llvm-project/clang/lib/StaticAnalyzer/Checkers/DeadStoresChecker.cpp

364 lines
12 KiB
C++

//==- DeadStoresChecker.cpp - Check for stores to dead variables -*- C++ -*-==//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines a DeadStores, a flow-sensitive checker that looks for
// stores to variables that are no longer live.
//
//===----------------------------------------------------------------------===//
#include "ClangSACheckers.h"
#include "clang/StaticAnalyzer/Core/CheckerV2.h"
#include "clang/StaticAnalyzer/Checkers/LocalCheckers.h"
#include "clang/Analysis/Analyses/LiveVariables.h"
#include "clang/Analysis/Visitors/CFGRecStmtVisitor.h"
#include "clang/StaticAnalyzer/Core/BugReporter/BugReporter.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
#include "clang/Analysis/Visitors/CFGRecStmtDeclVisitor.h"
#include "clang/Basic/Diagnostic.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/ParentMap.h"
#include "llvm/ADT/SmallPtrSet.h"
using namespace clang;
using namespace ento;
namespace {
// FIXME: Eventually migrate into its own file, and have it managed by
// AnalysisManager.
class ReachableCode {
const CFG &cfg;
llvm::BitVector reachable;
public:
ReachableCode(const CFG &cfg)
: cfg(cfg), reachable(cfg.getNumBlockIDs(), false) {}
void computeReachableBlocks();
bool isReachable(const CFGBlock *block) const {
return reachable[block->getBlockID()];
}
};
}
void ReachableCode::computeReachableBlocks() {
if (!cfg.getNumBlockIDs())
return;
llvm::SmallVector<const CFGBlock*, 10> worklist;
worklist.push_back(&cfg.getEntry());
while (!worklist.empty()) {
const CFGBlock *block = worklist.back();
worklist.pop_back();
llvm::BitVector::reference isReachable = reachable[block->getBlockID()];
if (isReachable)
continue;
isReachable = true;
for (CFGBlock::const_succ_iterator i = block->succ_begin(),
e = block->succ_end(); i != e; ++i)
if (const CFGBlock *succ = *i)
worklist.push_back(succ);
}
}
namespace {
class DeadStoreObs : public LiveVariables::ObserverTy {
const CFG &cfg;
ASTContext &Ctx;
BugReporter& BR;
ParentMap& Parents;
llvm::SmallPtrSet<VarDecl*, 20> Escaped;
llvm::OwningPtr<ReachableCode> reachableCode;
const CFGBlock *currentBlock;
enum DeadStoreKind { Standard, Enclosing, DeadIncrement, DeadInit };
public:
DeadStoreObs(const CFG &cfg, ASTContext &ctx,
BugReporter& br, ParentMap& parents,
llvm::SmallPtrSet<VarDecl*, 20> &escaped)
: cfg(cfg), Ctx(ctx), BR(br), Parents(parents),
Escaped(escaped), currentBlock(0) {}
virtual ~DeadStoreObs() {}
void Report(VarDecl* V, DeadStoreKind dsk, SourceLocation L, SourceRange R) {
if (Escaped.count(V))
return;
// Compute reachable blocks within the CFG for trivial cases
// where a bogus dead store can be reported because itself is unreachable.
if (!reachableCode.get()) {
reachableCode.reset(new ReachableCode(cfg));
reachableCode->computeReachableBlocks();
}
if (!reachableCode->isReachable(currentBlock))
return;
const std::string &name = V->getNameAsString();
const char* BugType = 0;
std::string msg;
switch (dsk) {
default:
assert(false && "Impossible dead store type.");
case DeadInit:
BugType = "Dead initialization";
msg = "Value stored to '" + name +
"' during its initialization is never read";
break;
case DeadIncrement:
BugType = "Dead increment";
case Standard:
if (!BugType) BugType = "Dead assignment";
msg = "Value stored to '" + name + "' is never read";
break;
case Enclosing:
// Don't report issues in this case, e.g.: "if (x = foo())",
// where 'x' is unused later. We have yet to see a case where
// this is a real bug.
return;
}
BR.EmitBasicReport(BugType, "Dead store", msg, L, R);
}
void CheckVarDecl(VarDecl* VD, Expr* Ex, Expr* Val,
DeadStoreKind dsk,
const LiveVariables::AnalysisDataTy& AD,
const LiveVariables::ValTy& Live) {
if (!VD->hasLocalStorage())
return;
// Reference types confuse the dead stores checker. Skip them
// for now.
if (VD->getType()->getAs<ReferenceType>())
return;
if (!Live(VD, AD) &&
!(VD->getAttr<UnusedAttr>() || VD->getAttr<BlocksAttr>()))
Report(VD, dsk, Ex->getSourceRange().getBegin(),
Val->getSourceRange());
}
void CheckDeclRef(DeclRefExpr* DR, Expr* Val, DeadStoreKind dsk,
const LiveVariables::AnalysisDataTy& AD,
const LiveVariables::ValTy& Live) {
if (VarDecl* VD = dyn_cast<VarDecl>(DR->getDecl()))
CheckVarDecl(VD, DR, Val, dsk, AD, Live);
}
bool isIncrement(VarDecl* VD, BinaryOperator* B) {
if (B->isCompoundAssignmentOp())
return true;
Expr* RHS = B->getRHS()->IgnoreParenCasts();
BinaryOperator* BRHS = dyn_cast<BinaryOperator>(RHS);
if (!BRHS)
return false;
DeclRefExpr *DR;
if ((DR = dyn_cast<DeclRefExpr>(BRHS->getLHS()->IgnoreParenCasts())))
if (DR->getDecl() == VD)
return true;
if ((DR = dyn_cast<DeclRefExpr>(BRHS->getRHS()->IgnoreParenCasts())))
if (DR->getDecl() == VD)
return true;
return false;
}
virtual void ObserveStmt(Stmt* S, const CFGBlock *block,
const LiveVariables::AnalysisDataTy& AD,
const LiveVariables::ValTy& Live) {
currentBlock = block;
// Skip statements in macros.
if (S->getLocStart().isMacroID())
return;
// Only cover dead stores from regular assignments. ++/-- dead stores
// have never flagged a real bug.
if (BinaryOperator* B = dyn_cast<BinaryOperator>(S)) {
if (!B->isAssignmentOp()) return; // Skip non-assignments.
if (DeclRefExpr* DR = dyn_cast<DeclRefExpr>(B->getLHS()))
if (VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) {
// Special case: check for assigning null to a pointer.
// This is a common form of defensive programming.
QualType T = VD->getType();
if (T->isPointerType() || T->isObjCObjectPointerType()) {
if (B->getRHS()->isNullPointerConstant(Ctx,
Expr::NPC_ValueDependentIsNull))
return;
}
Expr* RHS = B->getRHS()->IgnoreParenCasts();
// Special case: self-assignments. These are often used to shut up
// "unused variable" compiler warnings.
if (DeclRefExpr* RhsDR = dyn_cast<DeclRefExpr>(RHS))
if (VD == dyn_cast<VarDecl>(RhsDR->getDecl()))
return;
// Otherwise, issue a warning.
DeadStoreKind dsk = Parents.isConsumedExpr(B)
? Enclosing
: (isIncrement(VD,B) ? DeadIncrement : Standard);
CheckVarDecl(VD, DR, B->getRHS(), dsk, AD, Live);
}
}
else if (UnaryOperator* U = dyn_cast<UnaryOperator>(S)) {
if (!U->isIncrementOp() || U->isPrefix())
return;
Stmt *parent = Parents.getParentIgnoreParenCasts(U);
if (!parent || !isa<ReturnStmt>(parent))
return;
Expr *Ex = U->getSubExpr()->IgnoreParenCasts();
if (DeclRefExpr* DR = dyn_cast<DeclRefExpr>(Ex))
CheckDeclRef(DR, U, DeadIncrement, AD, Live);
}
else if (DeclStmt* DS = dyn_cast<DeclStmt>(S))
// Iterate through the decls. Warn if any initializers are complex
// expressions that are not live (never used).
for (DeclStmt::decl_iterator DI=DS->decl_begin(), DE=DS->decl_end();
DI != DE; ++DI) {
VarDecl* V = dyn_cast<VarDecl>(*DI);
if (!V)
continue;
if (V->hasLocalStorage()) {
// Reference types confuse the dead stores checker. Skip them
// for now.
if (V->getType()->getAs<ReferenceType>())
return;
if (Expr* E = V->getInit()) {
// Don't warn on C++ objects (yet) until we can show that their
// constructors/destructors don't have side effects.
if (isa<CXXConstructExpr>(E))
return;
if (isa<ExprWithCleanups>(E))
return;
// A dead initialization is a variable that is dead after it
// is initialized. We don't flag warnings for those variables
// marked 'unused'.
if (!Live(V, AD) && V->getAttr<UnusedAttr>() == 0) {
// Special case: check for initializations with constants.
//
// e.g. : int x = 0;
//
// If x is EVER assigned a new value later, don't issue
// a warning. This is because such initialization can be
// due to defensive programming.
if (E->isConstantInitializer(Ctx, false))
return;
if (DeclRefExpr *DRE=dyn_cast<DeclRefExpr>(E->IgnoreParenCasts()))
if (VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) {
// Special case: check for initialization from constant
// variables.
//
// e.g. extern const int MyConstant;
// int x = MyConstant;
//
if (VD->hasGlobalStorage() &&
VD->getType().isConstQualified())
return;
// Special case: check for initialization from scalar
// parameters. This is often a form of defensive
// programming. Non-scalars are still an error since
// because it more likely represents an actual algorithmic
// bug.
if (isa<ParmVarDecl>(VD) && VD->getType()->isScalarType())
return;
}
Report(V, DeadInit, V->getLocation(), E->getSourceRange());
}
}
}
}
}
};
} // end anonymous namespace
//===----------------------------------------------------------------------===//
// Driver function to invoke the Dead-Stores checker on a CFG.
//===----------------------------------------------------------------------===//
namespace {
class FindEscaped : public CFGRecStmtDeclVisitor<FindEscaped>{
CFG *cfg;
public:
FindEscaped(CFG *c) : cfg(c) {}
CFG& getCFG() { return *cfg; }
llvm::SmallPtrSet<VarDecl*, 20> Escaped;
void VisitUnaryOperator(UnaryOperator* U) {
// Check for '&'. Any VarDecl whose value has its address-taken we
// treat as escaped.
Expr* E = U->getSubExpr()->IgnoreParenCasts();
if (U->getOpcode() == UO_AddrOf)
if (DeclRefExpr* DR = dyn_cast<DeclRefExpr>(E))
if (VarDecl* VD = dyn_cast<VarDecl>(DR->getDecl())) {
Escaped.insert(VD);
return;
}
Visit(E);
}
};
} // end anonymous namespace
//===----------------------------------------------------------------------===//
// DeadStoresChecker
//===----------------------------------------------------------------------===//
namespace {
class DeadStoresChecker : public CheckerV2<check::ASTCodeBody> {
public:
void checkASTCodeBody(const Decl *D, AnalysisManager& mgr,
BugReporter &BR) const {
if (LiveVariables *L = mgr.getLiveVariables(D)) {
CFG &cfg = *mgr.getCFG(D);
ParentMap &pmap = mgr.getParentMap(D);
FindEscaped FS(&cfg);
FS.getCFG().VisitBlockStmts(FS);
DeadStoreObs A(cfg, BR.getContext(), BR, pmap, FS.Escaped);
L->runOnAllBlocks(cfg, &A);
}
}
};
}
void ento::registerDeadStoresChecker(CheckerManager &mgr) {
mgr.registerChecker<DeadStoresChecker>();
}