llvm-project/llvm/lib/Target/Sparc/PrologEpilogCodeInserter.cpp

170 lines
6.5 KiB
C++

//===-- PrologEpilogCodeInserter.cpp - Insert Prolog & Epilog code for fn -===//
//
// Insert SAVE/RESTORE instructions for the function
//
// Insert prolog code at the unique function entry point.
// Insert epilog code at each function exit point.
// InsertPrologEpilog invokes these only if the function is not compiled
// with the leaf function optimization.
//
//===----------------------------------------------------------------------===//
#include "SparcInternals.h"
#include "SparcRegClassInfo.h"
#include "llvm/CodeGen/MachineCodeForMethod.h"
#include "llvm/CodeGen/MachineCodeForBasicBlock.h"
#include "llvm/CodeGen/MachineCodeForInstruction.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/InstrSelectionSupport.h"
#include "llvm/Pass.h"
#include "llvm/Function.h"
#include "llvm/BasicBlock.h"
#include "llvm/Instruction.h"
namespace {
class InsertPrologEpilogCode : public FunctionPass {
TargetMachine &Target;
public:
InsertPrologEpilogCode(TargetMachine &T) : Target(T) {}
const char *getPassName() const { return "Sparc Prolog/Epilog Inserter"; }
bool runOnFunction(Function &F) {
MachineCodeForMethod &mcodeInfo = MachineCodeForMethod::get(&F);
if (!mcodeInfo.isCompiledAsLeafMethod()) {
InsertPrologCode(F);
InsertEpilogCode(F);
}
return false;
}
void InsertPrologCode(Function &F);
void InsertEpilogCode(Function &F);
};
} // End anonymous namespace
//------------------------------------------------------------------------
// External Function: GetInstructionsForProlog
// External Function: GetInstructionsForEpilog
//
// Purpose:
// Create prolog and epilog code for procedure entry and exit
//------------------------------------------------------------------------
void InsertPrologEpilogCode::InsertPrologCode(Function &F)
{
std::vector<MachineInstr*> mvec;
MachineInstr* M;
const MachineFrameInfo& frameInfo = Target.getFrameInfo();
// The second operand is the stack size. If it does not fit in the
// immediate field, we have to use a free register to hold the size.
// We will assume that local register `l0' is unused since the SAVE
// instruction must be the first instruction in each procedure.
//
MachineCodeForMethod& mcInfo = MachineCodeForMethod::get(&F);
unsigned int staticStackSize = mcInfo.getStaticStackSize();
if (staticStackSize < (unsigned) frameInfo.getMinStackFrameSize())
staticStackSize = (unsigned) frameInfo.getMinStackFrameSize();
if (unsigned padsz = (staticStackSize %
(unsigned) frameInfo.getStackFrameSizeAlignment()))
staticStackSize += frameInfo.getStackFrameSizeAlignment() - padsz;
if (Target.getInstrInfo().constantFitsInImmedField(SAVE, staticStackSize))
{
M = new MachineInstr(SAVE);
M->SetMachineOperandReg(0, Target.getRegInfo().getStackPointer());
M->SetMachineOperandConst(1, MachineOperand::MO_SignExtendedImmed,
- (int) staticStackSize);
M->SetMachineOperandReg(2, Target.getRegInfo().getStackPointer());
mvec.push_back(M);
}
else
{
// We have to put the stack size value into a register before SAVE.
// Use register %l0 to since it must be unused at function entry.
// Do this by creating a code sequence equivalent to:
// SETSW -(stackSize), %l0
int32_t C = - (int) staticStackSize;
int uregNum = Target.getRegInfo().getUnifiedRegNum(
Target.getRegInfo().getRegClassIDOfType(Type::IntTy),
SparcIntRegOrder::l0);
M = new MachineInstr(SETHI);
M->SetMachineOperandConst(0, MachineOperand::MO_SignExtendedImmed, C);
M->SetMachineOperandReg(1, uregNum);
M->setOperandHi32(0);
mvec.push_back(M);
M = new MachineInstr(OR);
M->SetMachineOperandReg(0, uregNum);
M->SetMachineOperandConst(1, MachineOperand::MO_SignExtendedImmed, C);
M->SetMachineOperandReg(2, uregNum);
M->setOperandLo32(1);
mvec.push_back(M);
M = new MachineInstr(SRA);
M->SetMachineOperandReg(0, uregNum);
M->SetMachineOperandConst(1, MachineOperand::MO_UnextendedImmed, 0);
M->SetMachineOperandReg(2, uregNum);
mvec.push_back(M);
// Now generate the SAVE using the value in register %l0
M = new MachineInstr(SAVE);
M->SetMachineOperandReg(0, Target.getRegInfo().getStackPointer());
M->SetMachineOperandReg(1, MachineOperand::MO_MachineRegister, uregNum);
M->SetMachineOperandReg(2, Target.getRegInfo().getStackPointer());
mvec.push_back(M);
}
MachineCodeForBasicBlock& bbMvec = MachineCodeForBasicBlock::get(&F.getEntryNode());
bbMvec.insert(bbMvec.begin(), mvec.begin(), mvec.end());
}
void InsertPrologEpilogCode::InsertEpilogCode(Function &F)
{
for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) {
Instruction *TermInst = (Instruction*)I->getTerminator();
if (TermInst->getOpcode() == Instruction::Ret)
{
MachineInstr *Restore = new MachineInstr(RESTORE);
Restore->SetMachineOperandReg(0, Target.getRegInfo().getZeroRegNum());
Restore->SetMachineOperandConst(1, MachineOperand::MO_SignExtendedImmed,
(int64_t)0);
Restore->SetMachineOperandReg(2, Target.getRegInfo().getZeroRegNum());
MachineCodeForBasicBlock& bbMvec = MachineCodeForBasicBlock::get(I);
MachineCodeForInstruction &termMvec =
MachineCodeForInstruction::get(TermInst);
// Remove the NOPs in the delay slots of the return instruction
const MachineInstrInfo &mii = Target.getInstrInfo();
unsigned numNOPs = 0;
while (termMvec.back()->getOpCode() == NOP)
{
assert( termMvec.back() == bbMvec.back());
delete bbMvec.pop_back();
termMvec.pop_back();
++numNOPs;
}
assert(termMvec.back() == bbMvec.back());
// Check that we found the right number of NOPs and have the right
// number of instructions to replace them.
unsigned ndelays = mii.getNumDelaySlots(termMvec.back()->getOpCode());
assert(numNOPs == ndelays && "Missing NOPs in delay slots?");
assert(ndelays == 1 && "Cannot use epilog code for delay slots?");
// Append the epilog code to the end of the basic block.
bbMvec.push_back(Restore);
}
}
}
Pass *createPrologEpilogCodeInserter(TargetMachine &TM) {
return new InsertPrologEpilogCode(TM);
}