llvm-project/mlir/lib/Conversion/ShapeToStandard/ShapeToStandard.cpp

711 lines
26 KiB
C++

//===- ShapeToStandard.cpp - conversion from Shape to Standard dialect ----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Conversion/ShapeToStandard/ShapeToStandard.h"
#include "../PassDetail.h"
#include "mlir/Dialect/Arithmetic/IR/Arithmetic.h"
#include "mlir/Dialect/SCF/SCF.h"
#include "mlir/Dialect/Shape/IR/Shape.h"
#include "mlir/Dialect/StandardOps/IR/Ops.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/IR/BlockAndValueMapping.h"
#include "mlir/IR/ImplicitLocOpBuilder.h"
#include "mlir/Transforms/DialectConversion.h"
#include "llvm/ADT/STLExtras.h"
using namespace mlir;
using namespace mlir::shape;
using namespace mlir::scf;
/// Conversion patterns.
namespace {
class AnyOpConversion : public OpConversionPattern<AnyOp> {
public:
using OpConversionPattern<AnyOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(AnyOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override;
};
} // namespace
LogicalResult
AnyOpConversion::matchAndRewrite(AnyOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
// Replace `any` with its first operand.
// Any operand would be a valid substitution.
rewriter.replaceOp(op, {adaptor.getInputs().front()});
return success();
}
namespace {
template <typename SrcOpTy, typename DstOpTy>
class BinaryOpConversion : public OpConversionPattern<SrcOpTy> {
public:
using OpConversionPattern<SrcOpTy>::OpConversionPattern;
LogicalResult
matchAndRewrite(SrcOpTy op, typename SrcOpTy::Adaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
// For now, only error-free types are supported by this lowering.
if (op.getType().template isa<SizeType>())
return failure();
rewriter.replaceOpWithNewOp<DstOpTy>(op, adaptor.getLhs(),
adaptor.getRhs());
return success();
}
};
} // namespace
namespace {
struct BroadcastOpConverter : public OpConversionPattern<BroadcastOp> {
using OpConversionPattern<BroadcastOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(BroadcastOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override;
};
// Get the resulting extent in a given dimension. This is computed with any
// number of extent tensors and shifted offsets into them.
Value getBroadcastedDim(ImplicitLocOpBuilder lb, ValueRange extentTensors,
ValueRange rankDiffs, Value outputDimension) {
Value one = lb.create<arith::ConstantIndexOp>(1);
Value broadcastedDim = one;
for (auto tup : llvm::zip(extentTensors, rankDiffs)) {
Value shape = std::get<0>(tup);
Value rankDiff = std::get<1>(tup);
Value outOfBounds = lb.create<arith::CmpIOp>(arith::CmpIPredicate::ult,
outputDimension, rankDiff);
Type indexTy = lb.getIndexType();
broadcastedDim =
lb.create<IfOp>(
TypeRange{indexTy}, outOfBounds,
[&](OpBuilder &b, Location loc) {
b.create<scf::YieldOp>(loc, broadcastedDim);
},
[&](OpBuilder &b, Location loc) {
// The broadcasting logic is:
// - if one extent (here we arbitrarily choose the
// extent from the greater-rank operand) is equal to 1,
// then take the extent from the other operand
// - otherwise, take the extent as-is.
// Note that this logic remains correct in the presence
// of dimensions of zero extent.
Value lesserRankOperandDimension = b.create<arith::SubIOp>(
loc, indexTy, outputDimension, rankDiff);
Value lesserRankOperandExtent = b.create<tensor::ExtractOp>(
loc, shape, ValueRange{lesserRankOperandDimension});
Value dimIsOne =
b.create<arith::CmpIOp>(loc, arith::CmpIPredicate::eq,
lesserRankOperandExtent, one);
Value dim = b.create<SelectOp>(loc, dimIsOne, broadcastedDim,
lesserRankOperandExtent);
b.create<scf::YieldOp>(loc, dim);
})
.getResult(0);
}
return broadcastedDim;
}
} // namespace
LogicalResult BroadcastOpConverter::matchAndRewrite(
BroadcastOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
// For now, this lowering is only defined on `tensor<?xindex>` operands, not
// on shapes.
if (op.getType().isa<ShapeType>())
return failure();
auto loc = op.getLoc();
ImplicitLocOpBuilder lb(loc, rewriter);
Value zero = lb.create<arith::ConstantIndexOp>(0);
Type indexTy = lb.getIndexType();
// Save all the ranks for bounds checking. Because this is a tensor
// representing the shape extents, the rank is the extent of the only
// dimension in the tensor.
SmallVector<Value> ranks, rankDiffs;
llvm::append_range(ranks, llvm::map_range(adaptor.getShapes(), [&](Value v) {
return lb.create<tensor::DimOp>(v, zero);
}));
// Find the maximum rank
Value maxRank = ranks.front();
for (Value v : llvm::drop_begin(ranks, 1)) {
Value rankIsGreater =
lb.create<arith::CmpIOp>(arith::CmpIPredicate::ugt, v, maxRank);
maxRank = lb.create<SelectOp>(rankIsGreater, v, maxRank);
}
// Calculate the difference of ranks and the maximum rank for later offsets.
llvm::append_range(rankDiffs, llvm::map_range(ranks, [&](Value v) {
return lb.create<arith::SubIOp>(indexTy, maxRank, v);
}));
Value replacement = lb.create<tensor::GenerateOp>(
getExtentTensorType(lb.getContext()), ValueRange{maxRank},
[&](OpBuilder &b, Location loc, ValueRange args) {
Value broadcastedDim =
getBroadcastedDim(ImplicitLocOpBuilder(loc, b), adaptor.getShapes(),
rankDiffs, args[0]);
b.create<tensor::YieldOp>(loc, broadcastedDim);
});
if (replacement.getType() != op.getType())
replacement = lb.create<tensor::CastOp>(op.getType(), replacement);
rewriter.replaceOp(op, replacement);
return success();
}
namespace {
class ConstShapeOpConverter : public OpConversionPattern<ConstShapeOp> {
public:
using OpConversionPattern<ConstShapeOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(ConstShapeOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override;
};
} // namespace
LogicalResult ConstShapeOpConverter::matchAndRewrite(
ConstShapeOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
// For now, this lowering supports only extent tensors, not `shape.shape`
// types.
if (op.getType().isa<ShapeType>())
return failure();
auto loc = op.getLoc();
SmallVector<Value, 4> extentOperands;
for (auto extent : op.getShape()) {
extentOperands.push_back(
rewriter.create<arith::ConstantIndexOp>(loc, extent.getLimitedValue()));
}
Type resultTy =
RankedTensorType::get({op.getShape().size()}, rewriter.getIndexType());
Value tensor =
rewriter.create<tensor::FromElementsOp>(loc, resultTy, extentOperands);
rewriter.replaceOpWithNewOp<tensor::CastOp>(op, resultTy, tensor);
return success();
}
namespace {
class ConstSizeOpConversion : public OpConversionPattern<ConstSizeOp> {
public:
using OpConversionPattern<ConstSizeOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(ConstSizeOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override;
};
} // namespace
LogicalResult ConstSizeOpConversion::matchAndRewrite(
ConstSizeOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
rewriter.replaceOpWithNewOp<arith::ConstantIndexOp>(
op, op.getValue().getSExtValue());
return success();
}
namespace {
struct IsBroadcastableOpConverter
: public OpConversionPattern<IsBroadcastableOp> {
using OpConversionPattern<IsBroadcastableOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(IsBroadcastableOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override;
};
} // namespace
LogicalResult IsBroadcastableOpConverter::matchAndRewrite(
IsBroadcastableOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
// For now, this lowering is only defined on `tensor<?xindex>` operands, not
// on shapes.
if (!llvm::all_of(op.getShapes(),
[](Value v) { return !v.getType().isa<ShapeType>(); }))
return failure();
auto loc = op.getLoc();
ImplicitLocOpBuilder lb(loc, rewriter);
Value zero = lb.create<arith::ConstantIndexOp>(0);
Value one = lb.create<arith::ConstantIndexOp>(1);
Type indexTy = lb.getIndexType();
// Save all the ranks for bounds checking. Because this is a tensor
// representing the shape extents, the rank is the extent of the only
// dimension in the tensor.
SmallVector<Value> ranks, rankDiffs;
llvm::append_range(ranks, llvm::map_range(adaptor.getShapes(), [&](Value v) {
return lb.create<tensor::DimOp>(v, zero);
}));
// Find the maximum rank
Value maxRank = ranks.front();
for (Value v : llvm::drop_begin(ranks, 1)) {
Value rankIsGreater =
lb.create<arith::CmpIOp>(arith::CmpIPredicate::ugt, v, maxRank);
maxRank = lb.create<SelectOp>(rankIsGreater, v, maxRank);
}
// Calculate the difference of ranks and the maximum rank for later offsets.
llvm::append_range(rankDiffs, llvm::map_range(ranks, [&](Value v) {
return lb.create<arith::SubIOp>(indexTy, maxRank, v);
}));
Type i1Ty = rewriter.getI1Type();
Value trueVal =
rewriter.create<arith::ConstantOp>(loc, i1Ty, rewriter.getBoolAttr(true));
auto reduceResult = lb.create<ForOp>(
loc, zero, maxRank, one, ValueRange{trueVal},
[&](OpBuilder &b, Location loc, Value iv, ValueRange iterArgs) {
// Find a non-1 dim, if it exists. Note that the first part of this
// could reuse the Broadcast lowering entirely, but we redo the work
// here to make optimizations easier between the two loops.
Value broadcastedDim = getBroadcastedDim(
ImplicitLocOpBuilder(loc, b), adaptor.getShapes(), rankDiffs, iv);
Value broadcastable = iterArgs[0];
for (auto tup : llvm::zip(adaptor.getShapes(), rankDiffs)) {
Value shape, rankDiff;
std::tie(shape, rankDiff) = tup;
Value outOfBounds = b.create<arith::CmpIOp>(
loc, arith::CmpIPredicate::ult, iv, rankDiff);
broadcastable =
b.create<IfOp>(
loc, TypeRange{i1Ty}, outOfBounds,
[&](OpBuilder &b, Location loc) {
// Non existent dimensions are always broadcastable
b.create<scf::YieldOp>(loc, broadcastable);
},
[&](OpBuilder &b, Location loc) {
// Every value needs to be either 1, or the same non-1
// value to be broadcastable in this dim.
Value operandDimension =
b.create<arith::SubIOp>(loc, indexTy, iv, rankDiff);
Value dimensionExtent = b.create<tensor::ExtractOp>(
loc, shape, ValueRange{operandDimension});
Value equalOne = b.create<arith::CmpIOp>(
loc, arith::CmpIPredicate::eq, dimensionExtent, one);
Value equalBroadcasted = b.create<arith::CmpIOp>(
loc, arith::CmpIPredicate::eq, dimensionExtent,
broadcastedDim);
Value result = b.create<arith::AndIOp>(
loc, broadcastable,
b.create<arith::OrIOp>(loc, equalOne,
equalBroadcasted));
b.create<scf::YieldOp>(loc, result);
})
.getResult(0);
}
b.create<scf::YieldOp>(loc, broadcastable);
});
rewriter.replaceOp(op, reduceResult.getResults().front());
return success();
}
namespace {
class GetExtentOpConverter : public OpConversionPattern<GetExtentOp> {
using OpConversionPattern<GetExtentOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(GetExtentOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override;
};
} // namespace
LogicalResult GetExtentOpConverter::matchAndRewrite(
GetExtentOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
// For now, only error-free types are supported by this lowering.
if (op.getType().isa<SizeType>())
return failure();
// Derive shape extent directly from shape origin if possible. This
// circumvents the necessity to materialize the shape in memory.
if (auto shapeOfOp = op.getShape().getDefiningOp<ShapeOfOp>()) {
if (shapeOfOp.getArg().getType().isa<ShapedType>()) {
rewriter.replaceOpWithNewOp<tensor::DimOp>(op, shapeOfOp.getArg(),
adaptor.getDim());
return success();
}
}
rewriter.replaceOpWithNewOp<tensor::ExtractOp>(op, rewriter.getIndexType(),
adaptor.getShape(),
ValueRange{adaptor.getDim()});
return success();
}
namespace {
class RankOpConverter : public OpConversionPattern<shape::RankOp> {
public:
using OpConversionPattern<shape::RankOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(shape::RankOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override;
};
} // namespace
LogicalResult
RankOpConverter::matchAndRewrite(shape::RankOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
// For now, this lowering supports only error-free types.
if (op.getType().isa<SizeType>())
return failure();
rewriter.replaceOpWithNewOp<tensor::DimOp>(op, adaptor.getShape(), 0);
return success();
}
namespace {
/// Converts `shape.reduce` to `scf.for`.
struct ReduceOpConverter : public OpConversionPattern<shape::ReduceOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(shape::ReduceOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const final;
};
} // namespace
LogicalResult
ReduceOpConverter::matchAndRewrite(shape::ReduceOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
// For now, this lowering is only defined on `tensor<?xindex>` operands.
if (op.getShape().getType().isa<ShapeType>())
return failure();
auto loc = op.getLoc();
Value zero = rewriter.create<arith::ConstantIndexOp>(loc, 0);
Value one = rewriter.create<arith::ConstantIndexOp>(loc, 1);
Type indexTy = rewriter.getIndexType();
Value rank =
rewriter.create<tensor::DimOp>(loc, indexTy, adaptor.getShape(), zero);
auto loop = rewriter.create<scf::ForOp>(
loc, zero, rank, one, op.getInitVals(),
[&](OpBuilder &b, Location loc, Value iv, ValueRange args) {
Value extent = b.create<tensor::ExtractOp>(loc, adaptor.getShape(), iv);
SmallVector<Value, 2> mappedValues{iv, extent};
mappedValues.append(args.begin(), args.end());
BlockAndValueMapping mapping;
Block *reduceBody = op.getBody();
mapping.map(reduceBody->getArguments(), mappedValues);
for (auto &nested : reduceBody->without_terminator())
b.clone(nested, mapping);
SmallVector<Value, 2> mappedResults;
for (auto result : reduceBody->getTerminator()->getOperands())
mappedResults.push_back(mapping.lookup(result));
b.create<scf::YieldOp>(loc, mappedResults);
});
rewriter.replaceOp(op, loop.getResults());
return success();
}
namespace {
/// Converts `shape.shape_eq` to an `scf.for` loop. For now, the lowering is
/// only defined on `tensor<?xindex>` operands. The test for equality first
/// compares their size and, if equal, checks every extent for equality.
///
/// Example:
///
/// %result = shape.shape_eq %a, %b : tensor<?xindex>, tensor<?xindex>
///
/// becomes
///
/// %c0 = arith.constant 0 : index
/// %0 = dim %arg0, %c0 : tensor<?xindex>
/// %1 = dim %arg1, %c0 : tensor<?xindex>
/// %2 = arith.cmpi "eq", %0, %1 : index
/// %result = scf.if %2 -> (i1) {
/// %c1 = arith.constant 1 : index
/// %true = arith.constant true
/// %4 = scf.for %arg2 = %c0 to %0 step %c1 iter_args(%arg3 = %true) -> (i1) {
/// %5 = tensor.extract %arg0[%arg2] : tensor<?xindex>
/// %6 = tensor.extract %arg1[%arg2] : tensor<?xindex>
/// %7 = arith.cmpi "eq", %5, %6 : index
/// %8 = arith.andi %arg3, %7 : i1
/// scf.yield %8 : i1
/// }
/// scf.yield %4 : i1
/// } else {
/// %false = arith.constant false
/// scf.yield %false : i1
/// }
///
struct ShapeEqOpConverter : public OpConversionPattern<ShapeEqOp> {
using OpConversionPattern<ShapeEqOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(ShapeEqOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override;
};
} // namespace
LogicalResult
ShapeEqOpConverter::matchAndRewrite(ShapeEqOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
if (!llvm::all_of(op.getShapes(),
[](Value v) { return !v.getType().isa<ShapeType>(); }))
return failure();
Type i1Ty = rewriter.getI1Type();
if (op.getShapes().size() <= 1) {
rewriter.replaceOpWithNewOp<arith::ConstantOp>(op, i1Ty,
rewriter.getBoolAttr(true));
return success();
}
auto loc = op.getLoc();
Type indexTy = rewriter.getIndexType();
Value zero = rewriter.create<arith::ConstantIndexOp>(loc, 0);
Value firstShape = adaptor.getShapes().front();
Value firstRank =
rewriter.create<tensor::DimOp>(loc, indexTy, firstShape, zero);
Value result = nullptr;
// Generate a linear sequence of compares, all with firstShape as lhs.
for (Value shape : adaptor.getShapes().drop_front(1)) {
Value rank = rewriter.create<tensor::DimOp>(loc, indexTy, shape, zero);
Value eqRank = rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::eq,
firstRank, rank);
auto same = rewriter.create<IfOp>(
loc, i1Ty, eqRank,
[&](OpBuilder &b, Location loc) {
Value one = b.create<arith::ConstantIndexOp>(loc, 1);
Value init =
b.create<arith::ConstantOp>(loc, i1Ty, b.getBoolAttr(true));
auto loop = b.create<scf::ForOp>(
loc, zero, firstRank, one, ValueRange{init},
[&](OpBuilder &b, Location nestedLoc, Value iv, ValueRange args) {
Value conj = args[0];
Value lhsExtent =
b.create<tensor::ExtractOp>(loc, firstShape, iv);
Value rhsExtent = b.create<tensor::ExtractOp>(loc, shape, iv);
Value eqExtent = b.create<arith::CmpIOp>(
loc, arith::CmpIPredicate::eq, lhsExtent, rhsExtent);
Value conjNext = b.create<arith::AndIOp>(loc, conj, eqExtent);
b.create<scf::YieldOp>(loc, ValueRange({conjNext}));
});
b.create<scf::YieldOp>(loc, loop.getResults());
},
[&](OpBuilder &b, Location loc) {
Value result =
b.create<arith::ConstantOp>(loc, i1Ty, b.getBoolAttr(false));
b.create<scf::YieldOp>(loc, result);
});
result = !result ? same.getResult(0)
: rewriter.create<arith::AndIOp>(loc, result,
same.getResult(0));
}
rewriter.replaceOp(op, result);
return success();
}
namespace {
class ShapeOfOpConversion : public OpConversionPattern<ShapeOfOp> {
public:
using OpConversionPattern<ShapeOfOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(ShapeOfOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override;
};
} // namespace
LogicalResult ShapeOfOpConversion::matchAndRewrite(
ShapeOfOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
// For now, only error-free types are supported by this lowering.
if (op.getType().isa<ShapeType>())
return failure();
// For ranked tensor arguments, lower to `tensor.from_elements`.
auto loc = op.getLoc();
Value tensor = adaptor.getArg();
Type tensorTy = tensor.getType();
if (tensorTy.isa<RankedTensorType>()) {
// Build values for individual extents.
SmallVector<Value, 8> extentValues;
RankedTensorType rankedTensorTy = tensorTy.cast<RankedTensorType>();
int64_t rank = rankedTensorTy.getRank();
for (int64_t i = 0; i < rank; i++) {
if (rankedTensorTy.isDynamicDim(i)) {
Value extent = rewriter.create<tensor::DimOp>(loc, tensor, i);
extentValues.push_back(extent);
} else {
Value extent = rewriter.create<arith::ConstantIndexOp>(
loc, rankedTensorTy.getDimSize(i));
extentValues.push_back(extent);
}
}
// Materialize extent tensor.
Value staticExtentTensor = rewriter.create<tensor::FromElementsOp>(
loc, RankedTensorType::get({rank}, rewriter.getIndexType()),
extentValues);
rewriter.replaceOpWithNewOp<tensor::CastOp>(op, op.getType(),
staticExtentTensor);
return success();
}
// Lower to `tensor.generate` otherwise.
auto *ctx = rewriter.getContext();
Value rank = rewriter.create<tensor::RankOp>(loc, tensor);
rewriter.replaceOpWithNewOp<tensor::GenerateOp>(
op, getExtentTensorType(ctx), ValueRange{rank},
[&](OpBuilder &b, Location loc, ValueRange args) {
Value dim = args.front();
Value extent = b.create<tensor::DimOp>(loc, tensor, dim);
b.create<tensor::YieldOp>(loc, extent);
});
return success();
}
namespace {
class SplitAtOpConversion : public OpConversionPattern<SplitAtOp> {
public:
using OpConversionPattern<SplitAtOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(SplitAtOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override;
};
} // namespace
LogicalResult SplitAtOpConversion::matchAndRewrite(
SplitAtOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
// Error conditions are not implemented, only lower if all operands and
// results are extent tensors.
if (llvm::any_of(ValueRange{op.getOperand(), op.getHead(), op.getTail()},
[](Value v) { return v.getType().isa<ShapeType>(); }))
return failure();
ImplicitLocOpBuilder b(op.getLoc(), rewriter);
Value zero = b.create<arith::ConstantIndexOp>(0);
Value rank = b.create<tensor::DimOp>(adaptor.getOperand(), zero);
// index < 0 ? index + rank : index
Value originalIndex = adaptor.getIndex();
Value add = b.create<arith::AddIOp>(originalIndex, rank);
Value indexIsNegative =
b.create<arith::CmpIOp>(arith::CmpIPredicate::slt, originalIndex, zero);
Value index = b.create<SelectOp>(indexIsNegative, add, originalIndex);
Value one = b.create<arith::ConstantIndexOp>(1);
Value head =
b.create<tensor::ExtractSliceOp>(adaptor.getOperand(), zero, index, one);
Value tailSize = b.create<arith::SubIOp>(rank, index);
Value tail = b.create<tensor::ExtractSliceOp>(adaptor.getOperand(), index,
tailSize, one);
rewriter.replaceOp(op, {head, tail});
return success();
}
namespace {
class ToExtentTensorOpConversion
: public OpConversionPattern<ToExtentTensorOp> {
public:
using OpConversionPattern<ToExtentTensorOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(ToExtentTensorOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
if (!adaptor.getInput().getType().isa<RankedTensorType>())
return rewriter.notifyMatchFailure(op, "input needs to be a tensor");
rewriter.replaceOpWithNewOp<tensor::CastOp>(op, op.getType(),
adaptor.getInput());
return success();
}
};
} // namespace
namespace {
/// Import the Shape Ops to Std Patterns.
#include "ShapeToStandard.cpp.inc"
} // namespace
namespace {
/// Conversion pass.
class ConvertShapeToStandardPass
: public ConvertShapeToStandardBase<ConvertShapeToStandardPass> {
void runOnOperation() override;
};
} // namespace
void ConvertShapeToStandardPass::runOnOperation() {
// Setup target legality.
MLIRContext &ctx = getContext();
ConversionTarget target(ctx);
target.addLegalDialect<arith::ArithmeticDialect, StandardOpsDialect,
SCFDialect, tensor::TensorDialect>();
target.addLegalOp<CstrRequireOp, FuncOp, ModuleOp>();
// Setup conversion patterns.
RewritePatternSet patterns(&ctx);
populateShapeToStandardConversionPatterns(patterns);
// Apply conversion.
auto module = getOperation();
if (failed(applyPartialConversion(module, target, std::move(patterns))))
signalPassFailure();
}
void mlir::populateShapeToStandardConversionPatterns(
RewritePatternSet &patterns) {
// clang-format off
populateWithGenerated(patterns);
patterns.add<
AnyOpConversion,
BinaryOpConversion<AddOp, arith::AddIOp>,
BinaryOpConversion<MulOp, arith::MulIOp>,
BroadcastOpConverter,
ConstShapeOpConverter,
ConstSizeOpConversion,
IsBroadcastableOpConverter,
GetExtentOpConverter,
RankOpConverter,
ReduceOpConverter,
ShapeEqOpConverter,
ShapeOfOpConversion,
SplitAtOpConversion,
ToExtentTensorOpConversion>(patterns.getContext());
// clang-format on
}
std::unique_ptr<OperationPass<ModuleOp>>
mlir::createConvertShapeToStandardPass() {
return std::make_unique<ConvertShapeToStandardPass>();
}