llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAG.cpp

2967 lines
108 KiB
C++

//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This implements the SelectionDAG class.
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/Constants.h"
#include "llvm/GlobalValue.h"
#include "llvm/Intrinsics.h"
#include "llvm/Assembly/Writer.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Target/MRegisterInfo.h"
#include "llvm/Target/TargetLowering.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/StringExtras.h"
#include <iostream>
#include <set>
#include <cmath>
#include <algorithm>
using namespace llvm;
static bool isCommutativeBinOp(unsigned Opcode) {
switch (Opcode) {
case ISD::ADD:
case ISD::MUL:
case ISD::MULHU:
case ISD::MULHS:
case ISD::FADD:
case ISD::FMUL:
case ISD::AND:
case ISD::OR:
case ISD::XOR: return true;
default: return false; // FIXME: Need commutative info for user ops!
}
}
// isInvertibleForFree - Return true if there is no cost to emitting the logical
// inverse of this node.
static bool isInvertibleForFree(SDOperand N) {
if (isa<ConstantSDNode>(N.Val)) return true;
if (N.Val->getOpcode() == ISD::SETCC && N.Val->hasOneUse())
return true;
return false;
}
//===----------------------------------------------------------------------===//
// ConstantFPSDNode Class
//===----------------------------------------------------------------------===//
/// isExactlyValue - We don't rely on operator== working on double values, as
/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
/// As such, this method can be used to do an exact bit-for-bit comparison of
/// two floating point values.
bool ConstantFPSDNode::isExactlyValue(double V) const {
return DoubleToBits(V) == DoubleToBits(Value);
}
//===----------------------------------------------------------------------===//
// ISD Namespace
//===----------------------------------------------------------------------===//
/// isBuildVectorAllOnes - Return true if the specified node is a
/// BUILD_VECTOR where all of the elements are ~0 or undef.
bool ISD::isBuildVectorAllOnes(const SDNode *N) {
if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
unsigned i = 0, e = N->getNumOperands();
// Skip over all of the undef values.
while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
++i;
// Do not accept an all-undef vector.
if (i == e) return false;
// Do not accept build_vectors that aren't all constants or which have non-~0
// elements.
SDOperand NotZero = N->getOperand(i);
if (isa<ConstantSDNode>(NotZero)) {
if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
return false;
} else if (isa<ConstantFPSDNode>(NotZero)) {
MVT::ValueType VT = NotZero.getValueType();
if (VT== MVT::f64) {
if (DoubleToBits(cast<ConstantFPSDNode>(NotZero)->getValue()) !=
(uint64_t)-1)
return false;
} else {
if (FloatToBits(cast<ConstantFPSDNode>(NotZero)->getValue()) !=
(uint32_t)-1)
return false;
}
} else
return false;
// Okay, we have at least one ~0 value, check to see if the rest match or are
// undefs.
for (++i; i != e; ++i)
if (N->getOperand(i) != NotZero &&
N->getOperand(i).getOpcode() != ISD::UNDEF)
return false;
return true;
}
/// isBuildVectorAllZeros - Return true if the specified node is a
/// BUILD_VECTOR where all of the elements are 0 or undef.
bool ISD::isBuildVectorAllZeros(const SDNode *N) {
if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
unsigned i = 0, e = N->getNumOperands();
// Skip over all of the undef values.
while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
++i;
// Do not accept an all-undef vector.
if (i == e) return false;
// Do not accept build_vectors that aren't all constants or which have non-~0
// elements.
SDOperand Zero = N->getOperand(i);
if (isa<ConstantSDNode>(Zero)) {
if (!cast<ConstantSDNode>(Zero)->isNullValue())
return false;
} else if (isa<ConstantFPSDNode>(Zero)) {
if (!cast<ConstantFPSDNode>(Zero)->isExactlyValue(0.0))
return false;
} else
return false;
// Okay, we have at least one ~0 value, check to see if the rest match or are
// undefs.
for (++i; i != e; ++i)
if (N->getOperand(i) != Zero &&
N->getOperand(i).getOpcode() != ISD::UNDEF)
return false;
return true;
}
/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
/// when given the operation for (X op Y).
ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
// To perform this operation, we just need to swap the L and G bits of the
// operation.
unsigned OldL = (Operation >> 2) & 1;
unsigned OldG = (Operation >> 1) & 1;
return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits
(OldL << 1) | // New G bit
(OldG << 2)); // New L bit.
}
/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
/// 'op' is a valid SetCC operation.
ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
unsigned Operation = Op;
if (isInteger)
Operation ^= 7; // Flip L, G, E bits, but not U.
else
Operation ^= 15; // Flip all of the condition bits.
if (Operation > ISD::SETTRUE2)
Operation &= ~8; // Don't let N and U bits get set.
return ISD::CondCode(Operation);
}
/// isSignedOp - For an integer comparison, return 1 if the comparison is a
/// signed operation and 2 if the result is an unsigned comparison. Return zero
/// if the operation does not depend on the sign of the input (setne and seteq).
static int isSignedOp(ISD::CondCode Opcode) {
switch (Opcode) {
default: assert(0 && "Illegal integer setcc operation!");
case ISD::SETEQ:
case ISD::SETNE: return 0;
case ISD::SETLT:
case ISD::SETLE:
case ISD::SETGT:
case ISD::SETGE: return 1;
case ISD::SETULT:
case ISD::SETULE:
case ISD::SETUGT:
case ISD::SETUGE: return 2;
}
}
/// getSetCCOrOperation - Return the result of a logical OR between different
/// comparisons of identical values: ((X op1 Y) | (X op2 Y)). This function
/// returns SETCC_INVALID if it is not possible to represent the resultant
/// comparison.
ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
bool isInteger) {
if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
// Cannot fold a signed integer setcc with an unsigned integer setcc.
return ISD::SETCC_INVALID;
unsigned Op = Op1 | Op2; // Combine all of the condition bits.
// If the N and U bits get set then the resultant comparison DOES suddenly
// care about orderedness, and is true when ordered.
if (Op > ISD::SETTRUE2)
Op &= ~16; // Clear the N bit.
return ISD::CondCode(Op);
}
/// getSetCCAndOperation - Return the result of a logical AND between different
/// comparisons of identical values: ((X op1 Y) & (X op2 Y)). This
/// function returns zero if it is not possible to represent the resultant
/// comparison.
ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
bool isInteger) {
if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
// Cannot fold a signed setcc with an unsigned setcc.
return ISD::SETCC_INVALID;
// Combine all of the condition bits.
return ISD::CondCode(Op1 & Op2);
}
const TargetMachine &SelectionDAG::getTarget() const {
return TLI.getTargetMachine();
}
//===----------------------------------------------------------------------===//
// SelectionDAG Class
//===----------------------------------------------------------------------===//
/// RemoveDeadNodes - This method deletes all unreachable nodes in the
/// SelectionDAG, including nodes (like loads) that have uses of their token
/// chain but no other uses and no side effect. If a node is passed in as an
/// argument, it is used as the seed for node deletion.
void SelectionDAG::RemoveDeadNodes(SDNode *N) {
// Create a dummy node (which is not added to allnodes), that adds a reference
// to the root node, preventing it from being deleted.
HandleSDNode Dummy(getRoot());
bool MadeChange = false;
// If we have a hint to start from, use it.
if (N && N->use_empty()) {
DestroyDeadNode(N);
MadeChange = true;
}
for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
if (I->use_empty() && I->getOpcode() != 65535) {
// Node is dead, recursively delete newly dead uses.
DestroyDeadNode(I);
MadeChange = true;
}
// Walk the nodes list, removing the nodes we've marked as dead.
if (MadeChange) {
for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ) {
SDNode *N = I++;
if (N->use_empty())
AllNodes.erase(N);
}
}
// If the root changed (e.g. it was a dead load, update the root).
setRoot(Dummy.getValue());
}
/// DestroyDeadNode - We know that N is dead. Nuke it from the CSE maps for the
/// graph. If it is the last user of any of its operands, recursively process
/// them the same way.
///
void SelectionDAG::DestroyDeadNode(SDNode *N) {
// Okay, we really are going to delete this node. First take this out of the
// appropriate CSE map.
RemoveNodeFromCSEMaps(N);
// Next, brutally remove the operand list. This is safe to do, as there are
// no cycles in the graph.
for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
SDNode *O = I->Val;
O->removeUser(N);
// Now that we removed this operand, see if there are no uses of it left.
if (O->use_empty())
DestroyDeadNode(O);
}
delete[] N->OperandList;
N->OperandList = 0;
N->NumOperands = 0;
// Mark the node as dead.
N->MorphNodeTo(65535);
}
void SelectionDAG::DeleteNode(SDNode *N) {
assert(N->use_empty() && "Cannot delete a node that is not dead!");
// First take this out of the appropriate CSE map.
RemoveNodeFromCSEMaps(N);
// Finally, remove uses due to operands of this node, remove from the
// AllNodes list, and delete the node.
DeleteNodeNotInCSEMaps(N);
}
void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
// Remove it from the AllNodes list.
AllNodes.remove(N);
// Drop all of the operands and decrement used nodes use counts.
for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
I->Val->removeUser(N);
delete[] N->OperandList;
N->OperandList = 0;
N->NumOperands = 0;
delete N;
}
/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
/// correspond to it. This is useful when we're about to delete or repurpose
/// the node. We don't want future request for structurally identical nodes
/// to return N anymore.
void SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
bool Erased = false;
switch (N->getOpcode()) {
case ISD::HANDLENODE: return; // noop.
case ISD::Constant:
Erased = Constants.erase(std::make_pair(cast<ConstantSDNode>(N)->getValue(),
N->getValueType(0)));
break;
case ISD::TargetConstant:
Erased = TargetConstants.erase(std::make_pair(
cast<ConstantSDNode>(N)->getValue(),
N->getValueType(0)));
break;
case ISD::ConstantFP: {
uint64_t V = DoubleToBits(cast<ConstantFPSDNode>(N)->getValue());
Erased = ConstantFPs.erase(std::make_pair(V, N->getValueType(0)));
break;
}
case ISD::TargetConstantFP: {
uint64_t V = DoubleToBits(cast<ConstantFPSDNode>(N)->getValue());
Erased = TargetConstantFPs.erase(std::make_pair(V, N->getValueType(0)));
break;
}
case ISD::STRING:
Erased = StringNodes.erase(cast<StringSDNode>(N)->getValue());
break;
case ISD::CONDCODE:
assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
"Cond code doesn't exist!");
Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
break;
case ISD::GlobalAddress: {
GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(N);
Erased = GlobalValues.erase(std::make_pair(GN->getGlobal(),
GN->getOffset()));
break;
}
case ISD::TargetGlobalAddress: {
GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(N);
Erased =TargetGlobalValues.erase(std::make_pair(GN->getGlobal(),
GN->getOffset()));
break;
}
case ISD::FrameIndex:
Erased = FrameIndices.erase(cast<FrameIndexSDNode>(N)->getIndex());
break;
case ISD::TargetFrameIndex:
Erased = TargetFrameIndices.erase(cast<FrameIndexSDNode>(N)->getIndex());
break;
case ISD::ConstantPool:
Erased = ConstantPoolIndices.
erase(std::make_pair(cast<ConstantPoolSDNode>(N)->get(),
std::make_pair(cast<ConstantPoolSDNode>(N)->getOffset(),
cast<ConstantPoolSDNode>(N)->getAlignment())));
break;
case ISD::TargetConstantPool:
Erased = TargetConstantPoolIndices.
erase(std::make_pair(cast<ConstantPoolSDNode>(N)->get(),
std::make_pair(cast<ConstantPoolSDNode>(N)->getOffset(),
cast<ConstantPoolSDNode>(N)->getAlignment())));
break;
case ISD::BasicBlock:
Erased = BBNodes.erase(cast<BasicBlockSDNode>(N)->getBasicBlock());
break;
case ISD::ExternalSymbol:
Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
break;
case ISD::TargetExternalSymbol:
Erased =
TargetExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
break;
case ISD::VALUETYPE:
Erased = ValueTypeNodes[cast<VTSDNode>(N)->getVT()] != 0;
ValueTypeNodes[cast<VTSDNode>(N)->getVT()] = 0;
break;
case ISD::Register:
Erased = RegNodes.erase(std::make_pair(cast<RegisterSDNode>(N)->getReg(),
N->getValueType(0)));
break;
case ISD::SRCVALUE: {
SrcValueSDNode *SVN = cast<SrcValueSDNode>(N);
Erased =ValueNodes.erase(std::make_pair(SVN->getValue(), SVN->getOffset()));
break;
}
case ISD::LOAD:
Erased = Loads.erase(std::make_pair(N->getOperand(1),
std::make_pair(N->getOperand(0),
N->getValueType(0))));
break;
default:
if (N->getNumValues() == 1) {
if (N->getNumOperands() == 0) {
Erased = NullaryOps.erase(std::make_pair(N->getOpcode(),
N->getValueType(0)));
} else if (N->getNumOperands() == 1) {
Erased =
UnaryOps.erase(std::make_pair(N->getOpcode(),
std::make_pair(N->getOperand(0),
N->getValueType(0))));
} else if (N->getNumOperands() == 2) {
Erased =
BinaryOps.erase(std::make_pair(N->getOpcode(),
std::make_pair(N->getOperand(0),
N->getOperand(1))));
} else {
std::vector<SDOperand> Ops(N->op_begin(), N->op_end());
Erased =
OneResultNodes.erase(std::make_pair(N->getOpcode(),
std::make_pair(N->getValueType(0),
Ops)));
}
} else {
// Remove the node from the ArbitraryNodes map.
std::vector<MVT::ValueType> RV(N->value_begin(), N->value_end());
std::vector<SDOperand> Ops(N->op_begin(), N->op_end());
Erased =
ArbitraryNodes.erase(std::make_pair(N->getOpcode(),
std::make_pair(RV, Ops)));
}
break;
}
#ifndef NDEBUG
// Verify that the node was actually in one of the CSE maps, unless it has a
// flag result (which cannot be CSE'd) or is one of the special cases that are
// not subject to CSE.
if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
!N->isTargetOpcode()) {
N->dump();
assert(0 && "Node is not in map!");
}
#endif
}
/// AddNonLeafNodeToCSEMaps - Add the specified node back to the CSE maps. It
/// has been taken out and modified in some way. If the specified node already
/// exists in the CSE maps, do not modify the maps, but return the existing node
/// instead. If it doesn't exist, add it and return null.
///
SDNode *SelectionDAG::AddNonLeafNodeToCSEMaps(SDNode *N) {
assert(N->getNumOperands() && "This is a leaf node!");
if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
return 0; // Never add these nodes.
// Check that remaining values produced are not flags.
for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
if (N->getValueType(i) == MVT::Flag)
return 0; // Never CSE anything that produces a flag.
if (N->getNumValues() == 1) {
if (N->getNumOperands() == 1) {
SDNode *&U = UnaryOps[std::make_pair(N->getOpcode(),
std::make_pair(N->getOperand(0),
N->getValueType(0)))];
if (U) return U;
U = N;
} else if (N->getNumOperands() == 2) {
SDNode *&B = BinaryOps[std::make_pair(N->getOpcode(),
std::make_pair(N->getOperand(0),
N->getOperand(1)))];
if (B) return B;
B = N;
} else {
std::vector<SDOperand> Ops(N->op_begin(), N->op_end());
SDNode *&ORN = OneResultNodes[std::make_pair(N->getOpcode(),
std::make_pair(N->getValueType(0), Ops))];
if (ORN) return ORN;
ORN = N;
}
} else {
if (N->getOpcode() == ISD::LOAD) {
SDNode *&L = Loads[std::make_pair(N->getOperand(1),
std::make_pair(N->getOperand(0),
N->getValueType(0)))];
if (L) return L;
L = N;
} else {
// Remove the node from the ArbitraryNodes map.
std::vector<MVT::ValueType> RV(N->value_begin(), N->value_end());
std::vector<SDOperand> Ops(N->op_begin(), N->op_end());
SDNode *&AN = ArbitraryNodes[std::make_pair(N->getOpcode(),
std::make_pair(RV, Ops))];
if (AN) return AN;
AN = N;
}
}
return 0;
}
/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
/// were replaced with those specified. If this node is never memoized,
/// return null, otherwise return a pointer to the slot it would take. If a
/// node already exists with these operands, the slot will be non-null.
SDNode **SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDOperand Op) {
if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
return 0; // Never add these nodes.
// Check that remaining values produced are not flags.
for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
if (N->getValueType(i) == MVT::Flag)
return 0; // Never CSE anything that produces a flag.
if (N->getNumValues() == 1) {
return &UnaryOps[std::make_pair(N->getOpcode(),
std::make_pair(Op, N->getValueType(0)))];
} else {
// Remove the node from the ArbitraryNodes map.
std::vector<MVT::ValueType> RV(N->value_begin(), N->value_end());
std::vector<SDOperand> Ops;
Ops.push_back(Op);
return &ArbitraryNodes[std::make_pair(N->getOpcode(),
std::make_pair(RV, Ops))];
}
return 0;
}
/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
/// were replaced with those specified. If this node is never memoized,
/// return null, otherwise return a pointer to the slot it would take. If a
/// node already exists with these operands, the slot will be non-null.
SDNode **SelectionDAG::FindModifiedNodeSlot(SDNode *N,
SDOperand Op1, SDOperand Op2) {
if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
return 0; // Never add these nodes.
// Check that remaining values produced are not flags.
for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
if (N->getValueType(i) == MVT::Flag)
return 0; // Never CSE anything that produces a flag.
if (N->getNumValues() == 1) {
return &BinaryOps[std::make_pair(N->getOpcode(),
std::make_pair(Op1, Op2))];
} else {
std::vector<MVT::ValueType> RV(N->value_begin(), N->value_end());
std::vector<SDOperand> Ops;
Ops.push_back(Op1);
Ops.push_back(Op2);
return &ArbitraryNodes[std::make_pair(N->getOpcode(),
std::make_pair(RV, Ops))];
}
return 0;
}
/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
/// were replaced with those specified. If this node is never memoized,
/// return null, otherwise return a pointer to the slot it would take. If a
/// node already exists with these operands, the slot will be non-null.
SDNode **SelectionDAG::FindModifiedNodeSlot(SDNode *N,
const std::vector<SDOperand> &Ops) {
if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
return 0; // Never add these nodes.
// Check that remaining values produced are not flags.
for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
if (N->getValueType(i) == MVT::Flag)
return 0; // Never CSE anything that produces a flag.
if (N->getNumValues() == 1) {
if (N->getNumOperands() == 1) {
return &UnaryOps[std::make_pair(N->getOpcode(),
std::make_pair(Ops[0],
N->getValueType(0)))];
} else if (N->getNumOperands() == 2) {
return &BinaryOps[std::make_pair(N->getOpcode(),
std::make_pair(Ops[0], Ops[1]))];
} else {
return &OneResultNodes[std::make_pair(N->getOpcode(),
std::make_pair(N->getValueType(0),
Ops))];
}
} else {
if (N->getOpcode() == ISD::LOAD) {
return &Loads[std::make_pair(Ops[1],
std::make_pair(Ops[0], N->getValueType(0)))];
} else {
std::vector<MVT::ValueType> RV(N->value_begin(), N->value_end());
return &ArbitraryNodes[std::make_pair(N->getOpcode(),
std::make_pair(RV, Ops))];
}
}
return 0;
}
SelectionDAG::~SelectionDAG() {
while (!AllNodes.empty()) {
SDNode *N = AllNodes.begin();
delete [] N->OperandList;
N->OperandList = 0;
N->NumOperands = 0;
AllNodes.pop_front();
}
}
SDOperand SelectionDAG::getZeroExtendInReg(SDOperand Op, MVT::ValueType VT) {
if (Op.getValueType() == VT) return Op;
int64_t Imm = ~0ULL >> (64-MVT::getSizeInBits(VT));
return getNode(ISD::AND, Op.getValueType(), Op,
getConstant(Imm, Op.getValueType()));
}
SDOperand SelectionDAG::getConstant(uint64_t Val, MVT::ValueType VT) {
assert(MVT::isInteger(VT) && "Cannot create FP integer constant!");
// Mask out any bits that are not valid for this constant.
if (VT != MVT::i64)
Val &= ((uint64_t)1 << MVT::getSizeInBits(VT)) - 1;
SDNode *&N = Constants[std::make_pair(Val, VT)];
if (N) return SDOperand(N, 0);
N = new ConstantSDNode(false, Val, VT);
AllNodes.push_back(N);
return SDOperand(N, 0);
}
SDOperand SelectionDAG::getString(const std::string &Val) {
StringSDNode *&N = StringNodes[Val];
if (!N) {
N = new StringSDNode(Val);
AllNodes.push_back(N);
}
return SDOperand(N, 0);
}
SDOperand SelectionDAG::getTargetConstant(uint64_t Val, MVT::ValueType VT) {
assert(MVT::isInteger(VT) && "Cannot create FP integer constant!");
// Mask out any bits that are not valid for this constant.
if (VT != MVT::i64)
Val &= ((uint64_t)1 << MVT::getSizeInBits(VT)) - 1;
SDNode *&N = TargetConstants[std::make_pair(Val, VT)];
if (N) return SDOperand(N, 0);
N = new ConstantSDNode(true, Val, VT);
AllNodes.push_back(N);
return SDOperand(N, 0);
}
SDOperand SelectionDAG::getConstantFP(double Val, MVT::ValueType VT) {
assert(MVT::isFloatingPoint(VT) && "Cannot create integer FP constant!");
if (VT == MVT::f32)
Val = (float)Val; // Mask out extra precision.
// Do the map lookup using the actual bit pattern for the floating point
// value, so that we don't have problems with 0.0 comparing equal to -0.0, and
// we don't have issues with SNANs.
SDNode *&N = ConstantFPs[std::make_pair(DoubleToBits(Val), VT)];
if (N) return SDOperand(N, 0);
N = new ConstantFPSDNode(false, Val, VT);
AllNodes.push_back(N);
return SDOperand(N, 0);
}
SDOperand SelectionDAG::getTargetConstantFP(double Val, MVT::ValueType VT) {
assert(MVT::isFloatingPoint(VT) && "Cannot create integer FP constant!");
if (VT == MVT::f32)
Val = (float)Val; // Mask out extra precision.
// Do the map lookup using the actual bit pattern for the floating point
// value, so that we don't have problems with 0.0 comparing equal to -0.0, and
// we don't have issues with SNANs.
SDNode *&N = TargetConstantFPs[std::make_pair(DoubleToBits(Val), VT)];
if (N) return SDOperand(N, 0);
N = new ConstantFPSDNode(true, Val, VT);
AllNodes.push_back(N);
return SDOperand(N, 0);
}
SDOperand SelectionDAG::getGlobalAddress(const GlobalValue *GV,
MVT::ValueType VT, int offset) {
SDNode *&N = GlobalValues[std::make_pair(GV, offset)];
if (N) return SDOperand(N, 0);
N = new GlobalAddressSDNode(false, GV, VT, offset);
AllNodes.push_back(N);
return SDOperand(N, 0);
}
SDOperand SelectionDAG::getTargetGlobalAddress(const GlobalValue *GV,
MVT::ValueType VT, int offset) {
SDNode *&N = TargetGlobalValues[std::make_pair(GV, offset)];
if (N) return SDOperand(N, 0);
N = new GlobalAddressSDNode(true, GV, VT, offset);
AllNodes.push_back(N);
return SDOperand(N, 0);
}
SDOperand SelectionDAG::getFrameIndex(int FI, MVT::ValueType VT) {
SDNode *&N = FrameIndices[FI];
if (N) return SDOperand(N, 0);
N = new FrameIndexSDNode(FI, VT, false);
AllNodes.push_back(N);
return SDOperand(N, 0);
}
SDOperand SelectionDAG::getTargetFrameIndex(int FI, MVT::ValueType VT) {
SDNode *&N = TargetFrameIndices[FI];
if (N) return SDOperand(N, 0);
N = new FrameIndexSDNode(FI, VT, true);
AllNodes.push_back(N);
return SDOperand(N, 0);
}
SDOperand SelectionDAG::getConstantPool(Constant *C, MVT::ValueType VT,
unsigned Alignment, int Offset) {
SDNode *&N = ConstantPoolIndices[std::make_pair(C,
std::make_pair(Offset, Alignment))];
if (N) return SDOperand(N, 0);
N = new ConstantPoolSDNode(false, C, VT, Offset, Alignment);
AllNodes.push_back(N);
return SDOperand(N, 0);
}
SDOperand SelectionDAG::getTargetConstantPool(Constant *C, MVT::ValueType VT,
unsigned Alignment, int Offset) {
SDNode *&N = TargetConstantPoolIndices[std::make_pair(C,
std::make_pair(Offset, Alignment))];
if (N) return SDOperand(N, 0);
N = new ConstantPoolSDNode(true, C, VT, Offset, Alignment);
AllNodes.push_back(N);
return SDOperand(N, 0);
}
SDOperand SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
SDNode *&N = BBNodes[MBB];
if (N) return SDOperand(N, 0);
N = new BasicBlockSDNode(MBB);
AllNodes.push_back(N);
return SDOperand(N, 0);
}
SDOperand SelectionDAG::getValueType(MVT::ValueType VT) {
if ((unsigned)VT >= ValueTypeNodes.size())
ValueTypeNodes.resize(VT+1);
if (ValueTypeNodes[VT] == 0) {
ValueTypeNodes[VT] = new VTSDNode(VT);
AllNodes.push_back(ValueTypeNodes[VT]);
}
return SDOperand(ValueTypeNodes[VT], 0);
}
SDOperand SelectionDAG::getExternalSymbol(const char *Sym, MVT::ValueType VT) {
SDNode *&N = ExternalSymbols[Sym];
if (N) return SDOperand(N, 0);
N = new ExternalSymbolSDNode(false, Sym, VT);
AllNodes.push_back(N);
return SDOperand(N, 0);
}
SDOperand SelectionDAG::getTargetExternalSymbol(const char *Sym,
MVT::ValueType VT) {
SDNode *&N = TargetExternalSymbols[Sym];
if (N) return SDOperand(N, 0);
N = new ExternalSymbolSDNode(true, Sym, VT);
AllNodes.push_back(N);
return SDOperand(N, 0);
}
SDOperand SelectionDAG::getCondCode(ISD::CondCode Cond) {
if ((unsigned)Cond >= CondCodeNodes.size())
CondCodeNodes.resize(Cond+1);
if (CondCodeNodes[Cond] == 0) {
CondCodeNodes[Cond] = new CondCodeSDNode(Cond);
AllNodes.push_back(CondCodeNodes[Cond]);
}
return SDOperand(CondCodeNodes[Cond], 0);
}
SDOperand SelectionDAG::getRegister(unsigned RegNo, MVT::ValueType VT) {
RegisterSDNode *&Reg = RegNodes[std::make_pair(RegNo, VT)];
if (!Reg) {
Reg = new RegisterSDNode(RegNo, VT);
AllNodes.push_back(Reg);
}
return SDOperand(Reg, 0);
}
SDOperand SelectionDAG::SimplifySetCC(MVT::ValueType VT, SDOperand N1,
SDOperand N2, ISD::CondCode Cond) {
// These setcc operations always fold.
switch (Cond) {
default: break;
case ISD::SETFALSE:
case ISD::SETFALSE2: return getConstant(0, VT);
case ISD::SETTRUE:
case ISD::SETTRUE2: return getConstant(1, VT);
}
if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val)) {
uint64_t C2 = N2C->getValue();
if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) {
uint64_t C1 = N1C->getValue();
// Sign extend the operands if required
if (ISD::isSignedIntSetCC(Cond)) {
C1 = N1C->getSignExtended();
C2 = N2C->getSignExtended();
}
switch (Cond) {
default: assert(0 && "Unknown integer setcc!");
case ISD::SETEQ: return getConstant(C1 == C2, VT);
case ISD::SETNE: return getConstant(C1 != C2, VT);
case ISD::SETULT: return getConstant(C1 < C2, VT);
case ISD::SETUGT: return getConstant(C1 > C2, VT);
case ISD::SETULE: return getConstant(C1 <= C2, VT);
case ISD::SETUGE: return getConstant(C1 >= C2, VT);
case ISD::SETLT: return getConstant((int64_t)C1 < (int64_t)C2, VT);
case ISD::SETGT: return getConstant((int64_t)C1 > (int64_t)C2, VT);
case ISD::SETLE: return getConstant((int64_t)C1 <= (int64_t)C2, VT);
case ISD::SETGE: return getConstant((int64_t)C1 >= (int64_t)C2, VT);
}
} else {
// If the LHS is a ZERO_EXTEND, perform the comparison on the input.
if (N1.getOpcode() == ISD::ZERO_EXTEND) {
unsigned InSize = MVT::getSizeInBits(N1.getOperand(0).getValueType());
// If the comparison constant has bits in the upper part, the
// zero-extended value could never match.
if (C2 & (~0ULL << InSize)) {
unsigned VSize = MVT::getSizeInBits(N1.getValueType());
switch (Cond) {
case ISD::SETUGT:
case ISD::SETUGE:
case ISD::SETEQ: return getConstant(0, VT);
case ISD::SETULT:
case ISD::SETULE:
case ISD::SETNE: return getConstant(1, VT);
case ISD::SETGT:
case ISD::SETGE:
// True if the sign bit of C2 is set.
return getConstant((C2 & (1ULL << VSize)) != 0, VT);
case ISD::SETLT:
case ISD::SETLE:
// True if the sign bit of C2 isn't set.
return getConstant((C2 & (1ULL << VSize)) == 0, VT);
default:
break;
}
}
// Otherwise, we can perform the comparison with the low bits.
switch (Cond) {
case ISD::SETEQ:
case ISD::SETNE:
case ISD::SETUGT:
case ISD::SETUGE:
case ISD::SETULT:
case ISD::SETULE:
return getSetCC(VT, N1.getOperand(0),
getConstant(C2, N1.getOperand(0).getValueType()),
Cond);
default:
break; // todo, be more careful with signed comparisons
}
} else if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG &&
(Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
MVT::ValueType ExtSrcTy = cast<VTSDNode>(N1.getOperand(1))->getVT();
unsigned ExtSrcTyBits = MVT::getSizeInBits(ExtSrcTy);
MVT::ValueType ExtDstTy = N1.getValueType();
unsigned ExtDstTyBits = MVT::getSizeInBits(ExtDstTy);
// If the extended part has any inconsistent bits, it cannot ever
// compare equal. In other words, they have to be all ones or all
// zeros.
uint64_t ExtBits =
(~0ULL >> (64-ExtSrcTyBits)) & (~0ULL << (ExtDstTyBits-1));
if ((C2 & ExtBits) != 0 && (C2 & ExtBits) != ExtBits)
return getConstant(Cond == ISD::SETNE, VT);
// Otherwise, make this a use of a zext.
return getSetCC(VT, getZeroExtendInReg(N1.getOperand(0), ExtSrcTy),
getConstant(C2 & (~0ULL>>(64-ExtSrcTyBits)), ExtDstTy),
Cond);
}
uint64_t MinVal, MaxVal;
unsigned OperandBitSize = MVT::getSizeInBits(N2C->getValueType(0));
if (ISD::isSignedIntSetCC(Cond)) {
MinVal = 1ULL << (OperandBitSize-1);
if (OperandBitSize != 1) // Avoid X >> 64, which is undefined.
MaxVal = ~0ULL >> (65-OperandBitSize);
else
MaxVal = 0;
} else {
MinVal = 0;
MaxVal = ~0ULL >> (64-OperandBitSize);
}
// Canonicalize GE/LE comparisons to use GT/LT comparisons.
if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
if (C2 == MinVal) return getConstant(1, VT); // X >= MIN --> true
--C2; // X >= C1 --> X > (C1-1)
return getSetCC(VT, N1, getConstant(C2, N2.getValueType()),
(Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT);
}
if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
if (C2 == MaxVal) return getConstant(1, VT); // X <= MAX --> true
++C2; // X <= C1 --> X < (C1+1)
return getSetCC(VT, N1, getConstant(C2, N2.getValueType()),
(Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT);
}
if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C2 == MinVal)
return getConstant(0, VT); // X < MIN --> false
// Canonicalize setgt X, Min --> setne X, Min
if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C2 == MinVal)
return getSetCC(VT, N1, N2, ISD::SETNE);
// If we have setult X, 1, turn it into seteq X, 0
if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C2 == MinVal+1)
return getSetCC(VT, N1, getConstant(MinVal, N1.getValueType()),
ISD::SETEQ);
// If we have setugt X, Max-1, turn it into seteq X, Max
else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C2 == MaxVal-1)
return getSetCC(VT, N1, getConstant(MaxVal, N1.getValueType()),
ISD::SETEQ);
// If we have "setcc X, C1", check to see if we can shrink the immediate
// by changing cc.
// SETUGT X, SINTMAX -> SETLT X, 0
if (Cond == ISD::SETUGT && OperandBitSize != 1 &&
C2 == (~0ULL >> (65-OperandBitSize)))
return getSetCC(VT, N1, getConstant(0, N2.getValueType()), ISD::SETLT);
// FIXME: Implement the rest of these.
// Fold bit comparisons when we can.
if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
VT == N1.getValueType() && N1.getOpcode() == ISD::AND)
if (ConstantSDNode *AndRHS =
dyn_cast<ConstantSDNode>(N1.getOperand(1))) {
if (Cond == ISD::SETNE && C2 == 0) {// (X & 8) != 0 --> (X & 8) >> 3
// Perform the xform if the AND RHS is a single bit.
if ((AndRHS->getValue() & (AndRHS->getValue()-1)) == 0) {
return getNode(ISD::SRL, VT, N1,
getConstant(Log2_64(AndRHS->getValue()),
TLI.getShiftAmountTy()));
}
} else if (Cond == ISD::SETEQ && C2 == AndRHS->getValue()) {
// (X & 8) == 8 --> (X & 8) >> 3
// Perform the xform if C2 is a single bit.
if ((C2 & (C2-1)) == 0) {
return getNode(ISD::SRL, VT, N1,
getConstant(Log2_64(C2),TLI.getShiftAmountTy()));
}
}
}
}
} else if (isa<ConstantSDNode>(N1.Val)) {
// Ensure that the constant occurs on the RHS.
return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
}
if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.Val))
if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.Val)) {
double C1 = N1C->getValue(), C2 = N2C->getValue();
switch (Cond) {
default: break; // FIXME: Implement the rest of these!
case ISD::SETEQ: return getConstant(C1 == C2, VT);
case ISD::SETNE: return getConstant(C1 != C2, VT);
case ISD::SETLT: return getConstant(C1 < C2, VT);
case ISD::SETGT: return getConstant(C1 > C2, VT);
case ISD::SETLE: return getConstant(C1 <= C2, VT);
case ISD::SETGE: return getConstant(C1 >= C2, VT);
}
} else {
// Ensure that the constant occurs on the RHS.
return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
}
// Could not fold it.
return SDOperand();
}
/// getNode - Gets or creates the specified node.
///
SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT) {
SDNode *&N = NullaryOps[std::make_pair(Opcode, VT)];
if (!N) {
N = new SDNode(Opcode, VT);
AllNodes.push_back(N);
}
return SDOperand(N, 0);
}
SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
SDOperand Operand) {
unsigned Tmp1;
// Constant fold unary operations with an integer constant operand.
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.Val)) {
uint64_t Val = C->getValue();
switch (Opcode) {
default: break;
case ISD::SIGN_EXTEND: return getConstant(C->getSignExtended(), VT);
case ISD::ANY_EXTEND:
case ISD::ZERO_EXTEND: return getConstant(Val, VT);
case ISD::TRUNCATE: return getConstant(Val, VT);
case ISD::SINT_TO_FP: return getConstantFP(C->getSignExtended(), VT);
case ISD::UINT_TO_FP: return getConstantFP(C->getValue(), VT);
case ISD::BIT_CONVERT:
if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
return getConstantFP(BitsToFloat(Val), VT);
else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
return getConstantFP(BitsToDouble(Val), VT);
break;
case ISD::BSWAP:
switch(VT) {
default: assert(0 && "Invalid bswap!"); break;
case MVT::i16: return getConstant(ByteSwap_16((unsigned short)Val), VT);
case MVT::i32: return getConstant(ByteSwap_32((unsigned)Val), VT);
case MVT::i64: return getConstant(ByteSwap_64(Val), VT);
}
break;
case ISD::CTPOP:
switch(VT) {
default: assert(0 && "Invalid ctpop!"); break;
case MVT::i1: return getConstant(Val != 0, VT);
case MVT::i8:
Tmp1 = (unsigned)Val & 0xFF;
return getConstant(CountPopulation_32(Tmp1), VT);
case MVT::i16:
Tmp1 = (unsigned)Val & 0xFFFF;
return getConstant(CountPopulation_32(Tmp1), VT);
case MVT::i32:
return getConstant(CountPopulation_32((unsigned)Val), VT);
case MVT::i64:
return getConstant(CountPopulation_64(Val), VT);
}
case ISD::CTLZ:
switch(VT) {
default: assert(0 && "Invalid ctlz!"); break;
case MVT::i1: return getConstant(Val == 0, VT);
case MVT::i8:
Tmp1 = (unsigned)Val & 0xFF;
return getConstant(CountLeadingZeros_32(Tmp1)-24, VT);
case MVT::i16:
Tmp1 = (unsigned)Val & 0xFFFF;
return getConstant(CountLeadingZeros_32(Tmp1)-16, VT);
case MVT::i32:
return getConstant(CountLeadingZeros_32((unsigned)Val), VT);
case MVT::i64:
return getConstant(CountLeadingZeros_64(Val), VT);
}
case ISD::CTTZ:
switch(VT) {
default: assert(0 && "Invalid cttz!"); break;
case MVT::i1: return getConstant(Val == 0, VT);
case MVT::i8:
Tmp1 = (unsigned)Val | 0x100;
return getConstant(CountTrailingZeros_32(Tmp1), VT);
case MVT::i16:
Tmp1 = (unsigned)Val | 0x10000;
return getConstant(CountTrailingZeros_32(Tmp1), VT);
case MVT::i32:
return getConstant(CountTrailingZeros_32((unsigned)Val), VT);
case MVT::i64:
return getConstant(CountTrailingZeros_64(Val), VT);
}
}
}
// Constant fold unary operations with an floating point constant operand.
if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.Val))
switch (Opcode) {
case ISD::FNEG:
return getConstantFP(-C->getValue(), VT);
case ISD::FABS:
return getConstantFP(fabs(C->getValue()), VT);
case ISD::FP_ROUND:
case ISD::FP_EXTEND:
return getConstantFP(C->getValue(), VT);
case ISD::FP_TO_SINT:
return getConstant((int64_t)C->getValue(), VT);
case ISD::FP_TO_UINT:
return getConstant((uint64_t)C->getValue(), VT);
case ISD::BIT_CONVERT:
if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
return getConstant(FloatToBits(C->getValue()), VT);
else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
return getConstant(DoubleToBits(C->getValue()), VT);
break;
}
unsigned OpOpcode = Operand.Val->getOpcode();
switch (Opcode) {
case ISD::TokenFactor:
return Operand; // Factor of one node? No factor.
case ISD::SIGN_EXTEND:
if (Operand.getValueType() == VT) return Operand; // noop extension
assert(Operand.getValueType() < VT && "Invalid sext node, dst < src!");
if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
break;
case ISD::ZERO_EXTEND:
if (Operand.getValueType() == VT) return Operand; // noop extension
assert(Operand.getValueType() < VT && "Invalid zext node, dst < src!");
if (OpOpcode == ISD::ZERO_EXTEND) // (zext (zext x)) -> (zext x)
return getNode(ISD::ZERO_EXTEND, VT, Operand.Val->getOperand(0));
break;
case ISD::ANY_EXTEND:
if (Operand.getValueType() == VT) return Operand; // noop extension
assert(Operand.getValueType() < VT && "Invalid anyext node, dst < src!");
if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
// (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x)
return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
break;
case ISD::TRUNCATE:
if (Operand.getValueType() == VT) return Operand; // noop truncate
assert(Operand.getValueType() > VT && "Invalid truncate node, src < dst!");
if (OpOpcode == ISD::TRUNCATE)
return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
OpOpcode == ISD::ANY_EXTEND) {
// If the source is smaller than the dest, we still need an extend.
if (Operand.Val->getOperand(0).getValueType() < VT)
return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
else if (Operand.Val->getOperand(0).getValueType() > VT)
return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
else
return Operand.Val->getOperand(0);
}
break;
case ISD::BIT_CONVERT:
// Basic sanity checking.
assert((Operand.getValueType() == MVT::Vector || // FIXME: This is a hack.
MVT::getSizeInBits(VT) == MVT::getSizeInBits(Operand.getValueType()))
&& "Cannot BIT_CONVERT between two different types!");
if (VT == Operand.getValueType()) return Operand; // noop conversion.
if (OpOpcode == ISD::BIT_CONVERT) // bitconv(bitconv(x)) -> bitconv(x)
return getNode(ISD::BIT_CONVERT, VT, Operand.getOperand(0));
break;
case ISD::SCALAR_TO_VECTOR:
assert(MVT::isVector(VT) && !MVT::isVector(Operand.getValueType()) &&
MVT::getVectorBaseType(VT) == Operand.getValueType() &&
"Illegal SCALAR_TO_VECTOR node!");
break;
case ISD::FNEG:
if (OpOpcode == ISD::FSUB) // -(X-Y) -> (Y-X)
return getNode(ISD::FSUB, VT, Operand.Val->getOperand(1),
Operand.Val->getOperand(0));
if (OpOpcode == ISD::FNEG) // --X -> X
return Operand.Val->getOperand(0);
break;
case ISD::FABS:
if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X)
return getNode(ISD::FABS, VT, Operand.Val->getOperand(0));
break;
}
SDNode *N;
if (VT != MVT::Flag) { // Don't CSE flag producing nodes
SDNode *&E = UnaryOps[std::make_pair(Opcode, std::make_pair(Operand, VT))];
if (E) return SDOperand(E, 0);
E = N = new SDNode(Opcode, Operand);
} else {
N = new SDNode(Opcode, Operand);
}
N->setValueTypes(VT);
AllNodes.push_back(N);
return SDOperand(N, 0);
}
SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
SDOperand N1, SDOperand N2) {
#ifndef NDEBUG
switch (Opcode) {
case ISD::TokenFactor:
assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
N2.getValueType() == MVT::Other && "Invalid token factor!");
break;
case ISD::AND:
case ISD::OR:
case ISD::XOR:
case ISD::UDIV:
case ISD::UREM:
case ISD::MULHU:
case ISD::MULHS:
assert(MVT::isInteger(VT) && "This operator does not apply to FP types!");
// fall through
case ISD::ADD:
case ISD::SUB:
case ISD::MUL:
case ISD::SDIV:
case ISD::SREM:
assert(MVT::isInteger(N1.getValueType()) && "Should use F* for FP ops");
// fall through.
case ISD::FADD:
case ISD::FSUB:
case ISD::FMUL:
case ISD::FDIV:
case ISD::FREM:
assert(N1.getValueType() == N2.getValueType() &&
N1.getValueType() == VT && "Binary operator types must match!");
break;
case ISD::FCOPYSIGN: // N1 and result must match. N1/N2 need not match.
assert(N1.getValueType() == VT &&
MVT::isFloatingPoint(N1.getValueType()) &&
MVT::isFloatingPoint(N2.getValueType()) &&
"Invalid FCOPYSIGN!");
break;
case ISD::SHL:
case ISD::SRA:
case ISD::SRL:
case ISD::ROTL:
case ISD::ROTR:
assert(VT == N1.getValueType() &&
"Shift operators return type must be the same as their first arg");
assert(MVT::isInteger(VT) && MVT::isInteger(N2.getValueType()) &&
VT != MVT::i1 && "Shifts only work on integers");
break;
case ISD::FP_ROUND_INREG: {
MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
assert(VT == N1.getValueType() && "Not an inreg round!");
assert(MVT::isFloatingPoint(VT) && MVT::isFloatingPoint(EVT) &&
"Cannot FP_ROUND_INREG integer types");
assert(EVT <= VT && "Not rounding down!");
break;
}
case ISD::AssertSext:
case ISD::AssertZext:
case ISD::SIGN_EXTEND_INREG: {
MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
assert(VT == N1.getValueType() && "Not an inreg extend!");
assert(MVT::isInteger(VT) && MVT::isInteger(EVT) &&
"Cannot *_EXTEND_INREG FP types");
assert(EVT <= VT && "Not extending!");
}
default: break;
}
#endif
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
if (N1C) {
if (N2C) {
uint64_t C1 = N1C->getValue(), C2 = N2C->getValue();
switch (Opcode) {
case ISD::ADD: return getConstant(C1 + C2, VT);
case ISD::SUB: return getConstant(C1 - C2, VT);
case ISD::MUL: return getConstant(C1 * C2, VT);
case ISD::UDIV:
if (C2) return getConstant(C1 / C2, VT);
break;
case ISD::UREM :
if (C2) return getConstant(C1 % C2, VT);
break;
case ISD::SDIV :
if (C2) return getConstant(N1C->getSignExtended() /
N2C->getSignExtended(), VT);
break;
case ISD::SREM :
if (C2) return getConstant(N1C->getSignExtended() %
N2C->getSignExtended(), VT);
break;
case ISD::AND : return getConstant(C1 & C2, VT);
case ISD::OR : return getConstant(C1 | C2, VT);
case ISD::XOR : return getConstant(C1 ^ C2, VT);
case ISD::SHL : return getConstant(C1 << C2, VT);
case ISD::SRL : return getConstant(C1 >> C2, VT);
case ISD::SRA : return getConstant(N1C->getSignExtended() >>(int)C2, VT);
case ISD::ROTL :
return getConstant((C1 << C2) | (C1 >> (MVT::getSizeInBits(VT) - C2)),
VT);
case ISD::ROTR :
return getConstant((C1 >> C2) | (C1 << (MVT::getSizeInBits(VT) - C2)),
VT);
default: break;
}
} else { // Cannonicalize constant to RHS if commutative
if (isCommutativeBinOp(Opcode)) {
std::swap(N1C, N2C);
std::swap(N1, N2);
}
}
}
ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.Val);
ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.Val);
if (N1CFP) {
if (N2CFP) {
double C1 = N1CFP->getValue(), C2 = N2CFP->getValue();
switch (Opcode) {
case ISD::FADD: return getConstantFP(C1 + C2, VT);
case ISD::FSUB: return getConstantFP(C1 - C2, VT);
case ISD::FMUL: return getConstantFP(C1 * C2, VT);
case ISD::FDIV:
if (C2) return getConstantFP(C1 / C2, VT);
break;
case ISD::FREM :
if (C2) return getConstantFP(fmod(C1, C2), VT);
break;
case ISD::FCOPYSIGN: {
union {
double F;
uint64_t I;
} u1;
union {
double F;
int64_t I;
} u2;
u1.F = C1;
u2.F = C2;
if (u2.I < 0) // Sign bit of RHS set?
u1.I |= 1ULL << 63; // Set the sign bit of the LHS.
else
u1.I &= (1ULL << 63)-1; // Clear the sign bit of the LHS.
return getConstantFP(u1.F, VT);
}
default: break;
}
} else { // Cannonicalize constant to RHS if commutative
if (isCommutativeBinOp(Opcode)) {
std::swap(N1CFP, N2CFP);
std::swap(N1, N2);
}
}
}
// Finally, fold operations that do not require constants.
switch (Opcode) {
case ISD::FP_ROUND_INREG:
if (cast<VTSDNode>(N2)->getVT() == VT) return N1; // Not actually rounding.
break;
case ISD::SIGN_EXTEND_INREG: {
MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
if (EVT == VT) return N1; // Not actually extending
break;
}
// FIXME: figure out how to safely handle things like
// int foo(int x) { return 1 << (x & 255); }
// int bar() { return foo(256); }
#if 0
case ISD::SHL:
case ISD::SRL:
case ISD::SRA:
if (N2.getOpcode() == ISD::SIGN_EXTEND_INREG &&
cast<VTSDNode>(N2.getOperand(1))->getVT() != MVT::i1)
return getNode(Opcode, VT, N1, N2.getOperand(0));
else if (N2.getOpcode() == ISD::AND)
if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N2.getOperand(1))) {
// If the and is only masking out bits that cannot effect the shift,
// eliminate the and.
unsigned NumBits = MVT::getSizeInBits(VT);
if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
return getNode(Opcode, VT, N1, N2.getOperand(0));
}
break;
#endif
}
// Memoize this node if possible.
SDNode *N;
if (VT != MVT::Flag) {
SDNode *&BON = BinaryOps[std::make_pair(Opcode, std::make_pair(N1, N2))];
if (BON) return SDOperand(BON, 0);
BON = N = new SDNode(Opcode, N1, N2);
} else {
N = new SDNode(Opcode, N1, N2);
}
N->setValueTypes(VT);
AllNodes.push_back(N);
return SDOperand(N, 0);
}
SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
SDOperand N1, SDOperand N2, SDOperand N3) {
// Perform various simplifications.
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3.Val);
switch (Opcode) {
case ISD::SETCC: {
// Use SimplifySetCC to simplify SETCC's.
SDOperand Simp = SimplifySetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get());
if (Simp.Val) return Simp;
break;
}
case ISD::SELECT:
if (N1C)
if (N1C->getValue())
return N2; // select true, X, Y -> X
else
return N3; // select false, X, Y -> Y
if (N2 == N3) return N2; // select C, X, X -> X
break;
case ISD::BRCOND:
if (N2C)
if (N2C->getValue()) // Unconditional branch
return getNode(ISD::BR, MVT::Other, N1, N3);
else
return N1; // Never-taken branch
break;
case ISD::VECTOR_SHUFFLE:
assert(VT == N1.getValueType() && VT == N2.getValueType() &&
MVT::isVector(VT) && MVT::isVector(N3.getValueType()) &&
N3.getOpcode() == ISD::BUILD_VECTOR &&
MVT::getVectorNumElements(VT) == N3.getNumOperands() &&
"Illegal VECTOR_SHUFFLE node!");
break;
}
std::vector<SDOperand> Ops;
Ops.reserve(3);
Ops.push_back(N1);
Ops.push_back(N2);
Ops.push_back(N3);
// Memoize node if it doesn't produce a flag.
SDNode *N;
if (VT != MVT::Flag) {
SDNode *&E = OneResultNodes[std::make_pair(Opcode,std::make_pair(VT, Ops))];
if (E) return SDOperand(E, 0);
E = N = new SDNode(Opcode, N1, N2, N3);
} else {
N = new SDNode(Opcode, N1, N2, N3);
}
N->setValueTypes(VT);
AllNodes.push_back(N);
return SDOperand(N, 0);
}
SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
SDOperand N1, SDOperand N2, SDOperand N3,
SDOperand N4) {
std::vector<SDOperand> Ops;
Ops.reserve(4);
Ops.push_back(N1);
Ops.push_back(N2);
Ops.push_back(N3);
Ops.push_back(N4);
return getNode(Opcode, VT, Ops);
}
SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
SDOperand N1, SDOperand N2, SDOperand N3,
SDOperand N4, SDOperand N5) {
std::vector<SDOperand> Ops;
Ops.reserve(5);
Ops.push_back(N1);
Ops.push_back(N2);
Ops.push_back(N3);
Ops.push_back(N4);
Ops.push_back(N5);
return getNode(Opcode, VT, Ops);
}
SDOperand SelectionDAG::getLoad(MVT::ValueType VT,
SDOperand Chain, SDOperand Ptr,
SDOperand SV) {
SDNode *&N = Loads[std::make_pair(Ptr, std::make_pair(Chain, VT))];
if (N) return SDOperand(N, 0);
N = new SDNode(ISD::LOAD, Chain, Ptr, SV);
// Loads have a token chain.
setNodeValueTypes(N, VT, MVT::Other);
AllNodes.push_back(N);
return SDOperand(N, 0);
}
SDOperand SelectionDAG::getVecLoad(unsigned Count, MVT::ValueType EVT,
SDOperand Chain, SDOperand Ptr,
SDOperand SV) {
SDNode *&N = Loads[std::make_pair(Ptr, std::make_pair(Chain, EVT))];
if (N) return SDOperand(N, 0);
std::vector<SDOperand> Ops;
Ops.reserve(5);
Ops.push_back(Chain);
Ops.push_back(Ptr);
Ops.push_back(SV);
Ops.push_back(getConstant(Count, MVT::i32));
Ops.push_back(getValueType(EVT));
std::vector<MVT::ValueType> VTs;
VTs.reserve(2);
VTs.push_back(MVT::Vector); VTs.push_back(MVT::Other); // Add token chain.
return getNode(ISD::VLOAD, VTs, Ops);
}
SDOperand SelectionDAG::getExtLoad(unsigned Opcode, MVT::ValueType VT,
SDOperand Chain, SDOperand Ptr, SDOperand SV,
MVT::ValueType EVT) {
std::vector<SDOperand> Ops;
Ops.reserve(4);
Ops.push_back(Chain);
Ops.push_back(Ptr);
Ops.push_back(SV);
Ops.push_back(getValueType(EVT));
std::vector<MVT::ValueType> VTs;
VTs.reserve(2);
VTs.push_back(VT); VTs.push_back(MVT::Other); // Add token chain.
return getNode(Opcode, VTs, Ops);
}
SDOperand SelectionDAG::getSrcValue(const Value *V, int Offset) {
assert((!V || isa<PointerType>(V->getType())) &&
"SrcValue is not a pointer?");
SDNode *&N = ValueNodes[std::make_pair(V, Offset)];
if (N) return SDOperand(N, 0);
N = new SrcValueSDNode(V, Offset);
AllNodes.push_back(N);
return SDOperand(N, 0);
}
SDOperand SelectionDAG::getVAArg(MVT::ValueType VT,
SDOperand Chain, SDOperand Ptr,
SDOperand SV) {
std::vector<SDOperand> Ops;
Ops.reserve(3);
Ops.push_back(Chain);
Ops.push_back(Ptr);
Ops.push_back(SV);
std::vector<MVT::ValueType> VTs;
VTs.reserve(2);
VTs.push_back(VT); VTs.push_back(MVT::Other); // Add token chain.
return getNode(ISD::VAARG, VTs, Ops);
}
SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
std::vector<SDOperand> &Ops) {
switch (Ops.size()) {
case 0: return getNode(Opcode, VT);
case 1: return getNode(Opcode, VT, Ops[0]);
case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
default: break;
}
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Ops[1].Val);
switch (Opcode) {
default: break;
case ISD::TRUNCSTORE: {
assert(Ops.size() == 5 && "TRUNCSTORE takes 5 operands!");
MVT::ValueType EVT = cast<VTSDNode>(Ops[4])->getVT();
#if 0 // FIXME: If the target supports EVT natively, convert to a truncate/store
// If this is a truncating store of a constant, convert to the desired type
// and store it instead.
if (isa<Constant>(Ops[0])) {
SDOperand Op = getNode(ISD::TRUNCATE, EVT, N1);
if (isa<Constant>(Op))
N1 = Op;
}
// Also for ConstantFP?
#endif
if (Ops[0].getValueType() == EVT) // Normal store?
return getNode(ISD::STORE, VT, Ops[0], Ops[1], Ops[2], Ops[3]);
assert(Ops[1].getValueType() > EVT && "Not a truncation?");
assert(MVT::isInteger(Ops[1].getValueType()) == MVT::isInteger(EVT) &&
"Can't do FP-INT conversion!");
break;
}
case ISD::SELECT_CC: {
assert(Ops.size() == 5 && "SELECT_CC takes 5 operands!");
assert(Ops[0].getValueType() == Ops[1].getValueType() &&
"LHS and RHS of condition must have same type!");
assert(Ops[2].getValueType() == Ops[3].getValueType() &&
"True and False arms of SelectCC must have same type!");
assert(Ops[2].getValueType() == VT &&
"select_cc node must be of same type as true and false value!");
break;
}
case ISD::BR_CC: {
assert(Ops.size() == 5 && "BR_CC takes 5 operands!");
assert(Ops[2].getValueType() == Ops[3].getValueType() &&
"LHS/RHS of comparison should match types!");
break;
}
}
// Memoize nodes.
SDNode *N;
if (VT != MVT::Flag) {
SDNode *&E =
OneResultNodes[std::make_pair(Opcode, std::make_pair(VT, Ops))];
if (E) return SDOperand(E, 0);
E = N = new SDNode(Opcode, Ops);
} else {
N = new SDNode(Opcode, Ops);
}
N->setValueTypes(VT);
AllNodes.push_back(N);
return SDOperand(N, 0);
}
SDOperand SelectionDAG::getNode(unsigned Opcode,
std::vector<MVT::ValueType> &ResultTys,
std::vector<SDOperand> &Ops) {
if (ResultTys.size() == 1)
return getNode(Opcode, ResultTys[0], Ops);
switch (Opcode) {
case ISD::EXTLOAD:
case ISD::SEXTLOAD:
case ISD::ZEXTLOAD: {
MVT::ValueType EVT = cast<VTSDNode>(Ops[3])->getVT();
assert(Ops.size() == 4 && ResultTys.size() == 2 && "Bad *EXTLOAD!");
// If they are asking for an extending load from/to the same thing, return a
// normal load.
if (ResultTys[0] == EVT)
return getLoad(ResultTys[0], Ops[0], Ops[1], Ops[2]);
if (MVT::isVector(ResultTys[0])) {
assert(EVT == MVT::getVectorBaseType(ResultTys[0]) &&
"Invalid vector extload!");
} else {
assert(EVT < ResultTys[0] &&
"Should only be an extending load, not truncating!");
}
assert((Opcode == ISD::EXTLOAD || MVT::isInteger(ResultTys[0])) &&
"Cannot sign/zero extend a FP/Vector load!");
assert(MVT::isInteger(ResultTys[0]) == MVT::isInteger(EVT) &&
"Cannot convert from FP to Int or Int -> FP!");
break;
}
// FIXME: figure out how to safely handle things like
// int foo(int x) { return 1 << (x & 255); }
// int bar() { return foo(256); }
#if 0
case ISD::SRA_PARTS:
case ISD::SRL_PARTS:
case ISD::SHL_PARTS:
if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
else if (N3.getOpcode() == ISD::AND)
if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
// If the and is only masking out bits that cannot effect the shift,
// eliminate the and.
unsigned NumBits = MVT::getSizeInBits(VT)*2;
if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
}
break;
#endif
}
// Memoize the node unless it returns a flag.
SDNode *N;
if (ResultTys.back() != MVT::Flag) {
SDNode *&E =
ArbitraryNodes[std::make_pair(Opcode, std::make_pair(ResultTys, Ops))];
if (E) return SDOperand(E, 0);
E = N = new SDNode(Opcode, Ops);
} else {
N = new SDNode(Opcode, Ops);
}
setNodeValueTypes(N, ResultTys);
AllNodes.push_back(N);
return SDOperand(N, 0);
}
void SelectionDAG::setNodeValueTypes(SDNode *N,
std::vector<MVT::ValueType> &RetVals) {
switch (RetVals.size()) {
case 0: return;
case 1: N->setValueTypes(RetVals[0]); return;
case 2: setNodeValueTypes(N, RetVals[0], RetVals[1]); return;
default: break;
}
std::list<std::vector<MVT::ValueType> >::iterator I =
std::find(VTList.begin(), VTList.end(), RetVals);
if (I == VTList.end()) {
VTList.push_front(RetVals);
I = VTList.begin();
}
N->setValueTypes(&(*I)[0], I->size());
}
void SelectionDAG::setNodeValueTypes(SDNode *N, MVT::ValueType VT1,
MVT::ValueType VT2) {
for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
E = VTList.end(); I != E; ++I) {
if (I->size() == 2 && (*I)[0] == VT1 && (*I)[1] == VT2) {
N->setValueTypes(&(*I)[0], 2);
return;
}
}
std::vector<MVT::ValueType> V;
V.push_back(VT1);
V.push_back(VT2);
VTList.push_front(V);
N->setValueTypes(&(*VTList.begin())[0], 2);
}
/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
/// specified operands. If the resultant node already exists in the DAG,
/// this does not modify the specified node, instead it returns the node that
/// already exists. If the resultant node does not exist in the DAG, the
/// input node is returned. As a degenerate case, if you specify the same
/// input operands as the node already has, the input node is returned.
SDOperand SelectionDAG::
UpdateNodeOperands(SDOperand InN, SDOperand Op) {
SDNode *N = InN.Val;
assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
// Check to see if there is no change.
if (Op == N->getOperand(0)) return InN;
// See if the modified node already exists.
SDNode **NewSlot = FindModifiedNodeSlot(N, Op);
if (NewSlot && *NewSlot)
return SDOperand(*NewSlot, InN.ResNo);
// Nope it doesn't. Remove the node from it's current place in the maps.
if (NewSlot)
RemoveNodeFromCSEMaps(N);
// Now we update the operands.
N->OperandList[0].Val->removeUser(N);
Op.Val->addUser(N);
N->OperandList[0] = Op;
// If this gets put into a CSE map, add it.
if (NewSlot) *NewSlot = N;
return InN;
}
SDOperand SelectionDAG::
UpdateNodeOperands(SDOperand InN, SDOperand Op1, SDOperand Op2) {
SDNode *N = InN.Val;
assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
// Check to see if there is no change.
bool AnyChange = false;
if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
return InN; // No operands changed, just return the input node.
// See if the modified node already exists.
SDNode **NewSlot = FindModifiedNodeSlot(N, Op1, Op2);
if (NewSlot && *NewSlot)
return SDOperand(*NewSlot, InN.ResNo);
// Nope it doesn't. Remove the node from it's current place in the maps.
if (NewSlot)
RemoveNodeFromCSEMaps(N);
// Now we update the operands.
if (N->OperandList[0] != Op1) {
N->OperandList[0].Val->removeUser(N);
Op1.Val->addUser(N);
N->OperandList[0] = Op1;
}
if (N->OperandList[1] != Op2) {
N->OperandList[1].Val->removeUser(N);
Op2.Val->addUser(N);
N->OperandList[1] = Op2;
}
// If this gets put into a CSE map, add it.
if (NewSlot) *NewSlot = N;
return InN;
}
SDOperand SelectionDAG::
UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2, SDOperand Op3) {
std::vector<SDOperand> Ops;
Ops.push_back(Op1);
Ops.push_back(Op2);
Ops.push_back(Op3);
return UpdateNodeOperands(N, Ops);
}
SDOperand SelectionDAG::
UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
SDOperand Op3, SDOperand Op4) {
std::vector<SDOperand> Ops;
Ops.push_back(Op1);
Ops.push_back(Op2);
Ops.push_back(Op3);
Ops.push_back(Op4);
return UpdateNodeOperands(N, Ops);
}
SDOperand SelectionDAG::
UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
SDOperand Op3, SDOperand Op4, SDOperand Op5) {
std::vector<SDOperand> Ops;
Ops.push_back(Op1);
Ops.push_back(Op2);
Ops.push_back(Op3);
Ops.push_back(Op4);
Ops.push_back(Op5);
return UpdateNodeOperands(N, Ops);
}
SDOperand SelectionDAG::
UpdateNodeOperands(SDOperand InN, const std::vector<SDOperand> &Ops) {
SDNode *N = InN.Val;
assert(N->getNumOperands() == Ops.size() &&
"Update with wrong number of operands");
// Check to see if there is no change.
unsigned NumOps = Ops.size();
bool AnyChange = false;
for (unsigned i = 0; i != NumOps; ++i) {
if (Ops[i] != N->getOperand(i)) {
AnyChange = true;
break;
}
}
// No operands changed, just return the input node.
if (!AnyChange) return InN;
// See if the modified node already exists.
SDNode **NewSlot = FindModifiedNodeSlot(N, Ops);
if (NewSlot && *NewSlot)
return SDOperand(*NewSlot, InN.ResNo);
// Nope it doesn't. Remove the node from it's current place in the maps.
if (NewSlot)
RemoveNodeFromCSEMaps(N);
// Now we update the operands.
for (unsigned i = 0; i != NumOps; ++i) {
if (N->OperandList[i] != Ops[i]) {
N->OperandList[i].Val->removeUser(N);
Ops[i].Val->addUser(N);
N->OperandList[i] = Ops[i];
}
}
// If this gets put into a CSE map, add it.
if (NewSlot) *NewSlot = N;
return InN;
}
/// SelectNodeTo - These are used for target selectors to *mutate* the
/// specified node to have the specified return type, Target opcode, and
/// operands. Note that target opcodes are stored as
/// ISD::BUILTIN_OP_END+TargetOpcode in the node opcode field.
///
/// Note that SelectNodeTo returns the resultant node. If there is already a
/// node of the specified opcode and operands, it returns that node instead of
/// the current one.
SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
MVT::ValueType VT) {
// If an identical node already exists, use it.
SDNode *&ON = NullaryOps[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc, VT)];
if (ON) return SDOperand(ON, 0);
RemoveNodeFromCSEMaps(N);
N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
N->setValueTypes(VT);
ON = N; // Memoize the new node.
return SDOperand(N, 0);
}
SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
MVT::ValueType VT, SDOperand Op1) {
// If an identical node already exists, use it.
SDNode *&ON = UnaryOps[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
std::make_pair(Op1, VT))];
if (ON) return SDOperand(ON, 0);
RemoveNodeFromCSEMaps(N);
N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
N->setValueTypes(VT);
N->setOperands(Op1);
ON = N; // Memoize the new node.
return SDOperand(N, 0);
}
SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
MVT::ValueType VT, SDOperand Op1,
SDOperand Op2) {
// If an identical node already exists, use it.
SDNode *&ON = BinaryOps[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
std::make_pair(Op1, Op2))];
if (ON) return SDOperand(ON, 0);
RemoveNodeFromCSEMaps(N);
N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
N->setValueTypes(VT);
N->setOperands(Op1, Op2);
ON = N; // Memoize the new node.
return SDOperand(N, 0);
}
SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
MVT::ValueType VT, SDOperand Op1,
SDOperand Op2, SDOperand Op3) {
// If an identical node already exists, use it.
std::vector<SDOperand> OpList;
OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3);
SDNode *&ON = OneResultNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
std::make_pair(VT, OpList))];
if (ON) return SDOperand(ON, 0);
RemoveNodeFromCSEMaps(N);
N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
N->setValueTypes(VT);
N->setOperands(Op1, Op2, Op3);
ON = N; // Memoize the new node.
return SDOperand(N, 0);
}
SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
MVT::ValueType VT, SDOperand Op1,
SDOperand Op2, SDOperand Op3,
SDOperand Op4) {
// If an identical node already exists, use it.
std::vector<SDOperand> OpList;
OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3);
OpList.push_back(Op4);
SDNode *&ON = OneResultNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
std::make_pair(VT, OpList))];
if (ON) return SDOperand(ON, 0);
RemoveNodeFromCSEMaps(N);
N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
N->setValueTypes(VT);
N->setOperands(Op1, Op2, Op3, Op4);
ON = N; // Memoize the new node.
return SDOperand(N, 0);
}
SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
MVT::ValueType VT, SDOperand Op1,
SDOperand Op2, SDOperand Op3,SDOperand Op4,
SDOperand Op5) {
// If an identical node already exists, use it.
std::vector<SDOperand> OpList;
OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3);
OpList.push_back(Op4); OpList.push_back(Op5);
SDNode *&ON = OneResultNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
std::make_pair(VT, OpList))];
if (ON) return SDOperand(ON, 0);
RemoveNodeFromCSEMaps(N);
N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
N->setValueTypes(VT);
N->setOperands(Op1, Op2, Op3, Op4, Op5);
ON = N; // Memoize the new node.
return SDOperand(N, 0);
}
SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
MVT::ValueType VT, SDOperand Op1,
SDOperand Op2, SDOperand Op3,SDOperand Op4,
SDOperand Op5, SDOperand Op6) {
// If an identical node already exists, use it.
std::vector<SDOperand> OpList;
OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3);
OpList.push_back(Op4); OpList.push_back(Op5); OpList.push_back(Op6);
SDNode *&ON = OneResultNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
std::make_pair(VT, OpList))];
if (ON) return SDOperand(ON, 0);
RemoveNodeFromCSEMaps(N);
N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
N->setValueTypes(VT);
N->setOperands(Op1, Op2, Op3, Op4, Op5, Op6);
ON = N; // Memoize the new node.
return SDOperand(N, 0);
}
SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
MVT::ValueType VT, SDOperand Op1,
SDOperand Op2, SDOperand Op3,SDOperand Op4,
SDOperand Op5, SDOperand Op6,
SDOperand Op7) {
// If an identical node already exists, use it.
std::vector<SDOperand> OpList;
OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3);
OpList.push_back(Op4); OpList.push_back(Op5); OpList.push_back(Op6);
OpList.push_back(Op7);
SDNode *&ON = OneResultNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
std::make_pair(VT, OpList))];
if (ON) return SDOperand(ON, 0);
RemoveNodeFromCSEMaps(N);
N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
N->setValueTypes(VT);
N->setOperands(Op1, Op2, Op3, Op4, Op5, Op6, Op7);
ON = N; // Memoize the new node.
return SDOperand(N, 0);
}
SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
MVT::ValueType VT, SDOperand Op1,
SDOperand Op2, SDOperand Op3,SDOperand Op4,
SDOperand Op5, SDOperand Op6,
SDOperand Op7, SDOperand Op8) {
// If an identical node already exists, use it.
std::vector<SDOperand> OpList;
OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3);
OpList.push_back(Op4); OpList.push_back(Op5); OpList.push_back(Op6);
OpList.push_back(Op7); OpList.push_back(Op8);
SDNode *&ON = OneResultNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
std::make_pair(VT, OpList))];
if (ON) return SDOperand(ON, 0);
RemoveNodeFromCSEMaps(N);
N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
N->setValueTypes(VT);
N->setOperands(Op1, Op2, Op3, Op4, Op5, Op6, Op7, Op8);
ON = N; // Memoize the new node.
return SDOperand(N, 0);
}
SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
MVT::ValueType VT1, MVT::ValueType VT2,
SDOperand Op1, SDOperand Op2) {
// If an identical node already exists, use it.
std::vector<SDOperand> OpList;
OpList.push_back(Op1); OpList.push_back(Op2);
std::vector<MVT::ValueType> VTList;
VTList.push_back(VT1); VTList.push_back(VT2);
SDNode *&ON = ArbitraryNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
std::make_pair(VTList, OpList))];
if (ON) return SDOperand(ON, 0);
RemoveNodeFromCSEMaps(N);
N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
setNodeValueTypes(N, VT1, VT2);
N->setOperands(Op1, Op2);
ON = N; // Memoize the new node.
return SDOperand(N, 0);
}
SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
MVT::ValueType VT1, MVT::ValueType VT2,
SDOperand Op1, SDOperand Op2,
SDOperand Op3) {
// If an identical node already exists, use it.
std::vector<SDOperand> OpList;
OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3);
std::vector<MVT::ValueType> VTList;
VTList.push_back(VT1); VTList.push_back(VT2);
SDNode *&ON = ArbitraryNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
std::make_pair(VTList, OpList))];
if (ON) return SDOperand(ON, 0);
RemoveNodeFromCSEMaps(N);
N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
setNodeValueTypes(N, VT1, VT2);
N->setOperands(Op1, Op2, Op3);
ON = N; // Memoize the new node.
return SDOperand(N, 0);
}
SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
MVT::ValueType VT1, MVT::ValueType VT2,
SDOperand Op1, SDOperand Op2,
SDOperand Op3, SDOperand Op4) {
// If an identical node already exists, use it.
std::vector<SDOperand> OpList;
OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3);
OpList.push_back(Op4);
std::vector<MVT::ValueType> VTList;
VTList.push_back(VT1); VTList.push_back(VT2);
SDNode *&ON = ArbitraryNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
std::make_pair(VTList, OpList))];
if (ON) return SDOperand(ON, 0);
RemoveNodeFromCSEMaps(N);
N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
setNodeValueTypes(N, VT1, VT2);
N->setOperands(Op1, Op2, Op3, Op4);
ON = N; // Memoize the new node.
return SDOperand(N, 0);
}
SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
MVT::ValueType VT1, MVT::ValueType VT2,
SDOperand Op1, SDOperand Op2,
SDOperand Op3, SDOperand Op4,
SDOperand Op5) {
// If an identical node already exists, use it.
std::vector<SDOperand> OpList;
OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3);
OpList.push_back(Op4); OpList.push_back(Op5);
std::vector<MVT::ValueType> VTList;
VTList.push_back(VT1); VTList.push_back(VT2);
SDNode *&ON = ArbitraryNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
std::make_pair(VTList, OpList))];
if (ON) return SDOperand(ON, 0);
RemoveNodeFromCSEMaps(N);
N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
setNodeValueTypes(N, VT1, VT2);
N->setOperands(Op1, Op2, Op3, Op4, Op5);
ON = N; // Memoize the new node.
return SDOperand(N, 0);
}
/// getTargetNode - These are used for target selectors to create a new node
/// with specified return type(s), target opcode, and operands.
///
/// Note that getTargetNode returns the resultant node. If there is already a
/// node of the specified opcode and operands, it returns that node instead of
/// the current one.
SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT) {
return getNode(ISD::BUILTIN_OP_END+Opcode, VT).Val;
}
SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
SDOperand Op1) {
return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1).Val;
}
SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
SDOperand Op1, SDOperand Op2) {
return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2).Val;
}
SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
SDOperand Op1, SDOperand Op2, SDOperand Op3) {
return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2, Op3).Val;
}
SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
SDOperand Op1, SDOperand Op2, SDOperand Op3,
SDOperand Op4) {
return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2, Op3, Op4).Val;
}
SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
SDOperand Op1, SDOperand Op2, SDOperand Op3,
SDOperand Op4, SDOperand Op5) {
return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2, Op3, Op4, Op5).Val;
}
SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
SDOperand Op1, SDOperand Op2, SDOperand Op3,
SDOperand Op4, SDOperand Op5, SDOperand Op6) {
std::vector<SDOperand> Ops;
Ops.reserve(6);
Ops.push_back(Op1);
Ops.push_back(Op2);
Ops.push_back(Op3);
Ops.push_back(Op4);
Ops.push_back(Op5);
Ops.push_back(Op6);
return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Ops).Val;
}
SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
SDOperand Op1, SDOperand Op2, SDOperand Op3,
SDOperand Op4, SDOperand Op5, SDOperand Op6,
SDOperand Op7) {
std::vector<SDOperand> Ops;
Ops.reserve(7);
Ops.push_back(Op1);
Ops.push_back(Op2);
Ops.push_back(Op3);
Ops.push_back(Op4);
Ops.push_back(Op5);
Ops.push_back(Op6);
Ops.push_back(Op7);
return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Ops).Val;
}
SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
SDOperand Op1, SDOperand Op2, SDOperand Op3,
SDOperand Op4, SDOperand Op5, SDOperand Op6,
SDOperand Op7, SDOperand Op8) {
std::vector<SDOperand> Ops;
Ops.reserve(8);
Ops.push_back(Op1);
Ops.push_back(Op2);
Ops.push_back(Op3);
Ops.push_back(Op4);
Ops.push_back(Op5);
Ops.push_back(Op6);
Ops.push_back(Op7);
Ops.push_back(Op8);
return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Ops).Val;
}
SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
std::vector<SDOperand> &Ops) {
return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Ops).Val;
}
SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
MVT::ValueType VT2, SDOperand Op1) {
std::vector<MVT::ValueType> ResultTys;
ResultTys.push_back(VT1);
ResultTys.push_back(VT2);
std::vector<SDOperand> Ops;
Ops.push_back(Op1);
return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops).Val;
}
SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
MVT::ValueType VT2, SDOperand Op1, SDOperand Op2) {
std::vector<MVT::ValueType> ResultTys;
ResultTys.push_back(VT1);
ResultTys.push_back(VT2);
std::vector<SDOperand> Ops;
Ops.push_back(Op1);
Ops.push_back(Op2);
return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops).Val;
}
SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
MVT::ValueType VT2, SDOperand Op1, SDOperand Op2,
SDOperand Op3) {
std::vector<MVT::ValueType> ResultTys;
ResultTys.push_back(VT1);
ResultTys.push_back(VT2);
std::vector<SDOperand> Ops;
Ops.push_back(Op1);
Ops.push_back(Op2);
Ops.push_back(Op3);
return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops).Val;
}
SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
MVT::ValueType VT2, SDOperand Op1, SDOperand Op2,
SDOperand Op3, SDOperand Op4) {
std::vector<MVT::ValueType> ResultTys;
ResultTys.push_back(VT1);
ResultTys.push_back(VT2);
std::vector<SDOperand> Ops;
Ops.push_back(Op1);
Ops.push_back(Op2);
Ops.push_back(Op3);
Ops.push_back(Op4);
return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops).Val;
}
SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
MVT::ValueType VT2, SDOperand Op1, SDOperand Op2,
SDOperand Op3, SDOperand Op4, SDOperand Op5) {
std::vector<MVT::ValueType> ResultTys;
ResultTys.push_back(VT1);
ResultTys.push_back(VT2);
std::vector<SDOperand> Ops;
Ops.push_back(Op1);
Ops.push_back(Op2);
Ops.push_back(Op3);
Ops.push_back(Op4);
Ops.push_back(Op5);
return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops).Val;
}
SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
MVT::ValueType VT2, SDOperand Op1, SDOperand Op2,
SDOperand Op3, SDOperand Op4, SDOperand Op5,
SDOperand Op6) {
std::vector<MVT::ValueType> ResultTys;
ResultTys.push_back(VT1);
ResultTys.push_back(VT2);
std::vector<SDOperand> Ops;
Ops.push_back(Op1);
Ops.push_back(Op2);
Ops.push_back(Op3);
Ops.push_back(Op4);
Ops.push_back(Op5);
Ops.push_back(Op6);
return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops).Val;
}
SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
MVT::ValueType VT2, SDOperand Op1, SDOperand Op2,
SDOperand Op3, SDOperand Op4, SDOperand Op5,
SDOperand Op6, SDOperand Op7) {
std::vector<MVT::ValueType> ResultTys;
ResultTys.push_back(VT1);
ResultTys.push_back(VT2);
std::vector<SDOperand> Ops;
Ops.push_back(Op1);
Ops.push_back(Op2);
Ops.push_back(Op3);
Ops.push_back(Op4);
Ops.push_back(Op5);
Ops.push_back(Op6);
Ops.push_back(Op7);
return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops).Val;
}
SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
MVT::ValueType VT2, MVT::ValueType VT3,
SDOperand Op1, SDOperand Op2) {
std::vector<MVT::ValueType> ResultTys;
ResultTys.push_back(VT1);
ResultTys.push_back(VT2);
ResultTys.push_back(VT3);
std::vector<SDOperand> Ops;
Ops.push_back(Op1);
Ops.push_back(Op2);
return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops).Val;
}
SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
MVT::ValueType VT2, MVT::ValueType VT3,
SDOperand Op1, SDOperand Op2,
SDOperand Op3, SDOperand Op4, SDOperand Op5) {
std::vector<MVT::ValueType> ResultTys;
ResultTys.push_back(VT1);
ResultTys.push_back(VT2);
ResultTys.push_back(VT3);
std::vector<SDOperand> Ops;
Ops.push_back(Op1);
Ops.push_back(Op2);
Ops.push_back(Op3);
Ops.push_back(Op4);
Ops.push_back(Op5);
return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops).Val;
}
SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
MVT::ValueType VT2, MVT::ValueType VT3,
SDOperand Op1, SDOperand Op2,
SDOperand Op3, SDOperand Op4, SDOperand Op5,
SDOperand Op6) {
std::vector<MVT::ValueType> ResultTys;
ResultTys.push_back(VT1);
ResultTys.push_back(VT2);
ResultTys.push_back(VT3);
std::vector<SDOperand> Ops;
Ops.push_back(Op1);
Ops.push_back(Op2);
Ops.push_back(Op3);
Ops.push_back(Op4);
Ops.push_back(Op5);
Ops.push_back(Op6);
return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops).Val;
}
SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
MVT::ValueType VT2, MVT::ValueType VT3,
SDOperand Op1, SDOperand Op2,
SDOperand Op3, SDOperand Op4, SDOperand Op5,
SDOperand Op6, SDOperand Op7) {
std::vector<MVT::ValueType> ResultTys;
ResultTys.push_back(VT1);
ResultTys.push_back(VT2);
ResultTys.push_back(VT3);
std::vector<SDOperand> Ops;
Ops.push_back(Op1);
Ops.push_back(Op2);
Ops.push_back(Op3);
Ops.push_back(Op4);
Ops.push_back(Op5);
Ops.push_back(Op6);
Ops.push_back(Op7);
return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops).Val;
}
SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
MVT::ValueType VT2, std::vector<SDOperand> &Ops) {
std::vector<MVT::ValueType> ResultTys;
ResultTys.push_back(VT1);
ResultTys.push_back(VT2);
return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops).Val;
}
// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
/// This can cause recursive merging of nodes in the DAG.
///
/// This version assumes From/To have a single result value.
///
void SelectionDAG::ReplaceAllUsesWith(SDOperand FromN, SDOperand ToN,
std::vector<SDNode*> *Deleted) {
SDNode *From = FromN.Val, *To = ToN.Val;
assert(From->getNumValues() == 1 && To->getNumValues() == 1 &&
"Cannot replace with this method!");
assert(From != To && "Cannot replace uses of with self");
while (!From->use_empty()) {
// Process users until they are all gone.
SDNode *U = *From->use_begin();
// This node is about to morph, remove its old self from the CSE maps.
RemoveNodeFromCSEMaps(U);
for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
I != E; ++I)
if (I->Val == From) {
From->removeUser(U);
I->Val = To;
To->addUser(U);
}
// Now that we have modified U, add it back to the CSE maps. If it already
// exists there, recursively merge the results together.
if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
ReplaceAllUsesWith(U, Existing, Deleted);
// U is now dead.
if (Deleted) Deleted->push_back(U);
DeleteNodeNotInCSEMaps(U);
}
}
}
/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
/// This can cause recursive merging of nodes in the DAG.
///
/// This version assumes From/To have matching types and numbers of result
/// values.
///
void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
std::vector<SDNode*> *Deleted) {
assert(From != To && "Cannot replace uses of with self");
assert(From->getNumValues() == To->getNumValues() &&
"Cannot use this version of ReplaceAllUsesWith!");
if (From->getNumValues() == 1) { // If possible, use the faster version.
ReplaceAllUsesWith(SDOperand(From, 0), SDOperand(To, 0), Deleted);
return;
}
while (!From->use_empty()) {
// Process users until they are all gone.
SDNode *U = *From->use_begin();
// This node is about to morph, remove its old self from the CSE maps.
RemoveNodeFromCSEMaps(U);
for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
I != E; ++I)
if (I->Val == From) {
From->removeUser(U);
I->Val = To;
To->addUser(U);
}
// Now that we have modified U, add it back to the CSE maps. If it already
// exists there, recursively merge the results together.
if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
ReplaceAllUsesWith(U, Existing, Deleted);
// U is now dead.
if (Deleted) Deleted->push_back(U);
DeleteNodeNotInCSEMaps(U);
}
}
}
/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
/// This can cause recursive merging of nodes in the DAG.
///
/// This version can replace From with any result values. To must match the
/// number and types of values returned by From.
void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
const std::vector<SDOperand> &To,
std::vector<SDNode*> *Deleted) {
assert(From->getNumValues() == To.size() &&
"Incorrect number of values to replace with!");
if (To.size() == 1 && To[0].Val->getNumValues() == 1) {
// Degenerate case handled above.
ReplaceAllUsesWith(SDOperand(From, 0), To[0], Deleted);
return;
}
while (!From->use_empty()) {
// Process users until they are all gone.
SDNode *U = *From->use_begin();
// This node is about to morph, remove its old self from the CSE maps.
RemoveNodeFromCSEMaps(U);
for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
I != E; ++I)
if (I->Val == From) {
const SDOperand &ToOp = To[I->ResNo];
From->removeUser(U);
*I = ToOp;
ToOp.Val->addUser(U);
}
// Now that we have modified U, add it back to the CSE maps. If it already
// exists there, recursively merge the results together.
if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
ReplaceAllUsesWith(U, Existing, Deleted);
// U is now dead.
if (Deleted) Deleted->push_back(U);
DeleteNodeNotInCSEMaps(U);
}
}
}
/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
/// uses of other values produced by From.Val alone. The Deleted vector is
/// handled the same was as for ReplaceAllUsesWith.
void SelectionDAG::ReplaceAllUsesOfValueWith(SDOperand From, SDOperand To,
std::vector<SDNode*> &Deleted) {
assert(From != To && "Cannot replace a value with itself");
// Handle the simple, trivial, case efficiently.
if (From.Val->getNumValues() == 1 && To.Val->getNumValues() == 1) {
ReplaceAllUsesWith(From, To, &Deleted);
return;
}
// Get all of the users in a nice, deterministically ordered, uniqued set.
SetVector<SDNode*> Users(From.Val->use_begin(), From.Val->use_end());
while (!Users.empty()) {
// We know that this user uses some value of From. If it is the right
// value, update it.
SDNode *User = Users.back();
Users.pop_back();
for (SDOperand *Op = User->OperandList,
*E = User->OperandList+User->NumOperands; Op != E; ++Op) {
if (*Op == From) {
// Okay, we know this user needs to be updated. Remove its old self
// from the CSE maps.
RemoveNodeFromCSEMaps(User);
// Update all operands that match "From".
for (; Op != E; ++Op) {
if (*Op == From) {
From.Val->removeUser(User);
*Op = To;
To.Val->addUser(User);
}
}
// Now that we have modified User, add it back to the CSE maps. If it
// already exists there, recursively merge the results together.
if (SDNode *Existing = AddNonLeafNodeToCSEMaps(User)) {
unsigned NumDeleted = Deleted.size();
ReplaceAllUsesWith(User, Existing, &Deleted);
// User is now dead.
Deleted.push_back(User);
DeleteNodeNotInCSEMaps(User);
// We have to be careful here, because ReplaceAllUsesWith could have
// deleted a user of From, which means there may be dangling pointers
// in the "Users" setvector. Scan over the deleted node pointers and
// remove them from the setvector.
for (unsigned i = NumDeleted, e = Deleted.size(); i != e; ++i)
Users.remove(Deleted[i]);
}
break; // Exit the operand scanning loop.
}
}
}
}
//===----------------------------------------------------------------------===//
// SDNode Class
//===----------------------------------------------------------------------===//
/// getValueTypeList - Return a pointer to the specified value type.
///
MVT::ValueType *SDNode::getValueTypeList(MVT::ValueType VT) {
static MVT::ValueType VTs[MVT::LAST_VALUETYPE];
VTs[VT] = VT;
return &VTs[VT];
}
/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
/// indicated value. This method ignores uses of other values defined by this
/// operation.
bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
assert(Value < getNumValues() && "Bad value!");
// If there is only one value, this is easy.
if (getNumValues() == 1)
return use_size() == NUses;
if (Uses.size() < NUses) return false;
SDOperand TheValue(const_cast<SDNode *>(this), Value);
std::set<SDNode*> UsersHandled;
for (std::vector<SDNode*>::const_iterator UI = Uses.begin(), E = Uses.end();
UI != E; ++UI) {
SDNode *User = *UI;
if (User->getNumOperands() == 1 ||
UsersHandled.insert(User).second) // First time we've seen this?
for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
if (User->getOperand(i) == TheValue) {
if (NUses == 0)
return false; // too many uses
--NUses;
}
}
// Found exactly the right number of uses?
return NUses == 0;
}
// isOnlyUse - Return true if this node is the only use of N.
bool SDNode::isOnlyUse(SDNode *N) const {
bool Seen = false;
for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
SDNode *User = *I;
if (User == this)
Seen = true;
else
return false;
}
return Seen;
}
// isOperand - Return true if this node is an operand of N.
bool SDOperand::isOperand(SDNode *N) const {
for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
if (*this == N->getOperand(i))
return true;
return false;
}
bool SDNode::isOperand(SDNode *N) const {
for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
if (this == N->OperandList[i].Val)
return true;
return false;
}
const char *SDNode::getOperationName(const SelectionDAG *G) const {
switch (getOpcode()) {
default:
if (getOpcode() < ISD::BUILTIN_OP_END)
return "<<Unknown DAG Node>>";
else {
if (G) {
if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
if (getOpcode()-ISD::BUILTIN_OP_END < TII->getNumOpcodes())
return TII->getName(getOpcode()-ISD::BUILTIN_OP_END);
TargetLowering &TLI = G->getTargetLoweringInfo();
const char *Name =
TLI.getTargetNodeName(getOpcode());
if (Name) return Name;
}
return "<<Unknown Target Node>>";
}
case ISD::PCMARKER: return "PCMarker";
case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
case ISD::SRCVALUE: return "SrcValue";
case ISD::EntryToken: return "EntryToken";
case ISD::TokenFactor: return "TokenFactor";
case ISD::AssertSext: return "AssertSext";
case ISD::AssertZext: return "AssertZext";
case ISD::STRING: return "String";
case ISD::BasicBlock: return "BasicBlock";
case ISD::VALUETYPE: return "ValueType";
case ISD::Register: return "Register";
case ISD::Constant: return "Constant";
case ISD::ConstantFP: return "ConstantFP";
case ISD::GlobalAddress: return "GlobalAddress";
case ISD::FrameIndex: return "FrameIndex";
case ISD::ConstantPool: return "ConstantPool";
case ISD::ExternalSymbol: return "ExternalSymbol";
case ISD::INTRINSIC_WO_CHAIN: {
unsigned IID = cast<ConstantSDNode>(getOperand(0))->getValue();
return Intrinsic::getName((Intrinsic::ID)IID);
}
case ISD::INTRINSIC_VOID:
case ISD::INTRINSIC_W_CHAIN: {
unsigned IID = cast<ConstantSDNode>(getOperand(1))->getValue();
return Intrinsic::getName((Intrinsic::ID)IID);
}
case ISD::BUILD_VECTOR: return "BUILD_VECTOR";
case ISD::TargetConstant: return "TargetConstant";
case ISD::TargetConstantFP:return "TargetConstantFP";
case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
case ISD::TargetFrameIndex: return "TargetFrameIndex";
case ISD::TargetConstantPool: return "TargetConstantPool";
case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
case ISD::CopyToReg: return "CopyToReg";
case ISD::CopyFromReg: return "CopyFromReg";
case ISD::UNDEF: return "undef";
case ISD::MERGE_VALUES: return "mergevalues";
case ISD::INLINEASM: return "inlineasm";
case ISD::HANDLENODE: return "handlenode";
// Unary operators
case ISD::FABS: return "fabs";
case ISD::FNEG: return "fneg";
case ISD::FSQRT: return "fsqrt";
case ISD::FSIN: return "fsin";
case ISD::FCOS: return "fcos";
// Binary operators
case ISD::ADD: return "add";
case ISD::SUB: return "sub";
case ISD::MUL: return "mul";
case ISD::MULHU: return "mulhu";
case ISD::MULHS: return "mulhs";
case ISD::SDIV: return "sdiv";
case ISD::UDIV: return "udiv";
case ISD::SREM: return "srem";
case ISD::UREM: return "urem";
case ISD::AND: return "and";
case ISD::OR: return "or";
case ISD::XOR: return "xor";
case ISD::SHL: return "shl";
case ISD::SRA: return "sra";
case ISD::SRL: return "srl";
case ISD::ROTL: return "rotl";
case ISD::ROTR: return "rotr";
case ISD::FADD: return "fadd";
case ISD::FSUB: return "fsub";
case ISD::FMUL: return "fmul";
case ISD::FDIV: return "fdiv";
case ISD::FREM: return "frem";
case ISD::FCOPYSIGN: return "fcopysign";
case ISD::VADD: return "vadd";
case ISD::VSUB: return "vsub";
case ISD::VMUL: return "vmul";
case ISD::SETCC: return "setcc";
case ISD::SELECT: return "select";
case ISD::SELECT_CC: return "select_cc";
case ISD::INSERT_VECTOR_ELT: return "insert_vector_elt";
case ISD::VINSERT_VECTOR_ELT: return "vinsert_vector_elt";
case ISD::EXTRACT_VECTOR_ELT: return "extract_vector_elt";
case ISD::VEXTRACT_VECTOR_ELT: return "vextract_vector_elt";
case ISD::SCALAR_TO_VECTOR: return "scalar_to_vector";
case ISD::VBUILD_VECTOR: return "vbuild_vector";
case ISD::VECTOR_SHUFFLE: return "vector_shuffle";
case ISD::VBIT_CONVERT: return "vbit_convert";
case ISD::ADDC: return "addc";
case ISD::ADDE: return "adde";
case ISD::SUBC: return "subc";
case ISD::SUBE: return "sube";
case ISD::SHL_PARTS: return "shl_parts";
case ISD::SRA_PARTS: return "sra_parts";
case ISD::SRL_PARTS: return "srl_parts";
// Conversion operators.
case ISD::SIGN_EXTEND: return "sign_extend";
case ISD::ZERO_EXTEND: return "zero_extend";
case ISD::ANY_EXTEND: return "any_extend";
case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
case ISD::TRUNCATE: return "truncate";
case ISD::FP_ROUND: return "fp_round";
case ISD::FP_ROUND_INREG: return "fp_round_inreg";
case ISD::FP_EXTEND: return "fp_extend";
case ISD::SINT_TO_FP: return "sint_to_fp";
case ISD::UINT_TO_FP: return "uint_to_fp";
case ISD::FP_TO_SINT: return "fp_to_sint";
case ISD::FP_TO_UINT: return "fp_to_uint";
case ISD::BIT_CONVERT: return "bit_convert";
// Control flow instructions
case ISD::BR: return "br";
case ISD::BRCOND: return "brcond";
case ISD::BR_CC: return "br_cc";
case ISD::RET: return "ret";
case ISD::CALLSEQ_START: return "callseq_start";
case ISD::CALLSEQ_END: return "callseq_end";
// Other operators
case ISD::LOAD: return "load";
case ISD::STORE: return "store";
case ISD::VLOAD: return "vload";
case ISD::EXTLOAD: return "extload";
case ISD::SEXTLOAD: return "sextload";
case ISD::ZEXTLOAD: return "zextload";
case ISD::TRUNCSTORE: return "truncstore";
case ISD::VAARG: return "vaarg";
case ISD::VACOPY: return "vacopy";
case ISD::VAEND: return "vaend";
case ISD::VASTART: return "vastart";
case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
case ISD::EXTRACT_ELEMENT: return "extract_element";
case ISD::BUILD_PAIR: return "build_pair";
case ISD::STACKSAVE: return "stacksave";
case ISD::STACKRESTORE: return "stackrestore";
// Block memory operations.
case ISD::MEMSET: return "memset";
case ISD::MEMCPY: return "memcpy";
case ISD::MEMMOVE: return "memmove";
// Bit manipulation
case ISD::BSWAP: return "bswap";
case ISD::CTPOP: return "ctpop";
case ISD::CTTZ: return "cttz";
case ISD::CTLZ: return "ctlz";
// Debug info
case ISD::LOCATION: return "location";
case ISD::DEBUG_LOC: return "debug_loc";
case ISD::DEBUG_LABEL: return "debug_label";
case ISD::CONDCODE:
switch (cast<CondCodeSDNode>(this)->get()) {
default: assert(0 && "Unknown setcc condition!");
case ISD::SETOEQ: return "setoeq";
case ISD::SETOGT: return "setogt";
case ISD::SETOGE: return "setoge";
case ISD::SETOLT: return "setolt";
case ISD::SETOLE: return "setole";
case ISD::SETONE: return "setone";
case ISD::SETO: return "seto";
case ISD::SETUO: return "setuo";
case ISD::SETUEQ: return "setue";
case ISD::SETUGT: return "setugt";
case ISD::SETUGE: return "setuge";
case ISD::SETULT: return "setult";
case ISD::SETULE: return "setule";
case ISD::SETUNE: return "setune";
case ISD::SETEQ: return "seteq";
case ISD::SETGT: return "setgt";
case ISD::SETGE: return "setge";
case ISD::SETLT: return "setlt";
case ISD::SETLE: return "setle";
case ISD::SETNE: return "setne";
}
}
}
void SDNode::dump() const { dump(0); }
void SDNode::dump(const SelectionDAG *G) const {
std::cerr << (void*)this << ": ";
for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
if (i) std::cerr << ",";
if (getValueType(i) == MVT::Other)
std::cerr << "ch";
else
std::cerr << MVT::getValueTypeString(getValueType(i));
}
std::cerr << " = " << getOperationName(G);
std::cerr << " ";
for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
if (i) std::cerr << ", ";
std::cerr << (void*)getOperand(i).Val;
if (unsigned RN = getOperand(i).ResNo)
std::cerr << ":" << RN;
}
if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
std::cerr << "<" << CSDN->getValue() << ">";
} else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
std::cerr << "<" << CSDN->getValue() << ">";
} else if (const GlobalAddressSDNode *GADN =
dyn_cast<GlobalAddressSDNode>(this)) {
int offset = GADN->getOffset();
std::cerr << "<";
WriteAsOperand(std::cerr, GADN->getGlobal()) << ">";
if (offset > 0)
std::cerr << " + " << offset;
else
std::cerr << " " << offset;
} else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
std::cerr << "<" << FIDN->getIndex() << ">";
} else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
int offset = CP->getOffset();
std::cerr << "<" << *CP->get() << ">";
if (offset > 0)
std::cerr << " + " << offset;
else
std::cerr << " " << offset;
} else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
std::cerr << "<";
const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
if (LBB)
std::cerr << LBB->getName() << " ";
std::cerr << (const void*)BBDN->getBasicBlock() << ">";
} else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
if (G && R->getReg() && MRegisterInfo::isPhysicalRegister(R->getReg())) {
std::cerr << " " <<G->getTarget().getRegisterInfo()->getName(R->getReg());
} else {
std::cerr << " #" << R->getReg();
}
} else if (const ExternalSymbolSDNode *ES =
dyn_cast<ExternalSymbolSDNode>(this)) {
std::cerr << "'" << ES->getSymbol() << "'";
} else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
if (M->getValue())
std::cerr << "<" << M->getValue() << ":" << M->getOffset() << ">";
else
std::cerr << "<null:" << M->getOffset() << ">";
} else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
std::cerr << ":" << getValueTypeString(N->getVT());
}
}
static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
if (N->getOperand(i).Val->hasOneUse())
DumpNodes(N->getOperand(i).Val, indent+2, G);
else
std::cerr << "\n" << std::string(indent+2, ' ')
<< (void*)N->getOperand(i).Val << ": <multiple use>";
std::cerr << "\n" << std::string(indent, ' ');
N->dump(G);
}
void SelectionDAG::dump() const {
std::cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
std::vector<const SDNode*> Nodes;
for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
I != E; ++I)
Nodes.push_back(I);
std::sort(Nodes.begin(), Nodes.end());
for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
if (!Nodes[i]->hasOneUse() && Nodes[i] != getRoot().Val)
DumpNodes(Nodes[i], 2, this);
}
DumpNodes(getRoot().Val, 2, this);
std::cerr << "\n\n";
}
/// InsertISelMapEntry - A helper function to insert a key / element pair
/// into a SDOperand to SDOperand map. This is added to avoid the map
/// insertion operator from being inlined.
void SelectionDAG::InsertISelMapEntry(std::map<SDOperand, SDOperand> &Map,
SDNode *Key, unsigned KeyResNo,
SDNode *Element, unsigned ElementResNo) {
Map.insert(std::make_pair(SDOperand(Key, KeyResNo),
SDOperand(Element, ElementResNo)));
}