llvm-project/llvm/lib/CodeGen/GlobalISel/IRTranslator.cpp

453 lines
15 KiB
C++

//===-- llvm/CodeGen/GlobalISel/IRTranslator.cpp - IRTranslator --*- C++ -*-==//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
/// \file
/// This file implements the IRTranslator class.
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/GlobalISel/IRTranslator.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/CodeGen/GlobalISel/CallLowering.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
#include "llvm/Target/TargetIntrinsicInfo.h"
#include "llvm/Target/TargetLowering.h"
#define DEBUG_TYPE "irtranslator"
using namespace llvm;
char IRTranslator::ID = 0;
INITIALIZE_PASS(IRTranslator, "irtranslator", "IRTranslator LLVM IR -> MI",
false, false)
IRTranslator::IRTranslator() : MachineFunctionPass(ID), MRI(nullptr) {
initializeIRTranslatorPass(*PassRegistry::getPassRegistry());
}
unsigned IRTranslator::getOrCreateVReg(const Value &Val) {
unsigned &ValReg = ValToVReg[&Val];
// Check if this is the first time we see Val.
if (!ValReg) {
// Fill ValRegsSequence with the sequence of registers
// we need to concat together to produce the value.
assert(Val.getType()->isSized() &&
"Don't know how to create an empty vreg");
unsigned Size = DL->getTypeSizeInBits(Val.getType());
unsigned VReg = MRI->createGenericVirtualRegister(Size);
ValReg = VReg;
if (auto CV = dyn_cast<Constant>(&Val)) {
bool Success = translate(*CV, VReg);
if (!Success)
report_fatal_error("unable to translate constant");
}
}
return ValReg;
}
unsigned IRTranslator::getMemOpAlignment(const Instruction &I) {
unsigned Alignment = 0;
Type *ValTy = nullptr;
if (const StoreInst *SI = dyn_cast<StoreInst>(&I)) {
Alignment = SI->getAlignment();
ValTy = SI->getValueOperand()->getType();
} else if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) {
Alignment = LI->getAlignment();
ValTy = LI->getType();
} else
llvm_unreachable("unhandled memory instruction");
return Alignment ? Alignment : DL->getABITypeAlignment(ValTy);
}
MachineBasicBlock &IRTranslator::getOrCreateBB(const BasicBlock &BB) {
MachineBasicBlock *&MBB = BBToMBB[&BB];
if (!MBB) {
MachineFunction &MF = MIRBuilder.getMF();
MBB = MF.CreateMachineBasicBlock();
MF.push_back(MBB);
}
return *MBB;
}
bool IRTranslator::translateBinaryOp(unsigned Opcode, const User &U) {
// FIXME: handle signed/unsigned wrapping flags.
// Get or create a virtual register for each value.
// Unless the value is a Constant => loadimm cst?
// or inline constant each time?
// Creation of a virtual register needs to have a size.
unsigned Op0 = getOrCreateVReg(*U.getOperand(0));
unsigned Op1 = getOrCreateVReg(*U.getOperand(1));
unsigned Res = getOrCreateVReg(U);
MIRBuilder.buildInstr(Opcode, LLT{*U.getType()})
.addDef(Res)
.addUse(Op0)
.addUse(Op1);
return true;
}
bool IRTranslator::translateICmp(const User &U) {
const CmpInst &CI = cast<CmpInst>(U);
unsigned Op0 = getOrCreateVReg(*CI.getOperand(0));
unsigned Op1 = getOrCreateVReg(*CI.getOperand(1));
unsigned Res = getOrCreateVReg(CI);
CmpInst::Predicate Pred = CI.getPredicate();
assert(isa<ICmpInst>(CI) && "only integer comparisons supported now");
assert(CmpInst::isIntPredicate(Pred) && "only int comparisons supported now");
MIRBuilder.buildICmp({LLT{*CI.getType()}, LLT{*CI.getOperand(0)->getType()}},
Pred, Res, Op0, Op1);
return true;
}
bool IRTranslator::translateRet(const User &U) {
const ReturnInst &RI = cast<ReturnInst>(U);
const Value *Ret = RI.getReturnValue();
// The target may mess up with the insertion point, but
// this is not important as a return is the last instruction
// of the block anyway.
return CLI->lowerReturn(MIRBuilder, Ret, !Ret ? 0 : getOrCreateVReg(*Ret));
}
bool IRTranslator::translateBr(const User &U) {
const BranchInst &BrInst = cast<BranchInst>(U);
unsigned Succ = 0;
if (!BrInst.isUnconditional()) {
// We want a G_BRCOND to the true BB followed by an unconditional branch.
unsigned Tst = getOrCreateVReg(*BrInst.getCondition());
const BasicBlock &TrueTgt = *cast<BasicBlock>(BrInst.getSuccessor(Succ++));
MachineBasicBlock &TrueBB = getOrCreateBB(TrueTgt);
MIRBuilder.buildBrCond(LLT{*BrInst.getCondition()->getType()}, Tst, TrueBB);
}
const BasicBlock &BrTgt = *cast<BasicBlock>(BrInst.getSuccessor(Succ));
MachineBasicBlock &TgtBB = getOrCreateBB(BrTgt);
MIRBuilder.buildBr(TgtBB);
// Link successors.
MachineBasicBlock &CurBB = MIRBuilder.getMBB();
for (const BasicBlock *Succ : BrInst.successors())
CurBB.addSuccessor(&getOrCreateBB(*Succ));
return true;
}
bool IRTranslator::translateLoad(const User &U) {
const LoadInst &LI = cast<LoadInst>(U);
assert(LI.isSimple() && "only simple loads are supported at the moment");
MachineFunction &MF = MIRBuilder.getMF();
unsigned Res = getOrCreateVReg(LI);
unsigned Addr = getOrCreateVReg(*LI.getPointerOperand());
LLT VTy{*LI.getType(), DL}, PTy{*LI.getPointerOperand()->getType()};
MIRBuilder.buildLoad(
VTy, PTy, Res, Addr,
*MF.getMachineMemOperand(
MachinePointerInfo(LI.getPointerOperand()), MachineMemOperand::MOLoad,
DL->getTypeStoreSize(LI.getType()), getMemOpAlignment(LI)));
return true;
}
bool IRTranslator::translateStore(const User &U) {
const StoreInst &SI = cast<StoreInst>(U);
assert(SI.isSimple() && "only simple loads are supported at the moment");
MachineFunction &MF = MIRBuilder.getMF();
unsigned Val = getOrCreateVReg(*SI.getValueOperand());
unsigned Addr = getOrCreateVReg(*SI.getPointerOperand());
LLT VTy{*SI.getValueOperand()->getType(), DL},
PTy{*SI.getPointerOperand()->getType()};
MIRBuilder.buildStore(
VTy, PTy, Val, Addr,
*MF.getMachineMemOperand(
MachinePointerInfo(SI.getPointerOperand()),
MachineMemOperand::MOStore,
DL->getTypeStoreSize(SI.getValueOperand()->getType()),
getMemOpAlignment(SI)));
return true;
}
bool IRTranslator::translateExtractValue(const User &U) {
const ExtractValueInst &EVI = cast<ExtractValueInst>(U);
const Value *Src = EVI.getAggregateOperand();
Type *Int32Ty = Type::getInt32Ty(EVI.getContext());
SmallVector<Value *, 1> Indices;
// getIndexedOffsetInType is designed for GEPs, so the first index is the
// usual array element rather than looking into the actual aggregate.
Indices.push_back(ConstantInt::get(Int32Ty, 0));
for (auto Idx : EVI.indices())
Indices.push_back(ConstantInt::get(Int32Ty, Idx));
uint64_t Offset = 8 * DL->getIndexedOffsetInType(Src->getType(), Indices);
unsigned Res = getOrCreateVReg(EVI);
MIRBuilder.buildExtract(LLT{*EVI.getType(), DL}, Res, Offset,
LLT{*Src->getType(), DL}, getOrCreateVReg(*Src));
return true;
}
bool IRTranslator::translateBitCast(const User &U) {
if (LLT{*U.getOperand(0)->getType()} == LLT{*U.getType()}) {
unsigned &Reg = ValToVReg[&U];
if (Reg)
MIRBuilder.buildCopy(Reg, getOrCreateVReg(*U.getOperand(0)));
else
Reg = getOrCreateVReg(*U.getOperand(0));
return true;
}
return translateCast(TargetOpcode::G_BITCAST, U);
}
bool IRTranslator::translateCast(unsigned Opcode, const User &U) {
unsigned Op = getOrCreateVReg(*U.getOperand(0));
unsigned Res = getOrCreateVReg(U);
MIRBuilder
.buildInstr(Opcode, {LLT{*U.getType()}, LLT{*U.getOperand(0)->getType()}})
.addDef(Res)
.addUse(Op);
return true;
}
bool IRTranslator::translateKnownIntrinsic(const CallInst &CI,
Intrinsic::ID ID) {
unsigned Op = 0;
switch (ID) {
default: return false;
case Intrinsic::uadd_with_overflow: Op = TargetOpcode::G_UADDE; break;
case Intrinsic::sadd_with_overflow: Op = TargetOpcode::G_SADDO; break;
case Intrinsic::usub_with_overflow: Op = TargetOpcode::G_USUBE; break;
case Intrinsic::ssub_with_overflow: Op = TargetOpcode::G_SSUBO; break;
case Intrinsic::umul_with_overflow: Op = TargetOpcode::G_UMULO; break;
case Intrinsic::smul_with_overflow: Op = TargetOpcode::G_SMULO; break;
}
LLT Ty{*CI.getOperand(0)->getType()};
LLT s1 = LLT::scalar(1);
unsigned Width = Ty.getSizeInBits();
unsigned Res = MRI->createGenericVirtualRegister(Width);
unsigned Overflow = MRI->createGenericVirtualRegister(1);
auto MIB = MIRBuilder.buildInstr(Op, {Ty, s1})
.addDef(Res)
.addDef(Overflow)
.addUse(getOrCreateVReg(*CI.getOperand(0)))
.addUse(getOrCreateVReg(*CI.getOperand(1)));
if (Op == TargetOpcode::G_UADDE || Op == TargetOpcode::G_USUBE) {
unsigned Zero = MRI->createGenericVirtualRegister(1);
EntryBuilder.buildConstant(s1, Zero, 0);
MIB.addUse(Zero);
}
MIRBuilder.buildSequence(LLT{*CI.getType(), DL}, getOrCreateVReg(CI), Ty, Res,
0, s1, Overflow, Width);
return true;
}
bool IRTranslator::translateCall(const User &U) {
const CallInst &CI = cast<CallInst>(U);
auto TII = MIRBuilder.getMF().getTarget().getIntrinsicInfo();
const Function *F = CI.getCalledFunction();
if (!F || !F->isIntrinsic()) {
// FIXME: handle multiple return values.
unsigned Res = CI.getType()->isVoidTy() ? 0 : getOrCreateVReg(CI);
SmallVector<unsigned, 8> Args;
for (auto &Arg: CI.arg_operands())
Args.push_back(getOrCreateVReg(*Arg));
return CLI->lowerCall(MIRBuilder, CI,
F ? 0 : getOrCreateVReg(*CI.getCalledValue()), Res,
Args);
}
Intrinsic::ID ID = F->getIntrinsicID();
if (TII && ID == Intrinsic::not_intrinsic)
ID = static_cast<Intrinsic::ID>(TII->getIntrinsicID(F));
assert(ID != Intrinsic::not_intrinsic && "unknown intrinsic");
if (translateKnownIntrinsic(CI, ID))
return true;
// Need types (starting with return) & args.
SmallVector<LLT, 4> Tys;
Tys.emplace_back(*CI.getType());
for (auto &Arg : CI.arg_operands())
Tys.emplace_back(*Arg->getType());
unsigned Res = CI.getType()->isVoidTy() ? 0 : getOrCreateVReg(CI);
MachineInstrBuilder MIB =
MIRBuilder.buildIntrinsic(Tys, ID, Res, !CI.doesNotAccessMemory());
for (auto &Arg : CI.arg_operands()) {
if (ConstantInt *CI = dyn_cast<ConstantInt>(Arg))
MIB.addImm(CI->getSExtValue());
else
MIB.addUse(getOrCreateVReg(*Arg));
}
return true;
}
bool IRTranslator::translateStaticAlloca(const AllocaInst &AI) {
assert(AI.isStaticAlloca() && "only handle static allocas now");
MachineFunction &MF = MIRBuilder.getMF();
unsigned ElementSize = DL->getTypeStoreSize(AI.getAllocatedType());
unsigned Size =
ElementSize * cast<ConstantInt>(AI.getArraySize())->getZExtValue();
// Always allocate at least one byte.
Size = std::max(Size, 1u);
unsigned Alignment = AI.getAlignment();
if (!Alignment)
Alignment = DL->getABITypeAlignment(AI.getAllocatedType());
unsigned Res = getOrCreateVReg(AI);
int FI = MF.getFrameInfo().CreateStackObject(Size, Alignment, false, &AI);
MIRBuilder.buildFrameIndex(LLT::pointer(0), Res, FI);
return true;
}
bool IRTranslator::translatePHI(const User &U) {
const PHINode &PI = cast<PHINode>(U);
MachineInstrBuilder MIB = MIRBuilder.buildInstr(TargetOpcode::PHI);
MIB.addDef(getOrCreateVReg(PI));
PendingPHIs.emplace_back(&PI, MIB.getInstr());
return true;
}
void IRTranslator::finishPendingPhis() {
for (std::pair<const PHINode *, MachineInstr *> &Phi : PendingPHIs) {
const PHINode *PI = Phi.first;
MachineInstrBuilder MIB(MIRBuilder.getMF(), Phi.second);
// All MachineBasicBlocks exist, add them to the PHI. We assume IRTranslator
// won't create extra control flow here, otherwise we need to find the
// dominating predecessor here (or perhaps force the weirder IRTranslators
// to provide a simple boundary).
for (unsigned i = 0; i < PI->getNumIncomingValues(); ++i) {
assert(BBToMBB[PI->getIncomingBlock(i)]->isSuccessor(MIB->getParent()) &&
"I appear to have misunderstood Machine PHIs");
MIB.addUse(getOrCreateVReg(*PI->getIncomingValue(i)));
MIB.addMBB(BBToMBB[PI->getIncomingBlock(i)]);
}
}
PendingPHIs.clear();
}
bool IRTranslator::translate(const Instruction &Inst) {
MIRBuilder.setDebugLoc(Inst.getDebugLoc());
switch(Inst.getOpcode()) {
#define HANDLE_INST(NUM, OPCODE, CLASS) \
case Instruction::OPCODE: return translate##OPCODE(Inst);
#include "llvm/IR/Instruction.def"
default:
llvm_unreachable("unknown opcode");
}
}
bool IRTranslator::translate(const Constant &C, unsigned Reg) {
if (auto CI = dyn_cast<ConstantInt>(&C))
EntryBuilder.buildConstant(LLT{*CI->getType()}, Reg, CI->getZExtValue());
else if (isa<UndefValue>(C))
EntryBuilder.buildInstr(TargetOpcode::IMPLICIT_DEF).addDef(Reg);
else if (isa<ConstantPointerNull>(C))
EntryBuilder.buildInstr(TargetOpcode::G_CONSTANT, LLT{*C.getType()})
.addDef(Reg)
.addImm(0);
else if (auto CE = dyn_cast<ConstantExpr>(&C)) {
switch(CE->getOpcode()) {
#define HANDLE_INST(NUM, OPCODE, CLASS) \
case Instruction::OPCODE: return translate##OPCODE(*CE);
#include "llvm/IR/Instruction.def"
default:
llvm_unreachable("unknown opcode");
}
} else
llvm_unreachable("unhandled constant kind");
return true;
}
void IRTranslator::finalizeFunction() {
finishPendingPhis();
// Release the memory used by the different maps we
// needed during the translation.
ValToVReg.clear();
Constants.clear();
}
bool IRTranslator::runOnMachineFunction(MachineFunction &MF) {
const Function &F = *MF.getFunction();
if (F.empty())
return false;
CLI = MF.getSubtarget().getCallLowering();
MIRBuilder.setMF(MF);
EntryBuilder.setMF(MF);
MRI = &MF.getRegInfo();
DL = &F.getParent()->getDataLayout();
assert(PendingPHIs.empty() && "stale PHIs");
// Setup the arguments.
MachineBasicBlock &MBB = getOrCreateBB(F.front());
MIRBuilder.setMBB(MBB);
SmallVector<unsigned, 8> VRegArgs;
for (const Argument &Arg: F.args())
VRegArgs.push_back(getOrCreateVReg(Arg));
bool Succeeded =
CLI->lowerFormalArguments(MIRBuilder, F.getArgumentList(), VRegArgs);
if (!Succeeded)
report_fatal_error("Unable to lower arguments");
// Now that we've got the ABI handling code, it's safe to set a location for
// any Constants we find in the IR.
if (MBB.empty())
EntryBuilder.setMBB(MBB);
else
EntryBuilder.setInstr(MBB.back(), /* Before */ false);
for (const BasicBlock &BB: F) {
MachineBasicBlock &MBB = getOrCreateBB(BB);
// Set the insertion point of all the following translations to
// the end of this basic block.
MIRBuilder.setMBB(MBB);
for (const Instruction &Inst: BB) {
bool Succeeded = translate(Inst);
if (!Succeeded) {
DEBUG(dbgs() << "Cannot translate: " << Inst << '\n');
report_fatal_error("Unable to translate instruction");
}
}
}
finalizeFunction();
// Now that the MachineFrameInfo has been configured, no further changes to
// the reserved registers are possible.
MRI->freezeReservedRegs(MF);
return false;
}