llvm-project/clang/lib/CodeGen/CGOpenMPRuntime.cpp

3436 lines
145 KiB
C++

//===----- CGOpenMPRuntime.cpp - Interface to OpenMP Runtimes -------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This provides a class for OpenMP runtime code generation.
//
//===----------------------------------------------------------------------===//
#include "CGOpenMPRuntime.h"
#include "CodeGenFunction.h"
#include "CGCleanup.h"
#include "clang/AST/Decl.h"
#include "clang/AST/StmtOpenMP.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/IR/CallSite.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
using namespace clang;
using namespace CodeGen;
namespace {
/// \brief Base class for handling code generation inside OpenMP regions.
class CGOpenMPRegionInfo : public CodeGenFunction::CGCapturedStmtInfo {
public:
/// \brief Kinds of OpenMP regions used in codegen.
enum CGOpenMPRegionKind {
/// \brief Region with outlined function for standalone 'parallel'
/// directive.
ParallelOutlinedRegion,
/// \brief Region with outlined function for standalone 'task' directive.
TaskOutlinedRegion,
/// \brief Region for constructs that do not require function outlining,
/// like 'for', 'sections', 'atomic' etc. directives.
InlinedRegion,
/// \brief Region with outlined function for standalone 'target' directive.
TargetRegion,
};
CGOpenMPRegionInfo(const CapturedStmt &CS,
const CGOpenMPRegionKind RegionKind,
const RegionCodeGenTy &CodeGen, OpenMPDirectiveKind Kind,
bool HasCancel)
: CGCapturedStmtInfo(CS, CR_OpenMP), RegionKind(RegionKind),
CodeGen(CodeGen), Kind(Kind), HasCancel(HasCancel) {}
CGOpenMPRegionInfo(const CGOpenMPRegionKind RegionKind,
const RegionCodeGenTy &CodeGen, OpenMPDirectiveKind Kind,
bool HasCancel)
: CGCapturedStmtInfo(CR_OpenMP), RegionKind(RegionKind), CodeGen(CodeGen),
Kind(Kind), HasCancel(HasCancel) {}
/// \brief Get a variable or parameter for storing global thread id
/// inside OpenMP construct.
virtual const VarDecl *getThreadIDVariable() const = 0;
/// \brief Emit the captured statement body.
void EmitBody(CodeGenFunction &CGF, const Stmt *S) override;
/// \brief Get an LValue for the current ThreadID variable.
/// \return LValue for thread id variable. This LValue always has type int32*.
virtual LValue getThreadIDVariableLValue(CodeGenFunction &CGF);
CGOpenMPRegionKind getRegionKind() const { return RegionKind; }
OpenMPDirectiveKind getDirectiveKind() const { return Kind; }
bool hasCancel() const { return HasCancel; }
static bool classof(const CGCapturedStmtInfo *Info) {
return Info->getKind() == CR_OpenMP;
}
protected:
CGOpenMPRegionKind RegionKind;
const RegionCodeGenTy &CodeGen;
OpenMPDirectiveKind Kind;
bool HasCancel;
};
/// \brief API for captured statement code generation in OpenMP constructs.
class CGOpenMPOutlinedRegionInfo : public CGOpenMPRegionInfo {
public:
CGOpenMPOutlinedRegionInfo(const CapturedStmt &CS, const VarDecl *ThreadIDVar,
const RegionCodeGenTy &CodeGen,
OpenMPDirectiveKind Kind, bool HasCancel)
: CGOpenMPRegionInfo(CS, ParallelOutlinedRegion, CodeGen, Kind,
HasCancel),
ThreadIDVar(ThreadIDVar) {
assert(ThreadIDVar != nullptr && "No ThreadID in OpenMP region.");
}
/// \brief Get a variable or parameter for storing global thread id
/// inside OpenMP construct.
const VarDecl *getThreadIDVariable() const override { return ThreadIDVar; }
/// \brief Get the name of the capture helper.
StringRef getHelperName() const override { return ".omp_outlined."; }
static bool classof(const CGCapturedStmtInfo *Info) {
return CGOpenMPRegionInfo::classof(Info) &&
cast<CGOpenMPRegionInfo>(Info)->getRegionKind() ==
ParallelOutlinedRegion;
}
private:
/// \brief A variable or parameter storing global thread id for OpenMP
/// constructs.
const VarDecl *ThreadIDVar;
};
/// \brief API for captured statement code generation in OpenMP constructs.
class CGOpenMPTaskOutlinedRegionInfo : public CGOpenMPRegionInfo {
public:
CGOpenMPTaskOutlinedRegionInfo(const CapturedStmt &CS,
const VarDecl *ThreadIDVar,
const RegionCodeGenTy &CodeGen,
OpenMPDirectiveKind Kind, bool HasCancel)
: CGOpenMPRegionInfo(CS, TaskOutlinedRegion, CodeGen, Kind, HasCancel),
ThreadIDVar(ThreadIDVar) {
assert(ThreadIDVar != nullptr && "No ThreadID in OpenMP region.");
}
/// \brief Get a variable or parameter for storing global thread id
/// inside OpenMP construct.
const VarDecl *getThreadIDVariable() const override { return ThreadIDVar; }
/// \brief Get an LValue for the current ThreadID variable.
LValue getThreadIDVariableLValue(CodeGenFunction &CGF) override;
/// \brief Get the name of the capture helper.
StringRef getHelperName() const override { return ".omp_outlined."; }
static bool classof(const CGCapturedStmtInfo *Info) {
return CGOpenMPRegionInfo::classof(Info) &&
cast<CGOpenMPRegionInfo>(Info)->getRegionKind() ==
TaskOutlinedRegion;
}
private:
/// \brief A variable or parameter storing global thread id for OpenMP
/// constructs.
const VarDecl *ThreadIDVar;
};
/// \brief API for inlined captured statement code generation in OpenMP
/// constructs.
class CGOpenMPInlinedRegionInfo : public CGOpenMPRegionInfo {
public:
CGOpenMPInlinedRegionInfo(CodeGenFunction::CGCapturedStmtInfo *OldCSI,
const RegionCodeGenTy &CodeGen,
OpenMPDirectiveKind Kind, bool HasCancel)
: CGOpenMPRegionInfo(InlinedRegion, CodeGen, Kind, HasCancel),
OldCSI(OldCSI),
OuterRegionInfo(dyn_cast_or_null<CGOpenMPRegionInfo>(OldCSI)) {}
// \brief Retrieve the value of the context parameter.
llvm::Value *getContextValue() const override {
if (OuterRegionInfo)
return OuterRegionInfo->getContextValue();
llvm_unreachable("No context value for inlined OpenMP region");
}
void setContextValue(llvm::Value *V) override {
if (OuterRegionInfo) {
OuterRegionInfo->setContextValue(V);
return;
}
llvm_unreachable("No context value for inlined OpenMP region");
}
/// \brief Lookup the captured field decl for a variable.
const FieldDecl *lookup(const VarDecl *VD) const override {
if (OuterRegionInfo)
return OuterRegionInfo->lookup(VD);
// If there is no outer outlined region,no need to lookup in a list of
// captured variables, we can use the original one.
return nullptr;
}
FieldDecl *getThisFieldDecl() const override {
if (OuterRegionInfo)
return OuterRegionInfo->getThisFieldDecl();
return nullptr;
}
/// \brief Get a variable or parameter for storing global thread id
/// inside OpenMP construct.
const VarDecl *getThreadIDVariable() const override {
if (OuterRegionInfo)
return OuterRegionInfo->getThreadIDVariable();
return nullptr;
}
/// \brief Get the name of the capture helper.
StringRef getHelperName() const override {
if (auto *OuterRegionInfo = getOldCSI())
return OuterRegionInfo->getHelperName();
llvm_unreachable("No helper name for inlined OpenMP construct");
}
CodeGenFunction::CGCapturedStmtInfo *getOldCSI() const { return OldCSI; }
static bool classof(const CGCapturedStmtInfo *Info) {
return CGOpenMPRegionInfo::classof(Info) &&
cast<CGOpenMPRegionInfo>(Info)->getRegionKind() == InlinedRegion;
}
private:
/// \brief CodeGen info about outer OpenMP region.
CodeGenFunction::CGCapturedStmtInfo *OldCSI;
CGOpenMPRegionInfo *OuterRegionInfo;
};
/// \brief API for captured statement code generation in OpenMP target
/// constructs. For this captures, implicit parameters are used instead of the
/// captured fields.
class CGOpenMPTargetRegionInfo : public CGOpenMPRegionInfo {
public:
CGOpenMPTargetRegionInfo(const CapturedStmt &CS,
const RegionCodeGenTy &CodeGen)
: CGOpenMPRegionInfo(CS, TargetRegion, CodeGen, OMPD_target,
/*HasCancel = */ false) {}
/// \brief This is unused for target regions because each starts executing
/// with a single thread.
const VarDecl *getThreadIDVariable() const override { return nullptr; }
/// \brief Get the name of the capture helper.
StringRef getHelperName() const override { return ".omp_offloading."; }
static bool classof(const CGCapturedStmtInfo *Info) {
return CGOpenMPRegionInfo::classof(Info) &&
cast<CGOpenMPRegionInfo>(Info)->getRegionKind() == TargetRegion;
}
};
/// \brief RAII for emitting code of OpenMP constructs.
class InlinedOpenMPRegionRAII {
CodeGenFunction &CGF;
public:
/// \brief Constructs region for combined constructs.
/// \param CodeGen Code generation sequence for combined directives. Includes
/// a list of functions used for code generation of implicitly inlined
/// regions.
InlinedOpenMPRegionRAII(CodeGenFunction &CGF, const RegionCodeGenTy &CodeGen,
OpenMPDirectiveKind Kind, bool HasCancel)
: CGF(CGF) {
// Start emission for the construct.
CGF.CapturedStmtInfo = new CGOpenMPInlinedRegionInfo(
CGF.CapturedStmtInfo, CodeGen, Kind, HasCancel);
}
~InlinedOpenMPRegionRAII() {
// Restore original CapturedStmtInfo only if we're done with code emission.
auto *OldCSI =
cast<CGOpenMPInlinedRegionInfo>(CGF.CapturedStmtInfo)->getOldCSI();
delete CGF.CapturedStmtInfo;
CGF.CapturedStmtInfo = OldCSI;
}
};
} // anonymous namespace
static LValue emitLoadOfPointerLValue(CodeGenFunction &CGF, Address PtrAddr,
QualType Ty) {
AlignmentSource Source;
CharUnits Align = CGF.getNaturalPointeeTypeAlignment(Ty, &Source);
return CGF.MakeAddrLValue(Address(CGF.Builder.CreateLoad(PtrAddr), Align),
Ty->getPointeeType(), Source);
}
LValue CGOpenMPRegionInfo::getThreadIDVariableLValue(CodeGenFunction &CGF) {
return emitLoadOfPointerLValue(CGF,
CGF.GetAddrOfLocalVar(getThreadIDVariable()),
getThreadIDVariable()->getType());
}
void CGOpenMPRegionInfo::EmitBody(CodeGenFunction &CGF, const Stmt * /*S*/) {
// 1.2.2 OpenMP Language Terminology
// Structured block - An executable statement with a single entry at the
// top and a single exit at the bottom.
// The point of exit cannot be a branch out of the structured block.
// longjmp() and throw() must not violate the entry/exit criteria.
CGF.EHStack.pushTerminate();
{
CodeGenFunction::RunCleanupsScope Scope(CGF);
CodeGen(CGF);
}
CGF.EHStack.popTerminate();
}
LValue CGOpenMPTaskOutlinedRegionInfo::getThreadIDVariableLValue(
CodeGenFunction &CGF) {
return CGF.MakeAddrLValue(CGF.GetAddrOfLocalVar(getThreadIDVariable()),
getThreadIDVariable()->getType(),
AlignmentSource::Decl);
}
CGOpenMPRuntime::CGOpenMPRuntime(CodeGenModule &CGM)
: CGM(CGM), DefaultOpenMPPSource(nullptr), KmpRoutineEntryPtrTy(nullptr) {
IdentTy = llvm::StructType::create(
"ident_t", CGM.Int32Ty /* reserved_1 */, CGM.Int32Ty /* flags */,
CGM.Int32Ty /* reserved_2 */, CGM.Int32Ty /* reserved_3 */,
CGM.Int8PtrTy /* psource */, nullptr);
// Build void (*kmpc_micro)(kmp_int32 *global_tid, kmp_int32 *bound_tid,...)
llvm::Type *MicroParams[] = {llvm::PointerType::getUnqual(CGM.Int32Ty),
llvm::PointerType::getUnqual(CGM.Int32Ty)};
Kmpc_MicroTy = llvm::FunctionType::get(CGM.VoidTy, MicroParams, true);
KmpCriticalNameTy = llvm::ArrayType::get(CGM.Int32Ty, /*NumElements*/ 8);
}
void CGOpenMPRuntime::clear() {
InternalVars.clear();
}
// Layout information for ident_t.
static CharUnits getIdentAlign(CodeGenModule &CGM) {
return CGM.getPointerAlign();
}
static CharUnits getIdentSize(CodeGenModule &CGM) {
assert((4 * CGM.getPointerSize()).isMultipleOf(CGM.getPointerAlign()));
return CharUnits::fromQuantity(16) + CGM.getPointerSize();
}
static CharUnits getOffsetOfIdentField(CGOpenMPRuntime::IdentFieldIndex Field) {
// All the fields except the last are i32, so this works beautifully.
return unsigned(Field) * CharUnits::fromQuantity(4);
}
static Address createIdentFieldGEP(CodeGenFunction &CGF, Address Addr,
CGOpenMPRuntime::IdentFieldIndex Field,
const llvm::Twine &Name = "") {
auto Offset = getOffsetOfIdentField(Field);
return CGF.Builder.CreateStructGEP(Addr, Field, Offset, Name);
}
llvm::Value *CGOpenMPRuntime::emitParallelOutlinedFunction(
const OMPExecutableDirective &D, const VarDecl *ThreadIDVar,
OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) {
assert(ThreadIDVar->getType()->isPointerType() &&
"thread id variable must be of type kmp_int32 *");
const CapturedStmt *CS = cast<CapturedStmt>(D.getAssociatedStmt());
CodeGenFunction CGF(CGM, true);
bool HasCancel = false;
if (auto *OPD = dyn_cast<OMPParallelDirective>(&D))
HasCancel = OPD->hasCancel();
else if (auto *OPSD = dyn_cast<OMPParallelSectionsDirective>(&D))
HasCancel = OPSD->hasCancel();
else if (auto *OPFD = dyn_cast<OMPParallelForDirective>(&D))
HasCancel = OPFD->hasCancel();
CGOpenMPOutlinedRegionInfo CGInfo(*CS, ThreadIDVar, CodeGen, InnermostKind,
HasCancel);
CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo);
return CGF.GenerateOpenMPCapturedStmtFunction(*CS);
}
llvm::Value *CGOpenMPRuntime::emitTaskOutlinedFunction(
const OMPExecutableDirective &D, const VarDecl *ThreadIDVar,
OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) {
assert(!ThreadIDVar->getType()->isPointerType() &&
"thread id variable must be of type kmp_int32 for tasks");
auto *CS = cast<CapturedStmt>(D.getAssociatedStmt());
CodeGenFunction CGF(CGM, true);
CGOpenMPTaskOutlinedRegionInfo CGInfo(*CS, ThreadIDVar, CodeGen,
InnermostKind,
cast<OMPTaskDirective>(D).hasCancel());
CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo);
return CGF.GenerateCapturedStmtFunction(*CS);
}
Address CGOpenMPRuntime::getOrCreateDefaultLocation(OpenMPLocationFlags Flags) {
CharUnits Align = getIdentAlign(CGM);
llvm::Value *Entry = OpenMPDefaultLocMap.lookup(Flags);
if (!Entry) {
if (!DefaultOpenMPPSource) {
// Initialize default location for psource field of ident_t structure of
// all ident_t objects. Format is ";file;function;line;column;;".
// Taken from
// http://llvm.org/svn/llvm-project/openmp/trunk/runtime/src/kmp_str.c
DefaultOpenMPPSource =
CGM.GetAddrOfConstantCString(";unknown;unknown;0;0;;").getPointer();
DefaultOpenMPPSource =
llvm::ConstantExpr::getBitCast(DefaultOpenMPPSource, CGM.Int8PtrTy);
}
auto DefaultOpenMPLocation = new llvm::GlobalVariable(
CGM.getModule(), IdentTy, /*isConstant*/ true,
llvm::GlobalValue::PrivateLinkage, /*Initializer*/ nullptr);
DefaultOpenMPLocation->setUnnamedAddr(true);
DefaultOpenMPLocation->setAlignment(Align.getQuantity());
llvm::Constant *Zero = llvm::ConstantInt::get(CGM.Int32Ty, 0, true);
llvm::Constant *Values[] = {Zero,
llvm::ConstantInt::get(CGM.Int32Ty, Flags),
Zero, Zero, DefaultOpenMPPSource};
llvm::Constant *Init = llvm::ConstantStruct::get(IdentTy, Values);
DefaultOpenMPLocation->setInitializer(Init);
OpenMPDefaultLocMap[Flags] = Entry = DefaultOpenMPLocation;
}
return Address(Entry, Align);
}
llvm::Value *CGOpenMPRuntime::emitUpdateLocation(CodeGenFunction &CGF,
SourceLocation Loc,
OpenMPLocationFlags Flags) {
// If no debug info is generated - return global default location.
if (CGM.getCodeGenOpts().getDebugInfo() == CodeGenOptions::NoDebugInfo ||
Loc.isInvalid())
return getOrCreateDefaultLocation(Flags).getPointer();
assert(CGF.CurFn && "No function in current CodeGenFunction.");
Address LocValue = Address::invalid();
auto I = OpenMPLocThreadIDMap.find(CGF.CurFn);
if (I != OpenMPLocThreadIDMap.end())
LocValue = Address(I->second.DebugLoc, getIdentAlign(CGF.CGM));
// OpenMPLocThreadIDMap may have null DebugLoc and non-null ThreadID, if
// GetOpenMPThreadID was called before this routine.
if (!LocValue.isValid()) {
// Generate "ident_t .kmpc_loc.addr;"
Address AI = CGF.CreateTempAlloca(IdentTy, getIdentAlign(CGF.CGM),
".kmpc_loc.addr");
auto &Elem = OpenMPLocThreadIDMap.FindAndConstruct(CGF.CurFn);
Elem.second.DebugLoc = AI.getPointer();
LocValue = AI;
CGBuilderTy::InsertPointGuard IPG(CGF.Builder);
CGF.Builder.SetInsertPoint(CGF.AllocaInsertPt);
CGF.Builder.CreateMemCpy(LocValue, getOrCreateDefaultLocation(Flags),
CGM.getSize(getIdentSize(CGF.CGM)));
}
// char **psource = &.kmpc_loc_<flags>.addr.psource;
Address PSource = createIdentFieldGEP(CGF, LocValue, IdentField_PSource);
auto OMPDebugLoc = OpenMPDebugLocMap.lookup(Loc.getRawEncoding());
if (OMPDebugLoc == nullptr) {
SmallString<128> Buffer2;
llvm::raw_svector_ostream OS2(Buffer2);
// Build debug location
PresumedLoc PLoc = CGF.getContext().getSourceManager().getPresumedLoc(Loc);
OS2 << ";" << PLoc.getFilename() << ";";
if (const FunctionDecl *FD =
dyn_cast_or_null<FunctionDecl>(CGF.CurFuncDecl)) {
OS2 << FD->getQualifiedNameAsString();
}
OS2 << ";" << PLoc.getLine() << ";" << PLoc.getColumn() << ";;";
OMPDebugLoc = CGF.Builder.CreateGlobalStringPtr(OS2.str());
OpenMPDebugLocMap[Loc.getRawEncoding()] = OMPDebugLoc;
}
// *psource = ";<File>;<Function>;<Line>;<Column>;;";
CGF.Builder.CreateStore(OMPDebugLoc, PSource);
// Our callers always pass this to a runtime function, so for
// convenience, go ahead and return a naked pointer.
return LocValue.getPointer();
}
llvm::Value *CGOpenMPRuntime::getThreadID(CodeGenFunction &CGF,
SourceLocation Loc) {
assert(CGF.CurFn && "No function in current CodeGenFunction.");
llvm::Value *ThreadID = nullptr;
// Check whether we've already cached a load of the thread id in this
// function.
auto I = OpenMPLocThreadIDMap.find(CGF.CurFn);
if (I != OpenMPLocThreadIDMap.end()) {
ThreadID = I->second.ThreadID;
if (ThreadID != nullptr)
return ThreadID;
}
if (auto OMPRegionInfo =
dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo)) {
if (OMPRegionInfo->getThreadIDVariable()) {
// Check if this an outlined function with thread id passed as argument.
auto LVal = OMPRegionInfo->getThreadIDVariableLValue(CGF);
ThreadID = CGF.EmitLoadOfLValue(LVal, Loc).getScalarVal();
// If value loaded in entry block, cache it and use it everywhere in
// function.
if (CGF.Builder.GetInsertBlock() == CGF.AllocaInsertPt->getParent()) {
auto &Elem = OpenMPLocThreadIDMap.FindAndConstruct(CGF.CurFn);
Elem.second.ThreadID = ThreadID;
}
return ThreadID;
}
}
// This is not an outlined function region - need to call __kmpc_int32
// kmpc_global_thread_num(ident_t *loc).
// Generate thread id value and cache this value for use across the
// function.
CGBuilderTy::InsertPointGuard IPG(CGF.Builder);
CGF.Builder.SetInsertPoint(CGF.AllocaInsertPt);
ThreadID =
CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_global_thread_num),
emitUpdateLocation(CGF, Loc));
auto &Elem = OpenMPLocThreadIDMap.FindAndConstruct(CGF.CurFn);
Elem.second.ThreadID = ThreadID;
return ThreadID;
}
void CGOpenMPRuntime::functionFinished(CodeGenFunction &CGF) {
assert(CGF.CurFn && "No function in current CodeGenFunction.");
if (OpenMPLocThreadIDMap.count(CGF.CurFn))
OpenMPLocThreadIDMap.erase(CGF.CurFn);
}
llvm::Type *CGOpenMPRuntime::getIdentTyPointerTy() {
return llvm::PointerType::getUnqual(IdentTy);
}
llvm::Type *CGOpenMPRuntime::getKmpc_MicroPointerTy() {
return llvm::PointerType::getUnqual(Kmpc_MicroTy);
}
llvm::Constant *
CGOpenMPRuntime::createRuntimeFunction(OpenMPRTLFunction Function) {
llvm::Constant *RTLFn = nullptr;
switch (Function) {
case OMPRTL__kmpc_fork_call: {
// Build void __kmpc_fork_call(ident_t *loc, kmp_int32 argc, kmpc_micro
// microtask, ...);
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty,
getKmpc_MicroPointerTy()};
llvm::FunctionType *FnTy =
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ true);
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_fork_call");
break;
}
case OMPRTL__kmpc_global_thread_num: {
// Build kmp_int32 __kmpc_global_thread_num(ident_t *loc);
llvm::Type *TypeParams[] = {getIdentTyPointerTy()};
llvm::FunctionType *FnTy =
llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_global_thread_num");
break;
}
case OMPRTL__kmpc_threadprivate_cached: {
// Build void *__kmpc_threadprivate_cached(ident_t *loc,
// kmp_int32 global_tid, void *data, size_t size, void ***cache);
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty,
CGM.VoidPtrTy, CGM.SizeTy,
CGM.VoidPtrTy->getPointerTo()->getPointerTo()};
llvm::FunctionType *FnTy =
llvm::FunctionType::get(CGM.VoidPtrTy, TypeParams, /*isVarArg*/ false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_threadprivate_cached");
break;
}
case OMPRTL__kmpc_critical: {
// Build void __kmpc_critical(ident_t *loc, kmp_int32 global_tid,
// kmp_critical_name *crit);
llvm::Type *TypeParams[] = {
getIdentTyPointerTy(), CGM.Int32Ty,
llvm::PointerType::getUnqual(KmpCriticalNameTy)};
llvm::FunctionType *FnTy =
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_critical");
break;
}
case OMPRTL__kmpc_threadprivate_register: {
// Build void __kmpc_threadprivate_register(ident_t *, void *data,
// kmpc_ctor ctor, kmpc_cctor cctor, kmpc_dtor dtor);
// typedef void *(*kmpc_ctor)(void *);
auto KmpcCtorTy =
llvm::FunctionType::get(CGM.VoidPtrTy, CGM.VoidPtrTy,
/*isVarArg*/ false)->getPointerTo();
// typedef void *(*kmpc_cctor)(void *, void *);
llvm::Type *KmpcCopyCtorTyArgs[] = {CGM.VoidPtrTy, CGM.VoidPtrTy};
auto KmpcCopyCtorTy =
llvm::FunctionType::get(CGM.VoidPtrTy, KmpcCopyCtorTyArgs,
/*isVarArg*/ false)->getPointerTo();
// typedef void (*kmpc_dtor)(void *);
auto KmpcDtorTy =
llvm::FunctionType::get(CGM.VoidTy, CGM.VoidPtrTy, /*isVarArg*/ false)
->getPointerTo();
llvm::Type *FnTyArgs[] = {getIdentTyPointerTy(), CGM.VoidPtrTy, KmpcCtorTy,
KmpcCopyCtorTy, KmpcDtorTy};
auto FnTy = llvm::FunctionType::get(CGM.VoidTy, FnTyArgs,
/*isVarArg*/ false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_threadprivate_register");
break;
}
case OMPRTL__kmpc_end_critical: {
// Build void __kmpc_end_critical(ident_t *loc, kmp_int32 global_tid,
// kmp_critical_name *crit);
llvm::Type *TypeParams[] = {
getIdentTyPointerTy(), CGM.Int32Ty,
llvm::PointerType::getUnqual(KmpCriticalNameTy)};
llvm::FunctionType *FnTy =
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_end_critical");
break;
}
case OMPRTL__kmpc_cancel_barrier: {
// Build kmp_int32 __kmpc_cancel_barrier(ident_t *loc, kmp_int32
// global_tid);
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
llvm::FunctionType *FnTy =
llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name*/ "__kmpc_cancel_barrier");
break;
}
case OMPRTL__kmpc_barrier: {
// Build void __kmpc_barrier(ident_t *loc, kmp_int32 global_tid);
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
llvm::FunctionType *FnTy =
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name*/ "__kmpc_barrier");
break;
}
case OMPRTL__kmpc_for_static_fini: {
// Build void __kmpc_for_static_fini(ident_t *loc, kmp_int32 global_tid);
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
llvm::FunctionType *FnTy =
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_for_static_fini");
break;
}
case OMPRTL__kmpc_push_num_threads: {
// Build void __kmpc_push_num_threads(ident_t *loc, kmp_int32 global_tid,
// kmp_int32 num_threads)
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty,
CGM.Int32Ty};
llvm::FunctionType *FnTy =
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_push_num_threads");
break;
}
case OMPRTL__kmpc_serialized_parallel: {
// Build void __kmpc_serialized_parallel(ident_t *loc, kmp_int32
// global_tid);
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
llvm::FunctionType *FnTy =
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_serialized_parallel");
break;
}
case OMPRTL__kmpc_end_serialized_parallel: {
// Build void __kmpc_end_serialized_parallel(ident_t *loc, kmp_int32
// global_tid);
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
llvm::FunctionType *FnTy =
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_end_serialized_parallel");
break;
}
case OMPRTL__kmpc_flush: {
// Build void __kmpc_flush(ident_t *loc);
llvm::Type *TypeParams[] = {getIdentTyPointerTy()};
llvm::FunctionType *FnTy =
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_flush");
break;
}
case OMPRTL__kmpc_master: {
// Build kmp_int32 __kmpc_master(ident_t *loc, kmp_int32 global_tid);
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
llvm::FunctionType *FnTy =
llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_master");
break;
}
case OMPRTL__kmpc_end_master: {
// Build void __kmpc_end_master(ident_t *loc, kmp_int32 global_tid);
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
llvm::FunctionType *FnTy =
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_end_master");
break;
}
case OMPRTL__kmpc_omp_taskyield: {
// Build kmp_int32 __kmpc_omp_taskyield(ident_t *, kmp_int32 global_tid,
// int end_part);
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, CGM.IntTy};
llvm::FunctionType *FnTy =
llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_omp_taskyield");
break;
}
case OMPRTL__kmpc_single: {
// Build kmp_int32 __kmpc_single(ident_t *loc, kmp_int32 global_tid);
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
llvm::FunctionType *FnTy =
llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_single");
break;
}
case OMPRTL__kmpc_end_single: {
// Build void __kmpc_end_single(ident_t *loc, kmp_int32 global_tid);
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
llvm::FunctionType *FnTy =
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_end_single");
break;
}
case OMPRTL__kmpc_omp_task_alloc: {
// Build kmp_task_t *__kmpc_omp_task_alloc(ident_t *, kmp_int32 gtid,
// kmp_int32 flags, size_t sizeof_kmp_task_t, size_t sizeof_shareds,
// kmp_routine_entry_t *task_entry);
assert(KmpRoutineEntryPtrTy != nullptr &&
"Type kmp_routine_entry_t must be created.");
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, CGM.Int32Ty,
CGM.SizeTy, CGM.SizeTy, KmpRoutineEntryPtrTy};
// Return void * and then cast to particular kmp_task_t type.
llvm::FunctionType *FnTy =
llvm::FunctionType::get(CGM.VoidPtrTy, TypeParams, /*isVarArg=*/false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_omp_task_alloc");
break;
}
case OMPRTL__kmpc_omp_task: {
// Build kmp_int32 __kmpc_omp_task(ident_t *, kmp_int32 gtid, kmp_task_t
// *new_task);
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty,
CGM.VoidPtrTy};
llvm::FunctionType *FnTy =
llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_omp_task");
break;
}
case OMPRTL__kmpc_copyprivate: {
// Build void __kmpc_copyprivate(ident_t *loc, kmp_int32 global_tid,
// size_t cpy_size, void *cpy_data, void(*cpy_func)(void *, void *),
// kmp_int32 didit);
llvm::Type *CpyTypeParams[] = {CGM.VoidPtrTy, CGM.VoidPtrTy};
auto *CpyFnTy =
llvm::FunctionType::get(CGM.VoidTy, CpyTypeParams, /*isVarArg=*/false);
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, CGM.SizeTy,
CGM.VoidPtrTy, CpyFnTy->getPointerTo(),
CGM.Int32Ty};
llvm::FunctionType *FnTy =
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_copyprivate");
break;
}
case OMPRTL__kmpc_reduce: {
// Build kmp_int32 __kmpc_reduce(ident_t *loc, kmp_int32 global_tid,
// kmp_int32 num_vars, size_t reduce_size, void *reduce_data, void
// (*reduce_func)(void *lhs_data, void *rhs_data), kmp_critical_name *lck);
llvm::Type *ReduceTypeParams[] = {CGM.VoidPtrTy, CGM.VoidPtrTy};
auto *ReduceFnTy = llvm::FunctionType::get(CGM.VoidTy, ReduceTypeParams,
/*isVarArg=*/false);
llvm::Type *TypeParams[] = {
getIdentTyPointerTy(), CGM.Int32Ty, CGM.Int32Ty, CGM.SizeTy,
CGM.VoidPtrTy, ReduceFnTy->getPointerTo(),
llvm::PointerType::getUnqual(KmpCriticalNameTy)};
llvm::FunctionType *FnTy =
llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_reduce");
break;
}
case OMPRTL__kmpc_reduce_nowait: {
// Build kmp_int32 __kmpc_reduce_nowait(ident_t *loc, kmp_int32
// global_tid, kmp_int32 num_vars, size_t reduce_size, void *reduce_data,
// void (*reduce_func)(void *lhs_data, void *rhs_data), kmp_critical_name
// *lck);
llvm::Type *ReduceTypeParams[] = {CGM.VoidPtrTy, CGM.VoidPtrTy};
auto *ReduceFnTy = llvm::FunctionType::get(CGM.VoidTy, ReduceTypeParams,
/*isVarArg=*/false);
llvm::Type *TypeParams[] = {
getIdentTyPointerTy(), CGM.Int32Ty, CGM.Int32Ty, CGM.SizeTy,
CGM.VoidPtrTy, ReduceFnTy->getPointerTo(),
llvm::PointerType::getUnqual(KmpCriticalNameTy)};
llvm::FunctionType *FnTy =
llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_reduce_nowait");
break;
}
case OMPRTL__kmpc_end_reduce: {
// Build void __kmpc_end_reduce(ident_t *loc, kmp_int32 global_tid,
// kmp_critical_name *lck);
llvm::Type *TypeParams[] = {
getIdentTyPointerTy(), CGM.Int32Ty,
llvm::PointerType::getUnqual(KmpCriticalNameTy)};
llvm::FunctionType *FnTy =
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_end_reduce");
break;
}
case OMPRTL__kmpc_end_reduce_nowait: {
// Build __kmpc_end_reduce_nowait(ident_t *loc, kmp_int32 global_tid,
// kmp_critical_name *lck);
llvm::Type *TypeParams[] = {
getIdentTyPointerTy(), CGM.Int32Ty,
llvm::PointerType::getUnqual(KmpCriticalNameTy)};
llvm::FunctionType *FnTy =
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
RTLFn =
CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_end_reduce_nowait");
break;
}
case OMPRTL__kmpc_omp_task_begin_if0: {
// Build void __kmpc_omp_task(ident_t *, kmp_int32 gtid, kmp_task_t
// *new_task);
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty,
CGM.VoidPtrTy};
llvm::FunctionType *FnTy =
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
RTLFn =
CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_omp_task_begin_if0");
break;
}
case OMPRTL__kmpc_omp_task_complete_if0: {
// Build void __kmpc_omp_task(ident_t *, kmp_int32 gtid, kmp_task_t
// *new_task);
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty,
CGM.VoidPtrTy};
llvm::FunctionType *FnTy =
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
RTLFn = CGM.CreateRuntimeFunction(FnTy,
/*Name=*/"__kmpc_omp_task_complete_if0");
break;
}
case OMPRTL__kmpc_ordered: {
// Build void __kmpc_ordered(ident_t *loc, kmp_int32 global_tid);
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
llvm::FunctionType *FnTy =
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_ordered");
break;
}
case OMPRTL__kmpc_end_ordered: {
// Build void __kmpc_end_ordered(ident_t *loc, kmp_int32 global_tid);
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
llvm::FunctionType *FnTy =
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_end_ordered");
break;
}
case OMPRTL__kmpc_omp_taskwait: {
// Build kmp_int32 __kmpc_omp_taskwait(ident_t *loc, kmp_int32 global_tid);
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
llvm::FunctionType *FnTy =
llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_omp_taskwait");
break;
}
case OMPRTL__kmpc_taskgroup: {
// Build void __kmpc_taskgroup(ident_t *loc, kmp_int32 global_tid);
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
llvm::FunctionType *FnTy =
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_taskgroup");
break;
}
case OMPRTL__kmpc_end_taskgroup: {
// Build void __kmpc_end_taskgroup(ident_t *loc, kmp_int32 global_tid);
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
llvm::FunctionType *FnTy =
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_end_taskgroup");
break;
}
case OMPRTL__kmpc_push_proc_bind: {
// Build void __kmpc_push_proc_bind(ident_t *loc, kmp_int32 global_tid,
// int proc_bind)
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, CGM.IntTy};
llvm::FunctionType *FnTy =
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_push_proc_bind");
break;
}
case OMPRTL__kmpc_omp_task_with_deps: {
// Build kmp_int32 __kmpc_omp_task_with_deps(ident_t *, kmp_int32 gtid,
// kmp_task_t *new_task, kmp_int32 ndeps, kmp_depend_info_t *dep_list,
// kmp_int32 ndeps_noalias, kmp_depend_info_t *noalias_dep_list);
llvm::Type *TypeParams[] = {
getIdentTyPointerTy(), CGM.Int32Ty, CGM.VoidPtrTy, CGM.Int32Ty,
CGM.VoidPtrTy, CGM.Int32Ty, CGM.VoidPtrTy};
llvm::FunctionType *FnTy =
llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false);
RTLFn =
CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_omp_task_with_deps");
break;
}
case OMPRTL__kmpc_omp_wait_deps: {
// Build void __kmpc_omp_wait_deps(ident_t *, kmp_int32 gtid,
// kmp_int32 ndeps, kmp_depend_info_t *dep_list, kmp_int32 ndeps_noalias,
// kmp_depend_info_t *noalias_dep_list);
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty,
CGM.Int32Ty, CGM.VoidPtrTy,
CGM.Int32Ty, CGM.VoidPtrTy};
llvm::FunctionType *FnTy =
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_omp_wait_deps");
break;
}
case OMPRTL__kmpc_cancellationpoint: {
// Build kmp_int32 __kmpc_cancellationpoint(ident_t *loc, kmp_int32
// global_tid, kmp_int32 cncl_kind)
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, CGM.IntTy};
llvm::FunctionType *FnTy =
llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_cancellationpoint");
break;
}
case OMPRTL__kmpc_cancel: {
// Build kmp_int32 __kmpc_cancel(ident_t *loc, kmp_int32 global_tid,
// kmp_int32 cncl_kind)
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, CGM.IntTy};
llvm::FunctionType *FnTy =
llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_cancel");
break;
}
case OMPRTL__tgt_target: {
// Build int32_t __tgt_target(int32_t device_id, void *host_ptr, int32_t
// arg_num, void** args_base, void **args, size_t *arg_sizes, int32_t
// *arg_types);
llvm::Type *TypeParams[] = {CGM.Int32Ty,
CGM.VoidPtrTy,
CGM.Int32Ty,
CGM.VoidPtrPtrTy,
CGM.VoidPtrPtrTy,
CGM.SizeTy->getPointerTo(),
CGM.Int32Ty->getPointerTo()};
llvm::FunctionType *FnTy =
llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_target");
break;
}
}
return RTLFn;
}
static llvm::Value *getTypeSize(CodeGenFunction &CGF, QualType Ty) {
auto &C = CGF.getContext();
llvm::Value *Size = nullptr;
auto SizeInChars = C.getTypeSizeInChars(Ty);
if (SizeInChars.isZero()) {
// getTypeSizeInChars() returns 0 for a VLA.
while (auto *VAT = C.getAsVariableArrayType(Ty)) {
llvm::Value *ArraySize;
std::tie(ArraySize, Ty) = CGF.getVLASize(VAT);
Size = Size ? CGF.Builder.CreateNUWMul(Size, ArraySize) : ArraySize;
}
SizeInChars = C.getTypeSizeInChars(Ty);
assert(!SizeInChars.isZero());
Size = CGF.Builder.CreateNUWMul(
Size, llvm::ConstantInt::get(CGF.SizeTy, SizeInChars.getQuantity()));
} else
Size = llvm::ConstantInt::get(CGF.SizeTy, SizeInChars.getQuantity());
return Size;
}
llvm::Constant *CGOpenMPRuntime::createForStaticInitFunction(unsigned IVSize,
bool IVSigned) {
assert((IVSize == 32 || IVSize == 64) &&
"IV size is not compatible with the omp runtime");
auto Name = IVSize == 32 ? (IVSigned ? "__kmpc_for_static_init_4"
: "__kmpc_for_static_init_4u")
: (IVSigned ? "__kmpc_for_static_init_8"
: "__kmpc_for_static_init_8u");
auto ITy = IVSize == 32 ? CGM.Int32Ty : CGM.Int64Ty;
auto PtrTy = llvm::PointerType::getUnqual(ITy);
llvm::Type *TypeParams[] = {
getIdentTyPointerTy(), // loc
CGM.Int32Ty, // tid
CGM.Int32Ty, // schedtype
llvm::PointerType::getUnqual(CGM.Int32Ty), // p_lastiter
PtrTy, // p_lower
PtrTy, // p_upper
PtrTy, // p_stride
ITy, // incr
ITy // chunk
};
llvm::FunctionType *FnTy =
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
return CGM.CreateRuntimeFunction(FnTy, Name);
}
llvm::Constant *CGOpenMPRuntime::createDispatchInitFunction(unsigned IVSize,
bool IVSigned) {
assert((IVSize == 32 || IVSize == 64) &&
"IV size is not compatible with the omp runtime");
auto Name =
IVSize == 32
? (IVSigned ? "__kmpc_dispatch_init_4" : "__kmpc_dispatch_init_4u")
: (IVSigned ? "__kmpc_dispatch_init_8" : "__kmpc_dispatch_init_8u");
auto ITy = IVSize == 32 ? CGM.Int32Ty : CGM.Int64Ty;
llvm::Type *TypeParams[] = { getIdentTyPointerTy(), // loc
CGM.Int32Ty, // tid
CGM.Int32Ty, // schedtype
ITy, // lower
ITy, // upper
ITy, // stride
ITy // chunk
};
llvm::FunctionType *FnTy =
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
return CGM.CreateRuntimeFunction(FnTy, Name);
}
llvm::Constant *CGOpenMPRuntime::createDispatchFiniFunction(unsigned IVSize,
bool IVSigned) {
assert((IVSize == 32 || IVSize == 64) &&
"IV size is not compatible with the omp runtime");
auto Name =
IVSize == 32
? (IVSigned ? "__kmpc_dispatch_fini_4" : "__kmpc_dispatch_fini_4u")
: (IVSigned ? "__kmpc_dispatch_fini_8" : "__kmpc_dispatch_fini_8u");
llvm::Type *TypeParams[] = {
getIdentTyPointerTy(), // loc
CGM.Int32Ty, // tid
};
llvm::FunctionType *FnTy =
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
return CGM.CreateRuntimeFunction(FnTy, Name);
}
llvm::Constant *CGOpenMPRuntime::createDispatchNextFunction(unsigned IVSize,
bool IVSigned) {
assert((IVSize == 32 || IVSize == 64) &&
"IV size is not compatible with the omp runtime");
auto Name =
IVSize == 32
? (IVSigned ? "__kmpc_dispatch_next_4" : "__kmpc_dispatch_next_4u")
: (IVSigned ? "__kmpc_dispatch_next_8" : "__kmpc_dispatch_next_8u");
auto ITy = IVSize == 32 ? CGM.Int32Ty : CGM.Int64Ty;
auto PtrTy = llvm::PointerType::getUnqual(ITy);
llvm::Type *TypeParams[] = {
getIdentTyPointerTy(), // loc
CGM.Int32Ty, // tid
llvm::PointerType::getUnqual(CGM.Int32Ty), // p_lastiter
PtrTy, // p_lower
PtrTy, // p_upper
PtrTy // p_stride
};
llvm::FunctionType *FnTy =
llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
return CGM.CreateRuntimeFunction(FnTy, Name);
}
llvm::Constant *
CGOpenMPRuntime::getOrCreateThreadPrivateCache(const VarDecl *VD) {
assert(!CGM.getLangOpts().OpenMPUseTLS ||
!CGM.getContext().getTargetInfo().isTLSSupported());
// Lookup the entry, lazily creating it if necessary.
return getOrCreateInternalVariable(CGM.Int8PtrPtrTy,
Twine(CGM.getMangledName(VD)) + ".cache.");
}
Address CGOpenMPRuntime::getAddrOfThreadPrivate(CodeGenFunction &CGF,
const VarDecl *VD,
Address VDAddr,
SourceLocation Loc) {
if (CGM.getLangOpts().OpenMPUseTLS &&
CGM.getContext().getTargetInfo().isTLSSupported())
return VDAddr;
auto VarTy = VDAddr.getElementType();
llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc),
CGF.Builder.CreatePointerCast(VDAddr.getPointer(),
CGM.Int8PtrTy),
CGM.getSize(CGM.GetTargetTypeStoreSize(VarTy)),
getOrCreateThreadPrivateCache(VD)};
return Address(CGF.EmitRuntimeCall(
createRuntimeFunction(OMPRTL__kmpc_threadprivate_cached), Args),
VDAddr.getAlignment());
}
void CGOpenMPRuntime::emitThreadPrivateVarInit(
CodeGenFunction &CGF, Address VDAddr, llvm::Value *Ctor,
llvm::Value *CopyCtor, llvm::Value *Dtor, SourceLocation Loc) {
// Call kmp_int32 __kmpc_global_thread_num(&loc) to init OpenMP runtime
// library.
auto OMPLoc = emitUpdateLocation(CGF, Loc);
CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_global_thread_num),
OMPLoc);
// Call __kmpc_threadprivate_register(&loc, &var, ctor, cctor/*NULL*/, dtor)
// to register constructor/destructor for variable.
llvm::Value *Args[] = {OMPLoc,
CGF.Builder.CreatePointerCast(VDAddr.getPointer(),
CGM.VoidPtrTy),
Ctor, CopyCtor, Dtor};
CGF.EmitRuntimeCall(
createRuntimeFunction(OMPRTL__kmpc_threadprivate_register), Args);
}
llvm::Function *CGOpenMPRuntime::emitThreadPrivateVarDefinition(
const VarDecl *VD, Address VDAddr, SourceLocation Loc,
bool PerformInit, CodeGenFunction *CGF) {
if (CGM.getLangOpts().OpenMPUseTLS &&
CGM.getContext().getTargetInfo().isTLSSupported())
return nullptr;
VD = VD->getDefinition(CGM.getContext());
if (VD && ThreadPrivateWithDefinition.count(VD) == 0) {
ThreadPrivateWithDefinition.insert(VD);
QualType ASTTy = VD->getType();
llvm::Value *Ctor = nullptr, *CopyCtor = nullptr, *Dtor = nullptr;
auto Init = VD->getAnyInitializer();
if (CGM.getLangOpts().CPlusPlus && PerformInit) {
// Generate function that re-emits the declaration's initializer into the
// threadprivate copy of the variable VD
CodeGenFunction CtorCGF(CGM);
FunctionArgList Args;
ImplicitParamDecl Dst(CGM.getContext(), /*DC=*/nullptr, SourceLocation(),
/*Id=*/nullptr, CGM.getContext().VoidPtrTy);
Args.push_back(&Dst);
auto &FI = CGM.getTypes().arrangeFreeFunctionDeclaration(
CGM.getContext().VoidPtrTy, Args, FunctionType::ExtInfo(),
/*isVariadic=*/false);
auto FTy = CGM.getTypes().GetFunctionType(FI);
auto Fn = CGM.CreateGlobalInitOrDestructFunction(
FTy, ".__kmpc_global_ctor_.", Loc);
CtorCGF.StartFunction(GlobalDecl(), CGM.getContext().VoidPtrTy, Fn, FI,
Args, SourceLocation());
auto ArgVal = CtorCGF.EmitLoadOfScalar(
CtorCGF.GetAddrOfLocalVar(&Dst), /*Volatile=*/false,
CGM.getContext().VoidPtrTy, Dst.getLocation());
Address Arg = Address(ArgVal, VDAddr.getAlignment());
Arg = CtorCGF.Builder.CreateElementBitCast(Arg,
CtorCGF.ConvertTypeForMem(ASTTy));
CtorCGF.EmitAnyExprToMem(Init, Arg, Init->getType().getQualifiers(),
/*IsInitializer=*/true);
ArgVal = CtorCGF.EmitLoadOfScalar(
CtorCGF.GetAddrOfLocalVar(&Dst), /*Volatile=*/false,
CGM.getContext().VoidPtrTy, Dst.getLocation());
CtorCGF.Builder.CreateStore(ArgVal, CtorCGF.ReturnValue);
CtorCGF.FinishFunction();
Ctor = Fn;
}
if (VD->getType().isDestructedType() != QualType::DK_none) {
// Generate function that emits destructor call for the threadprivate copy
// of the variable VD
CodeGenFunction DtorCGF(CGM);
FunctionArgList Args;
ImplicitParamDecl Dst(CGM.getContext(), /*DC=*/nullptr, SourceLocation(),
/*Id=*/nullptr, CGM.getContext().VoidPtrTy);
Args.push_back(&Dst);
auto &FI = CGM.getTypes().arrangeFreeFunctionDeclaration(
CGM.getContext().VoidTy, Args, FunctionType::ExtInfo(),
/*isVariadic=*/false);
auto FTy = CGM.getTypes().GetFunctionType(FI);
auto Fn = CGM.CreateGlobalInitOrDestructFunction(
FTy, ".__kmpc_global_dtor_.", Loc);
DtorCGF.StartFunction(GlobalDecl(), CGM.getContext().VoidTy, Fn, FI, Args,
SourceLocation());
auto ArgVal = DtorCGF.EmitLoadOfScalar(
DtorCGF.GetAddrOfLocalVar(&Dst),
/*Volatile=*/false, CGM.getContext().VoidPtrTy, Dst.getLocation());
DtorCGF.emitDestroy(Address(ArgVal, VDAddr.getAlignment()), ASTTy,
DtorCGF.getDestroyer(ASTTy.isDestructedType()),
DtorCGF.needsEHCleanup(ASTTy.isDestructedType()));
DtorCGF.FinishFunction();
Dtor = Fn;
}
// Do not emit init function if it is not required.
if (!Ctor && !Dtor)
return nullptr;
llvm::Type *CopyCtorTyArgs[] = {CGM.VoidPtrTy, CGM.VoidPtrTy};
auto CopyCtorTy =
llvm::FunctionType::get(CGM.VoidPtrTy, CopyCtorTyArgs,
/*isVarArg=*/false)->getPointerTo();
// Copying constructor for the threadprivate variable.
// Must be NULL - reserved by runtime, but currently it requires that this
// parameter is always NULL. Otherwise it fires assertion.
CopyCtor = llvm::Constant::getNullValue(CopyCtorTy);
if (Ctor == nullptr) {
auto CtorTy = llvm::FunctionType::get(CGM.VoidPtrTy, CGM.VoidPtrTy,
/*isVarArg=*/false)->getPointerTo();
Ctor = llvm::Constant::getNullValue(CtorTy);
}
if (Dtor == nullptr) {
auto DtorTy = llvm::FunctionType::get(CGM.VoidTy, CGM.VoidPtrTy,
/*isVarArg=*/false)->getPointerTo();
Dtor = llvm::Constant::getNullValue(DtorTy);
}
if (!CGF) {
auto InitFunctionTy =
llvm::FunctionType::get(CGM.VoidTy, /*isVarArg*/ false);
auto InitFunction = CGM.CreateGlobalInitOrDestructFunction(
InitFunctionTy, ".__omp_threadprivate_init_.");
CodeGenFunction InitCGF(CGM);
FunctionArgList ArgList;
InitCGF.StartFunction(GlobalDecl(), CGM.getContext().VoidTy, InitFunction,
CGM.getTypes().arrangeNullaryFunction(), ArgList,
Loc);
emitThreadPrivateVarInit(InitCGF, VDAddr, Ctor, CopyCtor, Dtor, Loc);
InitCGF.FinishFunction();
return InitFunction;
}
emitThreadPrivateVarInit(*CGF, VDAddr, Ctor, CopyCtor, Dtor, Loc);
}
return nullptr;
}
/// \brief Emits code for OpenMP 'if' clause using specified \a CodeGen
/// function. Here is the logic:
/// if (Cond) {
/// ThenGen();
/// } else {
/// ElseGen();
/// }
static void emitOMPIfClause(CodeGenFunction &CGF, const Expr *Cond,
const RegionCodeGenTy &ThenGen,
const RegionCodeGenTy &ElseGen) {
CodeGenFunction::LexicalScope ConditionScope(CGF, Cond->getSourceRange());
// If the condition constant folds and can be elided, try to avoid emitting
// the condition and the dead arm of the if/else.
bool CondConstant;
if (CGF.ConstantFoldsToSimpleInteger(Cond, CondConstant)) {
CodeGenFunction::RunCleanupsScope Scope(CGF);
if (CondConstant) {
ThenGen(CGF);
} else {
ElseGen(CGF);
}
return;
}
// Otherwise, the condition did not fold, or we couldn't elide it. Just
// emit the conditional branch.
auto ThenBlock = CGF.createBasicBlock("omp_if.then");
auto ElseBlock = CGF.createBasicBlock("omp_if.else");
auto ContBlock = CGF.createBasicBlock("omp_if.end");
CGF.EmitBranchOnBoolExpr(Cond, ThenBlock, ElseBlock, /*TrueCount=*/0);
// Emit the 'then' code.
CGF.EmitBlock(ThenBlock);
{
CodeGenFunction::RunCleanupsScope ThenScope(CGF);
ThenGen(CGF);
}
CGF.EmitBranch(ContBlock);
// Emit the 'else' code if present.
{
// There is no need to emit line number for unconditional branch.
auto NL = ApplyDebugLocation::CreateEmpty(CGF);
CGF.EmitBlock(ElseBlock);
}
{
CodeGenFunction::RunCleanupsScope ThenScope(CGF);
ElseGen(CGF);
}
{
// There is no need to emit line number for unconditional branch.
auto NL = ApplyDebugLocation::CreateEmpty(CGF);
CGF.EmitBranch(ContBlock);
}
// Emit the continuation block for code after the if.
CGF.EmitBlock(ContBlock, /*IsFinished=*/true);
}
void CGOpenMPRuntime::emitParallelCall(CodeGenFunction &CGF, SourceLocation Loc,
llvm::Value *OutlinedFn,
ArrayRef<llvm::Value *> CapturedVars,
const Expr *IfCond) {
auto *RTLoc = emitUpdateLocation(CGF, Loc);
auto &&ThenGen = [this, OutlinedFn, CapturedVars,
RTLoc](CodeGenFunction &CGF) {
// Build call __kmpc_fork_call(loc, n, microtask, var1, .., varn);
llvm::Value *Args[] = {
RTLoc,
CGF.Builder.getInt32(CapturedVars.size()), // Number of captured vars
CGF.Builder.CreateBitCast(OutlinedFn, getKmpc_MicroPointerTy())};
llvm::SmallVector<llvm::Value *, 16> RealArgs;
RealArgs.append(std::begin(Args), std::end(Args));
RealArgs.append(CapturedVars.begin(), CapturedVars.end());
auto RTLFn = createRuntimeFunction(OMPRTL__kmpc_fork_call);
CGF.EmitRuntimeCall(RTLFn, RealArgs);
};
auto &&ElseGen = [this, OutlinedFn, CapturedVars, RTLoc,
Loc](CodeGenFunction &CGF) {
auto ThreadID = getThreadID(CGF, Loc);
// Build calls:
// __kmpc_serialized_parallel(&Loc, GTid);
llvm::Value *Args[] = {RTLoc, ThreadID};
CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_serialized_parallel),
Args);
// OutlinedFn(&GTid, &zero, CapturedStruct);
auto ThreadIDAddr = emitThreadIDAddress(CGF, Loc);
Address ZeroAddr =
CGF.CreateTempAlloca(CGF.Int32Ty, CharUnits::fromQuantity(4),
/*Name*/ ".zero.addr");
CGF.InitTempAlloca(ZeroAddr, CGF.Builder.getInt32(/*C*/ 0));
llvm::SmallVector<llvm::Value *, 16> OutlinedFnArgs;
OutlinedFnArgs.push_back(ThreadIDAddr.getPointer());
OutlinedFnArgs.push_back(ZeroAddr.getPointer());
OutlinedFnArgs.append(CapturedVars.begin(), CapturedVars.end());
CGF.EmitCallOrInvoke(OutlinedFn, OutlinedFnArgs);
// __kmpc_end_serialized_parallel(&Loc, GTid);
llvm::Value *EndArgs[] = {emitUpdateLocation(CGF, Loc), ThreadID};
CGF.EmitRuntimeCall(
createRuntimeFunction(OMPRTL__kmpc_end_serialized_parallel), EndArgs);
};
if (IfCond) {
emitOMPIfClause(CGF, IfCond, ThenGen, ElseGen);
} else {
CodeGenFunction::RunCleanupsScope Scope(CGF);
ThenGen(CGF);
}
}
// If we're inside an (outlined) parallel region, use the region info's
// thread-ID variable (it is passed in a first argument of the outlined function
// as "kmp_int32 *gtid"). Otherwise, if we're not inside parallel region, but in
// regular serial code region, get thread ID by calling kmp_int32
// kmpc_global_thread_num(ident_t *loc), stash this thread ID in a temporary and
// return the address of that temp.
Address CGOpenMPRuntime::emitThreadIDAddress(CodeGenFunction &CGF,
SourceLocation Loc) {
if (auto OMPRegionInfo =
dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo))
if (OMPRegionInfo->getThreadIDVariable())
return OMPRegionInfo->getThreadIDVariableLValue(CGF).getAddress();
auto ThreadID = getThreadID(CGF, Loc);
auto Int32Ty =
CGF.getContext().getIntTypeForBitwidth(/*DestWidth*/ 32, /*Signed*/ true);
auto ThreadIDTemp = CGF.CreateMemTemp(Int32Ty, /*Name*/ ".threadid_temp.");
CGF.EmitStoreOfScalar(ThreadID,
CGF.MakeAddrLValue(ThreadIDTemp, Int32Ty));
return ThreadIDTemp;
}
llvm::Constant *
CGOpenMPRuntime::getOrCreateInternalVariable(llvm::Type *Ty,
const llvm::Twine &Name) {
SmallString<256> Buffer;
llvm::raw_svector_ostream Out(Buffer);
Out << Name;
auto RuntimeName = Out.str();
auto &Elem = *InternalVars.insert(std::make_pair(RuntimeName, nullptr)).first;
if (Elem.second) {
assert(Elem.second->getType()->getPointerElementType() == Ty &&
"OMP internal variable has different type than requested");
return &*Elem.second;
}
return Elem.second = new llvm::GlobalVariable(
CGM.getModule(), Ty, /*IsConstant*/ false,
llvm::GlobalValue::CommonLinkage, llvm::Constant::getNullValue(Ty),
Elem.first());
}
llvm::Value *CGOpenMPRuntime::getCriticalRegionLock(StringRef CriticalName) {
llvm::Twine Name(".gomp_critical_user_", CriticalName);
return getOrCreateInternalVariable(KmpCriticalNameTy, Name.concat(".var"));
}
namespace {
template <size_t N> class CallEndCleanup final : public EHScopeStack::Cleanup {
llvm::Value *Callee;
llvm::Value *Args[N];
public:
CallEndCleanup(llvm::Value *Callee, ArrayRef<llvm::Value *> CleanupArgs)
: Callee(Callee) {
assert(CleanupArgs.size() == N);
std::copy(CleanupArgs.begin(), CleanupArgs.end(), std::begin(Args));
}
void Emit(CodeGenFunction &CGF, Flags /*flags*/) override {
CGF.EmitRuntimeCall(Callee, Args);
}
};
} // anonymous namespace
void CGOpenMPRuntime::emitCriticalRegion(CodeGenFunction &CGF,
StringRef CriticalName,
const RegionCodeGenTy &CriticalOpGen,
SourceLocation Loc) {
// __kmpc_critical(ident_t *, gtid, Lock);
// CriticalOpGen();
// __kmpc_end_critical(ident_t *, gtid, Lock);
// Prepare arguments and build a call to __kmpc_critical
{
CodeGenFunction::RunCleanupsScope Scope(CGF);
llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc),
getCriticalRegionLock(CriticalName)};
CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_critical), Args);
// Build a call to __kmpc_end_critical
CGF.EHStack.pushCleanup<CallEndCleanup<std::extent<decltype(Args)>::value>>(
NormalAndEHCleanup, createRuntimeFunction(OMPRTL__kmpc_end_critical),
llvm::makeArrayRef(Args));
emitInlinedDirective(CGF, OMPD_critical, CriticalOpGen);
}
}
static void emitIfStmt(CodeGenFunction &CGF, llvm::Value *IfCond,
OpenMPDirectiveKind Kind, SourceLocation Loc,
const RegionCodeGenTy &BodyOpGen) {
llvm::Value *CallBool = CGF.EmitScalarConversion(
IfCond,
CGF.getContext().getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/true),
CGF.getContext().BoolTy, Loc);
auto *ThenBlock = CGF.createBasicBlock("omp_if.then");
auto *ContBlock = CGF.createBasicBlock("omp_if.end");
// Generate the branch (If-stmt)
CGF.Builder.CreateCondBr(CallBool, ThenBlock, ContBlock);
CGF.EmitBlock(ThenBlock);
CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, Kind, BodyOpGen);
// Emit the rest of bblocks/branches
CGF.EmitBranch(ContBlock);
CGF.EmitBlock(ContBlock, true);
}
void CGOpenMPRuntime::emitMasterRegion(CodeGenFunction &CGF,
const RegionCodeGenTy &MasterOpGen,
SourceLocation Loc) {
// if(__kmpc_master(ident_t *, gtid)) {
// MasterOpGen();
// __kmpc_end_master(ident_t *, gtid);
// }
// Prepare arguments and build a call to __kmpc_master
llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)};
auto *IsMaster =
CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_master), Args);
typedef CallEndCleanup<std::extent<decltype(Args)>::value>
MasterCallEndCleanup;
emitIfStmt(
CGF, IsMaster, OMPD_master, Loc, [&](CodeGenFunction &CGF) -> void {
CodeGenFunction::RunCleanupsScope Scope(CGF);
CGF.EHStack.pushCleanup<MasterCallEndCleanup>(
NormalAndEHCleanup, createRuntimeFunction(OMPRTL__kmpc_end_master),
llvm::makeArrayRef(Args));
MasterOpGen(CGF);
});
}
void CGOpenMPRuntime::emitTaskyieldCall(CodeGenFunction &CGF,
SourceLocation Loc) {
// Build call __kmpc_omp_taskyield(loc, thread_id, 0);
llvm::Value *Args[] = {
emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc),
llvm::ConstantInt::get(CGM.IntTy, /*V=*/0, /*isSigned=*/true)};
CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_omp_taskyield), Args);
}
void CGOpenMPRuntime::emitTaskgroupRegion(CodeGenFunction &CGF,
const RegionCodeGenTy &TaskgroupOpGen,
SourceLocation Loc) {
// __kmpc_taskgroup(ident_t *, gtid);
// TaskgroupOpGen();
// __kmpc_end_taskgroup(ident_t *, gtid);
// Prepare arguments and build a call to __kmpc_taskgroup
{
CodeGenFunction::RunCleanupsScope Scope(CGF);
llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)};
CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_taskgroup), Args);
// Build a call to __kmpc_end_taskgroup
CGF.EHStack.pushCleanup<CallEndCleanup<std::extent<decltype(Args)>::value>>(
NormalAndEHCleanup, createRuntimeFunction(OMPRTL__kmpc_end_taskgroup),
llvm::makeArrayRef(Args));
emitInlinedDirective(CGF, OMPD_taskgroup, TaskgroupOpGen);
}
}
/// Given an array of pointers to variables, project the address of a
/// given variable.
static Address emitAddrOfVarFromArray(CodeGenFunction &CGF, Address Array,
unsigned Index, const VarDecl *Var) {
// Pull out the pointer to the variable.
Address PtrAddr =
CGF.Builder.CreateConstArrayGEP(Array, Index, CGF.getPointerSize());
llvm::Value *Ptr = CGF.Builder.CreateLoad(PtrAddr);
Address Addr = Address(Ptr, CGF.getContext().getDeclAlign(Var));
Addr = CGF.Builder.CreateElementBitCast(
Addr, CGF.ConvertTypeForMem(Var->getType()));
return Addr;
}
static llvm::Value *emitCopyprivateCopyFunction(
CodeGenModule &CGM, llvm::Type *ArgsType,
ArrayRef<const Expr *> CopyprivateVars, ArrayRef<const Expr *> DestExprs,
ArrayRef<const Expr *> SrcExprs, ArrayRef<const Expr *> AssignmentOps) {
auto &C = CGM.getContext();
// void copy_func(void *LHSArg, void *RHSArg);
FunctionArgList Args;
ImplicitParamDecl LHSArg(C, /*DC=*/nullptr, SourceLocation(), /*Id=*/nullptr,
C.VoidPtrTy);
ImplicitParamDecl RHSArg(C, /*DC=*/nullptr, SourceLocation(), /*Id=*/nullptr,
C.VoidPtrTy);
Args.push_back(&LHSArg);
Args.push_back(&RHSArg);
FunctionType::ExtInfo EI;
auto &CGFI = CGM.getTypes().arrangeFreeFunctionDeclaration(
C.VoidTy, Args, EI, /*isVariadic=*/false);
auto *Fn = llvm::Function::Create(
CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
".omp.copyprivate.copy_func", &CGM.getModule());
CGM.SetInternalFunctionAttributes(/*D=*/nullptr, Fn, CGFI);
CodeGenFunction CGF(CGM);
CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args);
// Dest = (void*[n])(LHSArg);
// Src = (void*[n])(RHSArg);
Address LHS(CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(&LHSArg)),
ArgsType), CGF.getPointerAlign());
Address RHS(CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(&RHSArg)),
ArgsType), CGF.getPointerAlign());
// *(Type0*)Dst[0] = *(Type0*)Src[0];
// *(Type1*)Dst[1] = *(Type1*)Src[1];
// ...
// *(Typen*)Dst[n] = *(Typen*)Src[n];
for (unsigned I = 0, E = AssignmentOps.size(); I < E; ++I) {
auto DestVar = cast<VarDecl>(cast<DeclRefExpr>(DestExprs[I])->getDecl());
Address DestAddr = emitAddrOfVarFromArray(CGF, LHS, I, DestVar);
auto SrcVar = cast<VarDecl>(cast<DeclRefExpr>(SrcExprs[I])->getDecl());
Address SrcAddr = emitAddrOfVarFromArray(CGF, RHS, I, SrcVar);
auto *VD = cast<DeclRefExpr>(CopyprivateVars[I])->getDecl();
QualType Type = VD->getType();
CGF.EmitOMPCopy(Type, DestAddr, SrcAddr, DestVar, SrcVar, AssignmentOps[I]);
}
CGF.FinishFunction();
return Fn;
}
void CGOpenMPRuntime::emitSingleRegion(CodeGenFunction &CGF,
const RegionCodeGenTy &SingleOpGen,
SourceLocation Loc,
ArrayRef<const Expr *> CopyprivateVars,
ArrayRef<const Expr *> SrcExprs,
ArrayRef<const Expr *> DstExprs,
ArrayRef<const Expr *> AssignmentOps) {
assert(CopyprivateVars.size() == SrcExprs.size() &&
CopyprivateVars.size() == DstExprs.size() &&
CopyprivateVars.size() == AssignmentOps.size());
auto &C = CGM.getContext();
// int32 did_it = 0;
// if(__kmpc_single(ident_t *, gtid)) {
// SingleOpGen();
// __kmpc_end_single(ident_t *, gtid);
// did_it = 1;
// }
// call __kmpc_copyprivate(ident_t *, gtid, <buf_size>, <copyprivate list>,
// <copy_func>, did_it);
Address DidIt = Address::invalid();
if (!CopyprivateVars.empty()) {
// int32 did_it = 0;
auto KmpInt32Ty = C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1);
DidIt = CGF.CreateMemTemp(KmpInt32Ty, ".omp.copyprivate.did_it");
CGF.Builder.CreateStore(CGF.Builder.getInt32(0), DidIt);
}
// Prepare arguments and build a call to __kmpc_single
llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)};
auto *IsSingle =
CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_single), Args);
typedef CallEndCleanup<std::extent<decltype(Args)>::value>
SingleCallEndCleanup;
emitIfStmt(
CGF, IsSingle, OMPD_single, Loc, [&](CodeGenFunction &CGF) -> void {
CodeGenFunction::RunCleanupsScope Scope(CGF);
CGF.EHStack.pushCleanup<SingleCallEndCleanup>(
NormalAndEHCleanup, createRuntimeFunction(OMPRTL__kmpc_end_single),
llvm::makeArrayRef(Args));
SingleOpGen(CGF);
if (DidIt.isValid()) {
// did_it = 1;
CGF.Builder.CreateStore(CGF.Builder.getInt32(1), DidIt);
}
});
// call __kmpc_copyprivate(ident_t *, gtid, <buf_size>, <copyprivate list>,
// <copy_func>, did_it);
if (DidIt.isValid()) {
llvm::APInt ArraySize(/*unsigned int numBits=*/32, CopyprivateVars.size());
auto CopyprivateArrayTy =
C.getConstantArrayType(C.VoidPtrTy, ArraySize, ArrayType::Normal,
/*IndexTypeQuals=*/0);
// Create a list of all private variables for copyprivate.
Address CopyprivateList =
CGF.CreateMemTemp(CopyprivateArrayTy, ".omp.copyprivate.cpr_list");
for (unsigned I = 0, E = CopyprivateVars.size(); I < E; ++I) {
Address Elem = CGF.Builder.CreateConstArrayGEP(
CopyprivateList, I, CGF.getPointerSize());
CGF.Builder.CreateStore(
CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
CGF.EmitLValue(CopyprivateVars[I]).getPointer(), CGF.VoidPtrTy),
Elem);
}
// Build function that copies private values from single region to all other
// threads in the corresponding parallel region.
auto *CpyFn = emitCopyprivateCopyFunction(
CGM, CGF.ConvertTypeForMem(CopyprivateArrayTy)->getPointerTo(),
CopyprivateVars, SrcExprs, DstExprs, AssignmentOps);
auto *BufSize = getTypeSize(CGF, CopyprivateArrayTy);
Address CL =
CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(CopyprivateList,
CGF.VoidPtrTy);
auto *DidItVal = CGF.Builder.CreateLoad(DidIt);
llvm::Value *Args[] = {
emitUpdateLocation(CGF, Loc), // ident_t *<loc>
getThreadID(CGF, Loc), // i32 <gtid>
BufSize, // size_t <buf_size>
CL.getPointer(), // void *<copyprivate list>
CpyFn, // void (*) (void *, void *) <copy_func>
DidItVal // i32 did_it
};
CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_copyprivate), Args);
}
}
void CGOpenMPRuntime::emitOrderedRegion(CodeGenFunction &CGF,
const RegionCodeGenTy &OrderedOpGen,
SourceLocation Loc, bool IsThreads) {
// __kmpc_ordered(ident_t *, gtid);
// OrderedOpGen();
// __kmpc_end_ordered(ident_t *, gtid);
// Prepare arguments and build a call to __kmpc_ordered
CodeGenFunction::RunCleanupsScope Scope(CGF);
if (IsThreads) {
llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)};
CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_ordered), Args);
// Build a call to __kmpc_end_ordered
CGF.EHStack.pushCleanup<CallEndCleanup<std::extent<decltype(Args)>::value>>(
NormalAndEHCleanup, createRuntimeFunction(OMPRTL__kmpc_end_ordered),
llvm::makeArrayRef(Args));
}
emitInlinedDirective(CGF, OMPD_ordered, OrderedOpGen);
}
void CGOpenMPRuntime::emitBarrierCall(CodeGenFunction &CGF, SourceLocation Loc,
OpenMPDirectiveKind Kind, bool EmitChecks,
bool ForceSimpleCall) {
// Build call __kmpc_cancel_barrier(loc, thread_id);
// Build call __kmpc_barrier(loc, thread_id);
OpenMPLocationFlags Flags = OMP_IDENT_KMPC;
if (Kind == OMPD_for) {
Flags =
static_cast<OpenMPLocationFlags>(Flags | OMP_IDENT_BARRIER_IMPL_FOR);
} else if (Kind == OMPD_sections) {
Flags = static_cast<OpenMPLocationFlags>(Flags |
OMP_IDENT_BARRIER_IMPL_SECTIONS);
} else if (Kind == OMPD_single) {
Flags =
static_cast<OpenMPLocationFlags>(Flags | OMP_IDENT_BARRIER_IMPL_SINGLE);
} else if (Kind == OMPD_barrier) {
Flags = static_cast<OpenMPLocationFlags>(Flags | OMP_IDENT_BARRIER_EXPL);
} else {
Flags = static_cast<OpenMPLocationFlags>(Flags | OMP_IDENT_BARRIER_IMPL);
}
// Build call __kmpc_cancel_barrier(loc, thread_id) or __kmpc_barrier(loc,
// thread_id);
auto *OMPRegionInfo =
dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo);
// Do not emit barrier call in the single directive emitted in some rare cases
// for sections directives.
if (OMPRegionInfo && OMPRegionInfo->getDirectiveKind() == OMPD_single)
return;
llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc, Flags),
getThreadID(CGF, Loc)};
if (OMPRegionInfo) {
if (!ForceSimpleCall && OMPRegionInfo->hasCancel()) {
auto *Result = CGF.EmitRuntimeCall(
createRuntimeFunction(OMPRTL__kmpc_cancel_barrier), Args);
if (EmitChecks) {
// if (__kmpc_cancel_barrier()) {
// exit from construct;
// }
auto *ExitBB = CGF.createBasicBlock(".cancel.exit");
auto *ContBB = CGF.createBasicBlock(".cancel.continue");
auto *Cmp = CGF.Builder.CreateIsNotNull(Result);
CGF.Builder.CreateCondBr(Cmp, ExitBB, ContBB);
CGF.EmitBlock(ExitBB);
// exit from construct;
auto CancelDestination =
CGF.getOMPCancelDestination(OMPRegionInfo->getDirectiveKind());
CGF.EmitBranchThroughCleanup(CancelDestination);
CGF.EmitBlock(ContBB, /*IsFinished=*/true);
}
return;
}
}
CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_barrier), Args);
}
/// \brief Schedule types for 'omp for' loops (these enumerators are taken from
/// the enum sched_type in kmp.h).
enum OpenMPSchedType {
/// \brief Lower bound for default (unordered) versions.
OMP_sch_lower = 32,
OMP_sch_static_chunked = 33,
OMP_sch_static = 34,
OMP_sch_dynamic_chunked = 35,
OMP_sch_guided_chunked = 36,
OMP_sch_runtime = 37,
OMP_sch_auto = 38,
/// \brief Lower bound for 'ordered' versions.
OMP_ord_lower = 64,
OMP_ord_static_chunked = 65,
OMP_ord_static = 66,
OMP_ord_dynamic_chunked = 67,
OMP_ord_guided_chunked = 68,
OMP_ord_runtime = 69,
OMP_ord_auto = 70,
OMP_sch_default = OMP_sch_static,
};
/// \brief Map the OpenMP loop schedule to the runtime enumeration.
static OpenMPSchedType getRuntimeSchedule(OpenMPScheduleClauseKind ScheduleKind,
bool Chunked, bool Ordered) {
switch (ScheduleKind) {
case OMPC_SCHEDULE_static:
return Chunked ? (Ordered ? OMP_ord_static_chunked : OMP_sch_static_chunked)
: (Ordered ? OMP_ord_static : OMP_sch_static);
case OMPC_SCHEDULE_dynamic:
return Ordered ? OMP_ord_dynamic_chunked : OMP_sch_dynamic_chunked;
case OMPC_SCHEDULE_guided:
return Ordered ? OMP_ord_guided_chunked : OMP_sch_guided_chunked;
case OMPC_SCHEDULE_runtime:
return Ordered ? OMP_ord_runtime : OMP_sch_runtime;
case OMPC_SCHEDULE_auto:
return Ordered ? OMP_ord_auto : OMP_sch_auto;
case OMPC_SCHEDULE_unknown:
assert(!Chunked && "chunk was specified but schedule kind not known");
return Ordered ? OMP_ord_static : OMP_sch_static;
}
llvm_unreachable("Unexpected runtime schedule");
}
bool CGOpenMPRuntime::isStaticNonchunked(OpenMPScheduleClauseKind ScheduleKind,
bool Chunked) const {
auto Schedule = getRuntimeSchedule(ScheduleKind, Chunked, /*Ordered=*/false);
return Schedule == OMP_sch_static;
}
bool CGOpenMPRuntime::isDynamic(OpenMPScheduleClauseKind ScheduleKind) const {
auto Schedule =
getRuntimeSchedule(ScheduleKind, /*Chunked=*/false, /*Ordered=*/false);
assert(Schedule != OMP_sch_static_chunked && "cannot be chunked here");
return Schedule != OMP_sch_static;
}
void CGOpenMPRuntime::emitForDispatchInit(CodeGenFunction &CGF,
SourceLocation Loc,
OpenMPScheduleClauseKind ScheduleKind,
unsigned IVSize, bool IVSigned,
bool Ordered, llvm::Value *UB,
llvm::Value *Chunk) {
OpenMPSchedType Schedule =
getRuntimeSchedule(ScheduleKind, Chunk != nullptr, Ordered);
assert(Ordered ||
(Schedule != OMP_sch_static && Schedule != OMP_sch_static_chunked &&
Schedule != OMP_ord_static && Schedule != OMP_ord_static_chunked));
// Call __kmpc_dispatch_init(
// ident_t *loc, kmp_int32 tid, kmp_int32 schedule,
// kmp_int[32|64] lower, kmp_int[32|64] upper,
// kmp_int[32|64] stride, kmp_int[32|64] chunk);
// If the Chunk was not specified in the clause - use default value 1.
if (Chunk == nullptr)
Chunk = CGF.Builder.getIntN(IVSize, 1);
llvm::Value *Args[] = {
emitUpdateLocation(CGF, Loc, OMP_IDENT_KMPC),
getThreadID(CGF, Loc),
CGF.Builder.getInt32(Schedule), // Schedule type
CGF.Builder.getIntN(IVSize, 0), // Lower
UB, // Upper
CGF.Builder.getIntN(IVSize, 1), // Stride
Chunk // Chunk
};
CGF.EmitRuntimeCall(createDispatchInitFunction(IVSize, IVSigned), Args);
}
void CGOpenMPRuntime::emitForStaticInit(CodeGenFunction &CGF,
SourceLocation Loc,
OpenMPScheduleClauseKind ScheduleKind,
unsigned IVSize, bool IVSigned,
bool Ordered, Address IL, Address LB,
Address UB, Address ST,
llvm::Value *Chunk) {
OpenMPSchedType Schedule =
getRuntimeSchedule(ScheduleKind, Chunk != nullptr, Ordered);
assert(!Ordered);
assert(Schedule == OMP_sch_static || Schedule == OMP_sch_static_chunked ||
Schedule == OMP_ord_static || Schedule == OMP_ord_static_chunked);
// Call __kmpc_for_static_init(
// ident_t *loc, kmp_int32 tid, kmp_int32 schedtype,
// kmp_int32 *p_lastiter, kmp_int[32|64] *p_lower,
// kmp_int[32|64] *p_upper, kmp_int[32|64] *p_stride,
// kmp_int[32|64] incr, kmp_int[32|64] chunk);
if (Chunk == nullptr) {
assert((Schedule == OMP_sch_static || Schedule == OMP_ord_static) &&
"expected static non-chunked schedule");
// If the Chunk was not specified in the clause - use default value 1.
Chunk = CGF.Builder.getIntN(IVSize, 1);
} else {
assert((Schedule == OMP_sch_static_chunked ||
Schedule == OMP_ord_static_chunked) &&
"expected static chunked schedule");
}
llvm::Value *Args[] = {
emitUpdateLocation(CGF, Loc, OMP_IDENT_KMPC),
getThreadID(CGF, Loc),
CGF.Builder.getInt32(Schedule), // Schedule type
IL.getPointer(), // &isLastIter
LB.getPointer(), // &LB
UB.getPointer(), // &UB
ST.getPointer(), // &Stride
CGF.Builder.getIntN(IVSize, 1), // Incr
Chunk // Chunk
};
CGF.EmitRuntimeCall(createForStaticInitFunction(IVSize, IVSigned), Args);
}
void CGOpenMPRuntime::emitForStaticFinish(CodeGenFunction &CGF,
SourceLocation Loc) {
// Call __kmpc_for_static_fini(ident_t *loc, kmp_int32 tid);
llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc, OMP_IDENT_KMPC),
getThreadID(CGF, Loc)};
CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_for_static_fini),
Args);
}
void CGOpenMPRuntime::emitForOrderedIterationEnd(CodeGenFunction &CGF,
SourceLocation Loc,
unsigned IVSize,
bool IVSigned) {
// Call __kmpc_for_dynamic_fini_(4|8)[u](ident_t *loc, kmp_int32 tid);
llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc, OMP_IDENT_KMPC),
getThreadID(CGF, Loc)};
CGF.EmitRuntimeCall(createDispatchFiniFunction(IVSize, IVSigned), Args);
}
llvm::Value *CGOpenMPRuntime::emitForNext(CodeGenFunction &CGF,
SourceLocation Loc, unsigned IVSize,
bool IVSigned, Address IL,
Address LB, Address UB,
Address ST) {
// Call __kmpc_dispatch_next(
// ident_t *loc, kmp_int32 tid, kmp_int32 *p_lastiter,
// kmp_int[32|64] *p_lower, kmp_int[32|64] *p_upper,
// kmp_int[32|64] *p_stride);
llvm::Value *Args[] = {
emitUpdateLocation(CGF, Loc, OMP_IDENT_KMPC), getThreadID(CGF, Loc),
IL.getPointer(), // &isLastIter
LB.getPointer(), // &Lower
UB.getPointer(), // &Upper
ST.getPointer() // &Stride
};
llvm::Value *Call =
CGF.EmitRuntimeCall(createDispatchNextFunction(IVSize, IVSigned), Args);
return CGF.EmitScalarConversion(
Call, CGF.getContext().getIntTypeForBitwidth(32, /* Signed */ true),
CGF.getContext().BoolTy, Loc);
}
void CGOpenMPRuntime::emitNumThreadsClause(CodeGenFunction &CGF,
llvm::Value *NumThreads,
SourceLocation Loc) {
// Build call __kmpc_push_num_threads(&loc, global_tid, num_threads)
llvm::Value *Args[] = {
emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc),
CGF.Builder.CreateIntCast(NumThreads, CGF.Int32Ty, /*isSigned*/ true)};
CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_push_num_threads),
Args);
}
void CGOpenMPRuntime::emitProcBindClause(CodeGenFunction &CGF,
OpenMPProcBindClauseKind ProcBind,
SourceLocation Loc) {
// Constants for proc bind value accepted by the runtime.
enum ProcBindTy {
ProcBindFalse = 0,
ProcBindTrue,
ProcBindMaster,
ProcBindClose,
ProcBindSpread,
ProcBindIntel,
ProcBindDefault
} RuntimeProcBind;
switch (ProcBind) {
case OMPC_PROC_BIND_master:
RuntimeProcBind = ProcBindMaster;
break;
case OMPC_PROC_BIND_close:
RuntimeProcBind = ProcBindClose;
break;
case OMPC_PROC_BIND_spread:
RuntimeProcBind = ProcBindSpread;
break;
case OMPC_PROC_BIND_unknown:
llvm_unreachable("Unsupported proc_bind value.");
}
// Build call __kmpc_push_proc_bind(&loc, global_tid, proc_bind)
llvm::Value *Args[] = {
emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc),
llvm::ConstantInt::get(CGM.IntTy, RuntimeProcBind, /*isSigned=*/true)};
CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_push_proc_bind), Args);
}
void CGOpenMPRuntime::emitFlush(CodeGenFunction &CGF, ArrayRef<const Expr *>,
SourceLocation Loc) {
// Build call void __kmpc_flush(ident_t *loc)
CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_flush),
emitUpdateLocation(CGF, Loc));
}
namespace {
/// \brief Indexes of fields for type kmp_task_t.
enum KmpTaskTFields {
/// \brief List of shared variables.
KmpTaskTShareds,
/// \brief Task routine.
KmpTaskTRoutine,
/// \brief Partition id for the untied tasks.
KmpTaskTPartId,
/// \brief Function with call of destructors for private variables.
KmpTaskTDestructors,
};
} // anonymous namespace
void CGOpenMPRuntime::emitKmpRoutineEntryT(QualType KmpInt32Ty) {
if (!KmpRoutineEntryPtrTy) {
// Build typedef kmp_int32 (* kmp_routine_entry_t)(kmp_int32, void *); type.
auto &C = CGM.getContext();
QualType KmpRoutineEntryTyArgs[] = {KmpInt32Ty, C.VoidPtrTy};
FunctionProtoType::ExtProtoInfo EPI;
KmpRoutineEntryPtrQTy = C.getPointerType(
C.getFunctionType(KmpInt32Ty, KmpRoutineEntryTyArgs, EPI));
KmpRoutineEntryPtrTy = CGM.getTypes().ConvertType(KmpRoutineEntryPtrQTy);
}
}
static FieldDecl *addFieldToRecordDecl(ASTContext &C, DeclContext *DC,
QualType FieldTy) {
auto *Field = FieldDecl::Create(
C, DC, SourceLocation(), SourceLocation(), /*Id=*/nullptr, FieldTy,
C.getTrivialTypeSourceInfo(FieldTy, SourceLocation()),
/*BW=*/nullptr, /*Mutable=*/false, /*InitStyle=*/ICIS_NoInit);
Field->setAccess(AS_public);
DC->addDecl(Field);
return Field;
}
namespace {
struct PrivateHelpersTy {
PrivateHelpersTy(const VarDecl *Original, const VarDecl *PrivateCopy,
const VarDecl *PrivateElemInit)
: Original(Original), PrivateCopy(PrivateCopy),
PrivateElemInit(PrivateElemInit) {}
const VarDecl *Original;
const VarDecl *PrivateCopy;
const VarDecl *PrivateElemInit;
};
typedef std::pair<CharUnits /*Align*/, PrivateHelpersTy> PrivateDataTy;
} // anonymous namespace
static RecordDecl *
createPrivatesRecordDecl(CodeGenModule &CGM, ArrayRef<PrivateDataTy> Privates) {
if (!Privates.empty()) {
auto &C = CGM.getContext();
// Build struct .kmp_privates_t. {
// /* private vars */
// };
auto *RD = C.buildImplicitRecord(".kmp_privates.t");
RD->startDefinition();
for (auto &&Pair : Privates) {
auto *VD = Pair.second.Original;
auto Type = VD->getType();
Type = Type.getNonReferenceType();
auto *FD = addFieldToRecordDecl(C, RD, Type);
if (VD->hasAttrs()) {
for (specific_attr_iterator<AlignedAttr> I(VD->getAttrs().begin()),
E(VD->getAttrs().end());
I != E; ++I)
FD->addAttr(*I);
}
}
RD->completeDefinition();
return RD;
}
return nullptr;
}
static RecordDecl *
createKmpTaskTRecordDecl(CodeGenModule &CGM, QualType KmpInt32Ty,
QualType KmpRoutineEntryPointerQTy) {
auto &C = CGM.getContext();
// Build struct kmp_task_t {
// void * shareds;
// kmp_routine_entry_t routine;
// kmp_int32 part_id;
// kmp_routine_entry_t destructors;
// };
auto *RD = C.buildImplicitRecord("kmp_task_t");
RD->startDefinition();
addFieldToRecordDecl(C, RD, C.VoidPtrTy);
addFieldToRecordDecl(C, RD, KmpRoutineEntryPointerQTy);
addFieldToRecordDecl(C, RD, KmpInt32Ty);
addFieldToRecordDecl(C, RD, KmpRoutineEntryPointerQTy);
RD->completeDefinition();
return RD;
}
static RecordDecl *
createKmpTaskTWithPrivatesRecordDecl(CodeGenModule &CGM, QualType KmpTaskTQTy,
ArrayRef<PrivateDataTy> Privates) {
auto &C = CGM.getContext();
// Build struct kmp_task_t_with_privates {
// kmp_task_t task_data;
// .kmp_privates_t. privates;
// };
auto *RD = C.buildImplicitRecord("kmp_task_t_with_privates");
RD->startDefinition();
addFieldToRecordDecl(C, RD, KmpTaskTQTy);
if (auto *PrivateRD = createPrivatesRecordDecl(CGM, Privates)) {
addFieldToRecordDecl(C, RD, C.getRecordType(PrivateRD));
}
RD->completeDefinition();
return RD;
}
/// \brief Emit a proxy function which accepts kmp_task_t as the second
/// argument.
/// \code
/// kmp_int32 .omp_task_entry.(kmp_int32 gtid, kmp_task_t *tt) {
/// TaskFunction(gtid, tt->part_id, &tt->privates, task_privates_map,
/// tt->shareds);
/// return 0;
/// }
/// \endcode
static llvm::Value *
emitProxyTaskFunction(CodeGenModule &CGM, SourceLocation Loc,
QualType KmpInt32Ty, QualType KmpTaskTWithPrivatesPtrQTy,
QualType KmpTaskTWithPrivatesQTy, QualType KmpTaskTQTy,
QualType SharedsPtrTy, llvm::Value *TaskFunction,
llvm::Value *TaskPrivatesMap) {
auto &C = CGM.getContext();
FunctionArgList Args;
ImplicitParamDecl GtidArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, KmpInt32Ty);
ImplicitParamDecl TaskTypeArg(C, /*DC=*/nullptr, Loc,
/*Id=*/nullptr,
KmpTaskTWithPrivatesPtrQTy.withRestrict());
Args.push_back(&GtidArg);
Args.push_back(&TaskTypeArg);
FunctionType::ExtInfo Info;
auto &TaskEntryFnInfo =
CGM.getTypes().arrangeFreeFunctionDeclaration(KmpInt32Ty, Args, Info,
/*isVariadic=*/false);
auto *TaskEntryTy = CGM.getTypes().GetFunctionType(TaskEntryFnInfo);
auto *TaskEntry =
llvm::Function::Create(TaskEntryTy, llvm::GlobalValue::InternalLinkage,
".omp_task_entry.", &CGM.getModule());
CGM.SetInternalFunctionAttributes(/*D=*/nullptr, TaskEntry, TaskEntryFnInfo);
CodeGenFunction CGF(CGM);
CGF.disableDebugInfo();
CGF.StartFunction(GlobalDecl(), KmpInt32Ty, TaskEntry, TaskEntryFnInfo, Args);
// TaskFunction(gtid, tt->task_data.part_id, &tt->privates, task_privates_map,
// tt->task_data.shareds);
auto *GtidParam = CGF.EmitLoadOfScalar(
CGF.GetAddrOfLocalVar(&GtidArg), /*Volatile=*/false, KmpInt32Ty, Loc);
LValue TDBase = emitLoadOfPointerLValue(
CGF, CGF.GetAddrOfLocalVar(&TaskTypeArg), KmpTaskTWithPrivatesPtrQTy);
auto *KmpTaskTWithPrivatesQTyRD =
cast<RecordDecl>(KmpTaskTWithPrivatesQTy->getAsTagDecl());
LValue Base =
CGF.EmitLValueForField(TDBase, *KmpTaskTWithPrivatesQTyRD->field_begin());
auto *KmpTaskTQTyRD = cast<RecordDecl>(KmpTaskTQTy->getAsTagDecl());
auto PartIdFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTPartId);
auto PartIdLVal = CGF.EmitLValueForField(Base, *PartIdFI);
auto *PartidParam = CGF.EmitLoadOfLValue(PartIdLVal, Loc).getScalarVal();
auto SharedsFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTShareds);
auto SharedsLVal = CGF.EmitLValueForField(Base, *SharedsFI);
auto *SharedsParam = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
CGF.EmitLoadOfLValue(SharedsLVal, Loc).getScalarVal(),
CGF.ConvertTypeForMem(SharedsPtrTy));
auto PrivatesFI = std::next(KmpTaskTWithPrivatesQTyRD->field_begin(), 1);
llvm::Value *PrivatesParam;
if (PrivatesFI != KmpTaskTWithPrivatesQTyRD->field_end()) {
auto PrivatesLVal = CGF.EmitLValueForField(TDBase, *PrivatesFI);
PrivatesParam = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
PrivatesLVal.getPointer(), CGF.VoidPtrTy);
} else {
PrivatesParam = llvm::ConstantPointerNull::get(CGF.VoidPtrTy);
}
llvm::Value *CallArgs[] = {GtidParam, PartidParam, PrivatesParam,
TaskPrivatesMap, SharedsParam};
CGF.EmitCallOrInvoke(TaskFunction, CallArgs);
CGF.EmitStoreThroughLValue(
RValue::get(CGF.Builder.getInt32(/*C=*/0)),
CGF.MakeAddrLValue(CGF.ReturnValue, KmpInt32Ty));
CGF.FinishFunction();
return TaskEntry;
}
static llvm::Value *emitDestructorsFunction(CodeGenModule &CGM,
SourceLocation Loc,
QualType KmpInt32Ty,
QualType KmpTaskTWithPrivatesPtrQTy,
QualType KmpTaskTWithPrivatesQTy) {
auto &C = CGM.getContext();
FunctionArgList Args;
ImplicitParamDecl GtidArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, KmpInt32Ty);
ImplicitParamDecl TaskTypeArg(C, /*DC=*/nullptr, Loc,
/*Id=*/nullptr,
KmpTaskTWithPrivatesPtrQTy.withRestrict());
Args.push_back(&GtidArg);
Args.push_back(&TaskTypeArg);
FunctionType::ExtInfo Info;
auto &DestructorFnInfo =
CGM.getTypes().arrangeFreeFunctionDeclaration(KmpInt32Ty, Args, Info,
/*isVariadic=*/false);
auto *DestructorFnTy = CGM.getTypes().GetFunctionType(DestructorFnInfo);
auto *DestructorFn =
llvm::Function::Create(DestructorFnTy, llvm::GlobalValue::InternalLinkage,
".omp_task_destructor.", &CGM.getModule());
CGM.SetInternalFunctionAttributes(/*D=*/nullptr, DestructorFn,
DestructorFnInfo);
CodeGenFunction CGF(CGM);
CGF.disableDebugInfo();
CGF.StartFunction(GlobalDecl(), KmpInt32Ty, DestructorFn, DestructorFnInfo,
Args);
LValue Base = emitLoadOfPointerLValue(
CGF, CGF.GetAddrOfLocalVar(&TaskTypeArg), KmpTaskTWithPrivatesPtrQTy);
auto *KmpTaskTWithPrivatesQTyRD =
cast<RecordDecl>(KmpTaskTWithPrivatesQTy->getAsTagDecl());
auto FI = std::next(KmpTaskTWithPrivatesQTyRD->field_begin());
Base = CGF.EmitLValueForField(Base, *FI);
for (auto *Field :
cast<RecordDecl>(FI->getType()->getAsTagDecl())->fields()) {
if (auto DtorKind = Field->getType().isDestructedType()) {
auto FieldLValue = CGF.EmitLValueForField(Base, Field);
CGF.pushDestroy(DtorKind, FieldLValue.getAddress(), Field->getType());
}
}
CGF.FinishFunction();
return DestructorFn;
}
/// \brief Emit a privates mapping function for correct handling of private and
/// firstprivate variables.
/// \code
/// void .omp_task_privates_map.(const .privates. *noalias privs, <ty1>
/// **noalias priv1,..., <tyn> **noalias privn) {
/// *priv1 = &.privates.priv1;
/// ...;
/// *privn = &.privates.privn;
/// }
/// \endcode
static llvm::Value *
emitTaskPrivateMappingFunction(CodeGenModule &CGM, SourceLocation Loc,
ArrayRef<const Expr *> PrivateVars,
ArrayRef<const Expr *> FirstprivateVars,
QualType PrivatesQTy,
ArrayRef<PrivateDataTy> Privates) {
auto &C = CGM.getContext();
FunctionArgList Args;
ImplicitParamDecl TaskPrivatesArg(
C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
C.getPointerType(PrivatesQTy).withConst().withRestrict());
Args.push_back(&TaskPrivatesArg);
llvm::DenseMap<const VarDecl *, unsigned> PrivateVarsPos;
unsigned Counter = 1;
for (auto *E: PrivateVars) {
Args.push_back(ImplicitParamDecl::Create(
C, /*DC=*/nullptr, Loc,
/*Id=*/nullptr, C.getPointerType(C.getPointerType(E->getType()))
.withConst()
.withRestrict()));
auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
PrivateVarsPos[VD] = Counter;
++Counter;
}
for (auto *E : FirstprivateVars) {
Args.push_back(ImplicitParamDecl::Create(
C, /*DC=*/nullptr, Loc,
/*Id=*/nullptr, C.getPointerType(C.getPointerType(E->getType()))
.withConst()
.withRestrict()));
auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
PrivateVarsPos[VD] = Counter;
++Counter;
}
FunctionType::ExtInfo Info;
auto &TaskPrivatesMapFnInfo =
CGM.getTypes().arrangeFreeFunctionDeclaration(C.VoidTy, Args, Info,
/*isVariadic=*/false);
auto *TaskPrivatesMapTy =
CGM.getTypes().GetFunctionType(TaskPrivatesMapFnInfo);
auto *TaskPrivatesMap = llvm::Function::Create(
TaskPrivatesMapTy, llvm::GlobalValue::InternalLinkage,
".omp_task_privates_map.", &CGM.getModule());
CGM.SetInternalFunctionAttributes(/*D=*/nullptr, TaskPrivatesMap,
TaskPrivatesMapFnInfo);
TaskPrivatesMap->addFnAttr(llvm::Attribute::AlwaysInline);
CodeGenFunction CGF(CGM);
CGF.disableDebugInfo();
CGF.StartFunction(GlobalDecl(), C.VoidTy, TaskPrivatesMap,
TaskPrivatesMapFnInfo, Args);
// *privi = &.privates.privi;
LValue Base = emitLoadOfPointerLValue(
CGF, CGF.GetAddrOfLocalVar(&TaskPrivatesArg), TaskPrivatesArg.getType());
auto *PrivatesQTyRD = cast<RecordDecl>(PrivatesQTy->getAsTagDecl());
Counter = 0;
for (auto *Field : PrivatesQTyRD->fields()) {
auto FieldLVal = CGF.EmitLValueForField(Base, Field);
auto *VD = Args[PrivateVarsPos[Privates[Counter].second.Original]];
auto RefLVal = CGF.MakeAddrLValue(CGF.GetAddrOfLocalVar(VD), VD->getType());
auto RefLoadLVal =
emitLoadOfPointerLValue(CGF, RefLVal.getAddress(), RefLVal.getType());
CGF.EmitStoreOfScalar(FieldLVal.getPointer(), RefLoadLVal);
++Counter;
}
CGF.FinishFunction();
return TaskPrivatesMap;
}
static int array_pod_sort_comparator(const PrivateDataTy *P1,
const PrivateDataTy *P2) {
return P1->first < P2->first ? 1 : (P2->first < P1->first ? -1 : 0);
}
void CGOpenMPRuntime::emitTaskCall(
CodeGenFunction &CGF, SourceLocation Loc, const OMPExecutableDirective &D,
bool Tied, llvm::PointerIntPair<llvm::Value *, 1, bool> Final,
llvm::Value *TaskFunction, QualType SharedsTy, Address Shareds,
const Expr *IfCond, ArrayRef<const Expr *> PrivateVars,
ArrayRef<const Expr *> PrivateCopies,
ArrayRef<const Expr *> FirstprivateVars,
ArrayRef<const Expr *> FirstprivateCopies,
ArrayRef<const Expr *> FirstprivateInits,
ArrayRef<std::pair<OpenMPDependClauseKind, const Expr *>> Dependences) {
auto &C = CGM.getContext();
llvm::SmallVector<PrivateDataTy, 8> Privates;
// Aggregate privates and sort them by the alignment.
auto I = PrivateCopies.begin();
for (auto *E : PrivateVars) {
auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
Privates.push_back(std::make_pair(
C.getDeclAlign(VD),
PrivateHelpersTy(VD, cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl()),
/*PrivateElemInit=*/nullptr)));
++I;
}
I = FirstprivateCopies.begin();
auto IElemInitRef = FirstprivateInits.begin();
for (auto *E : FirstprivateVars) {
auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
Privates.push_back(std::make_pair(
C.getDeclAlign(VD),
PrivateHelpersTy(
VD, cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl()),
cast<VarDecl>(cast<DeclRefExpr>(*IElemInitRef)->getDecl()))));
++I, ++IElemInitRef;
}
llvm::array_pod_sort(Privates.begin(), Privates.end(),
array_pod_sort_comparator);
auto KmpInt32Ty = C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1);
// Build type kmp_routine_entry_t (if not built yet).
emitKmpRoutineEntryT(KmpInt32Ty);
// Build type kmp_task_t (if not built yet).
if (KmpTaskTQTy.isNull()) {
KmpTaskTQTy = C.getRecordType(
createKmpTaskTRecordDecl(CGM, KmpInt32Ty, KmpRoutineEntryPtrQTy));
}
auto *KmpTaskTQTyRD = cast<RecordDecl>(KmpTaskTQTy->getAsTagDecl());
// Build particular struct kmp_task_t for the given task.
auto *KmpTaskTWithPrivatesQTyRD =
createKmpTaskTWithPrivatesRecordDecl(CGM, KmpTaskTQTy, Privates);
auto KmpTaskTWithPrivatesQTy = C.getRecordType(KmpTaskTWithPrivatesQTyRD);
QualType KmpTaskTWithPrivatesPtrQTy =
C.getPointerType(KmpTaskTWithPrivatesQTy);
auto *KmpTaskTWithPrivatesTy = CGF.ConvertType(KmpTaskTWithPrivatesQTy);
auto *KmpTaskTWithPrivatesPtrTy = KmpTaskTWithPrivatesTy->getPointerTo();
auto *KmpTaskTWithPrivatesTySize = getTypeSize(CGF, KmpTaskTWithPrivatesQTy);
QualType SharedsPtrTy = C.getPointerType(SharedsTy);
// Emit initial values for private copies (if any).
llvm::Value *TaskPrivatesMap = nullptr;
auto *TaskPrivatesMapTy =
std::next(cast<llvm::Function>(TaskFunction)->getArgumentList().begin(),
3)
->getType();
if (!Privates.empty()) {
auto FI = std::next(KmpTaskTWithPrivatesQTyRD->field_begin());
TaskPrivatesMap = emitTaskPrivateMappingFunction(
CGM, Loc, PrivateVars, FirstprivateVars, FI->getType(), Privates);
TaskPrivatesMap = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
TaskPrivatesMap, TaskPrivatesMapTy);
} else {
TaskPrivatesMap = llvm::ConstantPointerNull::get(
cast<llvm::PointerType>(TaskPrivatesMapTy));
}
// Build a proxy function kmp_int32 .omp_task_entry.(kmp_int32 gtid,
// kmp_task_t *tt);
auto *TaskEntry = emitProxyTaskFunction(
CGM, Loc, KmpInt32Ty, KmpTaskTWithPrivatesPtrQTy, KmpTaskTWithPrivatesQTy,
KmpTaskTQTy, SharedsPtrTy, TaskFunction, TaskPrivatesMap);
// Build call kmp_task_t * __kmpc_omp_task_alloc(ident_t *, kmp_int32 gtid,
// kmp_int32 flags, size_t sizeof_kmp_task_t, size_t sizeof_shareds,
// kmp_routine_entry_t *task_entry);
// Task flags. Format is taken from
// http://llvm.org/svn/llvm-project/openmp/trunk/runtime/src/kmp.h,
// description of kmp_tasking_flags struct.
const unsigned TiedFlag = 0x1;
const unsigned FinalFlag = 0x2;
unsigned Flags = Tied ? TiedFlag : 0;
auto *TaskFlags =
Final.getPointer()
? CGF.Builder.CreateSelect(Final.getPointer(),
CGF.Builder.getInt32(FinalFlag),
CGF.Builder.getInt32(/*C=*/0))
: CGF.Builder.getInt32(Final.getInt() ? FinalFlag : 0);
TaskFlags = CGF.Builder.CreateOr(TaskFlags, CGF.Builder.getInt32(Flags));
auto *SharedsSize = getTypeSize(CGF, SharedsTy);
llvm::Value *AllocArgs[] = {emitUpdateLocation(CGF, Loc),
getThreadID(CGF, Loc), TaskFlags,
KmpTaskTWithPrivatesTySize, SharedsSize,
CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
TaskEntry, KmpRoutineEntryPtrTy)};
auto *NewTask = CGF.EmitRuntimeCall(
createRuntimeFunction(OMPRTL__kmpc_omp_task_alloc), AllocArgs);
auto *NewTaskNewTaskTTy = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
NewTask, KmpTaskTWithPrivatesPtrTy);
LValue Base = CGF.MakeNaturalAlignAddrLValue(NewTaskNewTaskTTy,
KmpTaskTWithPrivatesQTy);
LValue TDBase =
CGF.EmitLValueForField(Base, *KmpTaskTWithPrivatesQTyRD->field_begin());
// Fill the data in the resulting kmp_task_t record.
// Copy shareds if there are any.
Address KmpTaskSharedsPtr = Address::invalid();
if (!SharedsTy->getAsStructureType()->getDecl()->field_empty()) {
KmpTaskSharedsPtr =
Address(CGF.EmitLoadOfScalar(
CGF.EmitLValueForField(
TDBase, *std::next(KmpTaskTQTyRD->field_begin(),
KmpTaskTShareds)),
Loc),
CGF.getNaturalTypeAlignment(SharedsTy));
CGF.EmitAggregateCopy(KmpTaskSharedsPtr, Shareds, SharedsTy);
}
// Emit initial values for private copies (if any).
bool NeedsCleanup = false;
if (!Privates.empty()) {
auto FI = std::next(KmpTaskTWithPrivatesQTyRD->field_begin());
auto PrivatesBase = CGF.EmitLValueForField(Base, *FI);
FI = cast<RecordDecl>(FI->getType()->getAsTagDecl())->field_begin();
LValue SharedsBase;
if (!FirstprivateVars.empty()) {
SharedsBase = CGF.MakeAddrLValue(
CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
KmpTaskSharedsPtr, CGF.ConvertTypeForMem(SharedsPtrTy)),
SharedsTy);
}
CodeGenFunction::CGCapturedStmtInfo CapturesInfo(
cast<CapturedStmt>(*D.getAssociatedStmt()));
for (auto &&Pair : Privates) {
auto *VD = Pair.second.PrivateCopy;
auto *Init = VD->getAnyInitializer();
LValue PrivateLValue = CGF.EmitLValueForField(PrivatesBase, *FI);
if (Init) {
if (auto *Elem = Pair.second.PrivateElemInit) {
auto *OriginalVD = Pair.second.Original;
auto *SharedField = CapturesInfo.lookup(OriginalVD);
auto SharedRefLValue =
CGF.EmitLValueForField(SharedsBase, SharedField);
SharedRefLValue = CGF.MakeAddrLValue(
Address(SharedRefLValue.getPointer(), C.getDeclAlign(OriginalVD)),
SharedRefLValue.getType(), AlignmentSource::Decl);
QualType Type = OriginalVD->getType();
if (Type->isArrayType()) {
// Initialize firstprivate array.
if (!isa<CXXConstructExpr>(Init) ||
CGF.isTrivialInitializer(Init)) {
// Perform simple memcpy.
CGF.EmitAggregateAssign(PrivateLValue.getAddress(),
SharedRefLValue.getAddress(), Type);
} else {
// Initialize firstprivate array using element-by-element
// intialization.
CGF.EmitOMPAggregateAssign(
PrivateLValue.getAddress(), SharedRefLValue.getAddress(),
Type, [&CGF, Elem, Init, &CapturesInfo](
Address DestElement, Address SrcElement) {
// Clean up any temporaries needed by the initialization.
CodeGenFunction::OMPPrivateScope InitScope(CGF);
InitScope.addPrivate(Elem, [SrcElement]() -> Address {
return SrcElement;
});
(void)InitScope.Privatize();
// Emit initialization for single element.
CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(
CGF, &CapturesInfo);
CGF.EmitAnyExprToMem(Init, DestElement,
Init->getType().getQualifiers(),
/*IsInitializer=*/false);
});
}
} else {
CodeGenFunction::OMPPrivateScope InitScope(CGF);
InitScope.addPrivate(Elem, [SharedRefLValue]() -> Address {
return SharedRefLValue.getAddress();
});
(void)InitScope.Privatize();
CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CapturesInfo);
CGF.EmitExprAsInit(Init, VD, PrivateLValue,
/*capturedByInit=*/false);
}
} else {
CGF.EmitExprAsInit(Init, VD, PrivateLValue, /*capturedByInit=*/false);
}
}
NeedsCleanup = NeedsCleanup || FI->getType().isDestructedType();
++FI;
}
}
// Provide pointer to function with destructors for privates.
llvm::Value *DestructorFn =
NeedsCleanup ? emitDestructorsFunction(CGM, Loc, KmpInt32Ty,
KmpTaskTWithPrivatesPtrQTy,
KmpTaskTWithPrivatesQTy)
: llvm::ConstantPointerNull::get(
cast<llvm::PointerType>(KmpRoutineEntryPtrTy));
LValue Destructor = CGF.EmitLValueForField(
TDBase, *std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTDestructors));
CGF.EmitStoreOfScalar(CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
DestructorFn, KmpRoutineEntryPtrTy),
Destructor);
// Process list of dependences.
Address DependenciesArray = Address::invalid();
unsigned NumDependencies = Dependences.size();
if (NumDependencies) {
// Dependence kind for RTL.
enum RTLDependenceKindTy { DepIn = 1, DepOut = 2, DepInOut = 3 };
enum RTLDependInfoFieldsTy { BaseAddr, Len, Flags };
RecordDecl *KmpDependInfoRD;
QualType FlagsTy =
C.getIntTypeForBitwidth(C.getTypeSize(C.BoolTy), /*Signed=*/false);
llvm::Type *LLVMFlagsTy = CGF.ConvertTypeForMem(FlagsTy);
if (KmpDependInfoTy.isNull()) {
KmpDependInfoRD = C.buildImplicitRecord("kmp_depend_info");
KmpDependInfoRD->startDefinition();
addFieldToRecordDecl(C, KmpDependInfoRD, C.getIntPtrType());
addFieldToRecordDecl(C, KmpDependInfoRD, C.getSizeType());
addFieldToRecordDecl(C, KmpDependInfoRD, FlagsTy);
KmpDependInfoRD->completeDefinition();
KmpDependInfoTy = C.getRecordType(KmpDependInfoRD);
} else {
KmpDependInfoRD = cast<RecordDecl>(KmpDependInfoTy->getAsTagDecl());
}
CharUnits DependencySize = C.getTypeSizeInChars(KmpDependInfoTy);
// Define type kmp_depend_info[<Dependences.size()>];
QualType KmpDependInfoArrayTy = C.getConstantArrayType(
KmpDependInfoTy, llvm::APInt(/*numBits=*/64, NumDependencies),
ArrayType::Normal, /*IndexTypeQuals=*/0);
// kmp_depend_info[<Dependences.size()>] deps;
DependenciesArray = CGF.CreateMemTemp(KmpDependInfoArrayTy);
for (unsigned i = 0; i < NumDependencies; ++i) {
const Expr *E = Dependences[i].second;
auto Addr = CGF.EmitLValue(E);
llvm::Value *Size;
QualType Ty = E->getType();
if (auto *ASE = dyn_cast<OMPArraySectionExpr>(E->IgnoreParenImpCasts())) {
LValue UpAddrLVal =
CGF.EmitOMPArraySectionExpr(ASE, /*LowerBound=*/false);
llvm::Value *UpAddr =
CGF.Builder.CreateConstGEP1_32(UpAddrLVal.getPointer(), /*Idx0=*/1);
llvm::Value *LowIntPtr =
CGF.Builder.CreatePtrToInt(Addr.getPointer(), CGM.SizeTy);
llvm::Value *UpIntPtr = CGF.Builder.CreatePtrToInt(UpAddr, CGM.SizeTy);
Size = CGF.Builder.CreateNUWSub(UpIntPtr, LowIntPtr);
} else
Size = getTypeSize(CGF, Ty);
auto Base = CGF.MakeAddrLValue(
CGF.Builder.CreateConstArrayGEP(DependenciesArray, i, DependencySize),
KmpDependInfoTy);
// deps[i].base_addr = &<Dependences[i].second>;
auto BaseAddrLVal = CGF.EmitLValueForField(
Base, *std::next(KmpDependInfoRD->field_begin(), BaseAddr));
CGF.EmitStoreOfScalar(
CGF.Builder.CreatePtrToInt(Addr.getPointer(), CGF.IntPtrTy),
BaseAddrLVal);
// deps[i].len = sizeof(<Dependences[i].second>);
auto LenLVal = CGF.EmitLValueForField(
Base, *std::next(KmpDependInfoRD->field_begin(), Len));
CGF.EmitStoreOfScalar(Size, LenLVal);
// deps[i].flags = <Dependences[i].first>;
RTLDependenceKindTy DepKind;
switch (Dependences[i].first) {
case OMPC_DEPEND_in:
DepKind = DepIn;
break;
case OMPC_DEPEND_out:
DepKind = DepOut;
break;
case OMPC_DEPEND_inout:
DepKind = DepInOut;
break;
case OMPC_DEPEND_unknown:
llvm_unreachable("Unknown task dependence type");
}
auto FlagsLVal = CGF.EmitLValueForField(
Base, *std::next(KmpDependInfoRD->field_begin(), Flags));
CGF.EmitStoreOfScalar(llvm::ConstantInt::get(LLVMFlagsTy, DepKind),
FlagsLVal);
}
DependenciesArray = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
CGF.Builder.CreateStructGEP(DependenciesArray, 0, CharUnits::Zero()),
CGF.VoidPtrTy);
}
// NOTE: routine and part_id fields are intialized by __kmpc_omp_task_alloc()
// libcall.
// Build kmp_int32 __kmpc_omp_task(ident_t *, kmp_int32 gtid, kmp_task_t
// *new_task);
// Build kmp_int32 __kmpc_omp_task_with_deps(ident_t *, kmp_int32 gtid,
// kmp_task_t *new_task, kmp_int32 ndeps, kmp_depend_info_t *dep_list,
// kmp_int32 ndeps_noalias, kmp_depend_info_t *noalias_dep_list) if dependence
// list is not empty
auto *ThreadID = getThreadID(CGF, Loc);
auto *UpLoc = emitUpdateLocation(CGF, Loc);
llvm::Value *TaskArgs[] = { UpLoc, ThreadID, NewTask };
llvm::Value *DepTaskArgs[7];
if (NumDependencies) {
DepTaskArgs[0] = UpLoc;
DepTaskArgs[1] = ThreadID;
DepTaskArgs[2] = NewTask;
DepTaskArgs[3] = CGF.Builder.getInt32(NumDependencies);
DepTaskArgs[4] = DependenciesArray.getPointer();
DepTaskArgs[5] = CGF.Builder.getInt32(0);
DepTaskArgs[6] = llvm::ConstantPointerNull::get(CGF.VoidPtrTy);
}
auto &&ThenCodeGen = [this, NumDependencies,
&TaskArgs, &DepTaskArgs](CodeGenFunction &CGF) {
// TODO: add check for untied tasks.
if (NumDependencies) {
CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_omp_task_with_deps),
DepTaskArgs);
} else {
CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_omp_task),
TaskArgs);
}
};
typedef CallEndCleanup<std::extent<decltype(TaskArgs)>::value>
IfCallEndCleanup;
llvm::Value *DepWaitTaskArgs[6];
if (NumDependencies) {
DepWaitTaskArgs[0] = UpLoc;
DepWaitTaskArgs[1] = ThreadID;
DepWaitTaskArgs[2] = CGF.Builder.getInt32(NumDependencies);
DepWaitTaskArgs[3] = DependenciesArray.getPointer();
DepWaitTaskArgs[4] = CGF.Builder.getInt32(0);
DepWaitTaskArgs[5] = llvm::ConstantPointerNull::get(CGF.VoidPtrTy);
}
auto &&ElseCodeGen = [this, &TaskArgs, ThreadID, NewTaskNewTaskTTy, TaskEntry,
NumDependencies, &DepWaitTaskArgs](CodeGenFunction &CGF) {
CodeGenFunction::RunCleanupsScope LocalScope(CGF);
// Build void __kmpc_omp_wait_deps(ident_t *, kmp_int32 gtid,
// kmp_int32 ndeps, kmp_depend_info_t *dep_list, kmp_int32
// ndeps_noalias, kmp_depend_info_t *noalias_dep_list); if dependence info
// is specified.
if (NumDependencies)
CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_omp_wait_deps),
DepWaitTaskArgs);
// Build void __kmpc_omp_task_begin_if0(ident_t *, kmp_int32 gtid,
// kmp_task_t *new_task);
CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_omp_task_begin_if0),
TaskArgs);
// Build void __kmpc_omp_task_complete_if0(ident_t *, kmp_int32 gtid,
// kmp_task_t *new_task);
CGF.EHStack.pushCleanup<IfCallEndCleanup>(
NormalAndEHCleanup,
createRuntimeFunction(OMPRTL__kmpc_omp_task_complete_if0),
llvm::makeArrayRef(TaskArgs));
// Call proxy_task_entry(gtid, new_task);
llvm::Value *OutlinedFnArgs[] = {ThreadID, NewTaskNewTaskTTy};
CGF.EmitCallOrInvoke(TaskEntry, OutlinedFnArgs);
};
if (IfCond) {
emitOMPIfClause(CGF, IfCond, ThenCodeGen, ElseCodeGen);
} else {
CodeGenFunction::RunCleanupsScope Scope(CGF);
ThenCodeGen(CGF);
}
}
/// \brief Emit reduction operation for each element of array (required for
/// array sections) LHS op = RHS.
/// \param Type Type of array.
/// \param LHSVar Variable on the left side of the reduction operation
/// (references element of array in original variable).
/// \param RHSVar Variable on the right side of the reduction operation
/// (references element of array in original variable).
/// \param RedOpGen Generator of reduction operation with use of LHSVar and
/// RHSVar.
static void EmitOMPAggregateReduction(
CodeGenFunction &CGF, QualType Type, const VarDecl *LHSVar,
const VarDecl *RHSVar,
const llvm::function_ref<void(CodeGenFunction &CGF, const Expr *,
const Expr *, const Expr *)> &RedOpGen,
const Expr *XExpr = nullptr, const Expr *EExpr = nullptr,
const Expr *UpExpr = nullptr) {
// Perform element-by-element initialization.
QualType ElementTy;
Address LHSAddr = CGF.GetAddrOfLocalVar(LHSVar);
Address RHSAddr = CGF.GetAddrOfLocalVar(RHSVar);
// Drill down to the base element type on both arrays.
auto ArrayTy = Type->getAsArrayTypeUnsafe();
auto NumElements = CGF.emitArrayLength(ArrayTy, ElementTy, LHSAddr);
auto RHSBegin = RHSAddr.getPointer();
auto LHSBegin = LHSAddr.getPointer();
// Cast from pointer to array type to pointer to single element.
auto LHSEnd = CGF.Builder.CreateGEP(LHSBegin, NumElements);
// The basic structure here is a while-do loop.
auto BodyBB = CGF.createBasicBlock("omp.arraycpy.body");
auto DoneBB = CGF.createBasicBlock("omp.arraycpy.done");
auto IsEmpty =
CGF.Builder.CreateICmpEQ(LHSBegin, LHSEnd, "omp.arraycpy.isempty");
CGF.Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB);
// Enter the loop body, making that address the current address.
auto EntryBB = CGF.Builder.GetInsertBlock();
CGF.EmitBlock(BodyBB);
CharUnits ElementSize = CGF.getContext().getTypeSizeInChars(ElementTy);
llvm::PHINode *RHSElementPHI = CGF.Builder.CreatePHI(
RHSBegin->getType(), 2, "omp.arraycpy.srcElementPast");
RHSElementPHI->addIncoming(RHSBegin, EntryBB);
Address RHSElementCurrent =
Address(RHSElementPHI,
RHSAddr.getAlignment().alignmentOfArrayElement(ElementSize));
llvm::PHINode *LHSElementPHI = CGF.Builder.CreatePHI(
LHSBegin->getType(), 2, "omp.arraycpy.destElementPast");
LHSElementPHI->addIncoming(LHSBegin, EntryBB);
Address LHSElementCurrent =
Address(LHSElementPHI,
LHSAddr.getAlignment().alignmentOfArrayElement(ElementSize));
// Emit copy.
CodeGenFunction::OMPPrivateScope Scope(CGF);
Scope.addPrivate(LHSVar, [=]() -> Address { return LHSElementCurrent; });
Scope.addPrivate(RHSVar, [=]() -> Address { return RHSElementCurrent; });
Scope.Privatize();
RedOpGen(CGF, XExpr, EExpr, UpExpr);
Scope.ForceCleanup();
// Shift the address forward by one element.
auto LHSElementNext = CGF.Builder.CreateConstGEP1_32(
LHSElementPHI, /*Idx0=*/1, "omp.arraycpy.dest.element");
auto RHSElementNext = CGF.Builder.CreateConstGEP1_32(
RHSElementPHI, /*Idx0=*/1, "omp.arraycpy.src.element");
// Check whether we've reached the end.
auto Done =
CGF.Builder.CreateICmpEQ(LHSElementNext, LHSEnd, "omp.arraycpy.done");
CGF.Builder.CreateCondBr(Done, DoneBB, BodyBB);
LHSElementPHI->addIncoming(LHSElementNext, CGF.Builder.GetInsertBlock());
RHSElementPHI->addIncoming(RHSElementNext, CGF.Builder.GetInsertBlock());
// Done.
CGF.EmitBlock(DoneBB, /*IsFinished=*/true);
}
static llvm::Value *emitReductionFunction(CodeGenModule &CGM,
llvm::Type *ArgsType,
ArrayRef<const Expr *> Privates,
ArrayRef<const Expr *> LHSExprs,
ArrayRef<const Expr *> RHSExprs,
ArrayRef<const Expr *> ReductionOps) {
auto &C = CGM.getContext();
// void reduction_func(void *LHSArg, void *RHSArg);
FunctionArgList Args;
ImplicitParamDecl LHSArg(C, /*DC=*/nullptr, SourceLocation(), /*Id=*/nullptr,
C.VoidPtrTy);
ImplicitParamDecl RHSArg(C, /*DC=*/nullptr, SourceLocation(), /*Id=*/nullptr,
C.VoidPtrTy);
Args.push_back(&LHSArg);
Args.push_back(&RHSArg);
FunctionType::ExtInfo EI;
auto &CGFI = CGM.getTypes().arrangeFreeFunctionDeclaration(
C.VoidTy, Args, EI, /*isVariadic=*/false);
auto *Fn = llvm::Function::Create(
CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
".omp.reduction.reduction_func", &CGM.getModule());
CGM.SetInternalFunctionAttributes(/*D=*/nullptr, Fn, CGFI);
CodeGenFunction CGF(CGM);
CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args);
// Dst = (void*[n])(LHSArg);
// Src = (void*[n])(RHSArg);
Address LHS(CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(&LHSArg)),
ArgsType), CGF.getPointerAlign());
Address RHS(CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(&RHSArg)),
ArgsType), CGF.getPointerAlign());
// ...
// *(Type<i>*)lhs[i] = RedOp<i>(*(Type<i>*)lhs[i], *(Type<i>*)rhs[i]);
// ...
CodeGenFunction::OMPPrivateScope Scope(CGF);
auto IPriv = Privates.begin();
unsigned Idx = 0;
for (unsigned I = 0, E = ReductionOps.size(); I < E; ++I, ++IPriv, ++Idx) {
auto RHSVar = cast<VarDecl>(cast<DeclRefExpr>(RHSExprs[I])->getDecl());
Scope.addPrivate(RHSVar, [&]() -> Address {
return emitAddrOfVarFromArray(CGF, RHS, Idx, RHSVar);
});
auto LHSVar = cast<VarDecl>(cast<DeclRefExpr>(LHSExprs[I])->getDecl());
Scope.addPrivate(LHSVar, [&]() -> Address {
return emitAddrOfVarFromArray(CGF, LHS, Idx, LHSVar);
});
QualType PrivTy = (*IPriv)->getType();
if (PrivTy->isArrayType()) {
// Get array size and emit VLA type.
++Idx;
Address Elem =
CGF.Builder.CreateConstArrayGEP(LHS, Idx, CGF.getPointerSize());
llvm::Value *Ptr = CGF.Builder.CreateLoad(Elem);
CodeGenFunction::OpaqueValueMapping OpaqueMap(
CGF,
cast<OpaqueValueExpr>(
CGF.getContext().getAsVariableArrayType(PrivTy)->getSizeExpr()),
RValue::get(CGF.Builder.CreatePtrToInt(Ptr, CGF.SizeTy)));
CGF.EmitVariablyModifiedType(PrivTy);
}
}
Scope.Privatize();
IPriv = Privates.begin();
auto ILHS = LHSExprs.begin();
auto IRHS = RHSExprs.begin();
for (auto *E : ReductionOps) {
if ((*IPriv)->getType()->isArrayType()) {
// Emit reduction for array section.
auto *LHSVar = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl());
auto *RHSVar = cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl());
EmitOMPAggregateReduction(CGF, (*IPriv)->getType(), LHSVar, RHSVar,
[=](CodeGenFunction &CGF, const Expr *,
const Expr *,
const Expr *) { CGF.EmitIgnoredExpr(E); });
} else
// Emit reduction for array subscript or single variable.
CGF.EmitIgnoredExpr(E);
++IPriv, ++ILHS, ++IRHS;
}
Scope.ForceCleanup();
CGF.FinishFunction();
return Fn;
}
void CGOpenMPRuntime::emitReduction(CodeGenFunction &CGF, SourceLocation Loc,
ArrayRef<const Expr *> Privates,
ArrayRef<const Expr *> LHSExprs,
ArrayRef<const Expr *> RHSExprs,
ArrayRef<const Expr *> ReductionOps,
bool WithNowait, bool SimpleReduction) {
// Next code should be emitted for reduction:
//
// static kmp_critical_name lock = { 0 };
//
// void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
// *(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
// ...
// *(Type<n>-1*)lhs[<n>-1] = ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
// *(Type<n>-1*)rhs[<n>-1]);
// }
//
// ...
// void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
// switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList),
// RedList, reduce_func, &<lock>)) {
// case 1:
// ...
// <LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]);
// ...
// __kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
// break;
// case 2:
// ...
// Atomic(<LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]));
// ...
// [__kmpc_end_reduce(<loc>, <gtid>, &<lock>);]
// break;
// default:;
// }
//
// if SimpleReduction is true, only the next code is generated:
// ...
// <LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]);
// ...
auto &C = CGM.getContext();
if (SimpleReduction) {
CodeGenFunction::RunCleanupsScope Scope(CGF);
auto IPriv = Privates.begin();
auto ILHS = LHSExprs.begin();
auto IRHS = RHSExprs.begin();
for (auto *E : ReductionOps) {
if ((*IPriv)->getType()->isArrayType()) {
auto *LHSVar = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl());
auto *RHSVar = cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl());
EmitOMPAggregateReduction(
CGF, (*IPriv)->getType(), LHSVar, RHSVar,
[=](CodeGenFunction &CGF, const Expr *, const Expr *,
const Expr *) { CGF.EmitIgnoredExpr(E); });
} else
CGF.EmitIgnoredExpr(E);
++IPriv, ++ILHS, ++IRHS;
}
return;
}
// 1. Build a list of reduction variables.
// void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]};
auto Size = RHSExprs.size();
for (auto *E : Privates) {
if (E->getType()->isArrayType())
// Reserve place for array size.
++Size;
}
llvm::APInt ArraySize(/*unsigned int numBits=*/32, Size);
QualType ReductionArrayTy =
C.getConstantArrayType(C.VoidPtrTy, ArraySize, ArrayType::Normal,
/*IndexTypeQuals=*/0);
Address ReductionList =
CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list");
auto IPriv = Privates.begin();
unsigned Idx = 0;
for (unsigned I = 0, E = RHSExprs.size(); I < E; ++I, ++IPriv, ++Idx) {
Address Elem =
CGF.Builder.CreateConstArrayGEP(ReductionList, Idx, CGF.getPointerSize());
CGF.Builder.CreateStore(
CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
CGF.EmitLValue(RHSExprs[I]).getPointer(), CGF.VoidPtrTy),
Elem);
if ((*IPriv)->getType()->isArrayType()) {
// Store array size.
++Idx;
Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx,
CGF.getPointerSize());
CGF.Builder.CreateStore(
CGF.Builder.CreateIntToPtr(
CGF.Builder.CreateIntCast(
CGF.getVLASize(CGF.getContext().getAsVariableArrayType(
(*IPriv)->getType()))
.first,
CGF.SizeTy, /*isSigned=*/false),
CGF.VoidPtrTy),
Elem);
}
}
// 2. Emit reduce_func().
auto *ReductionFn = emitReductionFunction(
CGM, CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo(), Privates,
LHSExprs, RHSExprs, ReductionOps);
// 3. Create static kmp_critical_name lock = { 0 };
auto *Lock = getCriticalRegionLock(".reduction");
// 4. Build res = __kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList),
// RedList, reduce_func, &<lock>);
auto *IdentTLoc = emitUpdateLocation(
CGF, Loc,
static_cast<OpenMPLocationFlags>(OMP_IDENT_KMPC | OMP_ATOMIC_REDUCE));
auto *ThreadId = getThreadID(CGF, Loc);
auto *ReductionArrayTySize = getTypeSize(CGF, ReductionArrayTy);
auto *RL =
CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(ReductionList.getPointer(),
CGF.VoidPtrTy);
llvm::Value *Args[] = {
IdentTLoc, // ident_t *<loc>
ThreadId, // i32 <gtid>
CGF.Builder.getInt32(RHSExprs.size()), // i32 <n>
ReductionArrayTySize, // size_type sizeof(RedList)
RL, // void *RedList
ReductionFn, // void (*) (void *, void *) <reduce_func>
Lock // kmp_critical_name *&<lock>
};
auto Res = CGF.EmitRuntimeCall(
createRuntimeFunction(WithNowait ? OMPRTL__kmpc_reduce_nowait
: OMPRTL__kmpc_reduce),
Args);
// 5. Build switch(res)
auto *DefaultBB = CGF.createBasicBlock(".omp.reduction.default");
auto *SwInst = CGF.Builder.CreateSwitch(Res, DefaultBB, /*NumCases=*/2);
// 6. Build case 1:
// ...
// <LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]);
// ...
// __kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
// break;
auto *Case1BB = CGF.createBasicBlock(".omp.reduction.case1");
SwInst->addCase(CGF.Builder.getInt32(1), Case1BB);
CGF.EmitBlock(Case1BB);
{
CodeGenFunction::RunCleanupsScope Scope(CGF);
// Add emission of __kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
llvm::Value *EndArgs[] = {
IdentTLoc, // ident_t *<loc>
ThreadId, // i32 <gtid>
Lock // kmp_critical_name *&<lock>
};
CGF.EHStack
.pushCleanup<CallEndCleanup<std::extent<decltype(EndArgs)>::value>>(
NormalAndEHCleanup,
createRuntimeFunction(WithNowait ? OMPRTL__kmpc_end_reduce_nowait
: OMPRTL__kmpc_end_reduce),
llvm::makeArrayRef(EndArgs));
auto IPriv = Privates.begin();
auto ILHS = LHSExprs.begin();
auto IRHS = RHSExprs.begin();
for (auto *E : ReductionOps) {
if ((*IPriv)->getType()->isArrayType()) {
// Emit reduction for array section.
auto *LHSVar = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl());
auto *RHSVar = cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl());
EmitOMPAggregateReduction(
CGF, (*IPriv)->getType(), LHSVar, RHSVar,
[=](CodeGenFunction &CGF, const Expr *, const Expr *,
const Expr *) { CGF.EmitIgnoredExpr(E); });
} else
// Emit reduction for array subscript or single variable.
CGF.EmitIgnoredExpr(E);
++IPriv, ++ILHS, ++IRHS;
}
}
CGF.EmitBranch(DefaultBB);
// 7. Build case 2:
// ...
// Atomic(<LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]));
// ...
// break;
auto *Case2BB = CGF.createBasicBlock(".omp.reduction.case2");
SwInst->addCase(CGF.Builder.getInt32(2), Case2BB);
CGF.EmitBlock(Case2BB);
{
CodeGenFunction::RunCleanupsScope Scope(CGF);
if (!WithNowait) {
// Add emission of __kmpc_end_reduce(<loc>, <gtid>, &<lock>);
llvm::Value *EndArgs[] = {
IdentTLoc, // ident_t *<loc>
ThreadId, // i32 <gtid>
Lock // kmp_critical_name *&<lock>
};
CGF.EHStack
.pushCleanup<CallEndCleanup<std::extent<decltype(EndArgs)>::value>>(
NormalAndEHCleanup,
createRuntimeFunction(OMPRTL__kmpc_end_reduce),
llvm::makeArrayRef(EndArgs));
}
auto ILHS = LHSExprs.begin();
auto IRHS = RHSExprs.begin();
auto IPriv = Privates.begin();
for (auto *E : ReductionOps) {
const Expr *XExpr = nullptr;
const Expr *EExpr = nullptr;
const Expr *UpExpr = nullptr;
BinaryOperatorKind BO = BO_Comma;
if (auto *BO = dyn_cast<BinaryOperator>(E)) {
if (BO->getOpcode() == BO_Assign) {
XExpr = BO->getLHS();
UpExpr = BO->getRHS();
}
}
// Try to emit update expression as a simple atomic.
auto *RHSExpr = UpExpr;
if (RHSExpr) {
// Analyze RHS part of the whole expression.
if (auto *ACO = dyn_cast<AbstractConditionalOperator>(
RHSExpr->IgnoreParenImpCasts())) {
// If this is a conditional operator, analyze its condition for
// min/max reduction operator.
RHSExpr = ACO->getCond();
}
if (auto *BORHS =
dyn_cast<BinaryOperator>(RHSExpr->IgnoreParenImpCasts())) {
EExpr = BORHS->getRHS();
BO = BORHS->getOpcode();
}
}
if (XExpr) {
auto *VD = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl());
auto &&AtomicRedGen = [this, BO, VD, IPriv,
Loc](CodeGenFunction &CGF, const Expr *XExpr,
const Expr *EExpr, const Expr *UpExpr) {
LValue X = CGF.EmitLValue(XExpr);
RValue E;
if (EExpr)
E = CGF.EmitAnyExpr(EExpr);
CGF.EmitOMPAtomicSimpleUpdateExpr(
X, E, BO, /*IsXLHSInRHSPart=*/true, llvm::Monotonic, Loc,
[&CGF, UpExpr, VD, IPriv](RValue XRValue) {
CodeGenFunction::OMPPrivateScope PrivateScope(CGF);
PrivateScope.addPrivate(VD, [&CGF, VD, XRValue]() -> Address {
Address LHSTemp = CGF.CreateMemTemp(VD->getType());
CGF.EmitStoreThroughLValue(
XRValue, CGF.MakeAddrLValue(LHSTemp, VD->getType()));
return LHSTemp;
});
(void)PrivateScope.Privatize();
return CGF.EmitAnyExpr(UpExpr);
});
};
if ((*IPriv)->getType()->isArrayType()) {
// Emit atomic reduction for array section.
auto *RHSVar = cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl());
EmitOMPAggregateReduction(CGF, (*IPriv)->getType(), VD, RHSVar,
AtomicRedGen, XExpr, EExpr, UpExpr);
} else
// Emit atomic reduction for array subscript or single variable.
AtomicRedGen(CGF, XExpr, EExpr, UpExpr);
} else {
// Emit as a critical region.
auto &&CritRedGen = [this, E, Loc](CodeGenFunction &CGF, const Expr *,
const Expr *, const Expr *) {
emitCriticalRegion(
CGF, ".atomic_reduction",
[E](CodeGenFunction &CGF) { CGF.EmitIgnoredExpr(E); }, Loc);
};
if ((*IPriv)->getType()->isArrayType()) {
auto *LHSVar = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl());
auto *RHSVar = cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl());
EmitOMPAggregateReduction(CGF, (*IPriv)->getType(), LHSVar, RHSVar,
CritRedGen);
} else
CritRedGen(CGF, nullptr, nullptr, nullptr);
}
++ILHS, ++IRHS, ++IPriv;
}
}
CGF.EmitBranch(DefaultBB);
CGF.EmitBlock(DefaultBB, /*IsFinished=*/true);
}
void CGOpenMPRuntime::emitTaskwaitCall(CodeGenFunction &CGF,
SourceLocation Loc) {
// Build call kmp_int32 __kmpc_omp_taskwait(ident_t *loc, kmp_int32
// global_tid);
llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)};
// Ignore return result until untied tasks are supported.
CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_omp_taskwait), Args);
}
void CGOpenMPRuntime::emitInlinedDirective(CodeGenFunction &CGF,
OpenMPDirectiveKind InnerKind,
const RegionCodeGenTy &CodeGen,
bool HasCancel) {
InlinedOpenMPRegionRAII Region(CGF, CodeGen, InnerKind, HasCancel);
CGF.CapturedStmtInfo->EmitBody(CGF, /*S=*/nullptr);
}
namespace {
enum RTCancelKind {
CancelNoreq = 0,
CancelParallel = 1,
CancelLoop = 2,
CancelSections = 3,
CancelTaskgroup = 4
};
}
static RTCancelKind getCancellationKind(OpenMPDirectiveKind CancelRegion) {
RTCancelKind CancelKind = CancelNoreq;
if (CancelRegion == OMPD_parallel)
CancelKind = CancelParallel;
else if (CancelRegion == OMPD_for)
CancelKind = CancelLoop;
else if (CancelRegion == OMPD_sections)
CancelKind = CancelSections;
else {
assert(CancelRegion == OMPD_taskgroup);
CancelKind = CancelTaskgroup;
}
return CancelKind;
}
void CGOpenMPRuntime::emitCancellationPointCall(
CodeGenFunction &CGF, SourceLocation Loc,
OpenMPDirectiveKind CancelRegion) {
// Build call kmp_int32 __kmpc_cancellationpoint(ident_t *loc, kmp_int32
// global_tid, kmp_int32 cncl_kind);
if (auto *OMPRegionInfo =
dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo)) {
if (OMPRegionInfo->getDirectiveKind() == OMPD_single)
return;
if (OMPRegionInfo->hasCancel()) {
llvm::Value *Args[] = {
emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc),
CGF.Builder.getInt32(getCancellationKind(CancelRegion))};
// Ignore return result until untied tasks are supported.
auto *Result = CGF.EmitRuntimeCall(
createRuntimeFunction(OMPRTL__kmpc_cancellationpoint), Args);
// if (__kmpc_cancellationpoint()) {
// __kmpc_cancel_barrier();
// exit from construct;
// }
auto *ExitBB = CGF.createBasicBlock(".cancel.exit");
auto *ContBB = CGF.createBasicBlock(".cancel.continue");
auto *Cmp = CGF.Builder.CreateIsNotNull(Result);
CGF.Builder.CreateCondBr(Cmp, ExitBB, ContBB);
CGF.EmitBlock(ExitBB);
// __kmpc_cancel_barrier();
emitBarrierCall(CGF, Loc, OMPD_unknown, /*EmitChecks=*/false);
// exit from construct;
auto CancelDest =
CGF.getOMPCancelDestination(OMPRegionInfo->getDirectiveKind());
CGF.EmitBranchThroughCleanup(CancelDest);
CGF.EmitBlock(ContBB, /*IsFinished=*/true);
}
}
}
void CGOpenMPRuntime::emitCancelCall(CodeGenFunction &CGF, SourceLocation Loc,
const Expr *IfCond,
OpenMPDirectiveKind CancelRegion) {
// Build call kmp_int32 __kmpc_cancel(ident_t *loc, kmp_int32 global_tid,
// kmp_int32 cncl_kind);
if (auto *OMPRegionInfo =
dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo)) {
if (OMPRegionInfo->getDirectiveKind() == OMPD_single)
return;
auto &&ThenGen = [this, Loc, CancelRegion,
OMPRegionInfo](CodeGenFunction &CGF) {
llvm::Value *Args[] = {
emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc),
CGF.Builder.getInt32(getCancellationKind(CancelRegion))};
// Ignore return result until untied tasks are supported.
auto *Result =
CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_cancel), Args);
// if (__kmpc_cancel()) {
// __kmpc_cancel_barrier();
// exit from construct;
// }
auto *ExitBB = CGF.createBasicBlock(".cancel.exit");
auto *ContBB = CGF.createBasicBlock(".cancel.continue");
auto *Cmp = CGF.Builder.CreateIsNotNull(Result);
CGF.Builder.CreateCondBr(Cmp, ExitBB, ContBB);
CGF.EmitBlock(ExitBB);
// __kmpc_cancel_barrier();
emitBarrierCall(CGF, Loc, OMPD_unknown, /*EmitChecks=*/false);
// exit from construct;
auto CancelDest =
CGF.getOMPCancelDestination(OMPRegionInfo->getDirectiveKind());
CGF.EmitBranchThroughCleanup(CancelDest);
CGF.EmitBlock(ContBB, /*IsFinished=*/true);
};
if (IfCond)
emitOMPIfClause(CGF, IfCond, ThenGen, [](CodeGenFunction &) {});
else
ThenGen(CGF);
}
}
llvm::Value *
CGOpenMPRuntime::emitTargetOutlinedFunction(const OMPExecutableDirective &D,
const RegionCodeGenTy &CodeGen) {
const CapturedStmt &CS = *cast<CapturedStmt>(D.getAssociatedStmt());
CodeGenFunction CGF(CGM, true);
CGOpenMPTargetRegionInfo CGInfo(CS, CodeGen);
CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo);
return CGF.GenerateOpenMPCapturedStmtFunction(CS, /*UseOnlyReferences=*/true);
}
void CGOpenMPRuntime::emitTargetCall(CodeGenFunction &CGF,
const OMPExecutableDirective &D,
llvm::Value *OutlinedFn,
const Expr *IfCond, const Expr *Device,
ArrayRef<llvm::Value *> CapturedVars) {
/// \brief Values for bit flags used to specify the mapping type for
/// offloading.
enum OpenMPOffloadMappingFlags {
/// \brief Allocate memory on the device and move data from host to device.
OMP_MAP_TO = 0x01,
/// \brief Allocate memory on the device and move data from device to host.
OMP_MAP_FROM = 0x02,
};
enum OpenMPOffloadingReservedDeviceIDs {
/// \brief Device ID if the device was not defined, runtime should get it
/// from environment variables in the spec.
OMP_DEVICEID_UNDEF = -1,
};
// Fill up the arrays with the all the captured variables.
SmallVector<llvm::Value *, 16> BasePointers;
SmallVector<llvm::Value *, 16> Pointers;
SmallVector<llvm::Value *, 16> Sizes;
SmallVector<unsigned, 16> MapTypes;
bool hasVLACaptures = false;
const CapturedStmt &CS = *cast<CapturedStmt>(D.getAssociatedStmt());
auto RI = CS.getCapturedRecordDecl()->field_begin();
// auto II = CS.capture_init_begin();
auto CV = CapturedVars.begin();
for (CapturedStmt::const_capture_iterator CI = CS.capture_begin(),
CE = CS.capture_end();
CI != CE; ++CI, ++RI, ++CV) {
StringRef Name;
QualType Ty;
llvm::Value *BasePointer;
llvm::Value *Pointer;
llvm::Value *Size;
unsigned MapType;
if (CI->capturesVariableArrayType()) {
BasePointer = Pointer = *CV;
Size = getTypeSize(CGF, RI->getType());
hasVLACaptures = true;
// VLA sizes don't need to be copied back from the device.
MapType = OMP_MAP_TO;
} else if (CI->capturesThis()) {
BasePointer = Pointer = *CV;
const PointerType *PtrTy = cast<PointerType>(RI->getType().getTypePtr());
Size = getTypeSize(CGF, PtrTy->getPointeeType());
// Default map type.
MapType = OMP_MAP_TO | OMP_MAP_FROM;
} else {
BasePointer = Pointer = *CV;
const ReferenceType *PtrTy =
cast<ReferenceType>(RI->getType().getTypePtr());
QualType ElementType = PtrTy->getPointeeType();
Size = getTypeSize(CGF, ElementType);
// Default map type.
MapType = OMP_MAP_TO | OMP_MAP_FROM;
}
BasePointers.push_back(BasePointer);
Pointers.push_back(Pointer);
Sizes.push_back(Size);
MapTypes.push_back(MapType);
}
// Keep track on whether the host function has to be executed.
auto OffloadErrorQType =
CGF.getContext().getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/true);
auto OffloadError = CGF.MakeAddrLValue(
CGF.CreateMemTemp(OffloadErrorQType, ".run_host_version"),
OffloadErrorQType);
CGF.EmitStoreOfScalar(llvm::Constant::getNullValue(CGM.Int32Ty),
OffloadError);
// Fill up the pointer arrays and transfer execution to the device.
auto &&ThenGen = [this, &BasePointers, &Pointers, &Sizes, &MapTypes,
hasVLACaptures, Device, OffloadError,
OffloadErrorQType](CodeGenFunction &CGF) {
unsigned PointerNumVal = BasePointers.size();
llvm::Value *PointerNum = CGF.Builder.getInt32(PointerNumVal);
llvm::Value *BasePointersArray;
llvm::Value *PointersArray;
llvm::Value *SizesArray;
llvm::Value *MapTypesArray;
if (PointerNumVal) {
llvm::APInt PointerNumAP(32, PointerNumVal, /*isSigned=*/true);
QualType PointerArrayType = CGF.getContext().getConstantArrayType(
CGF.getContext().VoidPtrTy, PointerNumAP, ArrayType::Normal,
/*IndexTypeQuals=*/0);
BasePointersArray =
CGF.CreateMemTemp(PointerArrayType, ".offload_baseptrs").getPointer();
PointersArray =
CGF.CreateMemTemp(PointerArrayType, ".offload_ptrs").getPointer();
// If we don't have any VLA types, we can use a constant array for the map
// sizes, otherwise we need to fill up the arrays as we do for the
// pointers.
if (hasVLACaptures) {
QualType SizeArrayType = CGF.getContext().getConstantArrayType(
CGF.getContext().getSizeType(), PointerNumAP, ArrayType::Normal,
/*IndexTypeQuals=*/0);
SizesArray =
CGF.CreateMemTemp(SizeArrayType, ".offload_sizes").getPointer();
} else {
// We expect all the sizes to be constant, so we collect them to create
// a constant array.
SmallVector<llvm::Constant *, 16> ConstSizes;
for (auto S : Sizes)
ConstSizes.push_back(cast<llvm::Constant>(S));
auto *SizesArrayInit = llvm::ConstantArray::get(
llvm::ArrayType::get(CGM.SizeTy, ConstSizes.size()), ConstSizes);
auto *SizesArrayGbl = new llvm::GlobalVariable(
CGM.getModule(), SizesArrayInit->getType(),
/*isConstant=*/true, llvm::GlobalValue::PrivateLinkage,
SizesArrayInit, ".offload_sizes");
SizesArrayGbl->setUnnamedAddr(true);
SizesArray = SizesArrayGbl;
}
// The map types are always constant so we don't need to generate code to
// fill arrays. Instead, we create an array constant.
llvm::Constant *MapTypesArrayInit =
llvm::ConstantDataArray::get(CGF.Builder.getContext(), MapTypes);
auto *MapTypesArrayGbl = new llvm::GlobalVariable(
CGM.getModule(), MapTypesArrayInit->getType(),
/*isConstant=*/true, llvm::GlobalValue::PrivateLinkage,
MapTypesArrayInit, ".offload_maptypes");
MapTypesArrayGbl->setUnnamedAddr(true);
MapTypesArray = MapTypesArrayGbl;
for (unsigned i = 0; i < PointerNumVal; ++i) {
llvm::Value *BP = CGF.Builder.CreateConstInBoundsGEP2_32(
llvm::ArrayType::get(CGM.VoidPtrTy, PointerNumVal),
BasePointersArray, 0, i);
Address BPAddr(BP, CGM.getContext().getTypeAlignInChars(
CGM.getContext().VoidPtrTy));
CGF.Builder.CreateStore(
CGF.Builder.CreateBitCast(BasePointers[i], CGM.VoidPtrTy), BPAddr);
llvm::Value *P = CGF.Builder.CreateConstInBoundsGEP2_32(
llvm::ArrayType::get(CGM.VoidPtrTy, PointerNumVal), PointersArray,
0, i);
Address PAddr(P, CGM.getContext().getTypeAlignInChars(
CGM.getContext().VoidPtrTy));
CGF.Builder.CreateStore(
CGF.Builder.CreateBitCast(Pointers[i], CGM.VoidPtrTy), PAddr);
if (hasVLACaptures) {
llvm::Value *S = CGF.Builder.CreateConstInBoundsGEP2_32(
llvm::ArrayType::get(CGM.SizeTy, PointerNumVal), SizesArray,
/*Idx0=*/0,
/*Idx1=*/i);
Address SAddr(S, CGM.getContext().getTypeAlignInChars(
CGM.getContext().getSizeType()));
CGF.Builder.CreateStore(CGF.Builder.CreateIntCast(
Sizes[i], CGM.SizeTy, /*isSigned=*/true),
SAddr);
}
}
BasePointersArray = CGF.Builder.CreateConstInBoundsGEP2_32(
llvm::ArrayType::get(CGM.VoidPtrTy, PointerNumVal), BasePointersArray,
/*Idx0=*/0, /*Idx1=*/0);
PointersArray = CGF.Builder.CreateConstInBoundsGEP2_32(
llvm::ArrayType::get(CGM.VoidPtrTy, PointerNumVal), PointersArray,
/*Idx0=*/0,
/*Idx1=*/0);
SizesArray = CGF.Builder.CreateConstInBoundsGEP2_32(
llvm::ArrayType::get(CGM.SizeTy, PointerNumVal), SizesArray,
/*Idx0=*/0, /*Idx1=*/0);
MapTypesArray = CGF.Builder.CreateConstInBoundsGEP2_32(
llvm::ArrayType::get(CGM.Int32Ty, PointerNumVal), MapTypesArray,
/*Idx0=*/0,
/*Idx1=*/0);
} else {
BasePointersArray = llvm::ConstantPointerNull::get(CGM.VoidPtrPtrTy);
PointersArray = llvm::ConstantPointerNull::get(CGM.VoidPtrPtrTy);
SizesArray = llvm::ConstantPointerNull::get(CGM.SizeTy->getPointerTo());
MapTypesArray =
llvm::ConstantPointerNull::get(CGM.Int32Ty->getPointerTo());
}
// On top of the arrays that were filled up, the target offloading call
// takes as arguments the device id as well as the host pointer. The host
// pointer is used by the runtime library to identify the current target
// region, so it only has to be unique and not necessarily point to
// anything. It could be the pointer to the outlined function that
// implements the target region, but we aren't using that so that the
// compiler doesn't need to keep that, and could therefore inline the host
// function if proven worthwhile during optimization.
llvm::Value *HostPtr = new llvm::GlobalVariable(
CGM.getModule(), CGM.Int8Ty, /*isConstant=*/true,
llvm::GlobalValue::PrivateLinkage,
llvm::Constant::getNullValue(CGM.Int8Ty), ".offload_hstptr");
// Emit device ID if any.
llvm::Value *DeviceID;
if (Device)
DeviceID = CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(Device),
CGM.Int32Ty, /*isSigned=*/true);
else
DeviceID = CGF.Builder.getInt32(OMP_DEVICEID_UNDEF);
llvm::Value *OffloadingArgs[] = {
DeviceID, HostPtr, PointerNum, BasePointersArray,
PointersArray, SizesArray, MapTypesArray};
auto Return = CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__tgt_target),
OffloadingArgs);
CGF.EmitStoreOfScalar(Return, OffloadError);
};
if (IfCond) {
// Notify that the host version must be executed.
auto &&ElseGen = [this, OffloadError,
OffloadErrorQType](CodeGenFunction &CGF) {
CGF.EmitStoreOfScalar(llvm::ConstantInt::get(CGM.Int32Ty, /*V=*/-1u),
OffloadError);
};
emitOMPIfClause(CGF, IfCond, ThenGen, ElseGen);
} else {
CodeGenFunction::RunCleanupsScope Scope(CGF);
ThenGen(CGF);
}
// Check the error code and execute the host version if required.
auto OffloadFailedBlock = CGF.createBasicBlock("omp_offload.failed");
auto OffloadContBlock = CGF.createBasicBlock("omp_offload.cont");
auto OffloadErrorVal = CGF.EmitLoadOfScalar(OffloadError, SourceLocation());
auto Failed = CGF.Builder.CreateIsNotNull(OffloadErrorVal);
CGF.Builder.CreateCondBr(Failed, OffloadFailedBlock, OffloadContBlock);
CGF.EmitBlock(OffloadFailedBlock);
CGF.Builder.CreateCall(OutlinedFn, BasePointers);
CGF.EmitBranch(OffloadContBlock);
CGF.EmitBlock(OffloadContBlock, /*IsFinished=*/true);
return;
}