llvm-project/clang/lib/StaticAnalyzer/Checkers/GenericTaintChecker.cpp

959 lines
34 KiB
C++

//== GenericTaintChecker.cpp ----------------------------------- -*- C++ -*--=//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This checker defines the attack surface for generic taint propagation.
//
// The taint information produced by it might be useful to other checkers. For
// example, checkers should report errors which involve tainted data more
// aggressively, even if the involved symbols are under constrained.
//
//===----------------------------------------------------------------------===//
#include "Taint.h"
#include "Yaml.h"
#include "clang/AST/Attr.h"
#include "clang/Basic/Builtins.h"
#include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h"
#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
#include "clang/StaticAnalyzer/Core/Checker.h"
#include "clang/StaticAnalyzer/Core/CheckerManager.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
#include "llvm/Support/YAMLTraits.h"
#include <algorithm>
#include <limits>
#include <memory>
#include <unordered_map>
#include <utility>
using namespace clang;
using namespace ento;
using namespace taint;
namespace {
class GenericTaintChecker : public Checker<check::PreCall, check::PostCall> {
public:
static void *getTag() {
static int Tag;
return &Tag;
}
void checkPreCall(const CallEvent &Call, CheckerContext &C) const;
void checkPostCall(const CallEvent &Call, CheckerContext &C) const;
void printState(raw_ostream &Out, ProgramStateRef State, const char *NL,
const char *Sep) const override;
using ArgVector = SmallVector<unsigned, 2>;
using SignedArgVector = SmallVector<int, 2>;
enum class VariadicType { None, Src, Dst };
/// Used to parse the configuration file.
struct TaintConfiguration {
using NameScopeArgs = std::tuple<std::string, std::string, ArgVector>;
struct Propagation {
std::string Name;
std::string Scope;
ArgVector SrcArgs;
SignedArgVector DstArgs;
VariadicType VarType;
unsigned VarIndex;
};
std::vector<Propagation> Propagations;
std::vector<NameScopeArgs> Filters;
std::vector<NameScopeArgs> Sinks;
TaintConfiguration() = default;
TaintConfiguration(const TaintConfiguration &) = default;
TaintConfiguration(TaintConfiguration &&) = default;
TaintConfiguration &operator=(const TaintConfiguration &) = default;
TaintConfiguration &operator=(TaintConfiguration &&) = default;
};
/// Convert SignedArgVector to ArgVector.
ArgVector convertToArgVector(CheckerManager &Mgr, const std::string &Option,
const SignedArgVector &Args);
/// Parse the config.
void parseConfiguration(CheckerManager &Mgr, const std::string &Option,
TaintConfiguration &&Config);
static const unsigned InvalidArgIndex{std::numeric_limits<unsigned>::max()};
/// Denotes the return vale.
static const unsigned ReturnValueIndex{std::numeric_limits<unsigned>::max() -
1};
private:
mutable std::unique_ptr<BugType> BT;
void initBugType() const {
if (!BT)
BT = std::make_unique<BugType>(this, "Use of Untrusted Data",
"Untrusted Data");
}
struct FunctionData {
FunctionData() = delete;
FunctionData(const FunctionDecl *FDecl, StringRef Name,
std::string FullName)
: FDecl(FDecl), Name(Name), FullName(std::move(FullName)) {}
FunctionData(const FunctionData &) = default;
FunctionData(FunctionData &&) = default;
FunctionData &operator=(const FunctionData &) = delete;
FunctionData &operator=(FunctionData &&) = delete;
static Optional<FunctionData> create(const CallEvent &Call,
const CheckerContext &C) {
if (!Call.getDecl())
return None;
const FunctionDecl *FDecl = Call.getDecl()->getAsFunction();
if (!FDecl || (FDecl->getKind() != Decl::Function &&
FDecl->getKind() != Decl::CXXMethod))
return None;
StringRef Name = C.getCalleeName(FDecl);
std::string FullName = FDecl->getQualifiedNameAsString();
if (Name.empty() || FullName.empty())
return None;
return FunctionData{FDecl, Name, std::move(FullName)};
}
bool isInScope(StringRef Scope) const {
return StringRef(FullName).startswith(Scope);
}
const FunctionDecl *const FDecl;
const StringRef Name;
const std::string FullName;
};
/// Catch taint related bugs. Check if tainted data is passed to a
/// system call etc. Returns true on matching.
bool checkPre(const CallEvent &Call, const FunctionData &FData,
CheckerContext &C) const;
/// Add taint sources on a pre-visit. Returns true on matching.
bool addSourcesPre(const CallEvent &Call, const FunctionData &FData,
CheckerContext &C) const;
/// Mark filter's arguments not tainted on a pre-visit. Returns true on
/// matching.
bool addFiltersPre(const CallEvent &Call, const FunctionData &FData,
CheckerContext &C) const;
/// Propagate taint generated at pre-visit. Returns true on matching.
static bool propagateFromPre(const CallEvent &Call, CheckerContext &C);
/// Check if the region the expression evaluates to is the standard input,
/// and thus, is tainted.
static bool isStdin(const Expr *E, CheckerContext &C);
/// Given a pointer argument, return the value it points to.
static Optional<SVal> getPointeeOf(CheckerContext &C, const Expr *Arg);
/// Check for CWE-134: Uncontrolled Format String.
static constexpr llvm::StringLiteral MsgUncontrolledFormatString =
"Untrusted data is used as a format string "
"(CWE-134: Uncontrolled Format String)";
bool checkUncontrolledFormatString(const CallEvent &Call,
CheckerContext &C) const;
/// Check for:
/// CERT/STR02-C. "Sanitize data passed to complex subsystems"
/// CWE-78, "Failure to Sanitize Data into an OS Command"
static constexpr llvm::StringLiteral MsgSanitizeSystemArgs =
"Untrusted data is passed to a system call "
"(CERT/STR02-C. Sanitize data passed to complex subsystems)";
bool checkSystemCall(const CallEvent &Call, StringRef Name,
CheckerContext &C) const;
/// Check if tainted data is used as a buffer size ins strn.. functions,
/// and allocators.
static constexpr llvm::StringLiteral MsgTaintedBufferSize =
"Untrusted data is used to specify the buffer size "
"(CERT/STR31-C. Guarantee that storage for strings has sufficient space "
"for character data and the null terminator)";
bool checkTaintedBufferSize(const CallEvent &Call, CheckerContext &C) const;
/// Check if tainted data is used as a custom sink's parameter.
static constexpr llvm::StringLiteral MsgCustomSink =
"Untrusted data is passed to a user-defined sink";
bool checkCustomSinks(const CallEvent &Call, const FunctionData &FData,
CheckerContext &C) const;
/// Generate a report if the expression is tainted or points to tainted data.
bool generateReportIfTainted(const Expr *E, StringRef Msg,
CheckerContext &C) const;
struct TaintPropagationRule;
template <typename T>
using ConfigDataMap =
std::unordered_multimap<std::string, std::pair<std::string, T>>;
using NameRuleMap = ConfigDataMap<TaintPropagationRule>;
using NameArgMap = ConfigDataMap<ArgVector>;
/// Find a function with the given name and scope. Returns the first match
/// or the end of the map.
template <typename T>
static auto findFunctionInConfig(const ConfigDataMap<T> &Map,
const FunctionData &FData);
/// A struct used to specify taint propagation rules for a function.
///
/// If any of the possible taint source arguments is tainted, all of the
/// destination arguments should also be tainted. Use InvalidArgIndex in the
/// src list to specify that all of the arguments can introduce taint. Use
/// InvalidArgIndex in the dst arguments to signify that all the non-const
/// pointer and reference arguments might be tainted on return. If
/// ReturnValueIndex is added to the dst list, the return value will be
/// tainted.
struct TaintPropagationRule {
using PropagationFuncType = bool (*)(bool IsTainted, const CallEvent &Call,
CheckerContext &C);
/// List of arguments which can be taint sources and should be checked.
ArgVector SrcArgs;
/// List of arguments which should be tainted on function return.
ArgVector DstArgs;
/// Index for the first variadic parameter if exist.
unsigned VariadicIndex;
/// Show when a function has variadic parameters. If it has, it marks all
/// of them as source or destination.
VariadicType VarType;
/// Special function for tainted source determination. If defined, it can
/// override the default behavior.
PropagationFuncType PropagationFunc;
TaintPropagationRule()
: VariadicIndex(InvalidArgIndex), VarType(VariadicType::None),
PropagationFunc(nullptr) {}
TaintPropagationRule(ArgVector &&Src, ArgVector &&Dst,
VariadicType Var = VariadicType::None,
unsigned VarIndex = InvalidArgIndex,
PropagationFuncType Func = nullptr)
: SrcArgs(std::move(Src)), DstArgs(std::move(Dst)),
VariadicIndex(VarIndex), VarType(Var), PropagationFunc(Func) {}
/// Get the propagation rule for a given function.
static TaintPropagationRule
getTaintPropagationRule(const NameRuleMap &CustomPropagations,
const FunctionData &FData, CheckerContext &C);
void addSrcArg(unsigned A) { SrcArgs.push_back(A); }
void addDstArg(unsigned A) { DstArgs.push_back(A); }
bool isNull() const {
return SrcArgs.empty() && DstArgs.empty() &&
VariadicType::None == VarType;
}
bool isDestinationArgument(unsigned ArgNum) const {
return (llvm::find(DstArgs, ArgNum) != DstArgs.end());
}
static bool isTaintedOrPointsToTainted(const Expr *E,
const ProgramStateRef &State,
CheckerContext &C) {
if (isTainted(State, E, C.getLocationContext()) || isStdin(E, C))
return true;
if (!E->getType().getTypePtr()->isPointerType())
return false;
Optional<SVal> V = getPointeeOf(C, E);
return (V && isTainted(State, *V));
}
/// Pre-process a function which propagates taint according to the
/// taint rule.
ProgramStateRef process(const CallEvent &Call, CheckerContext &C) const;
// Functions for custom taintedness propagation.
static bool postSocket(bool IsTainted, const CallEvent &Call,
CheckerContext &C);
};
/// Defines a map between the propagation function's name, scope
/// and TaintPropagationRule.
NameRuleMap CustomPropagations;
/// Defines a map between the filter function's name, scope and filtering
/// args.
NameArgMap CustomFilters;
/// Defines a map between the sink function's name, scope and sinking args.
NameArgMap CustomSinks;
};
const unsigned GenericTaintChecker::ReturnValueIndex;
const unsigned GenericTaintChecker::InvalidArgIndex;
// FIXME: these lines can be removed in C++17
constexpr llvm::StringLiteral GenericTaintChecker::MsgUncontrolledFormatString;
constexpr llvm::StringLiteral GenericTaintChecker::MsgSanitizeSystemArgs;
constexpr llvm::StringLiteral GenericTaintChecker::MsgTaintedBufferSize;
constexpr llvm::StringLiteral GenericTaintChecker::MsgCustomSink;
} // end of anonymous namespace
using TaintConfig = GenericTaintChecker::TaintConfiguration;
LLVM_YAML_IS_SEQUENCE_VECTOR(TaintConfig::Propagation)
LLVM_YAML_IS_SEQUENCE_VECTOR(TaintConfig::NameScopeArgs)
namespace llvm {
namespace yaml {
template <> struct MappingTraits<TaintConfig> {
static void mapping(IO &IO, TaintConfig &Config) {
IO.mapOptional("Propagations", Config.Propagations);
IO.mapOptional("Filters", Config.Filters);
IO.mapOptional("Sinks", Config.Sinks);
}
};
template <> struct MappingTraits<TaintConfig::Propagation> {
static void mapping(IO &IO, TaintConfig::Propagation &Propagation) {
IO.mapRequired("Name", Propagation.Name);
IO.mapOptional("Scope", Propagation.Scope);
IO.mapOptional("SrcArgs", Propagation.SrcArgs);
IO.mapOptional("DstArgs", Propagation.DstArgs);
IO.mapOptional("VariadicType", Propagation.VarType,
GenericTaintChecker::VariadicType::None);
IO.mapOptional("VariadicIndex", Propagation.VarIndex,
GenericTaintChecker::InvalidArgIndex);
}
};
template <> struct ScalarEnumerationTraits<GenericTaintChecker::VariadicType> {
static void enumeration(IO &IO, GenericTaintChecker::VariadicType &Value) {
IO.enumCase(Value, "None", GenericTaintChecker::VariadicType::None);
IO.enumCase(Value, "Src", GenericTaintChecker::VariadicType::Src);
IO.enumCase(Value, "Dst", GenericTaintChecker::VariadicType::Dst);
}
};
template <> struct MappingTraits<TaintConfig::NameScopeArgs> {
static void mapping(IO &IO, TaintConfig::NameScopeArgs &NSA) {
IO.mapRequired("Name", std::get<0>(NSA));
IO.mapOptional("Scope", std::get<1>(NSA));
IO.mapRequired("Args", std::get<2>(NSA));
}
};
} // namespace yaml
} // namespace llvm
/// A set which is used to pass information from call pre-visit instruction
/// to the call post-visit. The values are unsigned integers, which are either
/// ReturnValueIndex, or indexes of the pointer/reference argument, which
/// points to data, which should be tainted on return.
REGISTER_SET_WITH_PROGRAMSTATE(TaintArgsOnPostVisit, unsigned)
GenericTaintChecker::ArgVector
GenericTaintChecker::convertToArgVector(CheckerManager &Mgr,
const std::string &Option,
const SignedArgVector &Args) {
ArgVector Result;
for (int Arg : Args) {
if (Arg == -1)
Result.push_back(ReturnValueIndex);
else if (Arg < -1) {
Result.push_back(InvalidArgIndex);
Mgr.reportInvalidCheckerOptionValue(
this, Option,
"an argument number for propagation rules greater or equal to -1");
} else
Result.push_back(static_cast<unsigned>(Arg));
}
return Result;
}
void GenericTaintChecker::parseConfiguration(CheckerManager &Mgr,
const std::string &Option,
TaintConfiguration &&Config) {
for (auto &P : Config.Propagations) {
GenericTaintChecker::CustomPropagations.emplace(
P.Name,
std::make_pair(P.Scope, TaintPropagationRule{
std::move(P.SrcArgs),
convertToArgVector(Mgr, Option, P.DstArgs),
P.VarType, P.VarIndex}));
}
for (auto &F : Config.Filters) {
GenericTaintChecker::CustomFilters.emplace(
std::get<0>(F),
std::make_pair(std::move(std::get<1>(F)), std::move(std::get<2>(F))));
}
for (auto &S : Config.Sinks) {
GenericTaintChecker::CustomSinks.emplace(
std::get<0>(S),
std::make_pair(std::move(std::get<1>(S)), std::move(std::get<2>(S))));
}
}
template <typename T>
auto GenericTaintChecker::findFunctionInConfig(const ConfigDataMap<T> &Map,
const FunctionData &FData) {
auto Range = Map.equal_range(std::string(FData.Name));
auto It =
std::find_if(Range.first, Range.second, [&FData](const auto &Entry) {
const auto &Value = Entry.second;
StringRef Scope = Value.first;
return Scope.empty() || FData.isInScope(Scope);
});
return It != Range.second ? It : Map.end();
}
GenericTaintChecker::TaintPropagationRule
GenericTaintChecker::TaintPropagationRule::getTaintPropagationRule(
const NameRuleMap &CustomPropagations, const FunctionData &FData,
CheckerContext &C) {
// TODO: Currently, we might lose precision here: we always mark a return
// value as tainted even if it's just a pointer, pointing to tainted data.
// Check for exact name match for functions without builtin substitutes.
// Use qualified name, because these are C functions without namespace.
TaintPropagationRule Rule =
llvm::StringSwitch<TaintPropagationRule>(FData.FullName)
// Source functions
// TODO: Add support for vfscanf & family.
.Case("fdopen", {{}, {ReturnValueIndex}})
.Case("fopen", {{}, {ReturnValueIndex}})
.Case("freopen", {{}, {ReturnValueIndex}})
.Case("getch", {{}, {ReturnValueIndex}})
.Case("getchar", {{}, {ReturnValueIndex}})
.Case("getchar_unlocked", {{}, {ReturnValueIndex}})
.Case("getenv", {{}, {ReturnValueIndex}})
.Case("gets", {{}, {0, ReturnValueIndex}})
.Case("scanf", {{}, {}, VariadicType::Dst, 1})
.Case("socket", {{},
{ReturnValueIndex},
VariadicType::None,
InvalidArgIndex,
&TaintPropagationRule::postSocket})
.Case("wgetch", {{}, {ReturnValueIndex}})
// Propagating functions
.Case("atoi", {{0}, {ReturnValueIndex}})
.Case("atol", {{0}, {ReturnValueIndex}})
.Case("atoll", {{0}, {ReturnValueIndex}})
.Case("fgetc", {{0}, {ReturnValueIndex}})
.Case("fgetln", {{0}, {ReturnValueIndex}})
.Case("fgets", {{2}, {0, ReturnValueIndex}})
.Case("fscanf", {{0}, {}, VariadicType::Dst, 2})
.Case("sscanf", {{0}, {}, VariadicType::Dst, 2})
.Case("getc", {{0}, {ReturnValueIndex}})
.Case("getc_unlocked", {{0}, {ReturnValueIndex}})
.Case("getdelim", {{3}, {0}})
.Case("getline", {{2}, {0}})
.Case("getw", {{0}, {ReturnValueIndex}})
.Case("pread", {{0, 1, 2, 3}, {1, ReturnValueIndex}})
.Case("read", {{0, 2}, {1, ReturnValueIndex}})
.Case("strchr", {{0}, {ReturnValueIndex}})
.Case("strrchr", {{0}, {ReturnValueIndex}})
.Case("tolower", {{0}, {ReturnValueIndex}})
.Case("toupper", {{0}, {ReturnValueIndex}})
.Default({});
if (!Rule.isNull())
return Rule;
assert(FData.FDecl);
// Check if it's one of the memory setting/copying functions.
// This check is specialized but faster then calling isCLibraryFunction.
const FunctionDecl *FDecl = FData.FDecl;
unsigned BId = 0;
if ((BId = FDecl->getMemoryFunctionKind())) {
switch (BId) {
case Builtin::BImemcpy:
case Builtin::BImemmove:
case Builtin::BIstrncpy:
case Builtin::BIstrncat:
return {{1, 2}, {0, ReturnValueIndex}};
case Builtin::BIstrlcpy:
case Builtin::BIstrlcat:
return {{1, 2}, {0}};
case Builtin::BIstrndup:
return {{0, 1}, {ReturnValueIndex}};
default:
break;
}
}
// Process all other functions which could be defined as builtins.
if (Rule.isNull()) {
const auto OneOf = [FDecl](const auto &... Name) {
// FIXME: use fold expression in C++17
using unused = int[];
bool ret = false;
static_cast<void>(unused{
0, (ret |= CheckerContext::isCLibraryFunction(FDecl, Name), 0)...});
return ret;
};
if (OneOf("snprintf"))
return {{1}, {0, ReturnValueIndex}, VariadicType::Src, 3};
if (OneOf("sprintf"))
return {{}, {0, ReturnValueIndex}, VariadicType::Src, 2};
if (OneOf("strcpy", "stpcpy", "strcat"))
return {{1}, {0, ReturnValueIndex}};
if (OneOf("bcopy"))
return {{0, 2}, {1}};
if (OneOf("strdup", "strdupa", "wcsdup"))
return {{0}, {ReturnValueIndex}};
}
// Skipping the following functions, since they might be used for cleansing or
// smart memory copy:
// - memccpy - copying until hitting a special character.
auto It = findFunctionInConfig(CustomPropagations, FData);
if (It != CustomPropagations.end())
return It->second.second;
return {};
}
void GenericTaintChecker::checkPreCall(const CallEvent &Call,
CheckerContext &C) const {
Optional<FunctionData> FData = FunctionData::create(Call, C);
if (!FData)
return;
// Check for taintedness related errors first: system call, uncontrolled
// format string, tainted buffer size.
if (checkPre(Call, *FData, C))
return;
// Marks the function's arguments and/or return value tainted if it present in
// the list.
if (addSourcesPre(Call, *FData, C))
return;
addFiltersPre(Call, *FData, C);
}
void GenericTaintChecker::checkPostCall(const CallEvent &Call,
CheckerContext &C) const {
// Set the marked values as tainted. The return value only accessible from
// checkPostStmt.
propagateFromPre(Call, C);
}
void GenericTaintChecker::printState(raw_ostream &Out, ProgramStateRef State,
const char *NL, const char *Sep) const {
printTaint(State, Out, NL, Sep);
}
bool GenericTaintChecker::addSourcesPre(const CallEvent &Call,
const FunctionData &FData,
CheckerContext &C) const {
// First, try generating a propagation rule for this function.
TaintPropagationRule Rule = TaintPropagationRule::getTaintPropagationRule(
this->CustomPropagations, FData, C);
if (!Rule.isNull()) {
ProgramStateRef State = Rule.process(Call, C);
if (State) {
C.addTransition(State);
return true;
}
}
return false;
}
bool GenericTaintChecker::addFiltersPre(const CallEvent &Call,
const FunctionData &FData,
CheckerContext &C) const {
auto It = findFunctionInConfig(CustomFilters, FData);
if (It == CustomFilters.end())
return false;
ProgramStateRef State = C.getState();
const auto &Value = It->second;
const ArgVector &Args = Value.second;
for (unsigned ArgNum : Args) {
if (ArgNum >= Call.getNumArgs())
continue;
const Expr *Arg = Call.getArgExpr(ArgNum);
Optional<SVal> V = getPointeeOf(C, Arg);
if (V)
State = removeTaint(State, *V);
}
if (State != C.getState()) {
C.addTransition(State);
return true;
}
return false;
}
bool GenericTaintChecker::propagateFromPre(const CallEvent &Call,
CheckerContext &C) {
ProgramStateRef State = C.getState();
// Depending on what was tainted at pre-visit, we determined a set of
// arguments which should be tainted after the function returns. These are
// stored in the state as TaintArgsOnPostVisit set.
TaintArgsOnPostVisitTy TaintArgs = State->get<TaintArgsOnPostVisit>();
if (TaintArgs.isEmpty())
return false;
for (unsigned ArgNum : TaintArgs) {
// Special handling for the tainted return value.
if (ArgNum == ReturnValueIndex) {
State = addTaint(State, Call.getReturnValue());
continue;
}
// The arguments are pointer arguments. The data they are pointing at is
// tainted after the call.
if (Call.getNumArgs() < (ArgNum + 1))
return false;
const Expr *Arg = Call.getArgExpr(ArgNum);
Optional<SVal> V = getPointeeOf(C, Arg);
if (V)
State = addTaint(State, *V);
}
// Clear up the taint info from the state.
State = State->remove<TaintArgsOnPostVisit>();
if (State != C.getState()) {
C.addTransition(State);
return true;
}
return false;
}
bool GenericTaintChecker::checkPre(const CallEvent &Call,
const FunctionData &FData,
CheckerContext &C) const {
if (checkUncontrolledFormatString(Call, C))
return true;
if (checkSystemCall(Call, FData.Name, C))
return true;
if (checkTaintedBufferSize(Call, C))
return true;
return checkCustomSinks(Call, FData, C);
}
Optional<SVal> GenericTaintChecker::getPointeeOf(CheckerContext &C,
const Expr *Arg) {
ProgramStateRef State = C.getState();
SVal AddrVal = C.getSVal(Arg->IgnoreParens());
if (AddrVal.isUnknownOrUndef())
return None;
Optional<Loc> AddrLoc = AddrVal.getAs<Loc>();
if (!AddrLoc)
return None;
QualType ArgTy = Arg->getType().getCanonicalType();
if (!ArgTy->isPointerType())
return State->getSVal(*AddrLoc);
QualType ValTy = ArgTy->getPointeeType();
// Do not dereference void pointers. Treat them as byte pointers instead.
// FIXME: we might want to consider more than just the first byte.
if (ValTy->isVoidType())
ValTy = C.getASTContext().CharTy;
return State->getSVal(*AddrLoc, ValTy);
}
ProgramStateRef
GenericTaintChecker::TaintPropagationRule::process(const CallEvent &Call,
CheckerContext &C) const {
ProgramStateRef State = C.getState();
// Check for taint in arguments.
bool IsTainted = true;
for (unsigned ArgNum : SrcArgs) {
if (ArgNum >= Call.getNumArgs())
continue;
if ((IsTainted =
isTaintedOrPointsToTainted(Call.getArgExpr(ArgNum), State, C)))
break;
}
// Check for taint in variadic arguments.
if (!IsTainted && VariadicType::Src == VarType) {
// Check if any of the arguments is tainted
for (unsigned i = VariadicIndex; i < Call.getNumArgs(); ++i) {
if ((IsTainted =
isTaintedOrPointsToTainted(Call.getArgExpr(i), State, C)))
break;
}
}
if (PropagationFunc)
IsTainted = PropagationFunc(IsTainted, Call, C);
if (!IsTainted)
return State;
// Mark the arguments which should be tainted after the function returns.
for (unsigned ArgNum : DstArgs) {
// Should mark the return value?
if (ArgNum == ReturnValueIndex) {
State = State->add<TaintArgsOnPostVisit>(ReturnValueIndex);
continue;
}
if (ArgNum >= Call.getNumArgs())
continue;
// Mark the given argument.
State = State->add<TaintArgsOnPostVisit>(ArgNum);
}
// Mark all variadic arguments tainted if present.
if (VariadicType::Dst == VarType) {
// For all pointer and references that were passed in:
// If they are not pointing to const data, mark data as tainted.
// TODO: So far we are just going one level down; ideally we'd need to
// recurse here.
for (unsigned i = VariadicIndex; i < Call.getNumArgs(); ++i) {
const Expr *Arg = Call.getArgExpr(i);
// Process pointer argument.
const Type *ArgTy = Arg->getType().getTypePtr();
QualType PType = ArgTy->getPointeeType();
if ((!PType.isNull() && !PType.isConstQualified()) ||
(ArgTy->isReferenceType() && !Arg->getType().isConstQualified())) {
State = State->add<TaintArgsOnPostVisit>(i);
}
}
}
return State;
}
// If argument 0(protocol domain) is network, the return value should get taint.
bool GenericTaintChecker::TaintPropagationRule::postSocket(
bool /*IsTainted*/, const CallEvent &Call, CheckerContext &C) {
SourceLocation DomLoc = Call.getArgExpr(0)->getExprLoc();
StringRef DomName = C.getMacroNameOrSpelling(DomLoc);
// White list the internal communication protocols.
if (DomName.equals("AF_SYSTEM") || DomName.equals("AF_LOCAL") ||
DomName.equals("AF_UNIX") || DomName.equals("AF_RESERVED_36"))
return false;
return true;
}
bool GenericTaintChecker::isStdin(const Expr *E, CheckerContext &C) {
ProgramStateRef State = C.getState();
SVal Val = C.getSVal(E);
// stdin is a pointer, so it would be a region.
const MemRegion *MemReg = Val.getAsRegion();
// The region should be symbolic, we do not know it's value.
const auto *SymReg = dyn_cast_or_null<SymbolicRegion>(MemReg);
if (!SymReg)
return false;
// Get it's symbol and find the declaration region it's pointing to.
const auto *Sm = dyn_cast<SymbolRegionValue>(SymReg->getSymbol());
if (!Sm)
return false;
const auto *DeclReg = dyn_cast_or_null<DeclRegion>(Sm->getRegion());
if (!DeclReg)
return false;
// This region corresponds to a declaration, find out if it's a global/extern
// variable named stdin with the proper type.
if (const auto *D = dyn_cast_or_null<VarDecl>(DeclReg->getDecl())) {
D = D->getCanonicalDecl();
if ((D->getName().find("stdin") != StringRef::npos) && D->isExternC()) {
const auto *PtrTy = dyn_cast<PointerType>(D->getType().getTypePtr());
if (PtrTy && PtrTy->getPointeeType().getCanonicalType() ==
C.getASTContext().getFILEType().getCanonicalType())
return true;
}
}
return false;
}
static bool getPrintfFormatArgumentNum(const CallEvent &Call,
const CheckerContext &C,
unsigned &ArgNum) {
// Find if the function contains a format string argument.
// Handles: fprintf, printf, sprintf, snprintf, vfprintf, vprintf, vsprintf,
// vsnprintf, syslog, custom annotated functions.
const FunctionDecl *FDecl = Call.getDecl()->getAsFunction();
if (!FDecl)
return false;
for (const auto *Format : FDecl->specific_attrs<FormatAttr>()) {
ArgNum = Format->getFormatIdx() - 1;
if ((Format->getType()->getName() == "printf") &&
Call.getNumArgs() > ArgNum)
return true;
}
// Or if a function is named setproctitle (this is a heuristic).
if (C.getCalleeName(FDecl).find("setproctitle") != StringRef::npos) {
ArgNum = 0;
return true;
}
return false;
}
bool GenericTaintChecker::generateReportIfTainted(const Expr *E, StringRef Msg,
CheckerContext &C) const {
assert(E);
// Check for taint.
ProgramStateRef State = C.getState();
Optional<SVal> PointedToSVal = getPointeeOf(C, E);
SVal TaintedSVal;
if (PointedToSVal && isTainted(State, *PointedToSVal))
TaintedSVal = *PointedToSVal;
else if (isTainted(State, E, C.getLocationContext()))
TaintedSVal = C.getSVal(E);
else
return false;
// Generate diagnostic.
if (ExplodedNode *N = C.generateNonFatalErrorNode()) {
initBugType();
auto report = std::make_unique<PathSensitiveBugReport>(*BT, Msg, N);
report->addRange(E->getSourceRange());
report->addVisitor(std::make_unique<TaintBugVisitor>(TaintedSVal));
C.emitReport(std::move(report));
return true;
}
return false;
}
bool GenericTaintChecker::checkUncontrolledFormatString(
const CallEvent &Call, CheckerContext &C) const {
// Check if the function contains a format string argument.
unsigned ArgNum = 0;
if (!getPrintfFormatArgumentNum(Call, C, ArgNum))
return false;
// If either the format string content or the pointer itself are tainted,
// warn.
return generateReportIfTainted(Call.getArgExpr(ArgNum),
MsgUncontrolledFormatString, C);
}
bool GenericTaintChecker::checkSystemCall(const CallEvent &Call, StringRef Name,
CheckerContext &C) const {
// TODO: It might make sense to run this check on demand. In some cases,
// we should check if the environment has been cleansed here. We also might
// need to know if the user was reset before these calls(seteuid).
unsigned ArgNum = llvm::StringSwitch<unsigned>(Name)
.Case("system", 0)
.Case("popen", 0)
.Case("execl", 0)
.Case("execle", 0)
.Case("execlp", 0)
.Case("execv", 0)
.Case("execvp", 0)
.Case("execvP", 0)
.Case("execve", 0)
.Case("dlopen", 0)
.Default(InvalidArgIndex);
if (ArgNum == InvalidArgIndex || Call.getNumArgs() < (ArgNum + 1))
return false;
return generateReportIfTainted(Call.getArgExpr(ArgNum), MsgSanitizeSystemArgs,
C);
}
// TODO: Should this check be a part of the CString checker?
// If yes, should taint be a global setting?
bool GenericTaintChecker::checkTaintedBufferSize(const CallEvent &Call,
CheckerContext &C) const {
const auto *FDecl = Call.getDecl()->getAsFunction();
// If the function has a buffer size argument, set ArgNum.
unsigned ArgNum = InvalidArgIndex;
unsigned BId = 0;
if ((BId = FDecl->getMemoryFunctionKind())) {
switch (BId) {
case Builtin::BImemcpy:
case Builtin::BImemmove:
case Builtin::BIstrncpy:
ArgNum = 2;
break;
case Builtin::BIstrndup:
ArgNum = 1;
break;
default:
break;
}
}
if (ArgNum == InvalidArgIndex) {
using CCtx = CheckerContext;
if (CCtx::isCLibraryFunction(FDecl, "malloc") ||
CCtx::isCLibraryFunction(FDecl, "calloc") ||
CCtx::isCLibraryFunction(FDecl, "alloca"))
ArgNum = 0;
else if (CCtx::isCLibraryFunction(FDecl, "memccpy"))
ArgNum = 3;
else if (CCtx::isCLibraryFunction(FDecl, "realloc"))
ArgNum = 1;
else if (CCtx::isCLibraryFunction(FDecl, "bcopy"))
ArgNum = 2;
}
return ArgNum != InvalidArgIndex && Call.getNumArgs() > ArgNum &&
generateReportIfTainted(Call.getArgExpr(ArgNum), MsgTaintedBufferSize,
C);
}
bool GenericTaintChecker::checkCustomSinks(const CallEvent &Call,
const FunctionData &FData,
CheckerContext &C) const {
auto It = findFunctionInConfig(CustomSinks, FData);
if (It == CustomSinks.end())
return false;
const auto &Value = It->second;
const GenericTaintChecker::ArgVector &Args = Value.second;
for (unsigned ArgNum : Args) {
if (ArgNum >= Call.getNumArgs())
continue;
if (generateReportIfTainted(Call.getArgExpr(ArgNum), MsgCustomSink, C))
return true;
}
return false;
}
void ento::registerGenericTaintChecker(CheckerManager &Mgr) {
auto *Checker = Mgr.registerChecker<GenericTaintChecker>();
std::string Option{"Config"};
StringRef ConfigFile =
Mgr.getAnalyzerOptions().getCheckerStringOption(Checker, Option);
llvm::Optional<TaintConfig> Config =
getConfiguration<TaintConfig>(Mgr, Checker, Option, ConfigFile);
if (Config)
Checker->parseConfiguration(Mgr, Option, std::move(Config.getValue()));
}
bool ento::shouldRegisterGenericTaintChecker(const CheckerManager &mgr) {
return true;
}