forked from OSchip/llvm-project
546 lines
20 KiB
C++
546 lines
20 KiB
C++
//===-- HexagonISelLoweringHVX.cpp --- Lowering HVX operations ------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "HexagonISelLowering.h"
|
|
#include "HexagonRegisterInfo.h"
|
|
#include "HexagonSubtarget.h"
|
|
|
|
using namespace llvm;
|
|
|
|
SDValue
|
|
HexagonTargetLowering::getInt(unsigned IntId, MVT ResTy, ArrayRef<SDValue> Ops,
|
|
const SDLoc &dl, SelectionDAG &DAG) const {
|
|
SmallVector<SDValue,4> IntOps;
|
|
IntOps.push_back(DAG.getConstant(IntId, dl, MVT::i32));
|
|
for (const SDValue &Op : Ops)
|
|
IntOps.push_back(Op);
|
|
return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, ResTy, IntOps);
|
|
}
|
|
|
|
MVT
|
|
HexagonTargetLowering::typeJoin(const TypePair &Tys) const {
|
|
assert(Tys.first.getVectorElementType() == Tys.second.getVectorElementType());
|
|
|
|
MVT ElemTy = Tys.first.getVectorElementType();
|
|
return MVT::getVectorVT(ElemTy, Tys.first.getVectorNumElements() +
|
|
Tys.second.getVectorNumElements());
|
|
}
|
|
|
|
HexagonTargetLowering::TypePair
|
|
HexagonTargetLowering::typeSplit(MVT VecTy) const {
|
|
assert(VecTy.isVector());
|
|
unsigned NumElem = VecTy.getVectorNumElements();
|
|
assert((NumElem % 2) == 0 && "Expecting even-sized vector type");
|
|
MVT HalfTy = MVT::getVectorVT(VecTy.getVectorElementType(), NumElem/2);
|
|
return { HalfTy, HalfTy };
|
|
}
|
|
|
|
MVT
|
|
HexagonTargetLowering::typeExtElem(MVT VecTy, unsigned Factor) const {
|
|
MVT ElemTy = VecTy.getVectorElementType();
|
|
MVT NewElemTy = MVT::getIntegerVT(ElemTy.getSizeInBits() * Factor);
|
|
return MVT::getVectorVT(NewElemTy, VecTy.getVectorNumElements());
|
|
}
|
|
|
|
MVT
|
|
HexagonTargetLowering::typeTruncElem(MVT VecTy, unsigned Factor) const {
|
|
MVT ElemTy = VecTy.getVectorElementType();
|
|
MVT NewElemTy = MVT::getIntegerVT(ElemTy.getSizeInBits() / Factor);
|
|
return MVT::getVectorVT(NewElemTy, VecTy.getVectorNumElements());
|
|
}
|
|
|
|
SDValue
|
|
HexagonTargetLowering::opCastElem(SDValue Vec, MVT ElemTy,
|
|
SelectionDAG &DAG) const {
|
|
if (ty(Vec).getVectorElementType() == ElemTy)
|
|
return Vec;
|
|
MVT CastTy = tyVector(Vec.getValueType().getSimpleVT(), ElemTy);
|
|
return DAG.getBitcast(CastTy, Vec);
|
|
}
|
|
|
|
SDValue
|
|
HexagonTargetLowering::opJoin(const VectorPair &Ops, const SDLoc &dl,
|
|
SelectionDAG &DAG) const {
|
|
return DAG.getNode(ISD::CONCAT_VECTORS, dl, typeJoin(ty(Ops)),
|
|
Ops.second, Ops.first);
|
|
}
|
|
|
|
HexagonTargetLowering::VectorPair
|
|
HexagonTargetLowering::opSplit(SDValue Vec, const SDLoc &dl,
|
|
SelectionDAG &DAG) const {
|
|
TypePair Tys = typeSplit(ty(Vec));
|
|
return DAG.SplitVector(Vec, dl, Tys.first, Tys.second);
|
|
}
|
|
|
|
SDValue
|
|
HexagonTargetLowering::convertToByteIndex(SDValue ElemIdx, MVT ElemTy,
|
|
SelectionDAG &DAG) const {
|
|
if (ElemIdx.getValueType().getSimpleVT() != MVT::i32)
|
|
ElemIdx = DAG.getBitcast(MVT::i32, ElemIdx);
|
|
|
|
unsigned ElemWidth = ElemTy.getSizeInBits();
|
|
if (ElemWidth == 8)
|
|
return ElemIdx;
|
|
|
|
unsigned L = Log2_32(ElemWidth/8);
|
|
const SDLoc &dl(ElemIdx);
|
|
return DAG.getNode(ISD::SHL, dl, MVT::i32,
|
|
{ElemIdx, DAG.getConstant(L, dl, MVT::i32)});
|
|
}
|
|
|
|
SDValue
|
|
HexagonTargetLowering::getIndexInWord32(SDValue Idx, MVT ElemTy,
|
|
SelectionDAG &DAG) const {
|
|
unsigned ElemWidth = ElemTy.getSizeInBits();
|
|
assert(ElemWidth >= 8 && ElemWidth <= 32);
|
|
if (ElemWidth == 32)
|
|
return Idx;
|
|
|
|
if (ty(Idx) != MVT::i32)
|
|
Idx = DAG.getBitcast(MVT::i32, Idx);
|
|
const SDLoc &dl(Idx);
|
|
SDValue Mask = DAG.getConstant(32/ElemWidth - 1, dl, MVT::i32);
|
|
SDValue SubIdx = DAG.getNode(ISD::AND, dl, MVT::i32, {Idx, Mask});
|
|
return SubIdx;
|
|
}
|
|
|
|
SDValue
|
|
HexagonTargetLowering::getByteShuffle(const SDLoc &dl, SDValue Op0,
|
|
SDValue Op1, ArrayRef<int> Mask,
|
|
SelectionDAG &DAG) const {
|
|
MVT OpTy = ty(Op0);
|
|
assert(OpTy == ty(Op1));
|
|
|
|
MVT ElemTy = OpTy.getVectorElementType();
|
|
if (ElemTy == MVT::i8)
|
|
return DAG.getVectorShuffle(OpTy, dl, Op0, Op1, Mask);
|
|
assert(ElemTy.getSizeInBits() >= 8);
|
|
|
|
MVT ResTy = tyVector(OpTy, MVT::i8);
|
|
unsigned ElemSize = ElemTy.getSizeInBits() / 8;
|
|
|
|
SmallVector<int,128> ByteMask;
|
|
for (int M : Mask) {
|
|
if (M < 0) {
|
|
for (unsigned I = 0; I != ElemSize; ++I)
|
|
ByteMask.push_back(-1);
|
|
} else {
|
|
int NewM = M*ElemSize;
|
|
for (unsigned I = 0; I != ElemSize; ++I)
|
|
ByteMask.push_back(NewM+I);
|
|
}
|
|
}
|
|
assert(ResTy.getVectorNumElements() == ByteMask.size());
|
|
return DAG.getVectorShuffle(ResTy, dl, opCastElem(Op0, MVT::i8, DAG),
|
|
opCastElem(Op1, MVT::i8, DAG), ByteMask);
|
|
}
|
|
|
|
MVT
|
|
HexagonTargetLowering::getVecBoolVT() const {
|
|
return MVT::getVectorVT(MVT::i1, 8*Subtarget.getVectorLength());
|
|
}
|
|
|
|
SDValue
|
|
HexagonTargetLowering::buildHvxVectorSingle(ArrayRef<SDValue> Values,
|
|
const SDLoc &dl, MVT VecTy,
|
|
SelectionDAG &DAG) const {
|
|
unsigned VecLen = Values.size();
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
MVT ElemTy = VecTy.getVectorElementType();
|
|
unsigned ElemWidth = ElemTy.getSizeInBits();
|
|
unsigned HwLen = Subtarget.getVectorLength();
|
|
|
|
SmallVector<ConstantInt*, 128> Consts(VecLen);
|
|
bool AllConst = getBuildVectorConstInts(Values, VecTy, DAG, Consts);
|
|
if (AllConst) {
|
|
if (llvm::all_of(Consts, [](ConstantInt *CI) { return CI->isZero(); }))
|
|
return getZero(dl, VecTy, DAG);
|
|
|
|
ArrayRef<Constant*> Tmp((Constant**)Consts.begin(),
|
|
(Constant**)Consts.end());
|
|
Constant *CV = ConstantVector::get(Tmp);
|
|
unsigned Align = HwLen;
|
|
SDValue CP = LowerConstantPool(DAG.getConstantPool(CV, VecTy, Align), DAG);
|
|
return DAG.getLoad(VecTy, dl, DAG.getEntryNode(), CP,
|
|
MachinePointerInfo::getConstantPool(MF), Align);
|
|
}
|
|
|
|
unsigned ElemSize = ElemWidth / 8;
|
|
assert(ElemSize*VecLen == HwLen);
|
|
SmallVector<SDValue,32> Words;
|
|
|
|
if (VecTy.getVectorElementType() != MVT::i32) {
|
|
assert((ElemSize == 1 || ElemSize == 2) && "Invalid element size");
|
|
unsigned OpsPerWord = (ElemSize == 1) ? 4 : 2;
|
|
MVT PartVT = MVT::getVectorVT(VecTy.getVectorElementType(), OpsPerWord);
|
|
for (unsigned i = 0; i != VecLen; i += OpsPerWord) {
|
|
SDValue W = buildVector32(Values.slice(i, OpsPerWord), dl, PartVT, DAG);
|
|
Words.push_back(DAG.getBitcast(MVT::i32, W));
|
|
}
|
|
} else {
|
|
Words.assign(Values.begin(), Values.end());
|
|
}
|
|
|
|
// Construct two halves in parallel, then or them together.
|
|
assert(4*Words.size() == Subtarget.getVectorLength());
|
|
SDValue HalfV0 = getNode(Hexagon::V6_vd0, dl, VecTy, {}, DAG);
|
|
SDValue HalfV1 = getNode(Hexagon::V6_vd0, dl, VecTy, {}, DAG);
|
|
SDValue S = DAG.getConstant(4, dl, MVT::i32);
|
|
unsigned NumWords = Words.size();
|
|
for (unsigned i = 0; i != NumWords/2; ++i) {
|
|
SDValue N = DAG.getNode(HexagonISD::VINSERTW0, dl, VecTy,
|
|
{HalfV0, Words[i]});
|
|
SDValue M = DAG.getNode(HexagonISD::VINSERTW0, dl, VecTy,
|
|
{HalfV1, Words[i+NumWords/2]});
|
|
HalfV0 = DAG.getNode(HexagonISD::VROR, dl, VecTy, {N, S});
|
|
HalfV1 = DAG.getNode(HexagonISD::VROR, dl, VecTy, {M, S});
|
|
}
|
|
|
|
HalfV0 = DAG.getNode(HexagonISD::VROR, dl, VecTy,
|
|
{HalfV0, DAG.getConstant(HwLen/2, dl, MVT::i32)});
|
|
SDValue DstV = DAG.getNode(ISD::OR, dl, VecTy, {HalfV0, HalfV1});
|
|
return DstV;
|
|
}
|
|
|
|
SDValue
|
|
HexagonTargetLowering::buildHvxVectorPred(ArrayRef<SDValue> Values,
|
|
const SDLoc &dl, MVT VecTy,
|
|
SelectionDAG &DAG) const {
|
|
// Construct a vector V of bytes, such that a comparison V >u 0 would
|
|
// produce the required vector predicate.
|
|
unsigned VecLen = Values.size();
|
|
unsigned HwLen = Subtarget.getVectorLength();
|
|
assert(VecLen <= HwLen || VecLen == 8*HwLen);
|
|
SmallVector<SDValue,128> Bytes;
|
|
|
|
if (VecLen <= HwLen) {
|
|
// In the hardware, each bit of a vector predicate corresponds to a byte
|
|
// of a vector register. Calculate how many bytes does a bit of VecTy
|
|
// correspond to.
|
|
assert(HwLen % VecLen == 0);
|
|
unsigned BitBytes = HwLen / VecLen;
|
|
for (SDValue V : Values) {
|
|
SDValue Ext = !V.isUndef() ? DAG.getZExtOrTrunc(V, dl, MVT::i8)
|
|
: DAG.getConstant(0, dl, MVT::i8);
|
|
for (unsigned B = 0; B != BitBytes; ++B)
|
|
Bytes.push_back(Ext);
|
|
}
|
|
} else {
|
|
// There are as many i1 values, as there are bits in a vector register.
|
|
// Divide the values into groups of 8 and check that each group consists
|
|
// of the same value (ignoring undefs).
|
|
for (unsigned I = 0; I != VecLen; I += 8) {
|
|
unsigned B = 0;
|
|
// Find the first non-undef value in this group.
|
|
for (; B != 8; ++B) {
|
|
if (!Values[I+B].isUndef())
|
|
break;
|
|
}
|
|
SDValue F = Values[I+B];
|
|
SDValue Ext = (B < 8) ? DAG.getZExtOrTrunc(F, dl, MVT::i8)
|
|
: DAG.getConstant(0, dl, MVT::i8);
|
|
Bytes.push_back(Ext);
|
|
// Verify that the rest of values in the group are the same as the
|
|
// first.
|
|
for (; B != 8; ++B)
|
|
assert(Values[I+B].isUndef() || Values[I+B] == F);
|
|
}
|
|
}
|
|
|
|
MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen);
|
|
SDValue ByteVec = buildHvxVectorSingle(Bytes, dl, ByteTy, DAG);
|
|
SDValue Cmp = DAG.getSetCC(dl, VecTy, ByteVec, getZero(dl, ByteTy, DAG),
|
|
ISD::SETUGT);
|
|
return Cmp;
|
|
}
|
|
|
|
SDValue
|
|
HexagonTargetLowering::LowerHvxBuildVector(SDValue Op, SelectionDAG &DAG)
|
|
const {
|
|
const SDLoc &dl(Op);
|
|
MVT VecTy = ty(Op);
|
|
|
|
unsigned Size = Op.getNumOperands();
|
|
SmallVector<SDValue,128> Ops;
|
|
for (unsigned i = 0; i != Size; ++i)
|
|
Ops.push_back(Op.getOperand(i));
|
|
|
|
if (VecTy.getVectorElementType() == MVT::i1)
|
|
return buildHvxVectorPred(Ops, dl, VecTy, DAG);
|
|
|
|
if (VecTy.getSizeInBits() == 16*Subtarget.getVectorLength()) {
|
|
ArrayRef<SDValue> A(Ops);
|
|
MVT SingleTy = typeSplit(VecTy).first;
|
|
SDValue V0 = buildHvxVectorSingle(A.take_front(Size/2), dl, SingleTy, DAG);
|
|
SDValue V1 = buildHvxVectorSingle(A.drop_front(Size/2), dl, SingleTy, DAG);
|
|
return DAG.getNode(ISD::CONCAT_VECTORS, dl, VecTy, V0, V1);
|
|
}
|
|
|
|
return buildHvxVectorSingle(Ops, dl, VecTy, DAG);
|
|
}
|
|
|
|
SDValue
|
|
HexagonTargetLowering::LowerHvxExtractElement(SDValue Op, SelectionDAG &DAG)
|
|
const {
|
|
// Change the type of the extracted element to i32.
|
|
SDValue VecV = Op.getOperand(0);
|
|
MVT ElemTy = ty(VecV).getVectorElementType();
|
|
unsigned ElemWidth = ElemTy.getSizeInBits();
|
|
assert(ElemWidth >= 8 && ElemWidth <= 32);
|
|
(void)ElemWidth;
|
|
|
|
const SDLoc &dl(Op);
|
|
SDValue IdxV = Op.getOperand(1);
|
|
if (ty(IdxV) != MVT::i32)
|
|
IdxV = DAG.getBitcast(MVT::i32, IdxV);
|
|
|
|
SDValue ByteIdx = convertToByteIndex(IdxV, ElemTy, DAG);
|
|
SDValue ExWord = DAG.getNode(HexagonISD::VEXTRACTW, dl, MVT::i32,
|
|
{VecV, ByteIdx});
|
|
if (ElemTy == MVT::i32)
|
|
return ExWord;
|
|
|
|
// Have an extracted word, need to extract the smaller element out of it.
|
|
// 1. Extract the bits of (the original) IdxV that correspond to the index
|
|
// of the desired element in the 32-bit word.
|
|
SDValue SubIdx = getIndexInWord32(IdxV, ElemTy, DAG);
|
|
// 2. Extract the element from the word.
|
|
SDValue ExVec = DAG.getBitcast(tyVector(ty(ExWord), ElemTy), ExWord);
|
|
return extractVector(ExVec, SubIdx, dl, ElemTy, MVT::i32, DAG);
|
|
}
|
|
|
|
SDValue
|
|
HexagonTargetLowering::LowerHvxInsertElement(SDValue Op, SelectionDAG &DAG)
|
|
const {
|
|
const SDLoc &dl(Op);
|
|
SDValue VecV = Op.getOperand(0);
|
|
SDValue ValV = Op.getOperand(1);
|
|
SDValue IdxV = Op.getOperand(2);
|
|
MVT ElemTy = ty(VecV).getVectorElementType();
|
|
unsigned ElemWidth = ElemTy.getSizeInBits();
|
|
assert(ElemWidth >= 8 && ElemWidth <= 32);
|
|
(void)ElemWidth;
|
|
|
|
auto InsertWord = [&DAG,&dl,this] (SDValue VecV, SDValue ValV,
|
|
SDValue ByteIdxV) {
|
|
MVT VecTy = ty(VecV);
|
|
unsigned HwLen = Subtarget.getVectorLength();
|
|
SDValue MaskV = DAG.getNode(ISD::AND, dl, MVT::i32,
|
|
{ByteIdxV, DAG.getConstant(-4, dl, MVT::i32)});
|
|
SDValue RotV = DAG.getNode(HexagonISD::VROR, dl, VecTy, {VecV, MaskV});
|
|
SDValue InsV = DAG.getNode(HexagonISD::VINSERTW0, dl, VecTy, {RotV, ValV});
|
|
SDValue SubV = DAG.getNode(ISD::SUB, dl, MVT::i32,
|
|
{DAG.getConstant(HwLen/4, dl, MVT::i32), MaskV});
|
|
SDValue TorV = DAG.getNode(HexagonISD::VROR, dl, VecTy, {InsV, SubV});
|
|
return TorV;
|
|
};
|
|
|
|
SDValue ByteIdx = convertToByteIndex(IdxV, ElemTy, DAG);
|
|
if (ElemTy == MVT::i32)
|
|
return InsertWord(VecV, ValV, ByteIdx);
|
|
|
|
// If this is not inserting a 32-bit word, convert it into such a thing.
|
|
// 1. Extract the existing word from the target vector.
|
|
SDValue WordIdx = DAG.getNode(ISD::SRL, dl, MVT::i32,
|
|
{ByteIdx, DAG.getConstant(2, dl, MVT::i32)});
|
|
SDValue Ex0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
|
|
{opCastElem(VecV, MVT::i32, DAG), WordIdx});
|
|
SDValue Ext = LowerHvxExtractElement(Ex0, DAG);
|
|
|
|
// 2. Treating the extracted word as a 32-bit vector, insert the given
|
|
// value into it.
|
|
SDValue SubIdx = getIndexInWord32(IdxV, ElemTy, DAG);
|
|
MVT SubVecTy = tyVector(ty(Ext), ElemTy);
|
|
SDValue Ins = insertVector(DAG.getBitcast(SubVecTy, Ext),
|
|
ValV, SubIdx, dl, ElemTy, DAG);
|
|
|
|
// 3. Insert the 32-bit word back into the original vector.
|
|
return InsertWord(VecV, Ins, ByteIdx);
|
|
}
|
|
|
|
SDValue
|
|
HexagonTargetLowering::LowerHvxExtractSubvector(SDValue Op, SelectionDAG &DAG)
|
|
const {
|
|
SDValue SrcV = Op.getOperand(0);
|
|
MVT SrcTy = ty(SrcV);
|
|
unsigned SrcElems = SrcTy.getVectorNumElements();
|
|
SDValue IdxV = Op.getOperand(1);
|
|
unsigned Idx = cast<ConstantSDNode>(IdxV.getNode())->getZExtValue();
|
|
MVT DstTy = ty(Op);
|
|
assert(Idx == 0 || DstTy.getVectorNumElements() % Idx == 0);
|
|
const SDLoc &dl(Op);
|
|
if (Idx == 0)
|
|
return DAG.getTargetExtractSubreg(Hexagon::vsub_lo, dl, DstTy, SrcV);
|
|
if (Idx == SrcElems/2)
|
|
return DAG.getTargetExtractSubreg(Hexagon::vsub_hi, dl, DstTy, SrcV);
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue
|
|
HexagonTargetLowering::LowerHvxInsertSubvector(SDValue Op, SelectionDAG &DAG)
|
|
const {
|
|
// Idx may be variable.
|
|
SDValue IdxV = Op.getOperand(2);
|
|
auto *IdxN = dyn_cast<ConstantSDNode>(IdxV.getNode());
|
|
if (!IdxN)
|
|
return SDValue();
|
|
unsigned Idx = IdxN->getZExtValue();
|
|
|
|
SDValue DstV = Op.getOperand(0);
|
|
SDValue SrcV = Op.getOperand(1);
|
|
MVT DstTy = ty(DstV);
|
|
MVT SrcTy = ty(SrcV);
|
|
unsigned DstElems = DstTy.getVectorNumElements();
|
|
unsigned SrcElems = SrcTy.getVectorNumElements();
|
|
if (2*SrcElems != DstElems)
|
|
return SDValue();
|
|
|
|
const SDLoc &dl(Op);
|
|
if (Idx == 0)
|
|
return DAG.getTargetInsertSubreg(Hexagon::vsub_lo, dl, DstTy, DstV, SrcV);
|
|
if (Idx == SrcElems)
|
|
return DAG.getTargetInsertSubreg(Hexagon::vsub_hi, dl, DstTy, DstV, SrcV);
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue
|
|
HexagonTargetLowering::LowerHvxMul(SDValue Op, SelectionDAG &DAG) const {
|
|
MVT ResTy = ty(Op);
|
|
if (!ResTy.isVector())
|
|
return SDValue();
|
|
const SDLoc &dl(Op);
|
|
SmallVector<int,256> ShuffMask;
|
|
|
|
MVT ElemTy = ResTy.getVectorElementType();
|
|
unsigned VecLen = ResTy.getVectorNumElements();
|
|
SDValue Vs = Op.getOperand(0);
|
|
SDValue Vt = Op.getOperand(1);
|
|
|
|
switch (ElemTy.SimpleTy) {
|
|
case MVT::i8:
|
|
case MVT::i16: {
|
|
// For i8 vectors Vs = (a0, a1, ...), Vt = (b0, b1, ...),
|
|
// V6_vmpybv Vs, Vt produces a pair of i16 vectors Hi:Lo,
|
|
// where Lo = (a0*b0, a2*b2, ...), Hi = (a1*b1, a3*b3, ...).
|
|
// For i16, use V6_vmpyhv, which behaves in an analogous way to
|
|
// V6_vmpybv: results Lo and Hi are products of even/odd elements
|
|
// respectively.
|
|
MVT ExtTy = typeExtElem(ResTy, 2);
|
|
unsigned MpyOpc = ElemTy == MVT::i8 ? Hexagon::V6_vmpybv
|
|
: Hexagon::V6_vmpyhv;
|
|
SDValue M = getNode(MpyOpc, dl, ExtTy, {Vs, Vt}, DAG);
|
|
|
|
// Discard high halves of the resulting values, collect the low halves.
|
|
for (unsigned I = 0; I < VecLen; I += 2) {
|
|
ShuffMask.push_back(I); // Pick even element.
|
|
ShuffMask.push_back(I+VecLen); // Pick odd element.
|
|
}
|
|
VectorPair P = opSplit(opCastElem(M, ElemTy, DAG), dl, DAG);
|
|
return getByteShuffle(dl, P.first, P.second, ShuffMask, DAG);
|
|
}
|
|
case MVT::i32: {
|
|
// Use the following sequence for signed word multiply:
|
|
// T0 = V6_vmpyiowh Vs, Vt
|
|
// T1 = V6_vaslw T0, 16
|
|
// T2 = V6_vmpyiewuh_acc T1, Vs, Vt
|
|
SDValue S16 = DAG.getConstant(16, dl, MVT::i32);
|
|
SDValue T0 = getNode(Hexagon::V6_vmpyiowh, dl, ResTy, {Vs, Vt}, DAG);
|
|
SDValue T1 = getNode(Hexagon::V6_vaslw, dl, ResTy, {T0, S16}, DAG);
|
|
SDValue T2 = getNode(Hexagon::V6_vmpyiewuh_acc, dl, ResTy,
|
|
{T1, Vs, Vt}, DAG);
|
|
return T2;
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue
|
|
HexagonTargetLowering::LowerHvxSetCC(SDValue Op, SelectionDAG &DAG) const {
|
|
MVT VecTy = ty(Op.getOperand(0));
|
|
assert(VecTy == ty(Op.getOperand(1)));
|
|
|
|
SDValue Cmp = Op.getOperand(2);
|
|
ISD::CondCode CC = cast<CondCodeSDNode>(Cmp)->get();
|
|
bool Negate = false, Swap = false;
|
|
|
|
// HVX has instructions for SETEQ, SETGT, SETUGT. The other comparisons
|
|
// can be arranged as operand-swapped/negated versions of these. Since
|
|
// the generated code will have the original CC expressed as
|
|
// (negate (swap-op NewCmp)),
|
|
// the condition code for the NewCmp should be calculated from the original
|
|
// CC by applying these operations in the reverse order.
|
|
//
|
|
// This could also be done through setCondCodeAction, but for negation it
|
|
// uses a xor with a vector of -1s, which it obtains from BUILD_VECTOR.
|
|
// That is far too expensive for what can be done with a single instruction.
|
|
|
|
switch (CC) {
|
|
case ISD::SETNE: // !eq
|
|
case ISD::SETLE: // !gt
|
|
case ISD::SETGE: // !lt
|
|
case ISD::SETULE: // !ugt
|
|
case ISD::SETUGE: // !ult
|
|
CC = ISD::getSetCCInverse(CC, true);
|
|
Negate = true;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
switch (CC) {
|
|
case ISD::SETLT: // swap gt
|
|
case ISD::SETULT: // swap ugt
|
|
CC = ISD::getSetCCSwappedOperands(CC);
|
|
Swap = true;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
assert(CC == ISD::SETEQ || CC == ISD::SETGT || CC == ISD::SETUGT);
|
|
|
|
MVT ElemTy = VecTy.getVectorElementType();
|
|
unsigned ElemWidth = ElemTy.getSizeInBits();
|
|
assert(isPowerOf2_32(ElemWidth));
|
|
|
|
auto getIdx = [] (unsigned Code) {
|
|
static const unsigned Idx[] = { ISD::SETEQ, ISD::SETGT, ISD::SETUGT };
|
|
for (unsigned I = 0, E = array_lengthof(Idx); I != E; ++I)
|
|
if (Code == Idx[I])
|
|
return I;
|
|
llvm_unreachable("Unhandled CondCode");
|
|
};
|
|
|
|
static unsigned OpcTable[3][3] = {
|
|
// SETEQ SETGT, SETUGT
|
|
/* Byte */ { Hexagon::V6_veqb, Hexagon::V6_vgtb, Hexagon::V6_vgtub },
|
|
/* Half */ { Hexagon::V6_veqh, Hexagon::V6_vgth, Hexagon::V6_vgtuh },
|
|
/* Word */ { Hexagon::V6_veqw, Hexagon::V6_vgtw, Hexagon::V6_vgtuw }
|
|
};
|
|
|
|
unsigned CmpOpc = OpcTable[Log2_32(ElemWidth)-3][getIdx(CC)];
|
|
|
|
MVT ResTy = ty(Op);
|
|
const SDLoc &dl(Op);
|
|
SDValue OpL = Swap ? Op.getOperand(1) : Op.getOperand(0);
|
|
SDValue OpR = Swap ? Op.getOperand(0) : Op.getOperand(1);
|
|
SDValue CmpV = getNode(CmpOpc, dl, ResTy, {OpL, OpR}, DAG);
|
|
return Negate ? getNode(Hexagon::V6_pred_not, dl, ResTy, {CmpV}, DAG)
|
|
: CmpV;
|
|
}
|
|
|
|
SDValue
|
|
HexagonTargetLowering::LowerHvxExtend(SDValue Op, SelectionDAG &DAG) const {
|
|
// Sign- and zero-extends are legal.
|
|
assert(Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG);
|
|
return DAG.getZeroExtendVectorInReg(Op.getOperand(0), SDLoc(Op), ty(Op));
|
|
}
|