llvm-project/polly
Tobias Grosser 173ecab705 Remove target triples from test cases
I just learned that target triples prevent test cases to be run on other
architectures. Polly test cases are until now sufficiently target independent
to not require any target triples. Hence, we drop them.

llvm-svn: 235384
2015-04-21 14:28:02 +00:00
..
autoconf Drop libpluto support 2015-03-30 17:54:01 +00:00
cmake Drop libpluto support 2015-03-30 17:54:01 +00:00
include Rename 'scattering' to 'schedule' 2015-04-21 11:37:25 +00:00
lib Fix some formatting issues 2015-04-21 11:42:01 +00:00
test Remove target triples from test cases 2015-04-21 14:28:02 +00:00
tools Ensure the functions in our GPURuntime are visible 2015-03-10 20:23:14 +00:00
utils Rename 'scattering' to 'schedule' 2015-04-21 11:37:25 +00:00
www Rename 'scattering' to 'schedule' 2015-04-21 11:37:25 +00:00
.arcconfig Added arcanist (arc) unit test support 2014-09-08 19:30:09 +00:00
.arclint Added arcanist linters and cleaned errors and warnings 2014-08-18 00:40:13 +00:00
.gitattributes
.gitignore Add test/lit.site.cfg to .gitignore 2014-09-07 15:03:30 +00:00
CMakeLists.txt Drop libpluto support 2015-03-30 17:54:01 +00:00
CREDITS.txt Add myself to the credits 2014-08-10 03:37:29 +00:00
LICENSE.txt
Makefile
Makefile.common.in
Makefile.config.in Drop libpluto support 2015-03-30 17:54:01 +00:00
README
configure Drop libpluto support 2015-03-30 17:54:01 +00:00

README

Polly - Polyhedral optimizations for LLVM
-----------------------------------------
http://polly.llvm.org/

Polly uses a mathematical representation, the polyhedral model, to represent and
transform loops and other control flow structures. Using an abstract
representation it is possible to reason about transformations in a more general
way and to use highly optimized linear programming libraries to figure out the
optimal loop structure. These transformations can be used to do constant
propagation through arrays, remove dead loop iterations, optimize loops for
cache locality, optimize arrays, apply advanced automatic parallelization, drive
vectorization, or they can be used to do software pipelining.