forked from OSchip/llvm-project
599 lines
19 KiB
C++
599 lines
19 KiB
C++
//===-- tsan_clock.cc -----------------------------------------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file is a part of ThreadSanitizer (TSan), a race detector.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
#include "tsan_clock.h"
|
|
#include "tsan_rtl.h"
|
|
#include "sanitizer_common/sanitizer_placement_new.h"
|
|
|
|
// SyncClock and ThreadClock implement vector clocks for sync variables
|
|
// (mutexes, atomic variables, file descriptors, etc) and threads, respectively.
|
|
// ThreadClock contains fixed-size vector clock for maximum number of threads.
|
|
// SyncClock contains growable vector clock for currently necessary number of
|
|
// threads.
|
|
// Together they implement very simple model of operations, namely:
|
|
//
|
|
// void ThreadClock::acquire(const SyncClock *src) {
|
|
// for (int i = 0; i < kMaxThreads; i++)
|
|
// clock[i] = max(clock[i], src->clock[i]);
|
|
// }
|
|
//
|
|
// void ThreadClock::release(SyncClock *dst) const {
|
|
// for (int i = 0; i < kMaxThreads; i++)
|
|
// dst->clock[i] = max(dst->clock[i], clock[i]);
|
|
// }
|
|
//
|
|
// void ThreadClock::ReleaseStore(SyncClock *dst) const {
|
|
// for (int i = 0; i < kMaxThreads; i++)
|
|
// dst->clock[i] = clock[i];
|
|
// }
|
|
//
|
|
// void ThreadClock::acq_rel(SyncClock *dst) {
|
|
// acquire(dst);
|
|
// release(dst);
|
|
// }
|
|
//
|
|
// Conformance to this model is extensively verified in tsan_clock_test.cc.
|
|
// However, the implementation is significantly more complex. The complexity
|
|
// allows to implement important classes of use cases in O(1) instead of O(N).
|
|
//
|
|
// The use cases are:
|
|
// 1. Singleton/once atomic that has a single release-store operation followed
|
|
// by zillions of acquire-loads (the acquire-load is O(1)).
|
|
// 2. Thread-local mutex (both lock and unlock can be O(1)).
|
|
// 3. Leaf mutex (unlock is O(1)).
|
|
// 4. A mutex shared by 2 threads (both lock and unlock can be O(1)).
|
|
// 5. An atomic with a single writer (writes can be O(1)).
|
|
// The implementation dynamically adopts to workload. So if an atomic is in
|
|
// read-only phase, these reads will be O(1); if it later switches to read/write
|
|
// phase, the implementation will correctly handle that by switching to O(N).
|
|
//
|
|
// Thread-safety note: all const operations on SyncClock's are conducted under
|
|
// a shared lock; all non-const operations on SyncClock's are conducted under
|
|
// an exclusive lock; ThreadClock's are private to respective threads and so
|
|
// do not need any protection.
|
|
//
|
|
// Description of SyncClock state:
|
|
// clk_ - variable size vector clock, low kClkBits hold timestamp,
|
|
// the remaining bits hold "acquired" flag (the actual value is thread's
|
|
// reused counter);
|
|
// if acquried == thr->reused_, then the respective thread has already
|
|
// acquired this clock (except possibly for dirty elements).
|
|
// dirty_ - holds up to two indeces in the vector clock that other threads
|
|
// need to acquire regardless of "acquired" flag value;
|
|
// release_store_tid_ - denotes that the clock state is a result of
|
|
// release-store operation by the thread with release_store_tid_ index.
|
|
// release_store_reused_ - reuse count of release_store_tid_.
|
|
|
|
// We don't have ThreadState in these methods, so this is an ugly hack that
|
|
// works only in C++.
|
|
#if !SANITIZER_GO
|
|
# define CPP_STAT_INC(typ) StatInc(cur_thread(), typ)
|
|
#else
|
|
# define CPP_STAT_INC(typ) (void)0
|
|
#endif
|
|
|
|
namespace __tsan {
|
|
|
|
static atomic_uint32_t *ref_ptr(ClockBlock *cb) {
|
|
return reinterpret_cast<atomic_uint32_t *>(&cb->table[ClockBlock::kRefIdx]);
|
|
}
|
|
|
|
// Drop reference to the first level block idx.
|
|
static void UnrefClockBlock(ClockCache *c, u32 idx, uptr blocks) {
|
|
ClockBlock *cb = ctx->clock_alloc.Map(idx);
|
|
atomic_uint32_t *ref = ref_ptr(cb);
|
|
u32 v = atomic_load(ref, memory_order_acquire);
|
|
for (;;) {
|
|
CHECK_GT(v, 0);
|
|
if (v == 1)
|
|
break;
|
|
if (atomic_compare_exchange_strong(ref, &v, v - 1, memory_order_acq_rel))
|
|
return;
|
|
}
|
|
// First level block owns second level blocks, so them as well.
|
|
for (uptr i = 0; i < blocks; i++)
|
|
ctx->clock_alloc.Free(c, cb->table[ClockBlock::kBlockIdx - i]);
|
|
ctx->clock_alloc.Free(c, idx);
|
|
}
|
|
|
|
ThreadClock::ThreadClock(unsigned tid, unsigned reused)
|
|
: tid_(tid)
|
|
, reused_(reused + 1) // 0 has special meaning
|
|
, cached_idx_()
|
|
, cached_size_()
|
|
, cached_blocks_() {
|
|
CHECK_LT(tid, kMaxTidInClock);
|
|
CHECK_EQ(reused_, ((u64)reused_ << kClkBits) >> kClkBits);
|
|
nclk_ = tid_ + 1;
|
|
last_acquire_ = 0;
|
|
internal_memset(clk_, 0, sizeof(clk_));
|
|
}
|
|
|
|
void ThreadClock::ResetCached(ClockCache *c) {
|
|
if (cached_idx_) {
|
|
UnrefClockBlock(c, cached_idx_, cached_blocks_);
|
|
cached_idx_ = 0;
|
|
cached_size_ = 0;
|
|
cached_blocks_ = 0;
|
|
}
|
|
}
|
|
|
|
void ThreadClock::acquire(ClockCache *c, SyncClock *src) {
|
|
DCHECK_LE(nclk_, kMaxTid);
|
|
DCHECK_LE(src->size_, kMaxTid);
|
|
CPP_STAT_INC(StatClockAcquire);
|
|
|
|
// Check if it's empty -> no need to do anything.
|
|
const uptr nclk = src->size_;
|
|
if (nclk == 0) {
|
|
CPP_STAT_INC(StatClockAcquireEmpty);
|
|
return;
|
|
}
|
|
|
|
bool acquired = false;
|
|
for (unsigned i = 0; i < kDirtyTids; i++) {
|
|
SyncClock::Dirty dirty = src->dirty_[i];
|
|
unsigned tid = dirty.tid;
|
|
if (tid != kInvalidTid) {
|
|
if (clk_[tid] < dirty.epoch) {
|
|
clk_[tid] = dirty.epoch;
|
|
acquired = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Check if we've already acquired src after the last release operation on src
|
|
if (tid_ >= nclk || src->elem(tid_).reused != reused_) {
|
|
// O(N) acquire.
|
|
CPP_STAT_INC(StatClockAcquireFull);
|
|
nclk_ = max(nclk_, nclk);
|
|
u64 *dst_pos = &clk_[0];
|
|
for (ClockElem &src_elem : *src) {
|
|
u64 epoch = src_elem.epoch;
|
|
if (*dst_pos < epoch) {
|
|
*dst_pos = epoch;
|
|
acquired = true;
|
|
}
|
|
dst_pos++;
|
|
}
|
|
|
|
// Remember that this thread has acquired this clock.
|
|
if (nclk > tid_)
|
|
src->elem(tid_).reused = reused_;
|
|
}
|
|
|
|
if (acquired) {
|
|
CPP_STAT_INC(StatClockAcquiredSomething);
|
|
last_acquire_ = clk_[tid_];
|
|
ResetCached(c);
|
|
}
|
|
}
|
|
|
|
void ThreadClock::release(ClockCache *c, SyncClock *dst) {
|
|
DCHECK_LE(nclk_, kMaxTid);
|
|
DCHECK_LE(dst->size_, kMaxTid);
|
|
|
|
if (dst->size_ == 0) {
|
|
// ReleaseStore will correctly set release_store_tid_,
|
|
// which can be important for future operations.
|
|
ReleaseStore(c, dst);
|
|
return;
|
|
}
|
|
|
|
CPP_STAT_INC(StatClockRelease);
|
|
// Check if we need to resize dst.
|
|
if (dst->size_ < nclk_)
|
|
dst->Resize(c, nclk_);
|
|
|
|
// Check if we had not acquired anything from other threads
|
|
// since the last release on dst. If so, we need to update
|
|
// only dst->elem(tid_).
|
|
if (dst->elem(tid_).epoch > last_acquire_) {
|
|
UpdateCurrentThread(c, dst);
|
|
if (dst->release_store_tid_ != tid_ ||
|
|
dst->release_store_reused_ != reused_)
|
|
dst->release_store_tid_ = kInvalidTid;
|
|
return;
|
|
}
|
|
|
|
// O(N) release.
|
|
CPP_STAT_INC(StatClockReleaseFull);
|
|
dst->Unshare(c);
|
|
// First, remember whether we've acquired dst.
|
|
bool acquired = IsAlreadyAcquired(dst);
|
|
if (acquired)
|
|
CPP_STAT_INC(StatClockReleaseAcquired);
|
|
// Update dst->clk_.
|
|
dst->FlushDirty();
|
|
uptr i = 0;
|
|
for (ClockElem &ce : *dst) {
|
|
ce.epoch = max(ce.epoch, clk_[i]);
|
|
ce.reused = 0;
|
|
i++;
|
|
}
|
|
// Clear 'acquired' flag in the remaining elements.
|
|
if (nclk_ < dst->size_)
|
|
CPP_STAT_INC(StatClockReleaseClearTail);
|
|
for (uptr i = nclk_; i < dst->size_; i++)
|
|
dst->elem(i).reused = 0;
|
|
dst->release_store_tid_ = kInvalidTid;
|
|
dst->release_store_reused_ = 0;
|
|
// If we've acquired dst, remember this fact,
|
|
// so that we don't need to acquire it on next acquire.
|
|
if (acquired)
|
|
dst->elem(tid_).reused = reused_;
|
|
}
|
|
|
|
void ThreadClock::ReleaseStore(ClockCache *c, SyncClock *dst) {
|
|
DCHECK_LE(nclk_, kMaxTid);
|
|
DCHECK_LE(dst->size_, kMaxTid);
|
|
CPP_STAT_INC(StatClockStore);
|
|
|
|
if (dst->size_ == 0 && cached_idx_ != 0) {
|
|
// Reuse the cached clock.
|
|
// Note: we could reuse/cache the cached clock in more cases:
|
|
// we could update the existing clock and cache it, or replace it with the
|
|
// currently cached clock and release the old one. And for a shared
|
|
// existing clock, we could replace it with the currently cached;
|
|
// or unshare, update and cache. But, for simplicity, we currnetly reuse
|
|
// cached clock only when the target clock is empty.
|
|
dst->tab_ = ctx->clock_alloc.Map(cached_idx_);
|
|
dst->tab_idx_ = cached_idx_;
|
|
dst->size_ = cached_size_;
|
|
dst->blocks_ = cached_blocks_;
|
|
CHECK_EQ(dst->dirty_[0].tid, kInvalidTid);
|
|
// The cached clock is shared (immutable),
|
|
// so this is where we store the current clock.
|
|
dst->dirty_[0].tid = tid_;
|
|
dst->dirty_[0].epoch = clk_[tid_];
|
|
dst->release_store_tid_ = tid_;
|
|
dst->release_store_reused_ = reused_;
|
|
// Rememeber that we don't need to acquire it in future.
|
|
dst->elem(tid_).reused = reused_;
|
|
// Grab a reference.
|
|
atomic_fetch_add(ref_ptr(dst->tab_), 1, memory_order_relaxed);
|
|
return;
|
|
}
|
|
|
|
// Check if we need to resize dst.
|
|
if (dst->size_ < nclk_)
|
|
dst->Resize(c, nclk_);
|
|
|
|
if (dst->release_store_tid_ == tid_ &&
|
|
dst->release_store_reused_ == reused_ &&
|
|
dst->elem(tid_).epoch > last_acquire_) {
|
|
CPP_STAT_INC(StatClockStoreFast);
|
|
UpdateCurrentThread(c, dst);
|
|
return;
|
|
}
|
|
|
|
// O(N) release-store.
|
|
CPP_STAT_INC(StatClockStoreFull);
|
|
dst->Unshare(c);
|
|
// Note: dst can be larger than this ThreadClock.
|
|
// This is fine since clk_ beyond size is all zeros.
|
|
uptr i = 0;
|
|
for (ClockElem &ce : *dst) {
|
|
ce.epoch = clk_[i];
|
|
ce.reused = 0;
|
|
i++;
|
|
}
|
|
for (uptr i = 0; i < kDirtyTids; i++)
|
|
dst->dirty_[i].tid = kInvalidTid;
|
|
dst->release_store_tid_ = tid_;
|
|
dst->release_store_reused_ = reused_;
|
|
// Rememeber that we don't need to acquire it in future.
|
|
dst->elem(tid_).reused = reused_;
|
|
|
|
// If the resulting clock is cachable, cache it for future release operations.
|
|
// The clock is always cachable if we released to an empty sync object.
|
|
if (cached_idx_ == 0 && dst->Cachable()) {
|
|
// Grab a reference to the ClockBlock.
|
|
atomic_uint32_t *ref = ref_ptr(dst->tab_);
|
|
if (atomic_load(ref, memory_order_acquire) == 1)
|
|
atomic_store_relaxed(ref, 2);
|
|
else
|
|
atomic_fetch_add(ref_ptr(dst->tab_), 1, memory_order_relaxed);
|
|
cached_idx_ = dst->tab_idx_;
|
|
cached_size_ = dst->size_;
|
|
cached_blocks_ = dst->blocks_;
|
|
}
|
|
}
|
|
|
|
void ThreadClock::acq_rel(ClockCache *c, SyncClock *dst) {
|
|
CPP_STAT_INC(StatClockAcquireRelease);
|
|
acquire(c, dst);
|
|
ReleaseStore(c, dst);
|
|
}
|
|
|
|
// Updates only single element related to the current thread in dst->clk_.
|
|
void ThreadClock::UpdateCurrentThread(ClockCache *c, SyncClock *dst) const {
|
|
// Update the threads time, but preserve 'acquired' flag.
|
|
for (unsigned i = 0; i < kDirtyTids; i++) {
|
|
SyncClock::Dirty *dirty = &dst->dirty_[i];
|
|
const unsigned tid = dirty->tid;
|
|
if (tid == tid_ || tid == kInvalidTid) {
|
|
CPP_STAT_INC(StatClockReleaseFast);
|
|
dirty->tid = tid_;
|
|
dirty->epoch = clk_[tid_];
|
|
return;
|
|
}
|
|
}
|
|
// Reset all 'acquired' flags, O(N).
|
|
// We are going to touch dst elements, so we need to unshare it.
|
|
dst->Unshare(c);
|
|
CPP_STAT_INC(StatClockReleaseSlow);
|
|
dst->elem(tid_).epoch = clk_[tid_];
|
|
for (uptr i = 0; i < dst->size_; i++)
|
|
dst->elem(i).reused = 0;
|
|
dst->FlushDirty();
|
|
}
|
|
|
|
// Checks whether the current thread has already acquired src.
|
|
bool ThreadClock::IsAlreadyAcquired(const SyncClock *src) const {
|
|
if (src->elem(tid_).reused != reused_)
|
|
return false;
|
|
for (unsigned i = 0; i < kDirtyTids; i++) {
|
|
SyncClock::Dirty dirty = src->dirty_[i];
|
|
if (dirty.tid != kInvalidTid) {
|
|
if (clk_[dirty.tid] < dirty.epoch)
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Sets a single element in the vector clock.
|
|
// This function is called only from weird places like AcquireGlobal.
|
|
void ThreadClock::set(ClockCache *c, unsigned tid, u64 v) {
|
|
DCHECK_LT(tid, kMaxTid);
|
|
DCHECK_GE(v, clk_[tid]);
|
|
clk_[tid] = v;
|
|
if (nclk_ <= tid)
|
|
nclk_ = tid + 1;
|
|
last_acquire_ = clk_[tid_];
|
|
ResetCached(c);
|
|
}
|
|
|
|
void ThreadClock::DebugDump(int(*printf)(const char *s, ...)) {
|
|
printf("clock=[");
|
|
for (uptr i = 0; i < nclk_; i++)
|
|
printf("%s%llu", i == 0 ? "" : ",", clk_[i]);
|
|
printf("] tid=%u/%u last_acq=%llu", tid_, reused_, last_acquire_);
|
|
}
|
|
|
|
SyncClock::SyncClock() {
|
|
ResetImpl();
|
|
}
|
|
|
|
SyncClock::~SyncClock() {
|
|
// Reset must be called before dtor.
|
|
CHECK_EQ(size_, 0);
|
|
CHECK_EQ(blocks_, 0);
|
|
CHECK_EQ(tab_, 0);
|
|
CHECK_EQ(tab_idx_, 0);
|
|
}
|
|
|
|
void SyncClock::Reset(ClockCache *c) {
|
|
if (size_)
|
|
UnrefClockBlock(c, tab_idx_, blocks_);
|
|
ResetImpl();
|
|
}
|
|
|
|
void SyncClock::ResetImpl() {
|
|
tab_ = 0;
|
|
tab_idx_ = 0;
|
|
size_ = 0;
|
|
blocks_ = 0;
|
|
release_store_tid_ = kInvalidTid;
|
|
release_store_reused_ = 0;
|
|
for (uptr i = 0; i < kDirtyTids; i++)
|
|
dirty_[i].tid = kInvalidTid;
|
|
}
|
|
|
|
void SyncClock::Resize(ClockCache *c, uptr nclk) {
|
|
CPP_STAT_INC(StatClockReleaseResize);
|
|
Unshare(c);
|
|
if (nclk <= capacity()) {
|
|
// Memory is already allocated, just increase the size.
|
|
size_ = nclk;
|
|
return;
|
|
}
|
|
if (size_ == 0) {
|
|
// Grow from 0 to one-level table.
|
|
CHECK_EQ(size_, 0);
|
|
CHECK_EQ(blocks_, 0);
|
|
CHECK_EQ(tab_, 0);
|
|
CHECK_EQ(tab_idx_, 0);
|
|
tab_idx_ = ctx->clock_alloc.Alloc(c);
|
|
tab_ = ctx->clock_alloc.Map(tab_idx_);
|
|
internal_memset(tab_, 0, sizeof(*tab_));
|
|
atomic_store_relaxed(ref_ptr(tab_), 1);
|
|
size_ = 1;
|
|
} else if (size_ > blocks_ * ClockBlock::kClockCount) {
|
|
u32 idx = ctx->clock_alloc.Alloc(c);
|
|
ClockBlock *new_cb = ctx->clock_alloc.Map(idx);
|
|
uptr top = size_ - blocks_ * ClockBlock::kClockCount;
|
|
CHECK_LT(top, ClockBlock::kClockCount);
|
|
const uptr move = top * sizeof(tab_->clock[0]);
|
|
internal_memcpy(&new_cb->clock[0], tab_->clock, move);
|
|
internal_memset(&new_cb->clock[top], 0, sizeof(*new_cb) - move);
|
|
internal_memset(tab_->clock, 0, move);
|
|
append_block(idx);
|
|
}
|
|
// At this point we have first level table allocated and all clock elements
|
|
// are evacuated from it to a second level block.
|
|
// Add second level tables as necessary.
|
|
while (nclk > capacity()) {
|
|
u32 idx = ctx->clock_alloc.Alloc(c);
|
|
ClockBlock *cb = ctx->clock_alloc.Map(idx);
|
|
internal_memset(cb, 0, sizeof(*cb));
|
|
append_block(idx);
|
|
}
|
|
size_ = nclk;
|
|
}
|
|
|
|
// Flushes all dirty elements into the main clock array.
|
|
void SyncClock::FlushDirty() {
|
|
for (unsigned i = 0; i < kDirtyTids; i++) {
|
|
Dirty *dirty = &dirty_[i];
|
|
if (dirty->tid != kInvalidTid) {
|
|
CHECK_LT(dirty->tid, size_);
|
|
elem(dirty->tid).epoch = dirty->epoch;
|
|
dirty->tid = kInvalidTid;
|
|
}
|
|
}
|
|
}
|
|
|
|
bool SyncClock::IsShared() const {
|
|
if (size_ == 0)
|
|
return false;
|
|
atomic_uint32_t *ref = ref_ptr(tab_);
|
|
u32 v = atomic_load(ref, memory_order_acquire);
|
|
CHECK_GT(v, 0);
|
|
return v > 1;
|
|
}
|
|
|
|
// Unshares the current clock if it's shared.
|
|
// Shared clocks are immutable, so they need to be unshared before any updates.
|
|
// Note: this does not apply to dirty entries as they are not shared.
|
|
void SyncClock::Unshare(ClockCache *c) {
|
|
if (!IsShared())
|
|
return;
|
|
// First, copy current state into old.
|
|
SyncClock old;
|
|
old.tab_ = tab_;
|
|
old.tab_idx_ = tab_idx_;
|
|
old.size_ = size_;
|
|
old.blocks_ = blocks_;
|
|
old.release_store_tid_ = release_store_tid_;
|
|
old.release_store_reused_ = release_store_reused_;
|
|
for (unsigned i = 0; i < kDirtyTids; i++)
|
|
old.dirty_[i] = dirty_[i];
|
|
// Then, clear current object.
|
|
ResetImpl();
|
|
// Allocate brand new clock in the current object.
|
|
Resize(c, old.size_);
|
|
// Now copy state back into this object.
|
|
Iter old_iter(&old);
|
|
for (ClockElem &ce : *this) {
|
|
ce = *old_iter;
|
|
++old_iter;
|
|
}
|
|
release_store_tid_ = old.release_store_tid_;
|
|
release_store_reused_ = old.release_store_reused_;
|
|
for (unsigned i = 0; i < kDirtyTids; i++)
|
|
dirty_[i] = old.dirty_[i];
|
|
// Drop reference to old and delete if necessary.
|
|
old.Reset(c);
|
|
}
|
|
|
|
// Can we cache this clock for future release operations?
|
|
ALWAYS_INLINE bool SyncClock::Cachable() const {
|
|
if (size_ == 0)
|
|
return false;
|
|
for (unsigned i = 0; i < kDirtyTids; i++) {
|
|
if (dirty_[i].tid != kInvalidTid)
|
|
return false;
|
|
}
|
|
return atomic_load_relaxed(ref_ptr(tab_)) == 1;
|
|
}
|
|
|
|
// elem linearizes the two-level structure into linear array.
|
|
// Note: this is used only for one time accesses, vector operations use
|
|
// the iterator as it is much faster.
|
|
ALWAYS_INLINE ClockElem &SyncClock::elem(unsigned tid) const {
|
|
DCHECK_LT(tid, size_);
|
|
const uptr block = tid / ClockBlock::kClockCount;
|
|
DCHECK_LE(block, blocks_);
|
|
tid %= ClockBlock::kClockCount;
|
|
if (block == blocks_)
|
|
return tab_->clock[tid];
|
|
u32 idx = get_block(block);
|
|
ClockBlock *cb = ctx->clock_alloc.Map(idx);
|
|
return cb->clock[tid];
|
|
}
|
|
|
|
ALWAYS_INLINE uptr SyncClock::capacity() const {
|
|
if (size_ == 0)
|
|
return 0;
|
|
uptr ratio = sizeof(ClockBlock::clock[0]) / sizeof(ClockBlock::table[0]);
|
|
// How many clock elements we can fit into the first level block.
|
|
// +1 for ref counter.
|
|
uptr top = ClockBlock::kClockCount - RoundUpTo(blocks_ + 1, ratio) / ratio;
|
|
return blocks_ * ClockBlock::kClockCount + top;
|
|
}
|
|
|
|
ALWAYS_INLINE u32 SyncClock::get_block(uptr bi) const {
|
|
DCHECK(size_);
|
|
DCHECK_LT(bi, blocks_);
|
|
return tab_->table[ClockBlock::kBlockIdx - bi];
|
|
}
|
|
|
|
ALWAYS_INLINE void SyncClock::append_block(u32 idx) {
|
|
uptr bi = blocks_++;
|
|
CHECK_EQ(get_block(bi), 0);
|
|
tab_->table[ClockBlock::kBlockIdx - bi] = idx;
|
|
}
|
|
|
|
// Used only by tests.
|
|
u64 SyncClock::get(unsigned tid) const {
|
|
for (unsigned i = 0; i < kDirtyTids; i++) {
|
|
Dirty dirty = dirty_[i];
|
|
if (dirty.tid == tid)
|
|
return dirty.epoch;
|
|
}
|
|
return elem(tid).epoch;
|
|
}
|
|
|
|
// Used only by Iter test.
|
|
u64 SyncClock::get_clean(unsigned tid) const {
|
|
return elem(tid).epoch;
|
|
}
|
|
|
|
void SyncClock::DebugDump(int(*printf)(const char *s, ...)) {
|
|
printf("clock=[");
|
|
for (uptr i = 0; i < size_; i++)
|
|
printf("%s%llu", i == 0 ? "" : ",", elem(i).epoch);
|
|
printf("] reused=[");
|
|
for (uptr i = 0; i < size_; i++)
|
|
printf("%s%llu", i == 0 ? "" : ",", elem(i).reused);
|
|
printf("] release_store_tid=%d/%d dirty_tids=%d[%llu]/%d[%llu]",
|
|
release_store_tid_, release_store_reused_,
|
|
dirty_[0].tid, dirty_[0].epoch,
|
|
dirty_[1].tid, dirty_[1].epoch);
|
|
}
|
|
|
|
void SyncClock::Iter::Next() {
|
|
// Finished with the current block, move on to the next one.
|
|
block_++;
|
|
if (block_ < parent_->blocks_) {
|
|
// Iterate over the next second level block.
|
|
u32 idx = parent_->get_block(block_);
|
|
ClockBlock *cb = ctx->clock_alloc.Map(idx);
|
|
pos_ = &cb->clock[0];
|
|
end_ = pos_ + min(parent_->size_ - block_ * ClockBlock::kClockCount,
|
|
ClockBlock::kClockCount);
|
|
return;
|
|
}
|
|
if (block_ == parent_->blocks_ &&
|
|
parent_->size_ > parent_->blocks_ * ClockBlock::kClockCount) {
|
|
// Iterate over elements in the first level block.
|
|
pos_ = &parent_->tab_->clock[0];
|
|
end_ = pos_ + min(parent_->size_ - block_ * ClockBlock::kClockCount,
|
|
ClockBlock::kClockCount);
|
|
return;
|
|
}
|
|
parent_ = nullptr; // denotes end
|
|
}
|
|
} // namespace __tsan
|