llvm-project/mlir/lib/Conversion/SCFToSPIRV/SCFToSPIRV.cpp

436 lines
18 KiB
C++

//===- SCFToSPIRV.cpp - SCF to SPIR-V Patterns ----------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements patterns to convert SCF dialect to SPIR-V dialect.
//
//===----------------------------------------------------------------------===//
#include "mlir/Conversion/SCFToSPIRV/SCFToSPIRV.h"
#include "mlir/Dialect/SCF/SCF.h"
#include "mlir/Dialect/SPIRV/IR/SPIRVDialect.h"
#include "mlir/Dialect/SPIRV/IR/SPIRVOps.h"
#include "mlir/Dialect/SPIRV/Transforms/SPIRVConversion.h"
#include "mlir/IR/BuiltinOps.h"
#include "mlir/Transforms/DialectConversion.h"
using namespace mlir;
//===----------------------------------------------------------------------===//
// Context
//===----------------------------------------------------------------------===//
namespace mlir {
struct ScfToSPIRVContextImpl {
// Map between the spirv region control flow operation (spv.mlir.loop or
// spv.mlir.selection) to the VariableOp created to store the region results.
// The order of the VariableOp matches the order of the results.
DenseMap<Operation *, SmallVector<spirv::VariableOp, 8>> outputVars;
};
} // namespace mlir
/// We use ScfToSPIRVContext to store information about the lowering of the scf
/// region that need to be used later on. When we lower scf.for/scf.if we create
/// VariableOp to store the results. We need to keep track of the VariableOp
/// created as we need to insert stores into them when lowering Yield. Those
/// StoreOp cannot be created earlier as they may use a different type than
/// yield operands.
ScfToSPIRVContext::ScfToSPIRVContext() {
impl = std::make_unique<ScfToSPIRVContextImpl>();
}
ScfToSPIRVContext::~ScfToSPIRVContext() = default;
//===----------------------------------------------------------------------===//
// Pattern Declarations
//===----------------------------------------------------------------------===//
namespace {
/// Common class for all vector to GPU patterns.
template <typename OpTy>
class SCFToSPIRVPattern : public OpConversionPattern<OpTy> {
public:
SCFToSPIRVPattern<OpTy>(MLIRContext *context, SPIRVTypeConverter &converter,
ScfToSPIRVContextImpl *scfToSPIRVContext)
: OpConversionPattern<OpTy>::OpConversionPattern(converter, context),
scfToSPIRVContext(scfToSPIRVContext), typeConverter(converter) {}
protected:
ScfToSPIRVContextImpl *scfToSPIRVContext;
// FIXME: We explicitly keep a reference of the type converter here instead of
// passing it to OpConversionPattern during construction. This effectively
// bypasses the conversion framework's automation on type conversion. This is
// needed right now because the conversion framework will unconditionally
// legalize all types used by SCF ops upon discovering them, for example, the
// types of loop carried values. We use SPIR-V variables for those loop
// carried values. Depending on the available capabilities, the SPIR-V
// variable can be different, for example, cooperative matrix or normal
// variable. We'd like to detach the conversion of the loop carried values
// from the SCF ops (which is mainly a region). So we need to "mark" types
// used by SCF ops as legal, if to use the conversion framework for type
// conversion. There isn't a straightforward way to do that yet, as when
// converting types, ops aren't taken into consideration. Therefore, we just
// bypass the framework's type conversion for now.
SPIRVTypeConverter &typeConverter;
};
/// Pattern to convert a scf::ForOp within kernel functions into spirv::LoopOp.
class ForOpConversion final : public SCFToSPIRVPattern<scf::ForOp> {
public:
using SCFToSPIRVPattern<scf::ForOp>::SCFToSPIRVPattern;
LogicalResult
matchAndRewrite(scf::ForOp forOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override;
};
/// Pattern to convert a scf::IfOp within kernel functions into
/// spirv::SelectionOp.
class IfOpConversion final : public SCFToSPIRVPattern<scf::IfOp> {
public:
using SCFToSPIRVPattern<scf::IfOp>::SCFToSPIRVPattern;
LogicalResult
matchAndRewrite(scf::IfOp ifOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override;
};
class TerminatorOpConversion final : public SCFToSPIRVPattern<scf::YieldOp> {
public:
using SCFToSPIRVPattern<scf::YieldOp>::SCFToSPIRVPattern;
LogicalResult
matchAndRewrite(scf::YieldOp terminatorOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override;
};
class WhileOpConversion final : public SCFToSPIRVPattern<scf::WhileOp> {
public:
using SCFToSPIRVPattern<scf::WhileOp>::SCFToSPIRVPattern;
LogicalResult
matchAndRewrite(scf::WhileOp forOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override;
};
} // namespace
/// Helper function to replaces SCF op outputs with SPIR-V variable loads.
/// We create VariableOp to handle the results value of the control flow region.
/// spv.mlir.loop/spv.mlir.selection currently don't yield value. Right after
/// the loop we load the value from the allocation and use it as the SCF op
/// result.
template <typename ScfOp, typename OpTy>
static void replaceSCFOutputValue(ScfOp scfOp, OpTy newOp,
ConversionPatternRewriter &rewriter,
ScfToSPIRVContextImpl *scfToSPIRVContext,
ArrayRef<Type> returnTypes) {
Location loc = scfOp.getLoc();
auto &allocas = scfToSPIRVContext->outputVars[newOp];
// Clearing the allocas is necessary in case a dialect conversion path failed
// previously, and this is the second attempt of this conversion.
allocas.clear();
SmallVector<Value, 8> resultValue;
for (Type convertedType : returnTypes) {
auto pointerType =
spirv::PointerType::get(convertedType, spirv::StorageClass::Function);
rewriter.setInsertionPoint(newOp);
auto alloc = rewriter.create<spirv::VariableOp>(
loc, pointerType, spirv::StorageClass::Function,
/*initializer=*/nullptr);
allocas.push_back(alloc);
rewriter.setInsertionPointAfter(newOp);
Value loadResult = rewriter.create<spirv::LoadOp>(loc, alloc);
resultValue.push_back(loadResult);
}
rewriter.replaceOp(scfOp, resultValue);
}
static Region::iterator getBlockIt(Region &region, unsigned index) {
return std::next(region.begin(), index);
}
//===----------------------------------------------------------------------===//
// scf::ForOp
//===----------------------------------------------------------------------===//
LogicalResult
ForOpConversion::matchAndRewrite(scf::ForOp forOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
// scf::ForOp can be lowered to the structured control flow represented by
// spirv::LoopOp by making the continue block of the spirv::LoopOp the loop
// latch and the merge block the exit block. The resulting spirv::LoopOp has a
// single back edge from the continue to header block, and a single exit from
// header to merge.
auto loc = forOp.getLoc();
auto loopOp = rewriter.create<spirv::LoopOp>(loc, spirv::LoopControl::None);
loopOp.addEntryAndMergeBlock();
OpBuilder::InsertionGuard guard(rewriter);
// Create the block for the header.
auto *header = new Block();
// Insert the header.
loopOp.body().getBlocks().insert(getBlockIt(loopOp.body(), 1), header);
// Create the new induction variable to use.
Value adapLowerBound = adaptor.getLowerBound();
BlockArgument newIndVar =
header->addArgument(adapLowerBound.getType(), adapLowerBound.getLoc());
for (Value arg : adaptor.getInitArgs())
header->addArgument(arg.getType(), arg.getLoc());
Block *body = forOp.getBody();
// Apply signature conversion to the body of the forOp. It has a single block,
// with argument which is the induction variable. That has to be replaced with
// the new induction variable.
TypeConverter::SignatureConversion signatureConverter(
body->getNumArguments());
signatureConverter.remapInput(0, newIndVar);
for (unsigned i = 1, e = body->getNumArguments(); i < e; i++)
signatureConverter.remapInput(i, header->getArgument(i));
body = rewriter.applySignatureConversion(&forOp.getLoopBody(),
signatureConverter);
// Move the blocks from the forOp into the loopOp. This is the body of the
// loopOp.
rewriter.inlineRegionBefore(forOp->getRegion(0), loopOp.body(),
getBlockIt(loopOp.body(), 2));
SmallVector<Value, 8> args(1, adaptor.getLowerBound());
args.append(adaptor.getInitArgs().begin(), adaptor.getInitArgs().end());
// Branch into it from the entry.
rewriter.setInsertionPointToEnd(&(loopOp.body().front()));
rewriter.create<spirv::BranchOp>(loc, header, args);
// Generate the rest of the loop header.
rewriter.setInsertionPointToEnd(header);
auto *mergeBlock = loopOp.getMergeBlock();
auto cmpOp = rewriter.create<spirv::SLessThanOp>(
loc, rewriter.getI1Type(), newIndVar, adaptor.getUpperBound());
rewriter.create<spirv::BranchConditionalOp>(
loc, cmpOp, body, ArrayRef<Value>(), mergeBlock, ArrayRef<Value>());
// Generate instructions to increment the step of the induction variable and
// branch to the header.
Block *continueBlock = loopOp.getContinueBlock();
rewriter.setInsertionPointToEnd(continueBlock);
// Add the step to the induction variable and branch to the header.
Value updatedIndVar = rewriter.create<spirv::IAddOp>(
loc, newIndVar.getType(), newIndVar, adaptor.getStep());
rewriter.create<spirv::BranchOp>(loc, header, updatedIndVar);
// Infer the return types from the init operands. Vector type may get
// converted to CooperativeMatrix or to Vector type, to avoid having complex
// extra logic to figure out the right type we just infer it from the Init
// operands.
SmallVector<Type, 8> initTypes;
for (auto arg : adaptor.getInitArgs())
initTypes.push_back(arg.getType());
replaceSCFOutputValue(forOp, loopOp, rewriter, scfToSPIRVContext, initTypes);
return success();
}
//===----------------------------------------------------------------------===//
// scf::IfOp
//===----------------------------------------------------------------------===//
LogicalResult
IfOpConversion::matchAndRewrite(scf::IfOp ifOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
// When lowering `scf::IfOp` we explicitly create a selection header block
// before the control flow diverges and a merge block where control flow
// subsequently converges.
auto loc = ifOp.getLoc();
// Create `spv.selection` operation, selection header block and merge block.
auto selectionOp =
rewriter.create<spirv::SelectionOp>(loc, spirv::SelectionControl::None);
auto *mergeBlock =
rewriter.createBlock(&selectionOp.body(), selectionOp.body().end());
rewriter.create<spirv::MergeOp>(loc);
OpBuilder::InsertionGuard guard(rewriter);
auto *selectionHeaderBlock =
rewriter.createBlock(&selectionOp.body().front());
// Inline `then` region before the merge block and branch to it.
auto &thenRegion = ifOp.getThenRegion();
auto *thenBlock = &thenRegion.front();
rewriter.setInsertionPointToEnd(&thenRegion.back());
rewriter.create<spirv::BranchOp>(loc, mergeBlock);
rewriter.inlineRegionBefore(thenRegion, mergeBlock);
auto *elseBlock = mergeBlock;
// If `else` region is not empty, inline that region before the merge block
// and branch to it.
if (!ifOp.getElseRegion().empty()) {
auto &elseRegion = ifOp.getElseRegion();
elseBlock = &elseRegion.front();
rewriter.setInsertionPointToEnd(&elseRegion.back());
rewriter.create<spirv::BranchOp>(loc, mergeBlock);
rewriter.inlineRegionBefore(elseRegion, mergeBlock);
}
// Create a `spv.BranchConditional` operation for selection header block.
rewriter.setInsertionPointToEnd(selectionHeaderBlock);
rewriter.create<spirv::BranchConditionalOp>(loc, adaptor.getCondition(),
thenBlock, ArrayRef<Value>(),
elseBlock, ArrayRef<Value>());
SmallVector<Type, 8> returnTypes;
for (auto result : ifOp.getResults()) {
auto convertedType = typeConverter.convertType(result.getType());
returnTypes.push_back(convertedType);
}
replaceSCFOutputValue(ifOp, selectionOp, rewriter, scfToSPIRVContext,
returnTypes);
return success();
}
//===----------------------------------------------------------------------===//
// scf::YieldOp
//===----------------------------------------------------------------------===//
/// Yield is lowered to stores to the VariableOp created during lowering of the
/// parent region. For loops we also need to update the branch looping back to
/// the header with the loop carried values.
LogicalResult TerminatorOpConversion::matchAndRewrite(
scf::YieldOp terminatorOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
ValueRange operands = adaptor.getOperands();
// If the region is return values, store each value into the associated
// VariableOp created during lowering of the parent region.
if (!operands.empty()) {
auto &allocas = scfToSPIRVContext->outputVars[terminatorOp->getParentOp()];
if (allocas.size() != operands.size())
return failure();
auto loc = terminatorOp.getLoc();
for (unsigned i = 0, e = operands.size(); i < e; i++)
rewriter.create<spirv::StoreOp>(loc, allocas[i], operands[i]);
if (isa<spirv::LoopOp>(terminatorOp->getParentOp())) {
// For loops we also need to update the branch jumping back to the header.
auto br =
cast<spirv::BranchOp>(rewriter.getInsertionBlock()->getTerminator());
SmallVector<Value, 8> args(br.getBlockArguments());
args.append(operands.begin(), operands.end());
rewriter.setInsertionPoint(br);
rewriter.create<spirv::BranchOp>(terminatorOp.getLoc(), br.getTarget(),
args);
rewriter.eraseOp(br);
}
}
rewriter.eraseOp(terminatorOp);
return success();
}
//===----------------------------------------------------------------------===//
// scf::WhileOp
//===----------------------------------------------------------------------===//
LogicalResult
WhileOpConversion::matchAndRewrite(scf::WhileOp whileOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
auto loc = whileOp.getLoc();
auto loopOp = rewriter.create<spirv::LoopOp>(loc, spirv::LoopControl::None);
loopOp.addEntryAndMergeBlock();
OpBuilder::InsertionGuard guard(rewriter);
Region &beforeRegion = whileOp.getBefore();
Region &afterRegion = whileOp.getAfter();
Block &entryBlock = *loopOp.getEntryBlock();
Block &beforeBlock = beforeRegion.front();
Block &afterBlock = afterRegion.front();
Block &mergeBlock = *loopOp.getMergeBlock();
auto cond = cast<scf::ConditionOp>(beforeBlock.getTerminator());
SmallVector<Value> condArgs;
if (failed(rewriter.getRemappedValues(cond.getArgs(), condArgs)))
return failure();
Value conditionVal = rewriter.getRemappedValue(cond.getCondition());
if (!conditionVal)
return failure();
auto yield = cast<scf::YieldOp>(afterBlock.getTerminator());
SmallVector<Value> yieldArgs;
if (failed(rewriter.getRemappedValues(yield.getResults(), yieldArgs)))
return failure();
// Move the while before block as the initial loop header block.
rewriter.inlineRegionBefore(beforeRegion, loopOp.body(),
getBlockIt(loopOp.body(), 1));
// Move the while after block as the initial loop body block.
rewriter.inlineRegionBefore(afterRegion, loopOp.body(),
getBlockIt(loopOp.body(), 2));
// Jump from the loop entry block to the loop header block.
rewriter.setInsertionPointToEnd(&entryBlock);
rewriter.create<spirv::BranchOp>(loc, &beforeBlock, adaptor.getInits());
auto condLoc = cond.getLoc();
SmallVector<Value> resultValues(condArgs.size());
// For other SCF ops, the scf.yield op yields the value for the whole SCF op.
// So we use the scf.yield op as the anchor to create/load/store SPIR-V local
// variables. But for the scf.while op, the scf.yield op yields a value for
// the before region, which may not matching the whole op's result. Instead,
// the scf.condition op returns values matching the whole op's results. So we
// need to create/load/store variables according to that.
for (const auto &it : llvm::enumerate(condArgs)) {
auto res = it.value();
auto i = it.index();
auto pointerType =
spirv::PointerType::get(res.getType(), spirv::StorageClass::Function);
// Create local variables before the scf.while op.
rewriter.setInsertionPoint(loopOp);
auto alloc = rewriter.create<spirv::VariableOp>(
condLoc, pointerType, spirv::StorageClass::Function,
/*initializer=*/nullptr);
// Load the final result values after the scf.while op.
rewriter.setInsertionPointAfter(loopOp);
auto loadResult = rewriter.create<spirv::LoadOp>(condLoc, alloc);
resultValues[i] = loadResult;
// Store the current iteration's result value.
rewriter.setInsertionPointToEnd(&beforeBlock);
rewriter.create<spirv::StoreOp>(condLoc, alloc, res);
}
rewriter.setInsertionPointToEnd(&beforeBlock);
rewriter.replaceOpWithNewOp<spirv::BranchConditionalOp>(
cond, conditionVal, &afterBlock, condArgs, &mergeBlock, llvm::None);
// Convert the scf.yield op to a branch back to the header block.
rewriter.setInsertionPointToEnd(&afterBlock);
rewriter.replaceOpWithNewOp<spirv::BranchOp>(yield, &beforeBlock, yieldArgs);
rewriter.replaceOp(whileOp, resultValues);
return success();
}
//===----------------------------------------------------------------------===//
// Hooks
//===----------------------------------------------------------------------===//
void mlir::populateSCFToSPIRVPatterns(SPIRVTypeConverter &typeConverter,
ScfToSPIRVContext &scfToSPIRVContext,
RewritePatternSet &patterns) {
patterns.add<ForOpConversion, IfOpConversion, TerminatorOpConversion,
WhileOpConversion>(patterns.getContext(), typeConverter,
scfToSPIRVContext.getImpl());
}