAccess(DefiningAccess, Q);
|
|
doCacheInsert(Q.OriginalAccess, Clobber, Q, Q.StartingLoc);
|
|
DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is ");
|
|
DEBUG(dbgs() << *StartingUseOrDef << "\n");
|
|
DEBUG(dbgs() << "Final Memory SSA clobber for " << *I << " is ");
|
|
DEBUG(dbgs() << *Clobber << "\n");
|
|
return Clobber;
|
|
}
|
|
|
|
MemoryAccess *
|
|
CachingMemorySSAWalker::getClobberingMemoryAccess(const Instruction *I) {
|
|
// There should be no way to lookup an instruction and get a phi as the
|
|
// access, since we only map BB's to PHI's. So, this must be a use or def.
|
|
auto *StartingAccess = cast<MemoryUseOrDef>(MSSA->getMemoryAccess(I));
|
|
|
|
// We can't sanely do anything with a FenceInst, they conservatively
|
|
// clobber all memory, and have no locations to get pointers from to
|
|
// try to disambiguate
|
|
if (isa<FenceInst>(I))
|
|
return StartingAccess;
|
|
|
|
UpwardsMemoryQuery Q;
|
|
Q.OriginalAccess = StartingAccess;
|
|
Q.IsCall = bool(ImmutableCallSite(I));
|
|
if (!Q.IsCall)
|
|
Q.StartingLoc = MemoryLocation::get(I);
|
|
Q.Inst = I;
|
|
Q.DL = &Q.Inst->getModule()->getDataLayout();
|
|
if (auto CacheResult = doCacheLookup(StartingAccess, Q, Q.StartingLoc))
|
|
return CacheResult;
|
|
|
|
// Start with the thing we already think clobbers this location
|
|
MemoryAccess *DefiningAccess = StartingAccess->getDefiningAccess();
|
|
|
|
// At this point, DefiningAccess may be the live on entry def.
|
|
// If it is, we will not get a better result.
|
|
if (MSSA->isLiveOnEntryDef(DefiningAccess))
|
|
return DefiningAccess;
|
|
|
|
MemoryAccess *Result = getClobberingMemoryAccess(DefiningAccess, Q);
|
|
doCacheInsert(Q.OriginalAccess, Result, Q, Q.StartingLoc);
|
|
// TODO: When this implementation is more mature, we may want to figure out
|
|
// what this additional caching buys us. It's most likely A Good Thing.
|
|
if (Q.IsCall)
|
|
for (const MemoryAccess *MA : Q.VisitedCalls)
|
|
doCacheInsert(MA, Result, Q, Q.StartingLoc);
|
|
|
|
DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is ");
|
|
DEBUG(dbgs() << *DefiningAccess << "\n");
|
|
DEBUG(dbgs() << "Final Memory SSA clobber for " << *I << " is ");
|
|
DEBUG(dbgs() << *Result << "\n");
|
|
|
|
return Result;
|
|
}
|
|
|
|
MemoryAccess *
|
|
DoNothingMemorySSAWalker::getClobberingMemoryAccess(const Instruction *I) {
|
|
MemoryAccess *MA = MSSA->getMemoryAccess(I);
|
|
if (auto *Use = dyn_cast<MemoryUseOrDef>(MA))
|
|
return Use->getDefiningAccess();
|
|
return MA;
|
|
}
|
|
|
|
MemoryAccess *DoNothingMemorySSAWalker::getClobberingMemoryAccess(
|
|
MemoryAccess *StartingAccess, MemoryLocation &) {
|
|
if (auto *Use = dyn_cast<MemoryUseOrDef>(StartingAccess))
|
|
return Use->getDefiningAccess();
|
|
return StartingAccess;
|
|
}
|
|
}
|