llvm-project/llvm/lib/Target/Sparc/DelaySlotFiller.cpp

324 lines
8.9 KiB
C++

//===-- DelaySlotFiller.cpp - SPARC delay slot filler ---------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This is a simple local pass that attempts to fill delay slots with useful
// instructions. If no instructions can be moved into the delay slot, then a
// NOP is placed.
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "delay-slot-filler"
#include "Sparc.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/Statistic.h"
using namespace llvm;
STATISTIC(FilledSlots, "Number of delay slots filled");
static cl::opt<bool> DisableDelaySlotFiller(
"disable-sparc-delay-filler",
cl::init(false),
cl::desc("Disable the Sparc delay slot filler."),
cl::Hidden);
namespace {
struct Filler : public MachineFunctionPass {
/// Target machine description which we query for reg. names, data
/// layout, etc.
///
TargetMachine &TM;
const TargetInstrInfo *TII;
static char ID;
Filler(TargetMachine &tm)
: MachineFunctionPass(ID), TM(tm), TII(tm.getInstrInfo()) { }
virtual const char *getPassName() const {
return "SPARC Delay Slot Filler";
}
bool runOnMachineBasicBlock(MachineBasicBlock &MBB);
bool runOnMachineFunction(MachineFunction &F) {
bool Changed = false;
for (MachineFunction::iterator FI = F.begin(), FE = F.end();
FI != FE; ++FI)
Changed |= runOnMachineBasicBlock(*FI);
return Changed;
}
bool isDelayFiller(MachineBasicBlock &MBB,
MachineBasicBlock::iterator candidate);
void insertCallUses(MachineBasicBlock::iterator MI,
SmallSet<unsigned, 32>& RegUses);
void insertDefsUses(MachineBasicBlock::iterator MI,
SmallSet<unsigned, 32>& RegDefs,
SmallSet<unsigned, 32>& RegUses);
bool IsRegInSet(SmallSet<unsigned, 32>& RegSet,
unsigned Reg);
bool delayHasHazard(MachineBasicBlock::iterator candidate,
bool &sawLoad, bool &sawStore,
SmallSet<unsigned, 32> &RegDefs,
SmallSet<unsigned, 32> &RegUses);
MachineBasicBlock::iterator
findDelayInstr(MachineBasicBlock &MBB, MachineBasicBlock::iterator slot);
bool needsUnimp(MachineBasicBlock::iterator I, unsigned &StructSize);
};
char Filler::ID = 0;
} // end of anonymous namespace
/// createSparcDelaySlotFillerPass - Returns a pass that fills in delay
/// slots in Sparc MachineFunctions
///
FunctionPass *llvm::createSparcDelaySlotFillerPass(TargetMachine &tm) {
return new Filler(tm);
}
/// runOnMachineBasicBlock - Fill in delay slots for the given basic block.
/// We assume there is only one delay slot per delayed instruction.
///
bool Filler::runOnMachineBasicBlock(MachineBasicBlock &MBB) {
bool Changed = false;
for (MachineBasicBlock::iterator I = MBB.begin(); I != MBB.end(); ++I)
if (I->getDesc().hasDelaySlot()) {
MachineBasicBlock::iterator D = MBB.end();
MachineBasicBlock::iterator J = I;
if (!DisableDelaySlotFiller)
D = findDelayInstr(MBB, I);
++FilledSlots;
Changed = true;
if (D == MBB.end())
BuildMI(MBB, ++J, I->getDebugLoc(), TII->get(SP::NOP));
else
MBB.splice(++J, &MBB, D);
unsigned structSize = 0;
if (needsUnimp(I, structSize)) {
MachineBasicBlock::iterator J = I;
++J; //skip the delay filler.
BuildMI(MBB, ++J, I->getDebugLoc(),
TII->get(SP::UNIMP)).addImm(structSize);
}
}
return Changed;
}
MachineBasicBlock::iterator
Filler::findDelayInstr(MachineBasicBlock &MBB,
MachineBasicBlock::iterator slot)
{
SmallSet<unsigned, 32> RegDefs;
SmallSet<unsigned, 32> RegUses;
bool sawLoad = false;
bool sawStore = false;
MachineBasicBlock::iterator I = slot;
if (slot->getOpcode() == SP::RET)
return MBB.end();
if (slot->getOpcode() == SP::RETL) {
--I;
if (I->getOpcode() != SP::RESTORErr)
return MBB.end();
//change retl to ret
slot->setDesc(TII->get(SP::RET));
return I;
}
//Call's delay filler can def some of call's uses.
if (slot->getDesc().isCall())
insertCallUses(slot, RegUses);
else
insertDefsUses(slot, RegDefs, RegUses);
bool done = false;
while (!done) {
done = (I == MBB.begin());
if (!done)
--I;
// skip debug value
if (I->isDebugValue())
continue;
if (I->hasUnmodeledSideEffects()
|| I->isInlineAsm()
|| I->isLabel()
|| I->getDesc().hasDelaySlot()
|| isDelayFiller(MBB, I))
break;
if (delayHasHazard(I, sawLoad, sawStore, RegDefs, RegUses)) {
insertDefsUses(I, RegDefs, RegUses);
continue;
}
return I;
}
return MBB.end();
}
bool Filler::delayHasHazard(MachineBasicBlock::iterator candidate,
bool &sawLoad,
bool &sawStore,
SmallSet<unsigned, 32> &RegDefs,
SmallSet<unsigned, 32> &RegUses)
{
if (candidate->isImplicitDef() || candidate->isKill())
return true;
if (candidate->getDesc().mayLoad()) {
sawLoad = true;
if (sawStore)
return true;
}
if (candidate->getDesc().mayStore()) {
if (sawStore)
return true;
sawStore = true;
if (sawLoad)
return true;
}
for (unsigned i = 0, e = candidate->getNumOperands(); i!= e; ++i) {
const MachineOperand &MO = candidate->getOperand(i);
if (!MO.isReg())
continue; // skip
unsigned Reg = MO.getReg();
if (MO.isDef()) {
//check whether Reg is defined or used before delay slot.
if (IsRegInSet(RegDefs, Reg) || IsRegInSet(RegUses, Reg))
return true;
}
if (MO.isUse()) {
//check whether Reg is defined before delay slot.
if (IsRegInSet(RegDefs, Reg))
return true;
}
}
return false;
}
void Filler::insertCallUses(MachineBasicBlock::iterator MI,
SmallSet<unsigned, 32>& RegUses)
{
switch(MI->getOpcode()) {
default: llvm_unreachable("Unknown opcode.");
case SP::CALL: break;
case SP::JMPLrr:
case SP::JMPLri:
assert(MI->getNumOperands() >= 2);
const MachineOperand &Reg = MI->getOperand(0);
assert(Reg.isReg() && "JMPL first operand is not a register.");
assert(Reg.isUse() && "JMPL first operand is not a use.");
RegUses.insert(Reg.getReg());
const MachineOperand &RegOrImm = MI->getOperand(1);
if (RegOrImm.isImm())
break;
assert(RegOrImm.isReg() && "JMPLrr second operand is not a register.");
assert(RegOrImm.isUse() && "JMPLrr second operand is not a use.");
RegUses.insert(RegOrImm.getReg());
break;
}
}
//Insert Defs and Uses of MI into the sets RegDefs and RegUses.
void Filler::insertDefsUses(MachineBasicBlock::iterator MI,
SmallSet<unsigned, 32>& RegDefs,
SmallSet<unsigned, 32>& RegUses)
{
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
const MachineOperand &MO = MI->getOperand(i);
if (!MO.isReg())
continue;
unsigned Reg = MO.getReg();
if (Reg == 0)
continue;
if (MO.isDef())
RegDefs.insert(Reg);
if (MO.isUse())
RegUses.insert(Reg);
}
}
//returns true if the Reg or its alias is in the RegSet.
bool Filler::IsRegInSet(SmallSet<unsigned, 32>& RegSet, unsigned Reg)
{
if (RegSet.count(Reg))
return true;
// check Aliased Registers
for (const unsigned *Alias = TM.getRegisterInfo()->getAliasSet(Reg);
*Alias; ++ Alias)
if (RegSet.count(*Alias))
return true;
return false;
}
// return true if the candidate is a delay filler.
bool Filler::isDelayFiller(MachineBasicBlock &MBB,
MachineBasicBlock::iterator candidate)
{
if (candidate == MBB.begin())
return false;
if (candidate->getOpcode() == SP::UNIMP)
return true;
const MCInstrDesc &prevdesc = (--candidate)->getDesc();
return prevdesc.hasDelaySlot();
}
bool Filler::needsUnimp(MachineBasicBlock::iterator I, unsigned &StructSize)
{
if (!I->getDesc().isCall())
return false;
unsigned structSizeOpNum = 0;
switch (I->getOpcode()) {
default: llvm_unreachable("Unknown call opcode.");
case SP::CALL: structSizeOpNum = 1; break;
case SP::JMPLrr:
case SP::JMPLri: structSizeOpNum = 2; break;
}
const MachineOperand &MO = I->getOperand(structSizeOpNum);
if (!MO.isImm())
return false;
StructSize = MO.getImm();
return true;
}