llvm-project/lld/ELF/AArch64ErrataFix.cpp

648 lines
25 KiB
C++

//===- AArch64ErrataFix.cpp -----------------------------------------------===//
//
// The LLVM Linker
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// This file implements Section Patching for the purpose of working around
// errata in CPUs. The general principle is that an erratum sequence of one or
// more instructions is detected in the instruction stream, one of the
// instructions in the sequence is replaced with a branch to a patch sequence
// of replacement instructions. At the end of the replacement sequence the
// patch branches back to the instruction stream.
// This technique is only suitable for fixing an erratum when:
// - There is a set of necessary conditions required to trigger the erratum that
// can be detected at static link time.
// - There is a set of replacement instructions that can be used to remove at
// least one of the necessary conditions that trigger the erratum.
// - We can overwrite an instruction in the erratum sequence with a branch to
// the replacement sequence.
// - We can place the replacement sequence within range of the branch.
// FIXME:
// - The implementation here only supports one patch, the AArch64 Cortex-53
// errata 843419 that affects r0p0, r0p1, r0p2 and r0p4 versions of the core.
// To keep the initial version simple there is no support for multiple
// architectures or selection of different patches.
//===----------------------------------------------------------------------===//
#include "AArch64ErrataFix.h"
#include "Config.h"
#include "LinkerScript.h"
#include "OutputSections.h"
#include "Relocations.h"
#include "Symbols.h"
#include "SyntheticSections.h"
#include "Target.h"
#include "lld/Common/Memory.h"
#include "lld/Common/Strings.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
using namespace llvm;
using namespace llvm::ELF;
using namespace llvm::object;
using namespace llvm::support;
using namespace llvm::support::endian;
using namespace lld;
using namespace lld::elf;
// Helper functions to identify instructions and conditions needed to trigger
// the Cortex-A53-843419 erratum.
// ADRP
// | 1 | immlo (2) | 1 | 0 0 0 0 | immhi (19) | Rd (5) |
static bool isADRP(uint32_t Instr) {
return (Instr & 0x9f000000) == 0x90000000;
}
// Load and store bit patterns from ARMv8-A ARM ARM.
// Instructions appear in order of appearance starting from table in
// C4.1.3 Loads and Stores.
// All loads and stores have 1 (at bit postion 27), (0 at bit position 25).
// | op0 x op1 (2) | 1 op2 0 op3 (2) | x | op4 (5) | xxxx | op5 (2) | x (10) |
static bool isLoadStoreClass(uint32_t Instr) {
return (Instr & 0x0a000000) == 0x08000000;
}
// LDN/STN multiple no offset
// | 0 Q 00 | 1100 | 0 L 00 | 0000 | opcode (4) | size (2) | Rn (5) | Rt (5) |
// LDN/STN multiple post-indexed
// | 0 Q 00 | 1100 | 1 L 0 | Rm (5)| opcode (4) | size (2) | Rn (5) | Rt (5) |
// L == 0 for stores.
// Utility routine to decode opcode field of LDN/STN multiple structure
// instructions to find the ST1 instructions.
// opcode == 0010 ST1 4 registers.
// opcode == 0110 ST1 3 registers.
// opcode == 0111 ST1 1 register.
// opcode == 1010 ST1 2 registers.
static bool isST1MultipleOpcode(uint32_t Instr) {
return (Instr & 0x0000f000) == 0x00002000 ||
(Instr & 0x0000f000) == 0x00006000 ||
(Instr & 0x0000f000) == 0x00007000 ||
(Instr & 0x0000f000) == 0x0000a000;
}
static bool isST1Multiple(uint32_t Instr) {
return (Instr & 0xbfff0000) == 0x0c000000 && isST1MultipleOpcode(Instr);
}
// Writes to Rn (writeback).
static bool isST1MultiplePost(uint32_t Instr) {
return (Instr & 0xbfe00000) == 0x0c800000 && isST1MultipleOpcode(Instr);
}
// LDN/STN single no offset
// | 0 Q 00 | 1101 | 0 L R 0 | 0000 | opc (3) S | size (2) | Rn (5) | Rt (5)|
// LDN/STN single post-indexed
// | 0 Q 00 | 1101 | 1 L R | Rm (5) | opc (3) S | size (2) | Rn (5) | Rt (5)|
// L == 0 for stores
// Utility routine to decode opcode field of LDN/STN single structure
// instructions to find the ST1 instructions.
// R == 0 for ST1 and ST3, R == 1 for ST2 and ST4.
// opcode == 000 ST1 8-bit.
// opcode == 010 ST1 16-bit.
// opcode == 100 ST1 32 or 64-bit (Size determines which).
static bool isST1SingleOpcode(uint32_t Instr) {
return (Instr & 0x0040e000) == 0x00000000 ||
(Instr & 0x0040e000) == 0x00004000 ||
(Instr & 0x0040e000) == 0x00008000;
}
static bool isST1Single(uint32_t Instr) {
return (Instr & 0xbfff0000) == 0x0d000000 && isST1SingleOpcode(Instr);
}
// Writes to Rn (writeback).
static bool isST1SinglePost(uint32_t Instr) {
return (Instr & 0xbfe00000) == 0x0d800000 && isST1SingleOpcode(Instr);
}
static bool isST1(uint32_t Instr) {
return isST1Multiple(Instr) || isST1MultiplePost(Instr) ||
isST1Single(Instr) || isST1SinglePost(Instr);
}
// Load/store exclusive
// | size (2) 00 | 1000 | o2 L o1 | Rs (5) | o0 | Rt2 (5) | Rn (5) | Rt (5) |
// L == 0 for Stores.
static bool isLoadStoreExclusive(uint32_t Instr) {
return (Instr & 0x3f000000) == 0x08000000;
}
static bool isLoadExclusive(uint32_t Instr) {
return (Instr & 0x3f400000) == 0x08400000;
}
// Load register literal
// | opc (2) 01 | 1 V 00 | imm19 | Rt (5) |
static bool isLoadLiteral(uint32_t Instr) {
return (Instr & 0x3b000000) == 0x18000000;
}
// Load/store no-allocate pair
// (offset)
// | opc (2) 10 | 1 V 00 | 0 L | imm7 | Rt2 (5) | Rn (5) | Rt (5) |
// L == 0 for stores.
// Never writes to register
static bool isSTNP(uint32_t Instr) {
return (Instr & 0x3bc00000) == 0x28000000;
}
// Load/store register pair
// (post-indexed)
// | opc (2) 10 | 1 V 00 | 1 L | imm7 | Rt2 (5) | Rn (5) | Rt (5) |
// L == 0 for stores, V == 0 for Scalar, V == 1 for Simd/FP
// Writes to Rn.
static bool isSTPPost(uint32_t Instr) {
return (Instr & 0x3bc00000) == 0x28800000;
}
// (offset)
// | opc (2) 10 | 1 V 01 | 0 L | imm7 | Rt2 (5) | Rn (5) | Rt (5) |
static bool isSTPOffset(uint32_t Instr) {
return (Instr & 0x3bc00000) == 0x29000000;
}
// (pre-index)
// | opc (2) 10 | 1 V 01 | 1 L | imm7 | Rt2 (5) | Rn (5) | Rt (5) |
// Writes to Rn.
static bool isSTPPre(uint32_t Instr) {
return (Instr & 0x3bc00000) == 0x29800000;
}
static bool isSTP(uint32_t Instr) {
return isSTPPost(Instr) || isSTPOffset(Instr) || isSTPPre(Instr);
}
// Load/store register (unscaled immediate)
// | size (2) 11 | 1 V 00 | opc (2) 0 | imm9 | 00 | Rn (5) | Rt (5) |
// V == 0 for Scalar, V == 1 for Simd/FP.
static bool isLoadStoreUnscaled(uint32_t Instr) {
return (Instr & 0x3b000c00) == 0x38000000;
}
// Load/store register (immediate post-indexed)
// | size (2) 11 | 1 V 00 | opc (2) 0 | imm9 | 01 | Rn (5) | Rt (5) |
static bool isLoadStoreImmediatePost(uint32_t Instr) {
return (Instr & 0x3b200c00) == 0x38000400;
}
// Load/store register (unprivileged)
// | size (2) 11 | 1 V 00 | opc (2) 0 | imm9 | 10 | Rn (5) | Rt (5) |
static bool isLoadStoreUnpriv(uint32_t Instr) {
return (Instr & 0x3b200c00) == 0x38000800;
}
// Load/store register (immediate pre-indexed)
// | size (2) 11 | 1 V 00 | opc (2) 0 | imm9 | 11 | Rn (5) | Rt (5) |
static bool isLoadStoreImmediatePre(uint32_t Instr) {
return (Instr & 0x3b200c00) == 0x38000c00;
}
// Load/store register (register offset)
// | size (2) 11 | 1 V 00 | opc (2) 1 | Rm (5) | option (3) S | 10 | Rn | Rt |
static bool isLoadStoreRegisterOff(uint32_t Instr) {
return (Instr & 0x3b200c00) == 0x38200800;
}
// Load/store register (unsigned immediate)
// | size (2) 11 | 1 V 01 | opc (2) | imm12 | Rn (5) | Rt (5) |
static bool isLoadStoreRegisterUnsigned(uint32_t Instr) {
return (Instr & 0x3b000000) == 0x39000000;
}
// Rt is always in bit position 0 - 4.
static uint32_t getRt(uint32_t Instr) { return (Instr & 0x1f); }
// Rn is always in bit position 5 - 9.
static uint32_t getRn(uint32_t Instr) { return (Instr >> 5) & 0x1f; }
// C4.1.2 Branches, Exception Generating and System instructions
// | op0 (3) 1 | 01 op1 (4) | x (22) |
// op0 == 010 101 op1 == 0xxx Conditional Branch.
// op0 == 110 101 op1 == 1xxx Unconditional Branch Register.
// op0 == x00 101 op1 == xxxx Unconditional Branch immediate.
// op0 == x01 101 op1 == 0xxx Compare and branch immediate.
// op0 == x01 101 op1 == 1xxx Test and branch immediate.
static bool isBranch(uint32_t Instr) {
return ((Instr & 0xfe000000) == 0xd6000000) || // Cond branch.
((Instr & 0xfe000000) == 0x54000000) || // Uncond branch reg.
((Instr & 0x7c000000) == 0x14000000) || // Uncond branch imm.
((Instr & 0x7c000000) == 0x34000000); // Compare and test branch.
}
static bool isV8SingleRegisterNonStructureLoadStore(uint32_t Instr) {
return isLoadStoreUnscaled(Instr) || isLoadStoreImmediatePost(Instr) ||
isLoadStoreUnpriv(Instr) || isLoadStoreImmediatePre(Instr) ||
isLoadStoreRegisterOff(Instr) || isLoadStoreRegisterUnsigned(Instr);
}
// Note that this function refers to v8.0 only and does not include the
// additional load and store instructions added for in later revisions of
// the architecture such as the Atomic memory operations introduced
// in v8.1.
static bool isV8NonStructureLoad(uint32_t Instr) {
if (isLoadExclusive(Instr))
return true;
if (isLoadLiteral(Instr))
return true;
else if (isV8SingleRegisterNonStructureLoadStore(Instr)) {
// For Load and Store single register, Loads are derived from a
// combination of the Size, V and Opc fields.
uint32_t Size = (Instr >> 30) & 0xff;
uint32_t V = (Instr >> 26) & 0x1;
uint32_t Opc = (Instr >> 22) & 0x3;
// For the load and store instructions that we are decoding.
// Opc == 0 are all stores.
// Opc == 1 with a couple of exceptions are loads. The exceptions are:
// Size == 00 (0), V == 1, Opc == 10 (2) which is a store and
// Size == 11 (3), V == 0, Opc == 10 (2) which is a prefetch.
return Opc != 0 && !(Size == 0 && V == 1 && Opc == 2) &&
!(Size == 3 && V == 0 && Opc == 2);
}
return false;
}
// The following decode instructions are only complete up to the instructions
// needed for errata 843419.
// Instruction with writeback updates the index register after the load/store.
static bool hasWriteback(uint32_t Instr) {
return isLoadStoreImmediatePre(Instr) || isLoadStoreImmediatePost(Instr) ||
isSTPPre(Instr) || isSTPPost(Instr) || isST1SinglePost(Instr) ||
isST1MultiplePost(Instr);
}
// For the load and store class of instructions, a load can write to the
// destination register, a load and a store can write to the base register when
// the instruction has writeback.
static bool doesLoadStoreWriteToReg(uint32_t Instr, uint32_t Reg) {
return (isV8NonStructureLoad(Instr) && getRt(Instr) == Reg) ||
(hasWriteback(Instr) && getRn(Instr) == Reg);
}
// Scanner for Cortex-A53 errata 843419
// Full details are available in the Cortex A53 MPCore revision 0 Software
// Developers Errata Notice (ARM-EPM-048406).
//
// The instruction sequence that triggers the erratum is common in compiled
// AArch64 code, however it is sensitive to the offset of the sequence within
// a 4k page. This means that by scanning and fixing the patch after we have
// assigned addresses we only need to disassemble and fix instances of the
// sequence in the range of affected offsets.
//
// In summary the erratum conditions are a series of 4 instructions:
// 1.) An ADRP instruction that writes to register Rn with low 12 bits of
// address of instruction either 0xff8 or 0xffc.
// 2.) A load or store instruction that can be:
// - A single register load or store, of either integer or vector registers.
// - An STP or STNP, of either integer or vector registers.
// - An Advanced SIMD ST1 store instruction.
// - Must not write to Rn, but may optionally read from it.
// 3.) An optional instruction that is not a branch and does not write to Rn.
// 4.) A load or store from the Load/store register (unsigned immediate) class
// that uses Rn as the base address register.
//
// Note that we do not attempt to scan for Sequence 2 as described in the
// Software Developers Errata Notice as this has been assessed to be extremely
// unlikely to occur in compiled code. This matches gold and ld.bfd behavior.
// Return true if the Instruction sequence Adrp, Instr2, and Instr4 match
// the erratum sequence. The Adrp, Instr2 and Instr4 correspond to 1.), 2.),
// and 4.) in the Scanner for Cortex-A53 errata comment above.
static bool is843419ErratumSequence(uint32_t Instr1, uint32_t Instr2,
uint32_t Instr4) {
if (!isADRP(Instr1))
return false;
uint32_t Rn = getRt(Instr1);
return isLoadStoreClass(Instr2) &&
(isLoadStoreExclusive(Instr2) || isLoadLiteral(Instr2) ||
isV8SingleRegisterNonStructureLoadStore(Instr2) || isSTP(Instr2) ||
isSTNP(Instr2) || isST1(Instr2)) &&
!doesLoadStoreWriteToReg(Instr2, Rn) &&
isLoadStoreRegisterUnsigned(Instr4) && getRn(Instr4) == Rn;
}
// Scan the instruction sequence starting at Offset Off from the base of
// InputSection IS. We update Off in this function rather than in the caller as
// we can skip ahead much further into the section when we know how many
// instructions we've scanned.
// Return the offset of the load or store instruction in IS that we want to
// patch or 0 if no patch required.
static uint64_t scanCortexA53Errata843419(InputSection *IS, uint64_t &Off,
uint64_t Limit) {
uint64_t ISAddr = IS->getVA(0);
// Advance Off so that (ISAddr + Off) modulo 0x1000 is at least 0xff8.
uint64_t InitialPageOff = (ISAddr + Off) & 0xfff;
if (InitialPageOff < 0xff8)
Off += 0xff8 - InitialPageOff;
bool OptionalAllowed = Limit - Off > 12;
if (Off >= Limit || Limit - Off < 12) {
// Need at least 3 4-byte sized instructions to trigger erratum.
Off = Limit;
return 0;
}
uint64_t PatchOff = 0;
const uint8_t *Buf = IS->Data.begin();
const ulittle32_t *InstBuf = reinterpret_cast<const ulittle32_t *>(Buf + Off);
uint32_t Instr1 = *InstBuf++;
uint32_t Instr2 = *InstBuf++;
uint32_t Instr3 = *InstBuf++;
if (is843419ErratumSequence(Instr1, Instr2, Instr3)) {
PatchOff = Off + 8;
} else if (OptionalAllowed && !isBranch(Instr3)) {
uint32_t Instr4 = *InstBuf++;
if (is843419ErratumSequence(Instr1, Instr2, Instr4))
PatchOff = Off + 12;
}
if (((ISAddr + Off) & 0xfff) == 0xff8)
Off += 4;
else
Off += 0xffc;
return PatchOff;
}
class lld::elf::Patch843419Section : public SyntheticSection {
public:
Patch843419Section(InputSection *P, uint64_t Off);
void writeTo(uint8_t *Buf) override;
size_t getSize() const override { return 8; }
uint64_t getLDSTAddr() const;
// The Section we are patching.
const InputSection *Patchee;
// The offset of the instruction in the Patchee section we are patching.
uint64_t PatcheeOffset;
// A label for the start of the Patch that we can use as a relocation target.
Symbol *PatchSym;
};
lld::elf::Patch843419Section::Patch843419Section(InputSection *P, uint64_t Off)
: SyntheticSection(SHF_ALLOC | SHF_EXECINSTR, SHT_PROGBITS, 4,
".text.patch"),
Patchee(P), PatcheeOffset(Off) {
this->Parent = P->getParent();
PatchSym = addSyntheticLocal(
Saver.save("__CortexA53843419_" + utohexstr(getLDSTAddr())), STT_FUNC, 0,
getSize(), *this);
addSyntheticLocal(Saver.save("$x"), STT_NOTYPE, 0, 0, *this);
}
uint64_t lld::elf::Patch843419Section::getLDSTAddr() const {
return Patchee->getVA(PatcheeOffset);
}
void lld::elf::Patch843419Section::writeTo(uint8_t *Buf) {
// Copy the instruction that we will be replacing with a branch in the
// Patchee Section.
write32le(Buf, read32le(Patchee->Data.begin() + PatcheeOffset));
// Apply any relocation transferred from the original PatcheeSection.
// For a SyntheticSection Buf already has OutSecOff added, but relocateAlloc
// also adds OutSecOff so we need to subtract to avoid double counting.
this->relocateAlloc(Buf - OutSecOff, Buf - OutSecOff + getSize());
// Return address is the next instruction after the one we have just copied.
uint64_t S = getLDSTAddr() + 4;
uint64_t P = PatchSym->getVA() + 4;
Target->relocateOne(Buf + 4, R_AARCH64_JUMP26, S - P);
}
void AArch64Err843419Patcher::init() {
// The AArch64 ABI permits data in executable sections. We must avoid scanning
// this data as if it were instructions to avoid false matches. We use the
// mapping symbols in the InputObjects to identify this data, caching the
// results in SectionMap so we don't have to recalculate it each pass.
// The ABI Section 4.5.4 Mapping symbols; defines local symbols that describe
// half open intervals [Symbol Value, Next Symbol Value) of code and data
// within sections. If there is no next symbol then the half open interval is
// [Symbol Value, End of section). The type, code or data, is determined by
// the mapping symbol name, $x for code, $d for data.
auto IsCodeMapSymbol = [](const Symbol *B) {
return B->getName() == "$x" || B->getName().startswith("$x.");
};
auto IsDataMapSymbol = [](const Symbol *B) {
return B->getName() == "$d" || B->getName().startswith("$d.");
};
// Collect mapping symbols for every executable InputSection.
for (InputFile *File : ObjectFiles) {
auto *F = cast<ObjFile<ELF64LE>>(File);
for (Symbol *B : F->getLocalSymbols()) {
auto *Def = dyn_cast<Defined>(B);
if (!Def)
continue;
if (!IsCodeMapSymbol(Def) && !IsDataMapSymbol(Def))
continue;
if (auto *Sec = dyn_cast<InputSection>(Def->Section))
if (Sec->Flags & SHF_EXECINSTR)
SectionMap[Sec].push_back(Def);
}
}
// For each InputSection make sure the mapping symbols are in sorted in
// ascending order and free from consecutive runs of mapping symbols with
// the same type. For example we must remove the redundant $d.1 from $x.0
// $d.0 $d.1 $x.1.
for (auto &KV : SectionMap) {
std::vector<const Defined *> &MapSyms = KV.second;
if (MapSyms.size() <= 1)
continue;
std::stable_sort(
MapSyms.begin(), MapSyms.end(),
[](const Defined *A, const Defined *B) { return A->Value < B->Value; });
MapSyms.erase(
std::unique(MapSyms.begin(), MapSyms.end(),
[=](const Defined *A, const Defined *B) {
return (IsCodeMapSymbol(A) && IsCodeMapSymbol(B)) ||
(IsDataMapSymbol(A) && IsDataMapSymbol(B));
}),
MapSyms.end());
}
Initialized = true;
}
// Insert the PatchSections we have created back into the
// InputSectionDescription. As inserting patches alters the addresses of
// InputSections that follow them, we try and place the patches after all the
// executable sections, although we may need to insert them earlier if the
// InputSectionDescription is larger than the maximum branch range.
void AArch64Err843419Patcher::insertPatches(
InputSectionDescription &ISD, std::vector<Patch843419Section *> &Patches) {
uint64_t ISLimit;
uint64_t PrevISLimit = ISD.Sections.front()->OutSecOff;
uint64_t PatchUpperBound = PrevISLimit + Target->ThunkSectionSpacing;
// Set the OutSecOff of patches to the place where we want to insert them.
// We use a similar strategy to Thunk placement. Place patches roughly
// every multiple of maximum branch range.
auto PatchIt = Patches.begin();
auto PatchEnd = Patches.end();
for (const InputSection *IS : ISD.Sections) {
ISLimit = IS->OutSecOff + IS->getSize();
if (ISLimit > PatchUpperBound) {
while (PatchIt != PatchEnd) {
if ((*PatchIt)->getLDSTAddr() >= PrevISLimit)
break;
(*PatchIt)->OutSecOff = PrevISLimit;
++PatchIt;
}
PatchUpperBound = PrevISLimit + Target->ThunkSectionSpacing;
}
PrevISLimit = ISLimit;
}
for (; PatchIt != PatchEnd; ++PatchIt) {
(*PatchIt)->OutSecOff = ISLimit;
}
// merge all patch sections. We use the OutSecOff assigned above to
// determine the insertion point. This is ok as we only merge into an
// InputSectionDescription once per pass, and at the end of the pass
// assignAddresses() will recalculate all the OutSecOff values.
std::vector<InputSection *> Tmp;
Tmp.reserve(ISD.Sections.size() + Patches.size());
auto MergeCmp = [](const InputSection *A, const InputSection *B) {
if (A->OutSecOff < B->OutSecOff)
return true;
if (A->OutSecOff == B->OutSecOff && isa<Patch843419Section>(A) &&
!isa<Patch843419Section>(B))
return true;
return false;
};
std::merge(ISD.Sections.begin(), ISD.Sections.end(), Patches.begin(),
Patches.end(), std::back_inserter(Tmp), MergeCmp);
ISD.Sections = std::move(Tmp);
}
// Given an erratum sequence that starts at address AdrpAddr, with an
// instruction that we need to patch at PatcheeOffset from the start of
// InputSection IS, create a Patch843419 Section and add it to the
// Patches that we need to insert.
static void implementPatch(uint64_t AdrpAddr, uint64_t PatcheeOffset,
InputSection *IS,
std::vector<Patch843419Section *> &Patches) {
// There may be a relocation at the same offset that we are patching. There
// are three cases that we need to consider.
// Case 1: R_AARCH64_JUMP26 branch relocation. We have already patched this
// instance of the erratum on a previous patch and altered the relocation. We
// have nothing more to do.
// Case 2: A load/store register (unsigned immediate) class relocation. There
// are two of these R_AARCH_LD64_ABS_LO12_NC and R_AARCH_LD64_GOT_LO12_NC and
// they are both absolute. We need to add the same relocation to the patch,
// and replace the relocation with a R_AARCH_JUMP26 branch relocation.
// Case 3: No relocation. We must create a new R_AARCH64_JUMP26 branch
// relocation at the offset.
auto RelIt = std::find_if(
IS->Relocations.begin(), IS->Relocations.end(),
[=](const Relocation &R) { return R.Offset == PatcheeOffset; });
if (RelIt != IS->Relocations.end() && RelIt->Type == R_AARCH64_JUMP26)
return;
log("detected cortex-a53-843419 erratum sequence starting at " +
utohexstr(AdrpAddr) + " in unpatched output.");
auto *PS = make<Patch843419Section>(IS, PatcheeOffset);
Patches.push_back(PS);
auto MakeRelToPatch = [](uint64_t Offset, Symbol *PatchSym) {
return Relocation{R_PC, R_AARCH64_JUMP26, Offset, 0, PatchSym};
};
if (RelIt != IS->Relocations.end()) {
PS->Relocations.push_back(
{RelIt->Expr, RelIt->Type, 0, RelIt->Addend, RelIt->Sym});
*RelIt = MakeRelToPatch(PatcheeOffset, PS->PatchSym);
} else
IS->Relocations.push_back(MakeRelToPatch(PatcheeOffset, PS->PatchSym));
}
// Scan all the instructions in InputSectionDescription, for each instance of
// the erratum sequence create a Patch843419Section. We return the list of
// Patch843419Sections that need to be applied to ISD.
std::vector<Patch843419Section *>
AArch64Err843419Patcher::patchInputSectionDescription(
InputSectionDescription &ISD) {
std::vector<Patch843419Section *> Patches;
for (InputSection *IS : ISD.Sections) {
// LLD doesn't use the erratum sequence in SyntheticSections.
if (isa<SyntheticSection>(IS))
continue;
// Use SectionMap to make sure we only scan code and not inline data.
// We have already sorted MapSyms in ascending order and removed consecutive
// mapping symbols of the same type. Our range of executable instructions to
// scan is therefore [CodeSym->Value, DataSym->Value) or [CodeSym->Value,
// section size).
std::vector<const Defined *> &MapSyms = SectionMap[IS];
auto CodeSym = llvm::find_if(MapSyms, [&](const Defined *MS) {
return MS->getName().startswith("$x");
});
while (CodeSym != MapSyms.end()) {
auto DataSym = std::next(CodeSym);
uint64_t Off = (*CodeSym)->Value;
uint64_t Limit =
(DataSym == MapSyms.end()) ? IS->Data.size() : (*DataSym)->Value;
while (Off < Limit) {
uint64_t StartAddr = IS->getVA(Off);
if (uint64_t PatcheeOffset = scanCortexA53Errata843419(IS, Off, Limit))
implementPatch(StartAddr, PatcheeOffset, IS, Patches);
}
if (DataSym == MapSyms.end())
break;
CodeSym = std::next(DataSym);
}
}
return Patches;
}
// For each InputSectionDescription make one pass over the executable sections
// looking for the erratum sequence; creating a synthetic Patch843419Section
// for each instance found. We insert these synthetic patch sections after the
// executable code in each InputSectionDescription.
//
// PreConditions:
// The Output and Input Sections have had their final addresses assigned.
//
// PostConditions:
// Returns true if at least one patch was added. The addresses of the
// Ouptut and Input Sections may have been changed.
// Returns false if no patches were required and no changes were made.
bool AArch64Err843419Patcher::createFixes() {
if (Initialized == false)
init();
bool AddressesChanged = false;
for (OutputSection *OS : OutputSections) {
if (!(OS->Flags & SHF_ALLOC) || !(OS->Flags & SHF_EXECINSTR))
continue;
for (BaseCommand *BC : OS->SectionCommands)
if (auto *ISD = dyn_cast<InputSectionDescription>(BC)) {
std::vector<Patch843419Section *> Patches =
patchInputSectionDescription(*ISD);
if (!Patches.empty()) {
insertPatches(*ISD, Patches);
AddressesChanged = true;
}
}
}
return AddressesChanged;
}