forked from OSchip/llvm-project
1711 lines
66 KiB
C++
1711 lines
66 KiB
C++
//===-- TargetLoweringBase.cpp - Implement the TargetLoweringBase class ---===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This implements the TargetLoweringBase class.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Target/TargetLowering.h"
|
|
#include "llvm/ADT/BitVector.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/Triple.h"
|
|
#include "llvm/CodeGen/Analysis.h"
|
|
#include "llvm/CodeGen/MachineFrameInfo.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineJumpTableInfo.h"
|
|
#include "llvm/CodeGen/StackMaps.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
#include "llvm/IR/GlobalVariable.h"
|
|
#include "llvm/IR/Mangler.h"
|
|
#include "llvm/MC/MCAsmInfo.h"
|
|
#include "llvm/MC/MCContext.h"
|
|
#include "llvm/MC/MCExpr.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include "llvm/Target/TargetLoweringObjectFile.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/Target/TargetRegisterInfo.h"
|
|
#include "llvm/Target/TargetSubtargetInfo.h"
|
|
#include <cctype>
|
|
using namespace llvm;
|
|
|
|
static cl::opt<bool> JumpIsExpensiveOverride(
|
|
"jump-is-expensive", cl::init(false),
|
|
cl::desc("Do not create extra branches to split comparison logic."),
|
|
cl::Hidden);
|
|
|
|
/// InitLibcallNames - Set default libcall names.
|
|
///
|
|
static void InitLibcallNames(const char **Names, const Triple &TT) {
|
|
Names[RTLIB::SHL_I16] = "__ashlhi3";
|
|
Names[RTLIB::SHL_I32] = "__ashlsi3";
|
|
Names[RTLIB::SHL_I64] = "__ashldi3";
|
|
Names[RTLIB::SHL_I128] = "__ashlti3";
|
|
Names[RTLIB::SRL_I16] = "__lshrhi3";
|
|
Names[RTLIB::SRL_I32] = "__lshrsi3";
|
|
Names[RTLIB::SRL_I64] = "__lshrdi3";
|
|
Names[RTLIB::SRL_I128] = "__lshrti3";
|
|
Names[RTLIB::SRA_I16] = "__ashrhi3";
|
|
Names[RTLIB::SRA_I32] = "__ashrsi3";
|
|
Names[RTLIB::SRA_I64] = "__ashrdi3";
|
|
Names[RTLIB::SRA_I128] = "__ashrti3";
|
|
Names[RTLIB::MUL_I8] = "__mulqi3";
|
|
Names[RTLIB::MUL_I16] = "__mulhi3";
|
|
Names[RTLIB::MUL_I32] = "__mulsi3";
|
|
Names[RTLIB::MUL_I64] = "__muldi3";
|
|
Names[RTLIB::MUL_I128] = "__multi3";
|
|
Names[RTLIB::MULO_I32] = "__mulosi4";
|
|
Names[RTLIB::MULO_I64] = "__mulodi4";
|
|
Names[RTLIB::MULO_I128] = "__muloti4";
|
|
Names[RTLIB::SDIV_I8] = "__divqi3";
|
|
Names[RTLIB::SDIV_I16] = "__divhi3";
|
|
Names[RTLIB::SDIV_I32] = "__divsi3";
|
|
Names[RTLIB::SDIV_I64] = "__divdi3";
|
|
Names[RTLIB::SDIV_I128] = "__divti3";
|
|
Names[RTLIB::UDIV_I8] = "__udivqi3";
|
|
Names[RTLIB::UDIV_I16] = "__udivhi3";
|
|
Names[RTLIB::UDIV_I32] = "__udivsi3";
|
|
Names[RTLIB::UDIV_I64] = "__udivdi3";
|
|
Names[RTLIB::UDIV_I128] = "__udivti3";
|
|
Names[RTLIB::SREM_I8] = "__modqi3";
|
|
Names[RTLIB::SREM_I16] = "__modhi3";
|
|
Names[RTLIB::SREM_I32] = "__modsi3";
|
|
Names[RTLIB::SREM_I64] = "__moddi3";
|
|
Names[RTLIB::SREM_I128] = "__modti3";
|
|
Names[RTLIB::UREM_I8] = "__umodqi3";
|
|
Names[RTLIB::UREM_I16] = "__umodhi3";
|
|
Names[RTLIB::UREM_I32] = "__umodsi3";
|
|
Names[RTLIB::UREM_I64] = "__umoddi3";
|
|
Names[RTLIB::UREM_I128] = "__umodti3";
|
|
|
|
// These are generally not available.
|
|
Names[RTLIB::SDIVREM_I8] = nullptr;
|
|
Names[RTLIB::SDIVREM_I16] = nullptr;
|
|
Names[RTLIB::SDIVREM_I32] = nullptr;
|
|
Names[RTLIB::SDIVREM_I64] = nullptr;
|
|
Names[RTLIB::SDIVREM_I128] = nullptr;
|
|
Names[RTLIB::UDIVREM_I8] = nullptr;
|
|
Names[RTLIB::UDIVREM_I16] = nullptr;
|
|
Names[RTLIB::UDIVREM_I32] = nullptr;
|
|
Names[RTLIB::UDIVREM_I64] = nullptr;
|
|
Names[RTLIB::UDIVREM_I128] = nullptr;
|
|
|
|
Names[RTLIB::NEG_I32] = "__negsi2";
|
|
Names[RTLIB::NEG_I64] = "__negdi2";
|
|
Names[RTLIB::ADD_F32] = "__addsf3";
|
|
Names[RTLIB::ADD_F64] = "__adddf3";
|
|
Names[RTLIB::ADD_F80] = "__addxf3";
|
|
Names[RTLIB::ADD_F128] = "__addtf3";
|
|
Names[RTLIB::ADD_PPCF128] = "__gcc_qadd";
|
|
Names[RTLIB::SUB_F32] = "__subsf3";
|
|
Names[RTLIB::SUB_F64] = "__subdf3";
|
|
Names[RTLIB::SUB_F80] = "__subxf3";
|
|
Names[RTLIB::SUB_F128] = "__subtf3";
|
|
Names[RTLIB::SUB_PPCF128] = "__gcc_qsub";
|
|
Names[RTLIB::MUL_F32] = "__mulsf3";
|
|
Names[RTLIB::MUL_F64] = "__muldf3";
|
|
Names[RTLIB::MUL_F80] = "__mulxf3";
|
|
Names[RTLIB::MUL_F128] = "__multf3";
|
|
Names[RTLIB::MUL_PPCF128] = "__gcc_qmul";
|
|
Names[RTLIB::DIV_F32] = "__divsf3";
|
|
Names[RTLIB::DIV_F64] = "__divdf3";
|
|
Names[RTLIB::DIV_F80] = "__divxf3";
|
|
Names[RTLIB::DIV_F128] = "__divtf3";
|
|
Names[RTLIB::DIV_PPCF128] = "__gcc_qdiv";
|
|
Names[RTLIB::REM_F32] = "fmodf";
|
|
Names[RTLIB::REM_F64] = "fmod";
|
|
Names[RTLIB::REM_F80] = "fmodl";
|
|
Names[RTLIB::REM_F128] = "fmodl";
|
|
Names[RTLIB::REM_PPCF128] = "fmodl";
|
|
Names[RTLIB::FMA_F32] = "fmaf";
|
|
Names[RTLIB::FMA_F64] = "fma";
|
|
Names[RTLIB::FMA_F80] = "fmal";
|
|
Names[RTLIB::FMA_F128] = "fmal";
|
|
Names[RTLIB::FMA_PPCF128] = "fmal";
|
|
Names[RTLIB::POWI_F32] = "__powisf2";
|
|
Names[RTLIB::POWI_F64] = "__powidf2";
|
|
Names[RTLIB::POWI_F80] = "__powixf2";
|
|
Names[RTLIB::POWI_F128] = "__powitf2";
|
|
Names[RTLIB::POWI_PPCF128] = "__powitf2";
|
|
Names[RTLIB::SQRT_F32] = "sqrtf";
|
|
Names[RTLIB::SQRT_F64] = "sqrt";
|
|
Names[RTLIB::SQRT_F80] = "sqrtl";
|
|
Names[RTLIB::SQRT_F128] = "sqrtl";
|
|
Names[RTLIB::SQRT_PPCF128] = "sqrtl";
|
|
Names[RTLIB::LOG_F32] = "logf";
|
|
Names[RTLIB::LOG_F64] = "log";
|
|
Names[RTLIB::LOG_F80] = "logl";
|
|
Names[RTLIB::LOG_F128] = "logl";
|
|
Names[RTLIB::LOG_PPCF128] = "logl";
|
|
Names[RTLIB::LOG2_F32] = "log2f";
|
|
Names[RTLIB::LOG2_F64] = "log2";
|
|
Names[RTLIB::LOG2_F80] = "log2l";
|
|
Names[RTLIB::LOG2_F128] = "log2l";
|
|
Names[RTLIB::LOG2_PPCF128] = "log2l";
|
|
Names[RTLIB::LOG10_F32] = "log10f";
|
|
Names[RTLIB::LOG10_F64] = "log10";
|
|
Names[RTLIB::LOG10_F80] = "log10l";
|
|
Names[RTLIB::LOG10_F128] = "log10l";
|
|
Names[RTLIB::LOG10_PPCF128] = "log10l";
|
|
Names[RTLIB::EXP_F32] = "expf";
|
|
Names[RTLIB::EXP_F64] = "exp";
|
|
Names[RTLIB::EXP_F80] = "expl";
|
|
Names[RTLIB::EXP_F128] = "expl";
|
|
Names[RTLIB::EXP_PPCF128] = "expl";
|
|
Names[RTLIB::EXP2_F32] = "exp2f";
|
|
Names[RTLIB::EXP2_F64] = "exp2";
|
|
Names[RTLIB::EXP2_F80] = "exp2l";
|
|
Names[RTLIB::EXP2_F128] = "exp2l";
|
|
Names[RTLIB::EXP2_PPCF128] = "exp2l";
|
|
Names[RTLIB::SIN_F32] = "sinf";
|
|
Names[RTLIB::SIN_F64] = "sin";
|
|
Names[RTLIB::SIN_F80] = "sinl";
|
|
Names[RTLIB::SIN_F128] = "sinl";
|
|
Names[RTLIB::SIN_PPCF128] = "sinl";
|
|
Names[RTLIB::COS_F32] = "cosf";
|
|
Names[RTLIB::COS_F64] = "cos";
|
|
Names[RTLIB::COS_F80] = "cosl";
|
|
Names[RTLIB::COS_F128] = "cosl";
|
|
Names[RTLIB::COS_PPCF128] = "cosl";
|
|
Names[RTLIB::POW_F32] = "powf";
|
|
Names[RTLIB::POW_F64] = "pow";
|
|
Names[RTLIB::POW_F80] = "powl";
|
|
Names[RTLIB::POW_F128] = "powl";
|
|
Names[RTLIB::POW_PPCF128] = "powl";
|
|
Names[RTLIB::CEIL_F32] = "ceilf";
|
|
Names[RTLIB::CEIL_F64] = "ceil";
|
|
Names[RTLIB::CEIL_F80] = "ceill";
|
|
Names[RTLIB::CEIL_F128] = "ceill";
|
|
Names[RTLIB::CEIL_PPCF128] = "ceill";
|
|
Names[RTLIB::TRUNC_F32] = "truncf";
|
|
Names[RTLIB::TRUNC_F64] = "trunc";
|
|
Names[RTLIB::TRUNC_F80] = "truncl";
|
|
Names[RTLIB::TRUNC_F128] = "truncl";
|
|
Names[RTLIB::TRUNC_PPCF128] = "truncl";
|
|
Names[RTLIB::RINT_F32] = "rintf";
|
|
Names[RTLIB::RINT_F64] = "rint";
|
|
Names[RTLIB::RINT_F80] = "rintl";
|
|
Names[RTLIB::RINT_F128] = "rintl";
|
|
Names[RTLIB::RINT_PPCF128] = "rintl";
|
|
Names[RTLIB::NEARBYINT_F32] = "nearbyintf";
|
|
Names[RTLIB::NEARBYINT_F64] = "nearbyint";
|
|
Names[RTLIB::NEARBYINT_F80] = "nearbyintl";
|
|
Names[RTLIB::NEARBYINT_F128] = "nearbyintl";
|
|
Names[RTLIB::NEARBYINT_PPCF128] = "nearbyintl";
|
|
Names[RTLIB::ROUND_F32] = "roundf";
|
|
Names[RTLIB::ROUND_F64] = "round";
|
|
Names[RTLIB::ROUND_F80] = "roundl";
|
|
Names[RTLIB::ROUND_F128] = "roundl";
|
|
Names[RTLIB::ROUND_PPCF128] = "roundl";
|
|
Names[RTLIB::FLOOR_F32] = "floorf";
|
|
Names[RTLIB::FLOOR_F64] = "floor";
|
|
Names[RTLIB::FLOOR_F80] = "floorl";
|
|
Names[RTLIB::FLOOR_F128] = "floorl";
|
|
Names[RTLIB::FLOOR_PPCF128] = "floorl";
|
|
Names[RTLIB::FMIN_F32] = "fminf";
|
|
Names[RTLIB::FMIN_F64] = "fmin";
|
|
Names[RTLIB::FMIN_F80] = "fminl";
|
|
Names[RTLIB::FMIN_F128] = "fminl";
|
|
Names[RTLIB::FMIN_PPCF128] = "fminl";
|
|
Names[RTLIB::FMAX_F32] = "fmaxf";
|
|
Names[RTLIB::FMAX_F64] = "fmax";
|
|
Names[RTLIB::FMAX_F80] = "fmaxl";
|
|
Names[RTLIB::FMAX_F128] = "fmaxl";
|
|
Names[RTLIB::FMAX_PPCF128] = "fmaxl";
|
|
Names[RTLIB::ROUND_F32] = "roundf";
|
|
Names[RTLIB::ROUND_F64] = "round";
|
|
Names[RTLIB::ROUND_F80] = "roundl";
|
|
Names[RTLIB::ROUND_F128] = "roundl";
|
|
Names[RTLIB::ROUND_PPCF128] = "roundl";
|
|
Names[RTLIB::COPYSIGN_F32] = "copysignf";
|
|
Names[RTLIB::COPYSIGN_F64] = "copysign";
|
|
Names[RTLIB::COPYSIGN_F80] = "copysignl";
|
|
Names[RTLIB::COPYSIGN_F128] = "copysignl";
|
|
Names[RTLIB::COPYSIGN_PPCF128] = "copysignl";
|
|
Names[RTLIB::FPEXT_F64_F128] = "__extenddftf2";
|
|
Names[RTLIB::FPEXT_F32_F128] = "__extendsftf2";
|
|
Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2";
|
|
Names[RTLIB::FPEXT_F16_F32] = "__gnu_h2f_ieee";
|
|
Names[RTLIB::FPROUND_F32_F16] = "__gnu_f2h_ieee";
|
|
Names[RTLIB::FPROUND_F64_F16] = "__truncdfhf2";
|
|
Names[RTLIB::FPROUND_F80_F16] = "__truncxfhf2";
|
|
Names[RTLIB::FPROUND_F128_F16] = "__trunctfhf2";
|
|
Names[RTLIB::FPROUND_PPCF128_F16] = "__trunctfhf2";
|
|
Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2";
|
|
Names[RTLIB::FPROUND_F80_F32] = "__truncxfsf2";
|
|
Names[RTLIB::FPROUND_F128_F32] = "__trunctfsf2";
|
|
Names[RTLIB::FPROUND_PPCF128_F32] = "__trunctfsf2";
|
|
Names[RTLIB::FPROUND_F80_F64] = "__truncxfdf2";
|
|
Names[RTLIB::FPROUND_F128_F64] = "__trunctfdf2";
|
|
Names[RTLIB::FPROUND_PPCF128_F64] = "__trunctfdf2";
|
|
Names[RTLIB::FPTOSINT_F32_I8] = "__fixsfqi";
|
|
Names[RTLIB::FPTOSINT_F32_I16] = "__fixsfhi";
|
|
Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi";
|
|
Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi";
|
|
Names[RTLIB::FPTOSINT_F32_I128] = "__fixsfti";
|
|
Names[RTLIB::FPTOSINT_F64_I8] = "__fixdfqi";
|
|
Names[RTLIB::FPTOSINT_F64_I16] = "__fixdfhi";
|
|
Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi";
|
|
Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi";
|
|
Names[RTLIB::FPTOSINT_F64_I128] = "__fixdfti";
|
|
Names[RTLIB::FPTOSINT_F80_I32] = "__fixxfsi";
|
|
Names[RTLIB::FPTOSINT_F80_I64] = "__fixxfdi";
|
|
Names[RTLIB::FPTOSINT_F80_I128] = "__fixxfti";
|
|
Names[RTLIB::FPTOSINT_F128_I32] = "__fixtfsi";
|
|
Names[RTLIB::FPTOSINT_F128_I64] = "__fixtfdi";
|
|
Names[RTLIB::FPTOSINT_F128_I128] = "__fixtfti";
|
|
Names[RTLIB::FPTOSINT_PPCF128_I32] = "__fixtfsi";
|
|
Names[RTLIB::FPTOSINT_PPCF128_I64] = "__fixtfdi";
|
|
Names[RTLIB::FPTOSINT_PPCF128_I128] = "__fixtfti";
|
|
Names[RTLIB::FPTOUINT_F32_I8] = "__fixunssfqi";
|
|
Names[RTLIB::FPTOUINT_F32_I16] = "__fixunssfhi";
|
|
Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi";
|
|
Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi";
|
|
Names[RTLIB::FPTOUINT_F32_I128] = "__fixunssfti";
|
|
Names[RTLIB::FPTOUINT_F64_I8] = "__fixunsdfqi";
|
|
Names[RTLIB::FPTOUINT_F64_I16] = "__fixunsdfhi";
|
|
Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi";
|
|
Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi";
|
|
Names[RTLIB::FPTOUINT_F64_I128] = "__fixunsdfti";
|
|
Names[RTLIB::FPTOUINT_F80_I32] = "__fixunsxfsi";
|
|
Names[RTLIB::FPTOUINT_F80_I64] = "__fixunsxfdi";
|
|
Names[RTLIB::FPTOUINT_F80_I128] = "__fixunsxfti";
|
|
Names[RTLIB::FPTOUINT_F128_I32] = "__fixunstfsi";
|
|
Names[RTLIB::FPTOUINT_F128_I64] = "__fixunstfdi";
|
|
Names[RTLIB::FPTOUINT_F128_I128] = "__fixunstfti";
|
|
Names[RTLIB::FPTOUINT_PPCF128_I32] = "__fixunstfsi";
|
|
Names[RTLIB::FPTOUINT_PPCF128_I64] = "__fixunstfdi";
|
|
Names[RTLIB::FPTOUINT_PPCF128_I128] = "__fixunstfti";
|
|
Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf";
|
|
Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf";
|
|
Names[RTLIB::SINTTOFP_I32_F80] = "__floatsixf";
|
|
Names[RTLIB::SINTTOFP_I32_F128] = "__floatsitf";
|
|
Names[RTLIB::SINTTOFP_I32_PPCF128] = "__floatsitf";
|
|
Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf";
|
|
Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf";
|
|
Names[RTLIB::SINTTOFP_I64_F80] = "__floatdixf";
|
|
Names[RTLIB::SINTTOFP_I64_F128] = "__floatditf";
|
|
Names[RTLIB::SINTTOFP_I64_PPCF128] = "__floatditf";
|
|
Names[RTLIB::SINTTOFP_I128_F32] = "__floattisf";
|
|
Names[RTLIB::SINTTOFP_I128_F64] = "__floattidf";
|
|
Names[RTLIB::SINTTOFP_I128_F80] = "__floattixf";
|
|
Names[RTLIB::SINTTOFP_I128_F128] = "__floattitf";
|
|
Names[RTLIB::SINTTOFP_I128_PPCF128] = "__floattitf";
|
|
Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf";
|
|
Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf";
|
|
Names[RTLIB::UINTTOFP_I32_F80] = "__floatunsixf";
|
|
Names[RTLIB::UINTTOFP_I32_F128] = "__floatunsitf";
|
|
Names[RTLIB::UINTTOFP_I32_PPCF128] = "__floatunsitf";
|
|
Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf";
|
|
Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf";
|
|
Names[RTLIB::UINTTOFP_I64_F80] = "__floatundixf";
|
|
Names[RTLIB::UINTTOFP_I64_F128] = "__floatunditf";
|
|
Names[RTLIB::UINTTOFP_I64_PPCF128] = "__floatunditf";
|
|
Names[RTLIB::UINTTOFP_I128_F32] = "__floatuntisf";
|
|
Names[RTLIB::UINTTOFP_I128_F64] = "__floatuntidf";
|
|
Names[RTLIB::UINTTOFP_I128_F80] = "__floatuntixf";
|
|
Names[RTLIB::UINTTOFP_I128_F128] = "__floatuntitf";
|
|
Names[RTLIB::UINTTOFP_I128_PPCF128] = "__floatuntitf";
|
|
Names[RTLIB::OEQ_F32] = "__eqsf2";
|
|
Names[RTLIB::OEQ_F64] = "__eqdf2";
|
|
Names[RTLIB::OEQ_F128] = "__eqtf2";
|
|
Names[RTLIB::UNE_F32] = "__nesf2";
|
|
Names[RTLIB::UNE_F64] = "__nedf2";
|
|
Names[RTLIB::UNE_F128] = "__netf2";
|
|
Names[RTLIB::OGE_F32] = "__gesf2";
|
|
Names[RTLIB::OGE_F64] = "__gedf2";
|
|
Names[RTLIB::OGE_F128] = "__getf2";
|
|
Names[RTLIB::OLT_F32] = "__ltsf2";
|
|
Names[RTLIB::OLT_F64] = "__ltdf2";
|
|
Names[RTLIB::OLT_F128] = "__lttf2";
|
|
Names[RTLIB::OLE_F32] = "__lesf2";
|
|
Names[RTLIB::OLE_F64] = "__ledf2";
|
|
Names[RTLIB::OLE_F128] = "__letf2";
|
|
Names[RTLIB::OGT_F32] = "__gtsf2";
|
|
Names[RTLIB::OGT_F64] = "__gtdf2";
|
|
Names[RTLIB::OGT_F128] = "__gttf2";
|
|
Names[RTLIB::UO_F32] = "__unordsf2";
|
|
Names[RTLIB::UO_F64] = "__unorddf2";
|
|
Names[RTLIB::UO_F128] = "__unordtf2";
|
|
Names[RTLIB::O_F32] = "__unordsf2";
|
|
Names[RTLIB::O_F64] = "__unorddf2";
|
|
Names[RTLIB::O_F128] = "__unordtf2";
|
|
Names[RTLIB::MEMCPY] = "memcpy";
|
|
Names[RTLIB::MEMMOVE] = "memmove";
|
|
Names[RTLIB::MEMSET] = "memset";
|
|
Names[RTLIB::UNWIND_RESUME] = "_Unwind_Resume";
|
|
Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_1] = "__sync_val_compare_and_swap_1";
|
|
Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_2] = "__sync_val_compare_and_swap_2";
|
|
Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_4] = "__sync_val_compare_and_swap_4";
|
|
Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_8] = "__sync_val_compare_and_swap_8";
|
|
Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_16] = "__sync_val_compare_and_swap_16";
|
|
Names[RTLIB::SYNC_LOCK_TEST_AND_SET_1] = "__sync_lock_test_and_set_1";
|
|
Names[RTLIB::SYNC_LOCK_TEST_AND_SET_2] = "__sync_lock_test_and_set_2";
|
|
Names[RTLIB::SYNC_LOCK_TEST_AND_SET_4] = "__sync_lock_test_and_set_4";
|
|
Names[RTLIB::SYNC_LOCK_TEST_AND_SET_8] = "__sync_lock_test_and_set_8";
|
|
Names[RTLIB::SYNC_LOCK_TEST_AND_SET_16] = "__sync_lock_test_and_set_16";
|
|
Names[RTLIB::SYNC_FETCH_AND_ADD_1] = "__sync_fetch_and_add_1";
|
|
Names[RTLIB::SYNC_FETCH_AND_ADD_2] = "__sync_fetch_and_add_2";
|
|
Names[RTLIB::SYNC_FETCH_AND_ADD_4] = "__sync_fetch_and_add_4";
|
|
Names[RTLIB::SYNC_FETCH_AND_ADD_8] = "__sync_fetch_and_add_8";
|
|
Names[RTLIB::SYNC_FETCH_AND_ADD_16] = "__sync_fetch_and_add_16";
|
|
Names[RTLIB::SYNC_FETCH_AND_SUB_1] = "__sync_fetch_and_sub_1";
|
|
Names[RTLIB::SYNC_FETCH_AND_SUB_2] = "__sync_fetch_and_sub_2";
|
|
Names[RTLIB::SYNC_FETCH_AND_SUB_4] = "__sync_fetch_and_sub_4";
|
|
Names[RTLIB::SYNC_FETCH_AND_SUB_8] = "__sync_fetch_and_sub_8";
|
|
Names[RTLIB::SYNC_FETCH_AND_SUB_16] = "__sync_fetch_and_sub_16";
|
|
Names[RTLIB::SYNC_FETCH_AND_AND_1] = "__sync_fetch_and_and_1";
|
|
Names[RTLIB::SYNC_FETCH_AND_AND_2] = "__sync_fetch_and_and_2";
|
|
Names[RTLIB::SYNC_FETCH_AND_AND_4] = "__sync_fetch_and_and_4";
|
|
Names[RTLIB::SYNC_FETCH_AND_AND_8] = "__sync_fetch_and_and_8";
|
|
Names[RTLIB::SYNC_FETCH_AND_AND_16] = "__sync_fetch_and_and_16";
|
|
Names[RTLIB::SYNC_FETCH_AND_OR_1] = "__sync_fetch_and_or_1";
|
|
Names[RTLIB::SYNC_FETCH_AND_OR_2] = "__sync_fetch_and_or_2";
|
|
Names[RTLIB::SYNC_FETCH_AND_OR_4] = "__sync_fetch_and_or_4";
|
|
Names[RTLIB::SYNC_FETCH_AND_OR_8] = "__sync_fetch_and_or_8";
|
|
Names[RTLIB::SYNC_FETCH_AND_OR_16] = "__sync_fetch_and_or_16";
|
|
Names[RTLIB::SYNC_FETCH_AND_XOR_1] = "__sync_fetch_and_xor_1";
|
|
Names[RTLIB::SYNC_FETCH_AND_XOR_2] = "__sync_fetch_and_xor_2";
|
|
Names[RTLIB::SYNC_FETCH_AND_XOR_4] = "__sync_fetch_and_xor_4";
|
|
Names[RTLIB::SYNC_FETCH_AND_XOR_8] = "__sync_fetch_and_xor_8";
|
|
Names[RTLIB::SYNC_FETCH_AND_XOR_16] = "__sync_fetch_and_xor_16";
|
|
Names[RTLIB::SYNC_FETCH_AND_NAND_1] = "__sync_fetch_and_nand_1";
|
|
Names[RTLIB::SYNC_FETCH_AND_NAND_2] = "__sync_fetch_and_nand_2";
|
|
Names[RTLIB::SYNC_FETCH_AND_NAND_4] = "__sync_fetch_and_nand_4";
|
|
Names[RTLIB::SYNC_FETCH_AND_NAND_8] = "__sync_fetch_and_nand_8";
|
|
Names[RTLIB::SYNC_FETCH_AND_NAND_16] = "__sync_fetch_and_nand_16";
|
|
Names[RTLIB::SYNC_FETCH_AND_MAX_1] = "__sync_fetch_and_max_1";
|
|
Names[RTLIB::SYNC_FETCH_AND_MAX_2] = "__sync_fetch_and_max_2";
|
|
Names[RTLIB::SYNC_FETCH_AND_MAX_4] = "__sync_fetch_and_max_4";
|
|
Names[RTLIB::SYNC_FETCH_AND_MAX_8] = "__sync_fetch_and_max_8";
|
|
Names[RTLIB::SYNC_FETCH_AND_MAX_16] = "__sync_fetch_and_max_16";
|
|
Names[RTLIB::SYNC_FETCH_AND_UMAX_1] = "__sync_fetch_and_umax_1";
|
|
Names[RTLIB::SYNC_FETCH_AND_UMAX_2] = "__sync_fetch_and_umax_2";
|
|
Names[RTLIB::SYNC_FETCH_AND_UMAX_4] = "__sync_fetch_and_umax_4";
|
|
Names[RTLIB::SYNC_FETCH_AND_UMAX_8] = "__sync_fetch_and_umax_8";
|
|
Names[RTLIB::SYNC_FETCH_AND_UMAX_16] = "__sync_fetch_and_umax_16";
|
|
Names[RTLIB::SYNC_FETCH_AND_MIN_1] = "__sync_fetch_and_min_1";
|
|
Names[RTLIB::SYNC_FETCH_AND_MIN_2] = "__sync_fetch_and_min_2";
|
|
Names[RTLIB::SYNC_FETCH_AND_MIN_4] = "__sync_fetch_and_min_4";
|
|
Names[RTLIB::SYNC_FETCH_AND_MIN_8] = "__sync_fetch_and_min_8";
|
|
Names[RTLIB::SYNC_FETCH_AND_MIN_16] = "__sync_fetch_and_min_16";
|
|
Names[RTLIB::SYNC_FETCH_AND_UMIN_1] = "__sync_fetch_and_umin_1";
|
|
Names[RTLIB::SYNC_FETCH_AND_UMIN_2] = "__sync_fetch_and_umin_2";
|
|
Names[RTLIB::SYNC_FETCH_AND_UMIN_4] = "__sync_fetch_and_umin_4";
|
|
Names[RTLIB::SYNC_FETCH_AND_UMIN_8] = "__sync_fetch_and_umin_8";
|
|
Names[RTLIB::SYNC_FETCH_AND_UMIN_16] = "__sync_fetch_and_umin_16";
|
|
|
|
if (TT.getEnvironment() == Triple::GNU) {
|
|
Names[RTLIB::SINCOS_F32] = "sincosf";
|
|
Names[RTLIB::SINCOS_F64] = "sincos";
|
|
Names[RTLIB::SINCOS_F80] = "sincosl";
|
|
Names[RTLIB::SINCOS_F128] = "sincosl";
|
|
Names[RTLIB::SINCOS_PPCF128] = "sincosl";
|
|
} else {
|
|
// These are generally not available.
|
|
Names[RTLIB::SINCOS_F32] = nullptr;
|
|
Names[RTLIB::SINCOS_F64] = nullptr;
|
|
Names[RTLIB::SINCOS_F80] = nullptr;
|
|
Names[RTLIB::SINCOS_F128] = nullptr;
|
|
Names[RTLIB::SINCOS_PPCF128] = nullptr;
|
|
}
|
|
|
|
if (!TT.isOSOpenBSD()) {
|
|
Names[RTLIB::STACKPROTECTOR_CHECK_FAIL] = "__stack_chk_fail";
|
|
} else {
|
|
// These are generally not available.
|
|
Names[RTLIB::STACKPROTECTOR_CHECK_FAIL] = nullptr;
|
|
}
|
|
|
|
// For f16/f32 conversions, Darwin uses the standard naming scheme, instead
|
|
// of the gnueabi-style __gnu_*_ieee.
|
|
// FIXME: What about other targets?
|
|
if (TT.isOSDarwin()) {
|
|
Names[RTLIB::FPEXT_F16_F32] = "__extendhfsf2";
|
|
Names[RTLIB::FPROUND_F32_F16] = "__truncsfhf2";
|
|
}
|
|
}
|
|
|
|
/// InitLibcallCallingConvs - Set default libcall CallingConvs.
|
|
///
|
|
static void InitLibcallCallingConvs(CallingConv::ID *CCs) {
|
|
for (int i = 0; i < RTLIB::UNKNOWN_LIBCALL; ++i) {
|
|
CCs[i] = CallingConv::C;
|
|
}
|
|
}
|
|
|
|
/// getFPEXT - Return the FPEXT_*_* value for the given types, or
|
|
/// UNKNOWN_LIBCALL if there is none.
|
|
RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) {
|
|
if (OpVT == MVT::f16) {
|
|
if (RetVT == MVT::f32)
|
|
return FPEXT_F16_F32;
|
|
} else if (OpVT == MVT::f32) {
|
|
if (RetVT == MVT::f64)
|
|
return FPEXT_F32_F64;
|
|
if (RetVT == MVT::f128)
|
|
return FPEXT_F32_F128;
|
|
} else if (OpVT == MVT::f64) {
|
|
if (RetVT == MVT::f128)
|
|
return FPEXT_F64_F128;
|
|
}
|
|
|
|
return UNKNOWN_LIBCALL;
|
|
}
|
|
|
|
/// getFPROUND - Return the FPROUND_*_* value for the given types, or
|
|
/// UNKNOWN_LIBCALL if there is none.
|
|
RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) {
|
|
if (RetVT == MVT::f16) {
|
|
if (OpVT == MVT::f32)
|
|
return FPROUND_F32_F16;
|
|
if (OpVT == MVT::f64)
|
|
return FPROUND_F64_F16;
|
|
if (OpVT == MVT::f80)
|
|
return FPROUND_F80_F16;
|
|
if (OpVT == MVT::f128)
|
|
return FPROUND_F128_F16;
|
|
if (OpVT == MVT::ppcf128)
|
|
return FPROUND_PPCF128_F16;
|
|
} else if (RetVT == MVT::f32) {
|
|
if (OpVT == MVT::f64)
|
|
return FPROUND_F64_F32;
|
|
if (OpVT == MVT::f80)
|
|
return FPROUND_F80_F32;
|
|
if (OpVT == MVT::f128)
|
|
return FPROUND_F128_F32;
|
|
if (OpVT == MVT::ppcf128)
|
|
return FPROUND_PPCF128_F32;
|
|
} else if (RetVT == MVT::f64) {
|
|
if (OpVT == MVT::f80)
|
|
return FPROUND_F80_F64;
|
|
if (OpVT == MVT::f128)
|
|
return FPROUND_F128_F64;
|
|
if (OpVT == MVT::ppcf128)
|
|
return FPROUND_PPCF128_F64;
|
|
}
|
|
|
|
return UNKNOWN_LIBCALL;
|
|
}
|
|
|
|
/// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
|
|
/// UNKNOWN_LIBCALL if there is none.
|
|
RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) {
|
|
if (OpVT == MVT::f32) {
|
|
if (RetVT == MVT::i8)
|
|
return FPTOSINT_F32_I8;
|
|
if (RetVT == MVT::i16)
|
|
return FPTOSINT_F32_I16;
|
|
if (RetVT == MVT::i32)
|
|
return FPTOSINT_F32_I32;
|
|
if (RetVT == MVT::i64)
|
|
return FPTOSINT_F32_I64;
|
|
if (RetVT == MVT::i128)
|
|
return FPTOSINT_F32_I128;
|
|
} else if (OpVT == MVT::f64) {
|
|
if (RetVT == MVT::i8)
|
|
return FPTOSINT_F64_I8;
|
|
if (RetVT == MVT::i16)
|
|
return FPTOSINT_F64_I16;
|
|
if (RetVT == MVT::i32)
|
|
return FPTOSINT_F64_I32;
|
|
if (RetVT == MVT::i64)
|
|
return FPTOSINT_F64_I64;
|
|
if (RetVT == MVT::i128)
|
|
return FPTOSINT_F64_I128;
|
|
} else if (OpVT == MVT::f80) {
|
|
if (RetVT == MVT::i32)
|
|
return FPTOSINT_F80_I32;
|
|
if (RetVT == MVT::i64)
|
|
return FPTOSINT_F80_I64;
|
|
if (RetVT == MVT::i128)
|
|
return FPTOSINT_F80_I128;
|
|
} else if (OpVT == MVT::f128) {
|
|
if (RetVT == MVT::i32)
|
|
return FPTOSINT_F128_I32;
|
|
if (RetVT == MVT::i64)
|
|
return FPTOSINT_F128_I64;
|
|
if (RetVT == MVT::i128)
|
|
return FPTOSINT_F128_I128;
|
|
} else if (OpVT == MVT::ppcf128) {
|
|
if (RetVT == MVT::i32)
|
|
return FPTOSINT_PPCF128_I32;
|
|
if (RetVT == MVT::i64)
|
|
return FPTOSINT_PPCF128_I64;
|
|
if (RetVT == MVT::i128)
|
|
return FPTOSINT_PPCF128_I128;
|
|
}
|
|
return UNKNOWN_LIBCALL;
|
|
}
|
|
|
|
/// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
|
|
/// UNKNOWN_LIBCALL if there is none.
|
|
RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) {
|
|
if (OpVT == MVT::f32) {
|
|
if (RetVT == MVT::i8)
|
|
return FPTOUINT_F32_I8;
|
|
if (RetVT == MVT::i16)
|
|
return FPTOUINT_F32_I16;
|
|
if (RetVT == MVT::i32)
|
|
return FPTOUINT_F32_I32;
|
|
if (RetVT == MVT::i64)
|
|
return FPTOUINT_F32_I64;
|
|
if (RetVT == MVT::i128)
|
|
return FPTOUINT_F32_I128;
|
|
} else if (OpVT == MVT::f64) {
|
|
if (RetVT == MVT::i8)
|
|
return FPTOUINT_F64_I8;
|
|
if (RetVT == MVT::i16)
|
|
return FPTOUINT_F64_I16;
|
|
if (RetVT == MVT::i32)
|
|
return FPTOUINT_F64_I32;
|
|
if (RetVT == MVT::i64)
|
|
return FPTOUINT_F64_I64;
|
|
if (RetVT == MVT::i128)
|
|
return FPTOUINT_F64_I128;
|
|
} else if (OpVT == MVT::f80) {
|
|
if (RetVT == MVT::i32)
|
|
return FPTOUINT_F80_I32;
|
|
if (RetVT == MVT::i64)
|
|
return FPTOUINT_F80_I64;
|
|
if (RetVT == MVT::i128)
|
|
return FPTOUINT_F80_I128;
|
|
} else if (OpVT == MVT::f128) {
|
|
if (RetVT == MVT::i32)
|
|
return FPTOUINT_F128_I32;
|
|
if (RetVT == MVT::i64)
|
|
return FPTOUINT_F128_I64;
|
|
if (RetVT == MVT::i128)
|
|
return FPTOUINT_F128_I128;
|
|
} else if (OpVT == MVT::ppcf128) {
|
|
if (RetVT == MVT::i32)
|
|
return FPTOUINT_PPCF128_I32;
|
|
if (RetVT == MVT::i64)
|
|
return FPTOUINT_PPCF128_I64;
|
|
if (RetVT == MVT::i128)
|
|
return FPTOUINT_PPCF128_I128;
|
|
}
|
|
return UNKNOWN_LIBCALL;
|
|
}
|
|
|
|
/// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
|
|
/// UNKNOWN_LIBCALL if there is none.
|
|
RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) {
|
|
if (OpVT == MVT::i32) {
|
|
if (RetVT == MVT::f32)
|
|
return SINTTOFP_I32_F32;
|
|
if (RetVT == MVT::f64)
|
|
return SINTTOFP_I32_F64;
|
|
if (RetVT == MVT::f80)
|
|
return SINTTOFP_I32_F80;
|
|
if (RetVT == MVT::f128)
|
|
return SINTTOFP_I32_F128;
|
|
if (RetVT == MVT::ppcf128)
|
|
return SINTTOFP_I32_PPCF128;
|
|
} else if (OpVT == MVT::i64) {
|
|
if (RetVT == MVT::f32)
|
|
return SINTTOFP_I64_F32;
|
|
if (RetVT == MVT::f64)
|
|
return SINTTOFP_I64_F64;
|
|
if (RetVT == MVT::f80)
|
|
return SINTTOFP_I64_F80;
|
|
if (RetVT == MVT::f128)
|
|
return SINTTOFP_I64_F128;
|
|
if (RetVT == MVT::ppcf128)
|
|
return SINTTOFP_I64_PPCF128;
|
|
} else if (OpVT == MVT::i128) {
|
|
if (RetVT == MVT::f32)
|
|
return SINTTOFP_I128_F32;
|
|
if (RetVT == MVT::f64)
|
|
return SINTTOFP_I128_F64;
|
|
if (RetVT == MVT::f80)
|
|
return SINTTOFP_I128_F80;
|
|
if (RetVT == MVT::f128)
|
|
return SINTTOFP_I128_F128;
|
|
if (RetVT == MVT::ppcf128)
|
|
return SINTTOFP_I128_PPCF128;
|
|
}
|
|
return UNKNOWN_LIBCALL;
|
|
}
|
|
|
|
/// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
|
|
/// UNKNOWN_LIBCALL if there is none.
|
|
RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) {
|
|
if (OpVT == MVT::i32) {
|
|
if (RetVT == MVT::f32)
|
|
return UINTTOFP_I32_F32;
|
|
if (RetVT == MVT::f64)
|
|
return UINTTOFP_I32_F64;
|
|
if (RetVT == MVT::f80)
|
|
return UINTTOFP_I32_F80;
|
|
if (RetVT == MVT::f128)
|
|
return UINTTOFP_I32_F128;
|
|
if (RetVT == MVT::ppcf128)
|
|
return UINTTOFP_I32_PPCF128;
|
|
} else if (OpVT == MVT::i64) {
|
|
if (RetVT == MVT::f32)
|
|
return UINTTOFP_I64_F32;
|
|
if (RetVT == MVT::f64)
|
|
return UINTTOFP_I64_F64;
|
|
if (RetVT == MVT::f80)
|
|
return UINTTOFP_I64_F80;
|
|
if (RetVT == MVT::f128)
|
|
return UINTTOFP_I64_F128;
|
|
if (RetVT == MVT::ppcf128)
|
|
return UINTTOFP_I64_PPCF128;
|
|
} else if (OpVT == MVT::i128) {
|
|
if (RetVT == MVT::f32)
|
|
return UINTTOFP_I128_F32;
|
|
if (RetVT == MVT::f64)
|
|
return UINTTOFP_I128_F64;
|
|
if (RetVT == MVT::f80)
|
|
return UINTTOFP_I128_F80;
|
|
if (RetVT == MVT::f128)
|
|
return UINTTOFP_I128_F128;
|
|
if (RetVT == MVT::ppcf128)
|
|
return UINTTOFP_I128_PPCF128;
|
|
}
|
|
return UNKNOWN_LIBCALL;
|
|
}
|
|
|
|
RTLIB::Libcall RTLIB::getATOMIC(unsigned Opc, MVT VT) {
|
|
#define OP_TO_LIBCALL(Name, Enum) \
|
|
case Name: \
|
|
switch (VT.SimpleTy) { \
|
|
default: \
|
|
return UNKNOWN_LIBCALL; \
|
|
case MVT::i8: \
|
|
return Enum##_1; \
|
|
case MVT::i16: \
|
|
return Enum##_2; \
|
|
case MVT::i32: \
|
|
return Enum##_4; \
|
|
case MVT::i64: \
|
|
return Enum##_8; \
|
|
case MVT::i128: \
|
|
return Enum##_16; \
|
|
}
|
|
|
|
switch (Opc) {
|
|
OP_TO_LIBCALL(ISD::ATOMIC_SWAP, SYNC_LOCK_TEST_AND_SET)
|
|
OP_TO_LIBCALL(ISD::ATOMIC_CMP_SWAP, SYNC_VAL_COMPARE_AND_SWAP)
|
|
OP_TO_LIBCALL(ISD::ATOMIC_LOAD_ADD, SYNC_FETCH_AND_ADD)
|
|
OP_TO_LIBCALL(ISD::ATOMIC_LOAD_SUB, SYNC_FETCH_AND_SUB)
|
|
OP_TO_LIBCALL(ISD::ATOMIC_LOAD_AND, SYNC_FETCH_AND_AND)
|
|
OP_TO_LIBCALL(ISD::ATOMIC_LOAD_OR, SYNC_FETCH_AND_OR)
|
|
OP_TO_LIBCALL(ISD::ATOMIC_LOAD_XOR, SYNC_FETCH_AND_XOR)
|
|
OP_TO_LIBCALL(ISD::ATOMIC_LOAD_NAND, SYNC_FETCH_AND_NAND)
|
|
OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MAX, SYNC_FETCH_AND_MAX)
|
|
OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMAX, SYNC_FETCH_AND_UMAX)
|
|
OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MIN, SYNC_FETCH_AND_MIN)
|
|
OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMIN, SYNC_FETCH_AND_UMIN)
|
|
}
|
|
|
|
#undef OP_TO_LIBCALL
|
|
|
|
return UNKNOWN_LIBCALL;
|
|
}
|
|
|
|
/// InitCmpLibcallCCs - Set default comparison libcall CC.
|
|
///
|
|
static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
|
|
memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
|
|
CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
|
|
CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
|
|
CCs[RTLIB::OEQ_F128] = ISD::SETEQ;
|
|
CCs[RTLIB::UNE_F32] = ISD::SETNE;
|
|
CCs[RTLIB::UNE_F64] = ISD::SETNE;
|
|
CCs[RTLIB::UNE_F128] = ISD::SETNE;
|
|
CCs[RTLIB::OGE_F32] = ISD::SETGE;
|
|
CCs[RTLIB::OGE_F64] = ISD::SETGE;
|
|
CCs[RTLIB::OGE_F128] = ISD::SETGE;
|
|
CCs[RTLIB::OLT_F32] = ISD::SETLT;
|
|
CCs[RTLIB::OLT_F64] = ISD::SETLT;
|
|
CCs[RTLIB::OLT_F128] = ISD::SETLT;
|
|
CCs[RTLIB::OLE_F32] = ISD::SETLE;
|
|
CCs[RTLIB::OLE_F64] = ISD::SETLE;
|
|
CCs[RTLIB::OLE_F128] = ISD::SETLE;
|
|
CCs[RTLIB::OGT_F32] = ISD::SETGT;
|
|
CCs[RTLIB::OGT_F64] = ISD::SETGT;
|
|
CCs[RTLIB::OGT_F128] = ISD::SETGT;
|
|
CCs[RTLIB::UO_F32] = ISD::SETNE;
|
|
CCs[RTLIB::UO_F64] = ISD::SETNE;
|
|
CCs[RTLIB::UO_F128] = ISD::SETNE;
|
|
CCs[RTLIB::O_F32] = ISD::SETEQ;
|
|
CCs[RTLIB::O_F64] = ISD::SETEQ;
|
|
CCs[RTLIB::O_F128] = ISD::SETEQ;
|
|
}
|
|
|
|
/// NOTE: The TargetMachine owns TLOF.
|
|
TargetLoweringBase::TargetLoweringBase(const TargetMachine &tm) : TM(tm) {
|
|
initActions();
|
|
|
|
// Perform these initializations only once.
|
|
MaxStoresPerMemset = MaxStoresPerMemcpy = MaxStoresPerMemmove = 8;
|
|
MaxStoresPerMemsetOptSize = MaxStoresPerMemcpyOptSize
|
|
= MaxStoresPerMemmoveOptSize = 4;
|
|
UseUnderscoreSetJmp = false;
|
|
UseUnderscoreLongJmp = false;
|
|
SelectIsExpensive = false;
|
|
HasMultipleConditionRegisters = false;
|
|
HasExtractBitsInsn = false;
|
|
FsqrtIsCheap = false;
|
|
JumpIsExpensive = JumpIsExpensiveOverride;
|
|
PredictableSelectIsExpensive = false;
|
|
MaskAndBranchFoldingIsLegal = false;
|
|
EnableExtLdPromotion = false;
|
|
HasFloatingPointExceptions = true;
|
|
StackPointerRegisterToSaveRestore = 0;
|
|
BooleanContents = UndefinedBooleanContent;
|
|
BooleanFloatContents = UndefinedBooleanContent;
|
|
BooleanVectorContents = UndefinedBooleanContent;
|
|
SchedPreferenceInfo = Sched::ILP;
|
|
JumpBufSize = 0;
|
|
JumpBufAlignment = 0;
|
|
MinFunctionAlignment = 0;
|
|
PrefFunctionAlignment = 0;
|
|
PrefLoopAlignment = 0;
|
|
GatherAllAliasesMaxDepth = 6;
|
|
MinStackArgumentAlignment = 1;
|
|
InsertFencesForAtomic = false;
|
|
MinimumJumpTableEntries = 4;
|
|
|
|
InitLibcallNames(LibcallRoutineNames, TM.getTargetTriple());
|
|
InitCmpLibcallCCs(CmpLibcallCCs);
|
|
InitLibcallCallingConvs(LibcallCallingConvs);
|
|
}
|
|
|
|
void TargetLoweringBase::initActions() {
|
|
// All operations default to being supported.
|
|
memset(OpActions, 0, sizeof(OpActions));
|
|
memset(LoadExtActions, 0, sizeof(LoadExtActions));
|
|
memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
|
|
memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
|
|
memset(CondCodeActions, 0, sizeof(CondCodeActions));
|
|
memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*));
|
|
memset(TargetDAGCombineArray, 0, array_lengthof(TargetDAGCombineArray));
|
|
|
|
// Set default actions for various operations.
|
|
for (MVT VT : MVT::all_valuetypes()) {
|
|
// Default all indexed load / store to expand.
|
|
for (unsigned IM = (unsigned)ISD::PRE_INC;
|
|
IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
|
|
setIndexedLoadAction(IM, VT, Expand);
|
|
setIndexedStoreAction(IM, VT, Expand);
|
|
}
|
|
|
|
// Most backends expect to see the node which just returns the value loaded.
|
|
setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, VT, Expand);
|
|
|
|
// These operations default to expand.
|
|
setOperationAction(ISD::FGETSIGN, VT, Expand);
|
|
setOperationAction(ISD::CONCAT_VECTORS, VT, Expand);
|
|
setOperationAction(ISD::FMINNUM, VT, Expand);
|
|
setOperationAction(ISD::FMAXNUM, VT, Expand);
|
|
setOperationAction(ISD::FMINNAN, VT, Expand);
|
|
setOperationAction(ISD::FMAXNAN, VT, Expand);
|
|
setOperationAction(ISD::FMAD, VT, Expand);
|
|
setOperationAction(ISD::SMIN, VT, Expand);
|
|
setOperationAction(ISD::SMAX, VT, Expand);
|
|
setOperationAction(ISD::UMIN, VT, Expand);
|
|
setOperationAction(ISD::UMAX, VT, Expand);
|
|
|
|
// Overflow operations default to expand
|
|
setOperationAction(ISD::SADDO, VT, Expand);
|
|
setOperationAction(ISD::SSUBO, VT, Expand);
|
|
setOperationAction(ISD::UADDO, VT, Expand);
|
|
setOperationAction(ISD::USUBO, VT, Expand);
|
|
setOperationAction(ISD::SMULO, VT, Expand);
|
|
setOperationAction(ISD::UMULO, VT, Expand);
|
|
setOperationAction(ISD::UABSDIFF, VT, Expand);
|
|
setOperationAction(ISD::SABSDIFF, VT, Expand);
|
|
|
|
// These library functions default to expand.
|
|
setOperationAction(ISD::FROUND, VT, Expand);
|
|
|
|
// These operations default to expand for vector types.
|
|
if (VT.isVector()) {
|
|
setOperationAction(ISD::FCOPYSIGN, VT, Expand);
|
|
setOperationAction(ISD::ANY_EXTEND_VECTOR_INREG, VT, Expand);
|
|
setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Expand);
|
|
setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Expand);
|
|
}
|
|
}
|
|
|
|
// Most targets ignore the @llvm.prefetch intrinsic.
|
|
setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
|
|
|
|
// Most targets also ignore the @llvm.readcyclecounter intrinsic.
|
|
setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Expand);
|
|
|
|
// ConstantFP nodes default to expand. Targets can either change this to
|
|
// Legal, in which case all fp constants are legal, or use isFPImmLegal()
|
|
// to optimize expansions for certain constants.
|
|
setOperationAction(ISD::ConstantFP, MVT::f16, Expand);
|
|
setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
|
|
setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
|
|
setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
|
|
setOperationAction(ISD::ConstantFP, MVT::f128, Expand);
|
|
|
|
// These library functions default to expand.
|
|
for (MVT VT : {MVT::f32, MVT::f64, MVT::f128}) {
|
|
setOperationAction(ISD::FLOG , VT, Expand);
|
|
setOperationAction(ISD::FLOG2, VT, Expand);
|
|
setOperationAction(ISD::FLOG10, VT, Expand);
|
|
setOperationAction(ISD::FEXP , VT, Expand);
|
|
setOperationAction(ISD::FEXP2, VT, Expand);
|
|
setOperationAction(ISD::FFLOOR, VT, Expand);
|
|
setOperationAction(ISD::FMINNUM, VT, Expand);
|
|
setOperationAction(ISD::FMAXNUM, VT, Expand);
|
|
setOperationAction(ISD::FNEARBYINT, VT, Expand);
|
|
setOperationAction(ISD::FCEIL, VT, Expand);
|
|
setOperationAction(ISD::FRINT, VT, Expand);
|
|
setOperationAction(ISD::FTRUNC, VT, Expand);
|
|
setOperationAction(ISD::FROUND, VT, Expand);
|
|
}
|
|
|
|
// Default ISD::TRAP to expand (which turns it into abort).
|
|
setOperationAction(ISD::TRAP, MVT::Other, Expand);
|
|
|
|
// On most systems, DEBUGTRAP and TRAP have no difference. The "Expand"
|
|
// here is to inform DAG Legalizer to replace DEBUGTRAP with TRAP.
|
|
//
|
|
setOperationAction(ISD::DEBUGTRAP, MVT::Other, Expand);
|
|
}
|
|
|
|
MVT TargetLoweringBase::getScalarShiftAmountTy(const DataLayout &DL,
|
|
EVT) const {
|
|
return MVT::getIntegerVT(8 * DL.getPointerSize(0));
|
|
}
|
|
|
|
EVT TargetLoweringBase::getShiftAmountTy(EVT LHSTy,
|
|
const DataLayout &DL) const {
|
|
assert(LHSTy.isInteger() && "Shift amount is not an integer type!");
|
|
if (LHSTy.isVector())
|
|
return LHSTy;
|
|
return getScalarShiftAmountTy(DL, LHSTy);
|
|
}
|
|
|
|
/// canOpTrap - Returns true if the operation can trap for the value type.
|
|
/// VT must be a legal type.
|
|
bool TargetLoweringBase::canOpTrap(unsigned Op, EVT VT) const {
|
|
assert(isTypeLegal(VT));
|
|
switch (Op) {
|
|
default:
|
|
return false;
|
|
case ISD::FDIV:
|
|
case ISD::FREM:
|
|
case ISD::SDIV:
|
|
case ISD::UDIV:
|
|
case ISD::SREM:
|
|
case ISD::UREM:
|
|
return true;
|
|
}
|
|
}
|
|
|
|
void TargetLoweringBase::setJumpIsExpensive(bool isExpensive) {
|
|
// If the command-line option was specified, ignore this request.
|
|
if (!JumpIsExpensiveOverride.getNumOccurrences())
|
|
JumpIsExpensive = isExpensive;
|
|
}
|
|
|
|
TargetLoweringBase::LegalizeKind
|
|
TargetLoweringBase::getTypeConversion(LLVMContext &Context, EVT VT) const {
|
|
// If this is a simple type, use the ComputeRegisterProp mechanism.
|
|
if (VT.isSimple()) {
|
|
MVT SVT = VT.getSimpleVT();
|
|
assert((unsigned)SVT.SimpleTy < array_lengthof(TransformToType));
|
|
MVT NVT = TransformToType[SVT.SimpleTy];
|
|
LegalizeTypeAction LA = ValueTypeActions.getTypeAction(SVT);
|
|
|
|
assert((LA == TypeLegal || LA == TypeSoftenFloat ||
|
|
ValueTypeActions.getTypeAction(NVT) != TypePromoteInteger) &&
|
|
"Promote may not follow Expand or Promote");
|
|
|
|
if (LA == TypeSplitVector)
|
|
return LegalizeKind(LA,
|
|
EVT::getVectorVT(Context, SVT.getVectorElementType(),
|
|
SVT.getVectorNumElements() / 2));
|
|
if (LA == TypeScalarizeVector)
|
|
return LegalizeKind(LA, SVT.getVectorElementType());
|
|
return LegalizeKind(LA, NVT);
|
|
}
|
|
|
|
// Handle Extended Scalar Types.
|
|
if (!VT.isVector()) {
|
|
assert(VT.isInteger() && "Float types must be simple");
|
|
unsigned BitSize = VT.getSizeInBits();
|
|
// First promote to a power-of-two size, then expand if necessary.
|
|
if (BitSize < 8 || !isPowerOf2_32(BitSize)) {
|
|
EVT NVT = VT.getRoundIntegerType(Context);
|
|
assert(NVT != VT && "Unable to round integer VT");
|
|
LegalizeKind NextStep = getTypeConversion(Context, NVT);
|
|
// Avoid multi-step promotion.
|
|
if (NextStep.first == TypePromoteInteger)
|
|
return NextStep;
|
|
// Return rounded integer type.
|
|
return LegalizeKind(TypePromoteInteger, NVT);
|
|
}
|
|
|
|
return LegalizeKind(TypeExpandInteger,
|
|
EVT::getIntegerVT(Context, VT.getSizeInBits() / 2));
|
|
}
|
|
|
|
// Handle vector types.
|
|
unsigned NumElts = VT.getVectorNumElements();
|
|
EVT EltVT = VT.getVectorElementType();
|
|
|
|
// Vectors with only one element are always scalarized.
|
|
if (NumElts == 1)
|
|
return LegalizeKind(TypeScalarizeVector, EltVT);
|
|
|
|
// Try to widen vector elements until the element type is a power of two and
|
|
// promote it to a legal type later on, for example:
|
|
// <3 x i8> -> <4 x i8> -> <4 x i32>
|
|
if (EltVT.isInteger()) {
|
|
// Vectors with a number of elements that is not a power of two are always
|
|
// widened, for example <3 x i8> -> <4 x i8>.
|
|
if (!VT.isPow2VectorType()) {
|
|
NumElts = (unsigned)NextPowerOf2(NumElts);
|
|
EVT NVT = EVT::getVectorVT(Context, EltVT, NumElts);
|
|
return LegalizeKind(TypeWidenVector, NVT);
|
|
}
|
|
|
|
// Examine the element type.
|
|
LegalizeKind LK = getTypeConversion(Context, EltVT);
|
|
|
|
// If type is to be expanded, split the vector.
|
|
// <4 x i140> -> <2 x i140>
|
|
if (LK.first == TypeExpandInteger)
|
|
return LegalizeKind(TypeSplitVector,
|
|
EVT::getVectorVT(Context, EltVT, NumElts / 2));
|
|
|
|
// Promote the integer element types until a legal vector type is found
|
|
// or until the element integer type is too big. If a legal type was not
|
|
// found, fallback to the usual mechanism of widening/splitting the
|
|
// vector.
|
|
EVT OldEltVT = EltVT;
|
|
while (1) {
|
|
// Increase the bitwidth of the element to the next pow-of-two
|
|
// (which is greater than 8 bits).
|
|
EltVT = EVT::getIntegerVT(Context, 1 + EltVT.getSizeInBits())
|
|
.getRoundIntegerType(Context);
|
|
|
|
// Stop trying when getting a non-simple element type.
|
|
// Note that vector elements may be greater than legal vector element
|
|
// types. Example: X86 XMM registers hold 64bit element on 32bit
|
|
// systems.
|
|
if (!EltVT.isSimple())
|
|
break;
|
|
|
|
// Build a new vector type and check if it is legal.
|
|
MVT NVT = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
|
|
// Found a legal promoted vector type.
|
|
if (NVT != MVT() && ValueTypeActions.getTypeAction(NVT) == TypeLegal)
|
|
return LegalizeKind(TypePromoteInteger,
|
|
EVT::getVectorVT(Context, EltVT, NumElts));
|
|
}
|
|
|
|
// Reset the type to the unexpanded type if we did not find a legal vector
|
|
// type with a promoted vector element type.
|
|
EltVT = OldEltVT;
|
|
}
|
|
|
|
// Try to widen the vector until a legal type is found.
|
|
// If there is no wider legal type, split the vector.
|
|
while (1) {
|
|
// Round up to the next power of 2.
|
|
NumElts = (unsigned)NextPowerOf2(NumElts);
|
|
|
|
// If there is no simple vector type with this many elements then there
|
|
// cannot be a larger legal vector type. Note that this assumes that
|
|
// there are no skipped intermediate vector types in the simple types.
|
|
if (!EltVT.isSimple())
|
|
break;
|
|
MVT LargerVector = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
|
|
if (LargerVector == MVT())
|
|
break;
|
|
|
|
// If this type is legal then widen the vector.
|
|
if (ValueTypeActions.getTypeAction(LargerVector) == TypeLegal)
|
|
return LegalizeKind(TypeWidenVector, LargerVector);
|
|
}
|
|
|
|
// Widen odd vectors to next power of two.
|
|
if (!VT.isPow2VectorType()) {
|
|
EVT NVT = VT.getPow2VectorType(Context);
|
|
return LegalizeKind(TypeWidenVector, NVT);
|
|
}
|
|
|
|
// Vectors with illegal element types are expanded.
|
|
EVT NVT = EVT::getVectorVT(Context, EltVT, VT.getVectorNumElements() / 2);
|
|
return LegalizeKind(TypeSplitVector, NVT);
|
|
}
|
|
|
|
static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT,
|
|
unsigned &NumIntermediates,
|
|
MVT &RegisterVT,
|
|
TargetLoweringBase *TLI) {
|
|
// Figure out the right, legal destination reg to copy into.
|
|
unsigned NumElts = VT.getVectorNumElements();
|
|
MVT EltTy = VT.getVectorElementType();
|
|
|
|
unsigned NumVectorRegs = 1;
|
|
|
|
// FIXME: We don't support non-power-of-2-sized vectors for now. Ideally we
|
|
// could break down into LHS/RHS like LegalizeDAG does.
|
|
if (!isPowerOf2_32(NumElts)) {
|
|
NumVectorRegs = NumElts;
|
|
NumElts = 1;
|
|
}
|
|
|
|
// Divide the input until we get to a supported size. This will always
|
|
// end with a scalar if the target doesn't support vectors.
|
|
while (NumElts > 1 && !TLI->isTypeLegal(MVT::getVectorVT(EltTy, NumElts))) {
|
|
NumElts >>= 1;
|
|
NumVectorRegs <<= 1;
|
|
}
|
|
|
|
NumIntermediates = NumVectorRegs;
|
|
|
|
MVT NewVT = MVT::getVectorVT(EltTy, NumElts);
|
|
if (!TLI->isTypeLegal(NewVT))
|
|
NewVT = EltTy;
|
|
IntermediateVT = NewVT;
|
|
|
|
unsigned NewVTSize = NewVT.getSizeInBits();
|
|
|
|
// Convert sizes such as i33 to i64.
|
|
if (!isPowerOf2_32(NewVTSize))
|
|
NewVTSize = NextPowerOf2(NewVTSize);
|
|
|
|
MVT DestVT = TLI->getRegisterType(NewVT);
|
|
RegisterVT = DestVT;
|
|
if (EVT(DestVT).bitsLT(NewVT)) // Value is expanded, e.g. i64 -> i16.
|
|
return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
|
|
|
|
// Otherwise, promotion or legal types use the same number of registers as
|
|
// the vector decimated to the appropriate level.
|
|
return NumVectorRegs;
|
|
}
|
|
|
|
/// isLegalRC - Return true if the value types that can be represented by the
|
|
/// specified register class are all legal.
|
|
bool TargetLoweringBase::isLegalRC(const TargetRegisterClass *RC) const {
|
|
for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
|
|
I != E; ++I) {
|
|
if (isTypeLegal(*I))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// Replace/modify any TargetFrameIndex operands with a targte-dependent
|
|
/// sequence of memory operands that is recognized by PrologEpilogInserter.
|
|
MachineBasicBlock*
|
|
TargetLoweringBase::emitPatchPoint(MachineInstr *MI,
|
|
MachineBasicBlock *MBB) const {
|
|
MachineFunction &MF = *MI->getParent()->getParent();
|
|
|
|
// MI changes inside this loop as we grow operands.
|
|
for(unsigned OperIdx = 0; OperIdx != MI->getNumOperands(); ++OperIdx) {
|
|
MachineOperand &MO = MI->getOperand(OperIdx);
|
|
if (!MO.isFI())
|
|
continue;
|
|
|
|
// foldMemoryOperand builds a new MI after replacing a single FI operand
|
|
// with the canonical set of five x86 addressing-mode operands.
|
|
int FI = MO.getIndex();
|
|
MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), MI->getDesc());
|
|
|
|
// Copy operands before the frame-index.
|
|
for (unsigned i = 0; i < OperIdx; ++i)
|
|
MIB.addOperand(MI->getOperand(i));
|
|
// Add frame index operands: direct-mem-ref tag, #FI, offset.
|
|
MIB.addImm(StackMaps::DirectMemRefOp);
|
|
MIB.addOperand(MI->getOperand(OperIdx));
|
|
MIB.addImm(0);
|
|
// Copy the operands after the frame index.
|
|
for (unsigned i = OperIdx + 1; i != MI->getNumOperands(); ++i)
|
|
MIB.addOperand(MI->getOperand(i));
|
|
|
|
// Inherit previous memory operands.
|
|
MIB->setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
|
|
assert(MIB->mayLoad() && "Folded a stackmap use to a non-load!");
|
|
|
|
// Add a new memory operand for this FI.
|
|
const MachineFrameInfo &MFI = *MF.getFrameInfo();
|
|
assert(MFI.getObjectOffset(FI) != -1);
|
|
|
|
unsigned Flags = MachineMemOperand::MOLoad;
|
|
if (MI->getOpcode() == TargetOpcode::STATEPOINT) {
|
|
Flags |= MachineMemOperand::MOStore;
|
|
Flags |= MachineMemOperand::MOVolatile;
|
|
}
|
|
MachineMemOperand *MMO = MF.getMachineMemOperand(
|
|
MachinePointerInfo::getFixedStack(MF, FI), Flags,
|
|
MF.getDataLayout().getPointerSize(), MFI.getObjectAlignment(FI));
|
|
MIB->addMemOperand(MF, MMO);
|
|
|
|
// Replace the instruction and update the operand index.
|
|
MBB->insert(MachineBasicBlock::iterator(MI), MIB);
|
|
OperIdx += (MIB->getNumOperands() - MI->getNumOperands()) - 1;
|
|
MI->eraseFromParent();
|
|
MI = MIB;
|
|
}
|
|
return MBB;
|
|
}
|
|
|
|
/// findRepresentativeClass - Return the largest legal super-reg register class
|
|
/// of the register class for the specified type and its associated "cost".
|
|
// This function is in TargetLowering because it uses RegClassForVT which would
|
|
// need to be moved to TargetRegisterInfo and would necessitate moving
|
|
// isTypeLegal over as well - a massive change that would just require
|
|
// TargetLowering having a TargetRegisterInfo class member that it would use.
|
|
std::pair<const TargetRegisterClass *, uint8_t>
|
|
TargetLoweringBase::findRepresentativeClass(const TargetRegisterInfo *TRI,
|
|
MVT VT) const {
|
|
const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy];
|
|
if (!RC)
|
|
return std::make_pair(RC, 0);
|
|
|
|
// Compute the set of all super-register classes.
|
|
BitVector SuperRegRC(TRI->getNumRegClasses());
|
|
for (SuperRegClassIterator RCI(RC, TRI); RCI.isValid(); ++RCI)
|
|
SuperRegRC.setBitsInMask(RCI.getMask());
|
|
|
|
// Find the first legal register class with the largest spill size.
|
|
const TargetRegisterClass *BestRC = RC;
|
|
for (int i = SuperRegRC.find_first(); i >= 0; i = SuperRegRC.find_next(i)) {
|
|
const TargetRegisterClass *SuperRC = TRI->getRegClass(i);
|
|
// We want the largest possible spill size.
|
|
if (SuperRC->getSize() <= BestRC->getSize())
|
|
continue;
|
|
if (!isLegalRC(SuperRC))
|
|
continue;
|
|
BestRC = SuperRC;
|
|
}
|
|
return std::make_pair(BestRC, 1);
|
|
}
|
|
|
|
/// computeRegisterProperties - Once all of the register classes are added,
|
|
/// this allows us to compute derived properties we expose.
|
|
void TargetLoweringBase::computeRegisterProperties(
|
|
const TargetRegisterInfo *TRI) {
|
|
static_assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE,
|
|
"Too many value types for ValueTypeActions to hold!");
|
|
|
|
// Everything defaults to needing one register.
|
|
for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
|
|
NumRegistersForVT[i] = 1;
|
|
RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
|
|
}
|
|
// ...except isVoid, which doesn't need any registers.
|
|
NumRegistersForVT[MVT::isVoid] = 0;
|
|
|
|
// Find the largest integer register class.
|
|
unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
|
|
for (; RegClassForVT[LargestIntReg] == nullptr; --LargestIntReg)
|
|
assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
|
|
|
|
// Every integer value type larger than this largest register takes twice as
|
|
// many registers to represent as the previous ValueType.
|
|
for (unsigned ExpandedReg = LargestIntReg + 1;
|
|
ExpandedReg <= MVT::LAST_INTEGER_VALUETYPE; ++ExpandedReg) {
|
|
NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
|
|
RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
|
|
TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
|
|
ValueTypeActions.setTypeAction((MVT::SimpleValueType)ExpandedReg,
|
|
TypeExpandInteger);
|
|
}
|
|
|
|
// Inspect all of the ValueType's smaller than the largest integer
|
|
// register to see which ones need promotion.
|
|
unsigned LegalIntReg = LargestIntReg;
|
|
for (unsigned IntReg = LargestIntReg - 1;
|
|
IntReg >= (unsigned)MVT::i1; --IntReg) {
|
|
MVT IVT = (MVT::SimpleValueType)IntReg;
|
|
if (isTypeLegal(IVT)) {
|
|
LegalIntReg = IntReg;
|
|
} else {
|
|
RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
|
|
(const MVT::SimpleValueType)LegalIntReg;
|
|
ValueTypeActions.setTypeAction(IVT, TypePromoteInteger);
|
|
}
|
|
}
|
|
|
|
// ppcf128 type is really two f64's.
|
|
if (!isTypeLegal(MVT::ppcf128)) {
|
|
NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
|
|
RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
|
|
TransformToType[MVT::ppcf128] = MVT::f64;
|
|
ValueTypeActions.setTypeAction(MVT::ppcf128, TypeExpandFloat);
|
|
}
|
|
|
|
// Decide how to handle f128. If the target does not have native f128 support,
|
|
// expand it to i128 and we will be generating soft float library calls.
|
|
if (!isTypeLegal(MVT::f128)) {
|
|
NumRegistersForVT[MVT::f128] = NumRegistersForVT[MVT::i128];
|
|
RegisterTypeForVT[MVT::f128] = RegisterTypeForVT[MVT::i128];
|
|
TransformToType[MVT::f128] = MVT::i128;
|
|
ValueTypeActions.setTypeAction(MVT::f128, TypeSoftenFloat);
|
|
}
|
|
|
|
// Decide how to handle f64. If the target does not have native f64 support,
|
|
// expand it to i64 and we will be generating soft float library calls.
|
|
if (!isTypeLegal(MVT::f64)) {
|
|
NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
|
|
RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
|
|
TransformToType[MVT::f64] = MVT::i64;
|
|
ValueTypeActions.setTypeAction(MVT::f64, TypeSoftenFloat);
|
|
}
|
|
|
|
// Decide how to handle f32. If the target does not have native f32 support,
|
|
// expand it to i32 and we will be generating soft float library calls.
|
|
if (!isTypeLegal(MVT::f32)) {
|
|
NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
|
|
RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
|
|
TransformToType[MVT::f32] = MVT::i32;
|
|
ValueTypeActions.setTypeAction(MVT::f32, TypeSoftenFloat);
|
|
}
|
|
|
|
// Decide how to handle f16. If the target does not have native f16 support,
|
|
// promote it to f32, because there are no f16 library calls (except for
|
|
// conversions).
|
|
if (!isTypeLegal(MVT::f16)) {
|
|
NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::f32];
|
|
RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::f32];
|
|
TransformToType[MVT::f16] = MVT::f32;
|
|
ValueTypeActions.setTypeAction(MVT::f16, TypePromoteFloat);
|
|
}
|
|
|
|
// Loop over all of the vector value types to see which need transformations.
|
|
for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
|
|
i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
|
|
MVT VT = (MVT::SimpleValueType) i;
|
|
if (isTypeLegal(VT))
|
|
continue;
|
|
|
|
MVT EltVT = VT.getVectorElementType();
|
|
unsigned NElts = VT.getVectorNumElements();
|
|
bool IsLegalWiderType = false;
|
|
LegalizeTypeAction PreferredAction = getPreferredVectorAction(VT);
|
|
switch (PreferredAction) {
|
|
case TypePromoteInteger: {
|
|
// Try to promote the elements of integer vectors. If no legal
|
|
// promotion was found, fall through to the widen-vector method.
|
|
for (unsigned nVT = i + 1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
|
|
MVT SVT = (MVT::SimpleValueType) nVT;
|
|
// Promote vectors of integers to vectors with the same number
|
|
// of elements, with a wider element type.
|
|
if (SVT.getVectorElementType().getSizeInBits() > EltVT.getSizeInBits()
|
|
&& SVT.getVectorNumElements() == NElts && isTypeLegal(SVT)
|
|
&& SVT.getScalarType().isInteger()) {
|
|
TransformToType[i] = SVT;
|
|
RegisterTypeForVT[i] = SVT;
|
|
NumRegistersForVT[i] = 1;
|
|
ValueTypeActions.setTypeAction(VT, TypePromoteInteger);
|
|
IsLegalWiderType = true;
|
|
break;
|
|
}
|
|
}
|
|
if (IsLegalWiderType)
|
|
break;
|
|
}
|
|
case TypeWidenVector: {
|
|
// Try to widen the vector.
|
|
for (unsigned nVT = i + 1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
|
|
MVT SVT = (MVT::SimpleValueType) nVT;
|
|
if (SVT.getVectorElementType() == EltVT
|
|
&& SVT.getVectorNumElements() > NElts && isTypeLegal(SVT)) {
|
|
TransformToType[i] = SVT;
|
|
RegisterTypeForVT[i] = SVT;
|
|
NumRegistersForVT[i] = 1;
|
|
ValueTypeActions.setTypeAction(VT, TypeWidenVector);
|
|
IsLegalWiderType = true;
|
|
break;
|
|
}
|
|
}
|
|
if (IsLegalWiderType)
|
|
break;
|
|
}
|
|
case TypeSplitVector:
|
|
case TypeScalarizeVector: {
|
|
MVT IntermediateVT;
|
|
MVT RegisterVT;
|
|
unsigned NumIntermediates;
|
|
NumRegistersForVT[i] = getVectorTypeBreakdownMVT(VT, IntermediateVT,
|
|
NumIntermediates, RegisterVT, this);
|
|
RegisterTypeForVT[i] = RegisterVT;
|
|
|
|
MVT NVT = VT.getPow2VectorType();
|
|
if (NVT == VT) {
|
|
// Type is already a power of 2. The default action is to split.
|
|
TransformToType[i] = MVT::Other;
|
|
if (PreferredAction == TypeScalarizeVector)
|
|
ValueTypeActions.setTypeAction(VT, TypeScalarizeVector);
|
|
else if (PreferredAction == TypeSplitVector)
|
|
ValueTypeActions.setTypeAction(VT, TypeSplitVector);
|
|
else
|
|
// Set type action according to the number of elements.
|
|
ValueTypeActions.setTypeAction(VT, NElts == 1 ? TypeScalarizeVector
|
|
: TypeSplitVector);
|
|
} else {
|
|
TransformToType[i] = NVT;
|
|
ValueTypeActions.setTypeAction(VT, TypeWidenVector);
|
|
}
|
|
break;
|
|
}
|
|
default:
|
|
llvm_unreachable("Unknown vector legalization action!");
|
|
}
|
|
}
|
|
|
|
// Determine the 'representative' register class for each value type.
|
|
// An representative register class is the largest (meaning one which is
|
|
// not a sub-register class / subreg register class) legal register class for
|
|
// a group of value types. For example, on i386, i8, i16, and i32
|
|
// representative would be GR32; while on x86_64 it's GR64.
|
|
for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
|
|
const TargetRegisterClass* RRC;
|
|
uint8_t Cost;
|
|
std::tie(RRC, Cost) = findRepresentativeClass(TRI, (MVT::SimpleValueType)i);
|
|
RepRegClassForVT[i] = RRC;
|
|
RepRegClassCostForVT[i] = Cost;
|
|
}
|
|
}
|
|
|
|
EVT TargetLoweringBase::getSetCCResultType(const DataLayout &DL, LLVMContext &,
|
|
EVT VT) const {
|
|
assert(!VT.isVector() && "No default SetCC type for vectors!");
|
|
return getPointerTy(DL).SimpleTy;
|
|
}
|
|
|
|
MVT::SimpleValueType TargetLoweringBase::getCmpLibcallReturnType() const {
|
|
return MVT::i32; // return the default value
|
|
}
|
|
|
|
/// getVectorTypeBreakdown - Vector types are broken down into some number of
|
|
/// legal first class types. For example, MVT::v8f32 maps to 2 MVT::v4f32
|
|
/// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
|
|
/// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
|
|
///
|
|
/// This method returns the number of registers needed, and the VT for each
|
|
/// register. It also returns the VT and quantity of the intermediate values
|
|
/// before they are promoted/expanded.
|
|
///
|
|
unsigned TargetLoweringBase::getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
|
|
EVT &IntermediateVT,
|
|
unsigned &NumIntermediates,
|
|
MVT &RegisterVT) const {
|
|
unsigned NumElts = VT.getVectorNumElements();
|
|
|
|
// If there is a wider vector type with the same element type as this one,
|
|
// or a promoted vector type that has the same number of elements which
|
|
// are wider, then we should convert to that legal vector type.
|
|
// This handles things like <2 x float> -> <4 x float> and
|
|
// <4 x i1> -> <4 x i32>.
|
|
LegalizeTypeAction TA = getTypeAction(Context, VT);
|
|
if (NumElts != 1 && (TA == TypeWidenVector || TA == TypePromoteInteger)) {
|
|
EVT RegisterEVT = getTypeToTransformTo(Context, VT);
|
|
if (isTypeLegal(RegisterEVT)) {
|
|
IntermediateVT = RegisterEVT;
|
|
RegisterVT = RegisterEVT.getSimpleVT();
|
|
NumIntermediates = 1;
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
// Figure out the right, legal destination reg to copy into.
|
|
EVT EltTy = VT.getVectorElementType();
|
|
|
|
unsigned NumVectorRegs = 1;
|
|
|
|
// FIXME: We don't support non-power-of-2-sized vectors for now. Ideally we
|
|
// could break down into LHS/RHS like LegalizeDAG does.
|
|
if (!isPowerOf2_32(NumElts)) {
|
|
NumVectorRegs = NumElts;
|
|
NumElts = 1;
|
|
}
|
|
|
|
// Divide the input until we get to a supported size. This will always
|
|
// end with a scalar if the target doesn't support vectors.
|
|
while (NumElts > 1 && !isTypeLegal(
|
|
EVT::getVectorVT(Context, EltTy, NumElts))) {
|
|
NumElts >>= 1;
|
|
NumVectorRegs <<= 1;
|
|
}
|
|
|
|
NumIntermediates = NumVectorRegs;
|
|
|
|
EVT NewVT = EVT::getVectorVT(Context, EltTy, NumElts);
|
|
if (!isTypeLegal(NewVT))
|
|
NewVT = EltTy;
|
|
IntermediateVT = NewVT;
|
|
|
|
MVT DestVT = getRegisterType(Context, NewVT);
|
|
RegisterVT = DestVT;
|
|
unsigned NewVTSize = NewVT.getSizeInBits();
|
|
|
|
// Convert sizes such as i33 to i64.
|
|
if (!isPowerOf2_32(NewVTSize))
|
|
NewVTSize = NextPowerOf2(NewVTSize);
|
|
|
|
if (EVT(DestVT).bitsLT(NewVT)) // Value is expanded, e.g. i64 -> i16.
|
|
return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
|
|
|
|
// Otherwise, promotion or legal types use the same number of registers as
|
|
// the vector decimated to the appropriate level.
|
|
return NumVectorRegs;
|
|
}
|
|
|
|
/// Get the EVTs and ArgFlags collections that represent the legalized return
|
|
/// type of the given function. This does not require a DAG or a return value,
|
|
/// and is suitable for use before any DAGs for the function are constructed.
|
|
/// TODO: Move this out of TargetLowering.cpp.
|
|
void llvm::GetReturnInfo(Type *ReturnType, AttributeSet attr,
|
|
SmallVectorImpl<ISD::OutputArg> &Outs,
|
|
const TargetLowering &TLI, const DataLayout &DL) {
|
|
SmallVector<EVT, 4> ValueVTs;
|
|
ComputeValueVTs(TLI, DL, ReturnType, ValueVTs);
|
|
unsigned NumValues = ValueVTs.size();
|
|
if (NumValues == 0) return;
|
|
|
|
for (unsigned j = 0, f = NumValues; j != f; ++j) {
|
|
EVT VT = ValueVTs[j];
|
|
ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
|
|
|
|
if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt))
|
|
ExtendKind = ISD::SIGN_EXTEND;
|
|
else if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt))
|
|
ExtendKind = ISD::ZERO_EXTEND;
|
|
|
|
// FIXME: C calling convention requires the return type to be promoted to
|
|
// at least 32-bit. But this is not necessary for non-C calling
|
|
// conventions. The frontend should mark functions whose return values
|
|
// require promoting with signext or zeroext attributes.
|
|
if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
|
|
MVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32);
|
|
if (VT.bitsLT(MinVT))
|
|
VT = MinVT;
|
|
}
|
|
|
|
unsigned NumParts = TLI.getNumRegisters(ReturnType->getContext(), VT);
|
|
MVT PartVT = TLI.getRegisterType(ReturnType->getContext(), VT);
|
|
|
|
// 'inreg' on function refers to return value
|
|
ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
|
|
if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::InReg))
|
|
Flags.setInReg();
|
|
|
|
// Propagate extension type if any
|
|
if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt))
|
|
Flags.setSExt();
|
|
else if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt))
|
|
Flags.setZExt();
|
|
|
|
for (unsigned i = 0; i < NumParts; ++i)
|
|
Outs.push_back(ISD::OutputArg(Flags, PartVT, VT, /*isFixed=*/true, 0, 0));
|
|
}
|
|
}
|
|
|
|
/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
|
|
/// function arguments in the caller parameter area. This is the actual
|
|
/// alignment, not its logarithm.
|
|
unsigned TargetLoweringBase::getByValTypeAlignment(Type *Ty,
|
|
const DataLayout &DL) const {
|
|
return DL.getABITypeAlignment(Ty);
|
|
}
|
|
|
|
bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context,
|
|
const DataLayout &DL, EVT VT,
|
|
unsigned AddrSpace,
|
|
unsigned Alignment,
|
|
bool *Fast) const {
|
|
// Check if the specified alignment is sufficient based on the data layout.
|
|
// TODO: While using the data layout works in practice, a better solution
|
|
// would be to implement this check directly (make this a virtual function).
|
|
// For example, the ABI alignment may change based on software platform while
|
|
// this function should only be affected by hardware implementation.
|
|
Type *Ty = VT.getTypeForEVT(Context);
|
|
if (Alignment >= DL.getABITypeAlignment(Ty)) {
|
|
// Assume that an access that meets the ABI-specified alignment is fast.
|
|
if (Fast != nullptr)
|
|
*Fast = true;
|
|
return true;
|
|
}
|
|
|
|
// This is a misaligned access.
|
|
return allowsMisalignedMemoryAccesses(VT, AddrSpace, Alignment, Fast);
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// TargetTransformInfo Helpers
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
int TargetLoweringBase::InstructionOpcodeToISD(unsigned Opcode) const {
|
|
enum InstructionOpcodes {
|
|
#define HANDLE_INST(NUM, OPCODE, CLASS) OPCODE = NUM,
|
|
#define LAST_OTHER_INST(NUM) InstructionOpcodesCount = NUM
|
|
#include "llvm/IR/Instruction.def"
|
|
};
|
|
switch (static_cast<InstructionOpcodes>(Opcode)) {
|
|
case Ret: return 0;
|
|
case Br: return 0;
|
|
case Switch: return 0;
|
|
case IndirectBr: return 0;
|
|
case Invoke: return 0;
|
|
case Resume: return 0;
|
|
case Unreachable: return 0;
|
|
case CleanupEndPad: return 0;
|
|
case CleanupRet: return 0;
|
|
case CatchEndPad: return 0;
|
|
case CatchRet: return 0;
|
|
case CatchPad: return 0;
|
|
case TerminatePad: return 0;
|
|
case CleanupPad: return 0;
|
|
case Add: return ISD::ADD;
|
|
case FAdd: return ISD::FADD;
|
|
case Sub: return ISD::SUB;
|
|
case FSub: return ISD::FSUB;
|
|
case Mul: return ISD::MUL;
|
|
case FMul: return ISD::FMUL;
|
|
case UDiv: return ISD::UDIV;
|
|
case SDiv: return ISD::SDIV;
|
|
case FDiv: return ISD::FDIV;
|
|
case URem: return ISD::UREM;
|
|
case SRem: return ISD::SREM;
|
|
case FRem: return ISD::FREM;
|
|
case Shl: return ISD::SHL;
|
|
case LShr: return ISD::SRL;
|
|
case AShr: return ISD::SRA;
|
|
case And: return ISD::AND;
|
|
case Or: return ISD::OR;
|
|
case Xor: return ISD::XOR;
|
|
case Alloca: return 0;
|
|
case Load: return ISD::LOAD;
|
|
case Store: return ISD::STORE;
|
|
case GetElementPtr: return 0;
|
|
case Fence: return 0;
|
|
case AtomicCmpXchg: return 0;
|
|
case AtomicRMW: return 0;
|
|
case Trunc: return ISD::TRUNCATE;
|
|
case ZExt: return ISD::ZERO_EXTEND;
|
|
case SExt: return ISD::SIGN_EXTEND;
|
|
case FPToUI: return ISD::FP_TO_UINT;
|
|
case FPToSI: return ISD::FP_TO_SINT;
|
|
case UIToFP: return ISD::UINT_TO_FP;
|
|
case SIToFP: return ISD::SINT_TO_FP;
|
|
case FPTrunc: return ISD::FP_ROUND;
|
|
case FPExt: return ISD::FP_EXTEND;
|
|
case PtrToInt: return ISD::BITCAST;
|
|
case IntToPtr: return ISD::BITCAST;
|
|
case BitCast: return ISD::BITCAST;
|
|
case AddrSpaceCast: return ISD::ADDRSPACECAST;
|
|
case ICmp: return ISD::SETCC;
|
|
case FCmp: return ISD::SETCC;
|
|
case PHI: return 0;
|
|
case Call: return 0;
|
|
case Select: return ISD::SELECT;
|
|
case UserOp1: return 0;
|
|
case UserOp2: return 0;
|
|
case VAArg: return 0;
|
|
case ExtractElement: return ISD::EXTRACT_VECTOR_ELT;
|
|
case InsertElement: return ISD::INSERT_VECTOR_ELT;
|
|
case ShuffleVector: return ISD::VECTOR_SHUFFLE;
|
|
case ExtractValue: return ISD::MERGE_VALUES;
|
|
case InsertValue: return ISD::MERGE_VALUES;
|
|
case LandingPad: return 0;
|
|
}
|
|
|
|
llvm_unreachable("Unknown instruction type encountered!");
|
|
}
|
|
|
|
std::pair<int, MVT>
|
|
TargetLoweringBase::getTypeLegalizationCost(const DataLayout &DL,
|
|
Type *Ty) const {
|
|
LLVMContext &C = Ty->getContext();
|
|
EVT MTy = getValueType(DL, Ty);
|
|
|
|
int Cost = 1;
|
|
// We keep legalizing the type until we find a legal kind. We assume that
|
|
// the only operation that costs anything is the split. After splitting
|
|
// we need to handle two types.
|
|
while (true) {
|
|
LegalizeKind LK = getTypeConversion(C, MTy);
|
|
|
|
if (LK.first == TypeLegal)
|
|
return std::make_pair(Cost, MTy.getSimpleVT());
|
|
|
|
if (LK.first == TypeSplitVector || LK.first == TypeExpandInteger)
|
|
Cost *= 2;
|
|
|
|
// Keep legalizing the type.
|
|
MTy = LK.second;
|
|
}
|
|
}
|
|
|
|
Value *TargetLoweringBase::getSafeStackPointerLocation(IRBuilder<> &IRB) const {
|
|
if (!TM.getTargetTriple().isAndroid())
|
|
return nullptr;
|
|
|
|
// Android provides a libc function to retrieve the address of the current
|
|
// thread's unsafe stack pointer.
|
|
Module *M = IRB.GetInsertBlock()->getParent()->getParent();
|
|
Type *StackPtrTy = Type::getInt8PtrTy(M->getContext());
|
|
Value *Fn = M->getOrInsertFunction("__safestack_pointer_address",
|
|
StackPtrTy->getPointerTo(0), nullptr);
|
|
return IRB.CreateCall(Fn);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Loop Strength Reduction hooks
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// isLegalAddressingMode - Return true if the addressing mode represented
|
|
/// by AM is legal for this target, for a load/store of the specified type.
|
|
bool TargetLoweringBase::isLegalAddressingMode(const DataLayout &DL,
|
|
const AddrMode &AM, Type *Ty,
|
|
unsigned AS) const {
|
|
// The default implementation of this implements a conservative RISCy, r+r and
|
|
// r+i addr mode.
|
|
|
|
// Allows a sign-extended 16-bit immediate field.
|
|
if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
|
|
return false;
|
|
|
|
// No global is ever allowed as a base.
|
|
if (AM.BaseGV)
|
|
return false;
|
|
|
|
// Only support r+r,
|
|
switch (AM.Scale) {
|
|
case 0: // "r+i" or just "i", depending on HasBaseReg.
|
|
break;
|
|
case 1:
|
|
if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed.
|
|
return false;
|
|
// Otherwise we have r+r or r+i.
|
|
break;
|
|
case 2:
|
|
if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed.
|
|
return false;
|
|
// Allow 2*r as r+r.
|
|
break;
|
|
default: // Don't allow n * r
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|