llvm-project/lld/ELF/Arch/X86.cpp

639 lines
21 KiB
C++

//===- X86.cpp ------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "InputFiles.h"
#include "Symbols.h"
#include "SyntheticSections.h"
#include "Target.h"
#include "lld/Common/ErrorHandler.h"
#include "llvm/Support/Endian.h"
using namespace llvm;
using namespace llvm::support::endian;
using namespace llvm::ELF;
namespace lld {
namespace elf {
namespace {
class X86 : public TargetInfo {
public:
X86();
int getTlsGdRelaxSkip(RelType type) const override;
RelExpr getRelExpr(RelType type, const Symbol &s,
const uint8_t *loc) const override;
int64_t getImplicitAddend(const uint8_t *buf, RelType type) const override;
void writeGotPltHeader(uint8_t *buf) const override;
RelType getDynRel(RelType type) const override;
void writeGotPlt(uint8_t *buf, const Symbol &s) const override;
void writeIgotPlt(uint8_t *buf, const Symbol &s) const override;
void writePltHeader(uint8_t *buf) const override;
void writePlt(uint8_t *buf, const Symbol &sym,
uint64_t pltEntryAddr) const override;
void relocate(uint8_t *loc, const Relocation &rel,
uint64_t val) const override;
RelExpr adjustRelaxExpr(RelType type, const uint8_t *data,
RelExpr expr) const override;
void relaxTlsGdToIe(uint8_t *loc, const Relocation &rel,
uint64_t val) const override;
void relaxTlsGdToLe(uint8_t *loc, const Relocation &rel,
uint64_t val) const override;
void relaxTlsIeToLe(uint8_t *loc, const Relocation &rel,
uint64_t val) const override;
void relaxTlsLdToLe(uint8_t *loc, const Relocation &rel,
uint64_t val) const override;
};
} // namespace
X86::X86() {
copyRel = R_386_COPY;
gotRel = R_386_GLOB_DAT;
noneRel = R_386_NONE;
pltRel = R_386_JUMP_SLOT;
iRelativeRel = R_386_IRELATIVE;
relativeRel = R_386_RELATIVE;
symbolicRel = R_386_32;
tlsGotRel = R_386_TLS_TPOFF;
tlsModuleIndexRel = R_386_TLS_DTPMOD32;
tlsOffsetRel = R_386_TLS_DTPOFF32;
pltHeaderSize = 16;
pltEntrySize = 16;
ipltEntrySize = 16;
trapInstr = {0xcc, 0xcc, 0xcc, 0xcc}; // 0xcc = INT3
// Align to the non-PAE large page size (known as a superpage or huge page).
// FreeBSD automatically promotes large, superpage-aligned allocations.
defaultImageBase = 0x400000;
}
int X86::getTlsGdRelaxSkip(RelType type) const {
return 2;
}
RelExpr X86::getRelExpr(RelType type, const Symbol &s,
const uint8_t *loc) const {
// There are 4 different TLS variable models with varying degrees of
// flexibility and performance. LocalExec and InitialExec models are fast but
// less-flexible models. If they are in use, we set DF_STATIC_TLS flag in the
// dynamic section to let runtime know about that.
if (type == R_386_TLS_LE || type == R_386_TLS_LE_32 || type == R_386_TLS_IE ||
type == R_386_TLS_GOTIE)
config->hasStaticTlsModel = true;
switch (type) {
case R_386_8:
case R_386_16:
case R_386_32:
return R_ABS;
case R_386_TLS_LDO_32:
return R_DTPREL;
case R_386_TLS_GD:
return R_TLSGD_GOTPLT;
case R_386_TLS_LDM:
return R_TLSLD_GOTPLT;
case R_386_PLT32:
return R_PLT_PC;
case R_386_PC8:
case R_386_PC16:
case R_386_PC32:
return R_PC;
case R_386_GOTPC:
return R_GOTPLTONLY_PC;
case R_386_TLS_IE:
return R_GOT;
case R_386_GOT32:
case R_386_GOT32X:
// These relocations are arguably mis-designed because their calculations
// depend on the instructions they are applied to. This is bad because we
// usually don't care about whether the target section contains valid
// machine instructions or not. But this is part of the documented ABI, so
// we had to implement as the standard requires.
//
// x86 does not support PC-relative data access. Therefore, in order to
// access GOT contents, a GOT address needs to be known at link-time
// (which means non-PIC) or compilers have to emit code to get a GOT
// address at runtime (which means code is position-independent but
// compilers need to emit extra code for each GOT access.) This decision
// is made at compile-time. In the latter case, compilers emit code to
// load a GOT address to a register, which is usually %ebx.
//
// So, there are two ways to refer to symbol foo's GOT entry: foo@GOT or
// foo@GOT(%ebx).
//
// foo@GOT is not usable in PIC. If we are creating a PIC output and if we
// find such relocation, we should report an error. foo@GOT is resolved to
// an *absolute* address of foo's GOT entry, because both GOT address and
// foo's offset are known. In other words, it's G + A.
//
// foo@GOT(%ebx) needs to be resolved to a *relative* offset from a GOT to
// foo's GOT entry in the table, because GOT address is not known but foo's
// offset in the table is known. It's G + A - GOT.
//
// It's unfortunate that compilers emit the same relocation for these
// different use cases. In order to distinguish them, we have to read a
// machine instruction.
//
// The following code implements it. We assume that Loc[0] is the first byte
// of a displacement or an immediate field of a valid machine
// instruction. That means a ModRM byte is at Loc[-1]. By taking a look at
// the byte, we can determine whether the instruction uses the operand as an
// absolute address (R_GOT) or a register-relative address (R_GOTPLT).
return (loc[-1] & 0xc7) == 0x5 ? R_GOT : R_GOTPLT;
case R_386_TLS_GOTIE:
return R_GOTPLT;
case R_386_GOTOFF:
return R_GOTPLTREL;
case R_386_TLS_LE:
return R_TLS;
case R_386_TLS_LE_32:
return R_NEG_TLS;
case R_386_NONE:
return R_NONE;
default:
error(getErrorLocation(loc) + "unknown relocation (" + Twine(type) +
") against symbol " + toString(s));
return R_NONE;
}
}
RelExpr X86::adjustRelaxExpr(RelType type, const uint8_t *data,
RelExpr expr) const {
switch (expr) {
default:
return expr;
case R_RELAX_TLS_GD_TO_IE:
return R_RELAX_TLS_GD_TO_IE_GOTPLT;
case R_RELAX_TLS_GD_TO_LE:
return R_RELAX_TLS_GD_TO_LE_NEG;
}
}
void X86::writeGotPltHeader(uint8_t *buf) const {
write32le(buf, mainPart->dynamic->getVA());
}
void X86::writeGotPlt(uint8_t *buf, const Symbol &s) const {
// Entries in .got.plt initially points back to the corresponding
// PLT entries with a fixed offset to skip the first instruction.
write32le(buf, s.getPltVA() + 6);
}
void X86::writeIgotPlt(uint8_t *buf, const Symbol &s) const {
// An x86 entry is the address of the ifunc resolver function.
write32le(buf, s.getVA());
}
RelType X86::getDynRel(RelType type) const {
if (type == R_386_TLS_LE)
return R_386_TLS_TPOFF;
if (type == R_386_TLS_LE_32)
return R_386_TLS_TPOFF32;
return type;
}
void X86::writePltHeader(uint8_t *buf) const {
if (config->isPic) {
const uint8_t v[] = {
0xff, 0xb3, 0x04, 0x00, 0x00, 0x00, // pushl 4(%ebx)
0xff, 0xa3, 0x08, 0x00, 0x00, 0x00, // jmp *8(%ebx)
0x90, 0x90, 0x90, 0x90 // nop
};
memcpy(buf, v, sizeof(v));
return;
}
const uint8_t pltData[] = {
0xff, 0x35, 0, 0, 0, 0, // pushl (GOTPLT+4)
0xff, 0x25, 0, 0, 0, 0, // jmp *(GOTPLT+8)
0x90, 0x90, 0x90, 0x90, // nop
};
memcpy(buf, pltData, sizeof(pltData));
uint32_t gotPlt = in.gotPlt->getVA();
write32le(buf + 2, gotPlt + 4);
write32le(buf + 8, gotPlt + 8);
}
void X86::writePlt(uint8_t *buf, const Symbol &sym,
uint64_t pltEntryAddr) const {
unsigned relOff = in.relaPlt->entsize * sym.pltIndex;
if (config->isPic) {
const uint8_t inst[] = {
0xff, 0xa3, 0, 0, 0, 0, // jmp *foo@GOT(%ebx)
0x68, 0, 0, 0, 0, // pushl $reloc_offset
0xe9, 0, 0, 0, 0, // jmp .PLT0@PC
};
memcpy(buf, inst, sizeof(inst));
write32le(buf + 2, sym.getGotPltVA() - in.gotPlt->getVA());
} else {
const uint8_t inst[] = {
0xff, 0x25, 0, 0, 0, 0, // jmp *foo@GOT
0x68, 0, 0, 0, 0, // pushl $reloc_offset
0xe9, 0, 0, 0, 0, // jmp .PLT0@PC
};
memcpy(buf, inst, sizeof(inst));
write32le(buf + 2, sym.getGotPltVA());
}
write32le(buf + 7, relOff);
write32le(buf + 12, in.plt->getVA() - pltEntryAddr - 16);
}
int64_t X86::getImplicitAddend(const uint8_t *buf, RelType type) const {
switch (type) {
case R_386_8:
case R_386_PC8:
return SignExtend64<8>(*buf);
case R_386_16:
case R_386_PC16:
return SignExtend64<16>(read16le(buf));
case R_386_32:
case R_386_GOT32:
case R_386_GOT32X:
case R_386_GOTOFF:
case R_386_GOTPC:
case R_386_PC32:
case R_386_PLT32:
case R_386_TLS_LDO_32:
case R_386_TLS_LE:
return SignExtend64<32>(read32le(buf));
default:
return 0;
}
}
void X86::relocate(uint8_t *loc, const Relocation &rel, uint64_t val) const {
switch (rel.type) {
case R_386_8:
// R_386_{PC,}{8,16} are not part of the i386 psABI, but they are
// being used for some 16-bit programs such as boot loaders, so
// we want to support them.
checkIntUInt(loc, val, 8, rel);
*loc = val;
break;
case R_386_PC8:
checkInt(loc, val, 8, rel);
*loc = val;
break;
case R_386_16:
checkIntUInt(loc, val, 16, rel);
write16le(loc, val);
break;
case R_386_PC16:
// R_386_PC16 is normally used with 16 bit code. In that situation
// the PC is 16 bits, just like the addend. This means that it can
// point from any 16 bit address to any other if the possibility
// of wrapping is included.
// The only restriction we have to check then is that the destination
// address fits in 16 bits. That is impossible to do here. The problem is
// that we are passed the final value, which already had the
// current location subtracted from it.
// We just check that Val fits in 17 bits. This misses some cases, but
// should have no false positives.
checkInt(loc, val, 17, rel);
write16le(loc, val);
break;
case R_386_32:
case R_386_GOT32:
case R_386_GOT32X:
case R_386_GOTOFF:
case R_386_GOTPC:
case R_386_PC32:
case R_386_PLT32:
case R_386_RELATIVE:
case R_386_TLS_DTPMOD32:
case R_386_TLS_DTPOFF32:
case R_386_TLS_GD:
case R_386_TLS_GOTIE:
case R_386_TLS_IE:
case R_386_TLS_LDM:
case R_386_TLS_LDO_32:
case R_386_TLS_LE:
case R_386_TLS_LE_32:
case R_386_TLS_TPOFF:
case R_386_TLS_TPOFF32:
checkInt(loc, val, 32, rel);
write32le(loc, val);
break;
default:
llvm_unreachable("unknown relocation");
}
}
void X86::relaxTlsGdToLe(uint8_t *loc, const Relocation &, uint64_t val) const {
// Convert
// leal x@tlsgd(, %ebx, 1),
// call __tls_get_addr@plt
// to
// movl %gs:0,%eax
// subl $x@ntpoff,%eax
const uint8_t inst[] = {
0x65, 0xa1, 0x00, 0x00, 0x00, 0x00, // movl %gs:0, %eax
0x81, 0xe8, 0, 0, 0, 0, // subl Val(%ebx), %eax
};
memcpy(loc - 3, inst, sizeof(inst));
write32le(loc + 5, val);
}
void X86::relaxTlsGdToIe(uint8_t *loc, const Relocation &, uint64_t val) const {
// Convert
// leal x@tlsgd(, %ebx, 1),
// call __tls_get_addr@plt
// to
// movl %gs:0, %eax
// addl x@gotntpoff(%ebx), %eax
const uint8_t inst[] = {
0x65, 0xa1, 0x00, 0x00, 0x00, 0x00, // movl %gs:0, %eax
0x03, 0x83, 0, 0, 0, 0, // addl Val(%ebx), %eax
};
memcpy(loc - 3, inst, sizeof(inst));
write32le(loc + 5, val);
}
// In some conditions, relocations can be optimized to avoid using GOT.
// This function does that for Initial Exec to Local Exec case.
void X86::relaxTlsIeToLe(uint8_t *loc, const Relocation &rel,
uint64_t val) const {
// Ulrich's document section 6.2 says that @gotntpoff can
// be used with MOVL or ADDL instructions.
// @indntpoff is similar to @gotntpoff, but for use in
// position dependent code.
uint8_t reg = (loc[-1] >> 3) & 7;
if (rel.type == R_386_TLS_IE) {
if (loc[-1] == 0xa1) {
// "movl foo@indntpoff,%eax" -> "movl $foo,%eax"
// This case is different from the generic case below because
// this is a 5 byte instruction while below is 6 bytes.
loc[-1] = 0xb8;
} else if (loc[-2] == 0x8b) {
// "movl foo@indntpoff,%reg" -> "movl $foo,%reg"
loc[-2] = 0xc7;
loc[-1] = 0xc0 | reg;
} else {
// "addl foo@indntpoff,%reg" -> "addl $foo,%reg"
loc[-2] = 0x81;
loc[-1] = 0xc0 | reg;
}
} else {
assert(rel.type == R_386_TLS_GOTIE);
if (loc[-2] == 0x8b) {
// "movl foo@gottpoff(%rip),%reg" -> "movl $foo,%reg"
loc[-2] = 0xc7;
loc[-1] = 0xc0 | reg;
} else {
// "addl foo@gotntpoff(%rip),%reg" -> "leal foo(%reg),%reg"
loc[-2] = 0x8d;
loc[-1] = 0x80 | (reg << 3) | reg;
}
}
write32le(loc, val);
}
void X86::relaxTlsLdToLe(uint8_t *loc, const Relocation &rel,
uint64_t val) const {
if (rel.type == R_386_TLS_LDO_32) {
write32le(loc, val);
return;
}
// Convert
// leal foo(%reg),%eax
// call ___tls_get_addr
// to
// movl %gs:0,%eax
// nop
// leal 0(%esi,1),%esi
const uint8_t inst[] = {
0x65, 0xa1, 0x00, 0x00, 0x00, 0x00, // movl %gs:0,%eax
0x90, // nop
0x8d, 0x74, 0x26, 0x00, // leal 0(%esi,1),%esi
};
memcpy(loc - 2, inst, sizeof(inst));
}
// If Intel Indirect Branch Tracking is enabled, we have to emit special PLT
// entries containing endbr32 instructions. A PLT entry will be split into two
// parts, one in .plt.sec (writePlt), and the other in .plt (writeIBTPlt).
namespace {
class IntelIBT : public X86 {
public:
IntelIBT();
void writeGotPlt(uint8_t *buf, const Symbol &s) const override;
void writePlt(uint8_t *buf, const Symbol &sym,
uint64_t pltEntryAddr) const override;
void writeIBTPlt(uint8_t *buf, size_t numEntries) const override;
static const unsigned IBTPltHeaderSize = 16;
};
} // namespace
IntelIBT::IntelIBT() { pltHeaderSize = 0; }
void IntelIBT::writeGotPlt(uint8_t *buf, const Symbol &s) const {
uint64_t va =
in.ibtPlt->getVA() + IBTPltHeaderSize + s.pltIndex * pltEntrySize;
write32le(buf, va);
}
void IntelIBT::writePlt(uint8_t *buf, const Symbol &sym,
uint64_t /*pltEntryAddr*/) const {
if (config->isPic) {
const uint8_t inst[] = {
0xf3, 0x0f, 0x1e, 0xfb, // endbr32
0xff, 0xa3, 0, 0, 0, 0, // jmp *name@GOT(%ebx)
0x66, 0x0f, 0x1f, 0x44, 0, 0, // nop
};
memcpy(buf, inst, sizeof(inst));
write32le(buf + 6, sym.getGotPltVA() - in.gotPlt->getVA());
return;
}
const uint8_t inst[] = {
0xf3, 0x0f, 0x1e, 0xfb, // endbr32
0xff, 0x25, 0, 0, 0, 0, // jmp *foo@GOT
0x66, 0x0f, 0x1f, 0x44, 0, 0, // nop
};
memcpy(buf, inst, sizeof(inst));
write32le(buf + 6, sym.getGotPltVA());
}
void IntelIBT::writeIBTPlt(uint8_t *buf, size_t numEntries) const {
writePltHeader(buf);
buf += IBTPltHeaderSize;
const uint8_t inst[] = {
0xf3, 0x0f, 0x1e, 0xfb, // endbr32
0x68, 0, 0, 0, 0, // pushl $reloc_offset
0xe9, 0, 0, 0, 0, // jmpq .PLT0@PC
0x66, 0x90, // nop
};
for (size_t i = 0; i < numEntries; ++i) {
memcpy(buf, inst, sizeof(inst));
write32le(buf + 5, i * sizeof(object::ELF32LE::Rel));
write32le(buf + 10, -pltHeaderSize - sizeof(inst) * i - 30);
buf += sizeof(inst);
}
}
namespace {
class RetpolinePic : public X86 {
public:
RetpolinePic();
void writeGotPlt(uint8_t *buf, const Symbol &s) const override;
void writePltHeader(uint8_t *buf) const override;
void writePlt(uint8_t *buf, const Symbol &sym,
uint64_t pltEntryAddr) const override;
};
class RetpolineNoPic : public X86 {
public:
RetpolineNoPic();
void writeGotPlt(uint8_t *buf, const Symbol &s) const override;
void writePltHeader(uint8_t *buf) const override;
void writePlt(uint8_t *buf, const Symbol &sym,
uint64_t pltEntryAddr) const override;
};
} // namespace
RetpolinePic::RetpolinePic() {
pltHeaderSize = 48;
pltEntrySize = 32;
ipltEntrySize = 32;
}
void RetpolinePic::writeGotPlt(uint8_t *buf, const Symbol &s) const {
write32le(buf, s.getPltVA() + 17);
}
void RetpolinePic::writePltHeader(uint8_t *buf) const {
const uint8_t insn[] = {
0xff, 0xb3, 4, 0, 0, 0, // 0: pushl 4(%ebx)
0x50, // 6: pushl %eax
0x8b, 0x83, 8, 0, 0, 0, // 7: mov 8(%ebx), %eax
0xe8, 0x0e, 0x00, 0x00, 0x00, // d: call next
0xf3, 0x90, // 12: loop: pause
0x0f, 0xae, 0xe8, // 14: lfence
0xeb, 0xf9, // 17: jmp loop
0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 19: int3; .align 16
0x89, 0x0c, 0x24, // 20: next: mov %ecx, (%esp)
0x8b, 0x4c, 0x24, 0x04, // 23: mov 0x4(%esp), %ecx
0x89, 0x44, 0x24, 0x04, // 27: mov %eax ,0x4(%esp)
0x89, 0xc8, // 2b: mov %ecx, %eax
0x59, // 2d: pop %ecx
0xc3, // 2e: ret
0xcc, // 2f: int3; padding
};
memcpy(buf, insn, sizeof(insn));
}
void RetpolinePic::writePlt(uint8_t *buf, const Symbol &sym,
uint64_t pltEntryAddr) const {
unsigned relOff = in.relaPlt->entsize * sym.pltIndex;
const uint8_t insn[] = {
0x50, // pushl %eax
0x8b, 0x83, 0, 0, 0, 0, // mov foo@GOT(%ebx), %eax
0xe8, 0, 0, 0, 0, // call plt+0x20
0xe9, 0, 0, 0, 0, // jmp plt+0x12
0x68, 0, 0, 0, 0, // pushl $reloc_offset
0xe9, 0, 0, 0, 0, // jmp plt+0
0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // int3; padding
};
memcpy(buf, insn, sizeof(insn));
uint32_t ebx = in.gotPlt->getVA();
unsigned off = pltEntryAddr - in.plt->getVA();
write32le(buf + 3, sym.getGotPltVA() - ebx);
write32le(buf + 8, -off - 12 + 32);
write32le(buf + 13, -off - 17 + 18);
write32le(buf + 18, relOff);
write32le(buf + 23, -off - 27);
}
RetpolineNoPic::RetpolineNoPic() {
pltHeaderSize = 48;
pltEntrySize = 32;
ipltEntrySize = 32;
}
void RetpolineNoPic::writeGotPlt(uint8_t *buf, const Symbol &s) const {
write32le(buf, s.getPltVA() + 16);
}
void RetpolineNoPic::writePltHeader(uint8_t *buf) const {
const uint8_t insn[] = {
0xff, 0x35, 0, 0, 0, 0, // 0: pushl GOTPLT+4
0x50, // 6: pushl %eax
0xa1, 0, 0, 0, 0, // 7: mov GOTPLT+8, %eax
0xe8, 0x0f, 0x00, 0x00, 0x00, // c: call next
0xf3, 0x90, // 11: loop: pause
0x0f, 0xae, 0xe8, // 13: lfence
0xeb, 0xf9, // 16: jmp loop
0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 18: int3
0xcc, 0xcc, 0xcc, // 1f: int3; .align 16
0x89, 0x0c, 0x24, // 20: next: mov %ecx, (%esp)
0x8b, 0x4c, 0x24, 0x04, // 23: mov 0x4(%esp), %ecx
0x89, 0x44, 0x24, 0x04, // 27: mov %eax ,0x4(%esp)
0x89, 0xc8, // 2b: mov %ecx, %eax
0x59, // 2d: pop %ecx
0xc3, // 2e: ret
0xcc, // 2f: int3; padding
};
memcpy(buf, insn, sizeof(insn));
uint32_t gotPlt = in.gotPlt->getVA();
write32le(buf + 2, gotPlt + 4);
write32le(buf + 8, gotPlt + 8);
}
void RetpolineNoPic::writePlt(uint8_t *buf, const Symbol &sym,
uint64_t pltEntryAddr) const {
unsigned relOff = in.relaPlt->entsize * sym.pltIndex;
const uint8_t insn[] = {
0x50, // 0: pushl %eax
0xa1, 0, 0, 0, 0, // 1: mov foo_in_GOT, %eax
0xe8, 0, 0, 0, 0, // 6: call plt+0x20
0xe9, 0, 0, 0, 0, // b: jmp plt+0x11
0x68, 0, 0, 0, 0, // 10: pushl $reloc_offset
0xe9, 0, 0, 0, 0, // 15: jmp plt+0
0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 1a: int3; padding
0xcc, // 1f: int3; padding
};
memcpy(buf, insn, sizeof(insn));
unsigned off = pltEntryAddr - in.plt->getVA();
write32le(buf + 2, sym.getGotPltVA());
write32le(buf + 7, -off - 11 + 32);
write32le(buf + 12, -off - 16 + 17);
write32le(buf + 17, relOff);
write32le(buf + 22, -off - 26);
}
TargetInfo *getX86TargetInfo() {
if (config->zRetpolineplt) {
if (config->isPic) {
static RetpolinePic t;
return &t;
}
static RetpolineNoPic t;
return &t;
}
if (config->andFeatures & GNU_PROPERTY_X86_FEATURE_1_IBT) {
static IntelIBT t;
return &t;
}
static X86 t;
return &t;
}
} // namespace elf
} // namespace lld