Go to file
Florian Mayer 68cd47e0ca [HWASan] Clean up hwasan_symbolize.
The globals are better expressed as members of the Symbolizer, and all
functions operating on it should be methods instead.

Also using the standard idiom of wrapping the main code in
`if __name__ == '__main__'`.

Reviewed By: eugenis

Differential Revision: https://reviews.llvm.org/D125032
2022-05-06 15:45:53 -07:00
.github
bolt [BOLT][DWARF] Add version 5 split dwarf support 2022-05-05 14:59:05 -07:00
clang [clang-format][NFC] Make all TokenAnnotator member functions const 2022-05-06 14:46:32 -07:00
clang-tools-extra Fix check-clang-tools target after 7cc8377f2c 2022-05-06 23:08:47 +02:00
cmake [doc] [cmake] Fix a typo in examples for the cmake directory docs. NFC. 2022-04-22 17:28:24 +03:00
compiler-rt [HWASan] Clean up hwasan_symbolize. 2022-05-06 15:45:53 -07:00
cross-project-tests Speculatively fix build bots 2022-04-20 11:48:06 -04:00
flang [mlir] Remove special case parsing/printing of `func` operations 2022-05-06 13:36:15 -07:00
libc [libc][NFC] add index mode to printf parser 2022-05-06 12:06:08 -07:00
libclc
libcxx [libc++][ranges] Implement `views::single`. 2022-05-06 14:27:08 -07:00
libcxxabi [libcxxabi] Use the right calling convention for exception destructors on i386 Windows 2022-05-05 23:21:18 +03:00
libunwind [libunwind] Silence warnings about unused variables. NFC. 2022-05-04 22:55:02 +03:00
lld [ELF] Change (NOLOAD) type mismatch to use SHT_NOBITS instead of SHT_PROGBITS 2022-05-06 07:49:42 -07:00
lldb Fix LLDB test broken by 499d0b96cb 2022-05-06 17:09:02 +02:00
llvm Revert "[SimpleLoopUnswitch] Collect either logical ANDs/ORs but not both." 2022-05-06 22:38:15 +01:00
llvm-libgcc
mlir [mlir] Remove special case parsing/printing of `func` operations 2022-05-06 13:36:15 -07:00
openmp [OpenMP] libomp: Add itt notifications to sync dependent tasks. 2022-05-05 11:30:59 -05:00
polly [Polly] Fix test after D119669. 2022-05-01 13:32:42 -05:00
pstl
runtimes [CMake][libcxx] Use target_include_directories for libc++ headers 2022-05-06 14:06:25 -07:00
third-party
utils [bazel] Fix the build after 2c33266084 2022-05-03 23:04:10 +02:00
.arcconfig
.arclint
.clang-format
.clang-tidy
.git-blame-ignore-revs
.gitignore [llvm] Ignore .rej files in .gitignore 2022-04-28 08:44:51 -07:00
.mailmap
CONTRIBUTING.md
README.md
SECURITY.md

README.md

The LLVM Compiler Infrastructure

This directory and its sub-directories contain the source code for LLVM, a toolkit for the construction of highly optimized compilers, optimizers, and run-time environments.

The README briefly describes how to get started with building LLVM. For more information on how to contribute to the LLVM project, please take a look at the Contributing to LLVM guide.

Getting Started with the LLVM System

Taken from here.

Overview

Welcome to the LLVM project!

The LLVM project has multiple components. The core of the project is itself called "LLVM". This contains all of the tools, libraries, and header files needed to process intermediate representations and convert them into object files. Tools include an assembler, disassembler, bitcode analyzer, and bitcode optimizer. It also contains basic regression tests.

C-like languages use the Clang frontend. This component compiles C, C++, Objective-C, and Objective-C++ code into LLVM bitcode -- and from there into object files, using LLVM.

Other components include: the libc++ C++ standard library, the LLD linker, and more.

Getting the Source Code and Building LLVM

The LLVM Getting Started documentation may be out of date. The Clang Getting Started page might have more accurate information.

This is an example work-flow and configuration to get and build the LLVM source:

  1. Checkout LLVM (including related sub-projects like Clang):

    • git clone https://github.com/llvm/llvm-project.git

    • Or, on windows, git clone --config core.autocrlf=false https://github.com/llvm/llvm-project.git

  2. Configure and build LLVM and Clang:

    • cd llvm-project

    • cmake -S llvm -B build -G <generator> [options]

      Some common build system generators are:

      • Ninja --- for generating Ninja build files. Most llvm developers use Ninja.
      • Unix Makefiles --- for generating make-compatible parallel makefiles.
      • Visual Studio --- for generating Visual Studio projects and solutions.
      • Xcode --- for generating Xcode projects.

      Some common options:

      • -DLLVM_ENABLE_PROJECTS='...' and -DLLVM_ENABLE_RUNTIMES='...' --- semicolon-separated list of the LLVM sub-projects and runtimes you'd like to additionally build. LLVM_ENABLE_PROJECTS can include any of: clang, clang-tools-extra, cross-project-tests, flang, libc, libclc, lld, lldb, mlir, openmp, polly, or pstl. LLVM_ENABLE_RUNTIMES can include any of libcxx, libcxxabi, libunwind, compiler-rt, libc or openmp. Some runtime projects can be specified either in LLVM_ENABLE_PROJECTS or in LLVM_ENABLE_RUNTIMES.

        For example, to build LLVM, Clang, libcxx, and libcxxabi, use -DLLVM_ENABLE_PROJECTS="clang" -DLLVM_ENABLE_RUNTIMES="libcxx;libcxxabi".

      • -DCMAKE_INSTALL_PREFIX=directory --- Specify for directory the full path name of where you want the LLVM tools and libraries to be installed (default /usr/local). Be careful if you install runtime libraries: if your system uses those provided by LLVM (like libc++ or libc++abi), you must not overwrite your system's copy of those libraries, since that could render your system unusable. In general, using something like /usr is not advised, but /usr/local is fine.

      • -DCMAKE_BUILD_TYPE=type --- Valid options for type are Debug, Release, RelWithDebInfo, and MinSizeRel. Default is Debug.

      • -DLLVM_ENABLE_ASSERTIONS=On --- Compile with assertion checks enabled (default is Yes for Debug builds, No for all other build types).

    • cmake --build build [-- [options] <target>] or your build system specified above directly.

      • The default target (i.e. ninja or make) will build all of LLVM.

      • The check-all target (i.e. ninja check-all) will run the regression tests to ensure everything is in working order.

      • CMake will generate targets for each tool and library, and most LLVM sub-projects generate their own check-<project> target.

      • Running a serial build will be slow. To improve speed, try running a parallel build. That's done by default in Ninja; for make, use the option -j NNN, where NNN is the number of parallel jobs to run. In most cases, you get the best performance if you specify the number of CPU threads you have. On some Unix systems, you can specify this with -j$(nproc).

    • For more information see CMake.

Consult the Getting Started with LLVM page for detailed information on configuring and compiling LLVM. You can visit Directory Layout to learn about the layout of the source code tree.

Getting in touch

Join LLVM Discourse forums, discord chat or #llvm IRC channel on OFTC.

The LLVM project has adopted a code of conduct for participants to all modes of communication within the project.