forked from OSchip/llvm-project
320 lines
12 KiB
C++
320 lines
12 KiB
C++
//===- ADCE.cpp - Code to perform aggressive dead code elimination --------===//
|
|
//
|
|
// This file implements "aggressive" dead code elimination. ADCE is DCe where
|
|
// values are assumed to be dead until proven otherwise. This is similar to
|
|
// SCCP, except applied to the liveness of values.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Transforms/Scalar.h"
|
|
#include "llvm/Transforms/Utils/Local.h"
|
|
#include "llvm/Type.h"
|
|
#include "llvm/Analysis/Dominators.h"
|
|
#include "llvm/Analysis/Writer.h"
|
|
#include "llvm/iTerminators.h"
|
|
#include "llvm/iPHINode.h"
|
|
#include "llvm/Constant.h"
|
|
#include "llvm/Support/CFG.h"
|
|
#include "Support/STLExtras.h"
|
|
#include "Support/DepthFirstIterator.h"
|
|
#include "Support/StatisticReporter.h"
|
|
#include <algorithm>
|
|
#include <iostream>
|
|
using std::cerr;
|
|
using std::vector;
|
|
|
|
static Statistic<> NumBlockRemoved("adce\t\t- Number of basic blocks removed");
|
|
static Statistic<> NumInstRemoved ("adce\t\t- Number of instructions removed");
|
|
|
|
namespace {
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ADCE Class
|
|
//
|
|
// This class does all of the work of Aggressive Dead Code Elimination.
|
|
// It's public interface consists of a constructor and a doADCE() method.
|
|
//
|
|
class ADCE : public FunctionPass {
|
|
Function *Func; // The function that we are working on
|
|
std::vector<Instruction*> WorkList; // Instructions that just became live
|
|
std::set<Instruction*> LiveSet; // The set of live instructions
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// The public interface for this class
|
|
//
|
|
public:
|
|
const char *getPassName() const { return "Aggressive Dead Code Elimination"; }
|
|
|
|
// Execute the Aggressive Dead Code Elimination Algorithm
|
|
//
|
|
virtual bool runOnFunction(Function &F) {
|
|
Func = &F;
|
|
bool Changed = doADCE();
|
|
assert(WorkList.empty());
|
|
LiveSet.clear();
|
|
return Changed;
|
|
}
|
|
// getAnalysisUsage - We require post dominance frontiers (aka Control
|
|
// Dependence Graph)
|
|
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
|
|
AU.addRequired(DominatorTree::PostDomID);
|
|
AU.addRequired(DominanceFrontier::PostDomID);
|
|
}
|
|
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// The implementation of this class
|
|
//
|
|
private:
|
|
// doADCE() - Run the Aggressive Dead Code Elimination algorithm, returning
|
|
// true if the function was modified.
|
|
//
|
|
bool doADCE();
|
|
|
|
void markBlockAlive(BasicBlock *BB);
|
|
|
|
inline void markInstructionLive(Instruction *I) {
|
|
if (LiveSet.count(I)) return;
|
|
DEBUG(cerr << "Insn Live: " << I);
|
|
LiveSet.insert(I);
|
|
WorkList.push_back(I);
|
|
}
|
|
|
|
inline void markTerminatorLive(const BasicBlock *BB) {
|
|
DEBUG(cerr << "Terminat Live: " << BB->getTerminator());
|
|
markInstructionLive((Instruction*)BB->getTerminator());
|
|
}
|
|
};
|
|
|
|
} // End of anonymous namespace
|
|
|
|
Pass *createAggressiveDCEPass() { return new ADCE(); }
|
|
|
|
|
|
void ADCE::markBlockAlive(BasicBlock *BB) {
|
|
// Mark the basic block as being newly ALIVE... and mark all branches that
|
|
// this block is control dependant on as being alive also...
|
|
//
|
|
DominanceFrontier &CDG =
|
|
getAnalysis<DominanceFrontier>(DominanceFrontier::PostDomID);
|
|
|
|
DominanceFrontier::const_iterator It = CDG.find(BB);
|
|
if (It != CDG.end()) {
|
|
// Get the blocks that this node is control dependant on...
|
|
const DominanceFrontier::DomSetType &CDB = It->second;
|
|
for_each(CDB.begin(), CDB.end(), // Mark all their terminators as live
|
|
bind_obj(this, &ADCE::markTerminatorLive));
|
|
}
|
|
|
|
// If this basic block is live, then the terminator must be as well!
|
|
markTerminatorLive(BB);
|
|
}
|
|
|
|
|
|
// doADCE() - Run the Aggressive Dead Code Elimination algorithm, returning
|
|
// true if the function was modified.
|
|
//
|
|
bool ADCE::doADCE() {
|
|
bool MadeChanges = false;
|
|
|
|
// Iterate over all of the instructions in the function, eliminating trivially
|
|
// dead instructions, and marking instructions live that are known to be
|
|
// needed. Perform the walk in depth first order so that we avoid marking any
|
|
// instructions live in basic blocks that are unreachable. These blocks will
|
|
// be eliminated later, along with the instructions inside.
|
|
//
|
|
for (df_iterator<Function*> BBI = df_begin(Func), BBE = df_end(Func);
|
|
BBI != BBE; ++BBI) {
|
|
BasicBlock *BB = *BBI;
|
|
for (BasicBlock::iterator II = BB->begin(), EI = BB->end(); II != EI; ) {
|
|
if (II->hasSideEffects() || II->getOpcode() == Instruction::Ret) {
|
|
markInstructionLive(II);
|
|
++II; // Increment the inst iterator if the inst wasn't deleted
|
|
} else if (isInstructionTriviallyDead(II)) {
|
|
// Remove the instruction from it's basic block...
|
|
II = BB->getInstList().erase(II);
|
|
++NumInstRemoved;
|
|
MadeChanges = true;
|
|
} else {
|
|
++II; // Increment the inst iterator if the inst wasn't deleted
|
|
}
|
|
}
|
|
}
|
|
|
|
DEBUG(cerr << "Processing work list\n");
|
|
|
|
// AliveBlocks - Set of basic blocks that we know have instructions that are
|
|
// alive in them...
|
|
//
|
|
std::set<BasicBlock*> AliveBlocks;
|
|
|
|
// Process the work list of instructions that just became live... if they
|
|
// became live, then that means that all of their operands are neccesary as
|
|
// well... make them live as well.
|
|
//
|
|
while (!WorkList.empty()) {
|
|
Instruction *I = WorkList.back(); // Get an instruction that became live...
|
|
WorkList.pop_back();
|
|
|
|
BasicBlock *BB = I->getParent();
|
|
if (!AliveBlocks.count(BB)) { // Basic block not alive yet...
|
|
AliveBlocks.insert(BB); // Block is now ALIVE!
|
|
markBlockAlive(BB); // Make it so now!
|
|
}
|
|
|
|
// PHI nodes are a special case, because the incoming values are actually
|
|
// defined in the predecessor nodes of this block, meaning that the PHI
|
|
// makes the predecessors alive.
|
|
//
|
|
if (PHINode *PN = dyn_cast<PHINode>(I))
|
|
for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI)
|
|
if (!AliveBlocks.count(*PI)) {
|
|
AliveBlocks.insert(BB); // Block is now ALIVE!
|
|
markBlockAlive(*PI);
|
|
}
|
|
|
|
// Loop over all of the operands of the live instruction, making sure that
|
|
// they are known to be alive as well...
|
|
//
|
|
for (unsigned op = 0, End = I->getNumOperands(); op != End; ++op)
|
|
if (Instruction *Operand = dyn_cast<Instruction>(I->getOperand(op)))
|
|
markInstructionLive(Operand);
|
|
}
|
|
|
|
if (DebugFlag) {
|
|
cerr << "Current Function: X = Live\n";
|
|
for (Function::iterator I = Func->begin(), E = Func->end(); I != E; ++I)
|
|
for (BasicBlock::iterator BI = I->begin(), BE = I->end(); BI != BE; ++BI){
|
|
if (LiveSet.count(BI)) cerr << "X ";
|
|
cerr << *BI;
|
|
}
|
|
}
|
|
|
|
// Find the first postdominator of the entry node that is alive. Make it the
|
|
// new entry node...
|
|
//
|
|
DominatorTree &DT = getAnalysis<DominatorTree>(DominatorTree::PostDomID);
|
|
|
|
// If there are some blocks dead...
|
|
if (AliveBlocks.size() != Func->size()) {
|
|
// Insert a new entry node to eliminate the entry node as a special case.
|
|
BasicBlock *NewEntry = new BasicBlock();
|
|
NewEntry->getInstList().push_back(new BranchInst(&Func->front()));
|
|
Func->getBasicBlockList().push_front(NewEntry);
|
|
AliveBlocks.insert(NewEntry); // This block is always alive!
|
|
|
|
// Loop over all of the alive blocks in the function. If any successor
|
|
// blocks are not alive, we adjust the outgoing branches to branch to the
|
|
// first live postdominator of the live block, adjusting any PHI nodes in
|
|
// the block to reflect this.
|
|
//
|
|
for (Function::iterator I = Func->begin(), E = Func->end(); I != E; ++I)
|
|
if (AliveBlocks.count(I)) {
|
|
BasicBlock *BB = I;
|
|
TerminatorInst *TI = BB->getTerminator();
|
|
|
|
// Loop over all of the successors, looking for ones that are not alive
|
|
for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
|
|
if (!AliveBlocks.count(TI->getSuccessor(i))) {
|
|
// Scan up the postdominator tree, looking for the first
|
|
// postdominator that is alive, and the last postdominator that is
|
|
// dead...
|
|
//
|
|
DominatorTree::Node *LastNode = DT[TI->getSuccessor(i)];
|
|
DominatorTree::Node *NextNode = LastNode->getIDom();
|
|
while (!AliveBlocks.count(NextNode->getNode())) {
|
|
LastNode = NextNode;
|
|
NextNode = NextNode->getIDom();
|
|
}
|
|
|
|
// Get the basic blocks that we need...
|
|
BasicBlock *LastDead = LastNode->getNode();
|
|
BasicBlock *NextAlive = NextNode->getNode();
|
|
|
|
// Make the conditional branch now go to the next alive block...
|
|
TI->getSuccessor(i)->removePredecessor(BB);
|
|
TI->setSuccessor(i, NextAlive);
|
|
|
|
// If there are PHI nodes in NextAlive, we need to add entries to
|
|
// the PHI nodes for the new incoming edge. The incoming values
|
|
// should be identical to the incoming values for LastDead.
|
|
//
|
|
for (BasicBlock::iterator II = NextAlive->begin();
|
|
PHINode *PN = dyn_cast<PHINode>(&*II); ++II) {
|
|
// Get the incoming value for LastDead...
|
|
int OldIdx = PN->getBasicBlockIndex(LastDead);
|
|
assert(OldIdx != -1 && "LastDead is not a pred of NextAlive!");
|
|
Value *InVal = PN->getIncomingValue(OldIdx);
|
|
|
|
// Add an incoming value for BB now...
|
|
PN->addIncoming(InVal, BB);
|
|
}
|
|
}
|
|
|
|
// Now loop over all of the instructions in the basic block, telling
|
|
// dead instructions to drop their references. This is so that the next
|
|
// sweep over the program can safely delete dead instructions without
|
|
// other dead instructions still refering to them.
|
|
//
|
|
for (BasicBlock::iterator I = BB->begin(), E = --BB->end(); I != E; ++I)
|
|
if (!LiveSet.count(I)) // Is this instruction alive?
|
|
I->dropAllReferences(); // Nope, drop references...
|
|
}
|
|
}
|
|
|
|
// Loop over all of the basic blocks in the function, dropping references of
|
|
// the dead basic blocks
|
|
//
|
|
for (Function::iterator BB = Func->begin(), E = Func->end(); BB != E; ++BB) {
|
|
if (!AliveBlocks.count(BB)) {
|
|
// Remove all outgoing edges from this basic block and convert the
|
|
// terminator into a return instruction.
|
|
vector<BasicBlock*> Succs(succ_begin(BB), succ_end(BB));
|
|
|
|
if (!Succs.empty()) {
|
|
// Loop over all of the successors, removing this block from PHI node
|
|
// entries that might be in the block...
|
|
while (!Succs.empty()) {
|
|
Succs.back()->removePredecessor(BB);
|
|
Succs.pop_back();
|
|
}
|
|
|
|
// Delete the old terminator instruction...
|
|
BB->getInstList().pop_back();
|
|
const Type *RetTy = Func->getReturnType();
|
|
Instruction *New = new ReturnInst(RetTy != Type::VoidTy ?
|
|
Constant::getNullValue(RetTy) : 0);
|
|
BB->getInstList().push_back(New);
|
|
}
|
|
|
|
BB->dropAllReferences();
|
|
++NumBlockRemoved;
|
|
MadeChanges = true;
|
|
}
|
|
}
|
|
|
|
// Now loop through all of the blocks and delete the dead ones. We can safely
|
|
// do this now because we know that there are no references to dead blocks
|
|
// (because they have dropped all of their references... we also remove dead
|
|
// instructions from alive blocks.
|
|
//
|
|
for (Function::iterator BI = Func->begin(); BI != Func->end(); )
|
|
if (!AliveBlocks.count(BI))
|
|
BI = Func->getBasicBlockList().erase(BI);
|
|
else {
|
|
for (BasicBlock::iterator II = BI->begin(); II != --BI->end(); )
|
|
if (!LiveSet.count(II)) { // Is this instruction alive?
|
|
// Nope... remove the instruction from it's basic block...
|
|
II = BI->getInstList().erase(II);
|
|
++NumInstRemoved;
|
|
MadeChanges = true;
|
|
} else {
|
|
++II;
|
|
}
|
|
|
|
++BI; // Increment iterator...
|
|
}
|
|
|
|
return MadeChanges;
|
|
}
|