forked from OSchip/llvm-project
5780 lines
229 KiB
C++
5780 lines
229 KiB
C++
//===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements semantic analysis for expressions.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "Sema.h"
|
|
#include "clang/AST/ASTContext.h"
|
|
#include "clang/AST/DeclObjC.h"
|
|
#include "clang/AST/ExprCXX.h"
|
|
#include "clang/AST/ExprObjC.h"
|
|
#include "clang/AST/DeclTemplate.h"
|
|
#include "clang/Lex/Preprocessor.h"
|
|
#include "clang/Lex/LiteralSupport.h"
|
|
#include "clang/Basic/SourceManager.h"
|
|
#include "clang/Basic/TargetInfo.h"
|
|
#include "clang/Parse/DeclSpec.h"
|
|
#include "clang/Parse/Designator.h"
|
|
#include "clang/Parse/Scope.h"
|
|
using namespace clang;
|
|
|
|
/// \brief Determine whether the use of this declaration is valid, and
|
|
/// emit any corresponding diagnostics.
|
|
///
|
|
/// This routine diagnoses various problems with referencing
|
|
/// declarations that can occur when using a declaration. For example,
|
|
/// it might warn if a deprecated or unavailable declaration is being
|
|
/// used, or produce an error (and return true) if a C++0x deleted
|
|
/// function is being used.
|
|
///
|
|
/// \returns true if there was an error (this declaration cannot be
|
|
/// referenced), false otherwise.
|
|
bool Sema::DiagnoseUseOfDecl(NamedDecl *D, SourceLocation Loc) {
|
|
// See if the decl is deprecated.
|
|
if (D->getAttr<DeprecatedAttr>()) {
|
|
// Implementing deprecated stuff requires referencing deprecated
|
|
// stuff. Don't warn if we are implementing a deprecated
|
|
// construct.
|
|
bool isSilenced = false;
|
|
|
|
if (NamedDecl *ND = getCurFunctionOrMethodDecl()) {
|
|
// If this reference happens *in* a deprecated function or method, don't
|
|
// warn.
|
|
isSilenced = ND->getAttr<DeprecatedAttr>();
|
|
|
|
// If this is an Objective-C method implementation, check to see if the
|
|
// method was deprecated on the declaration, not the definition.
|
|
if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(ND)) {
|
|
// The semantic decl context of a ObjCMethodDecl is the
|
|
// ObjCImplementationDecl.
|
|
if (ObjCImplementationDecl *Impl
|
|
= dyn_cast<ObjCImplementationDecl>(MD->getParent())) {
|
|
|
|
MD = Impl->getClassInterface()->getMethod(MD->getSelector(),
|
|
MD->isInstanceMethod());
|
|
isSilenced |= MD && MD->getAttr<DeprecatedAttr>();
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!isSilenced)
|
|
Diag(Loc, diag::warn_deprecated) << D->getDeclName();
|
|
}
|
|
|
|
// See if this is a deleted function.
|
|
if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
|
|
if (FD->isDeleted()) {
|
|
Diag(Loc, diag::err_deleted_function_use);
|
|
Diag(D->getLocation(), diag::note_unavailable_here) << true;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// See if the decl is unavailable
|
|
if (D->getAttr<UnavailableAttr>()) {
|
|
Diag(Loc, diag::warn_unavailable) << D->getDeclName();
|
|
Diag(D->getLocation(), diag::note_unavailable_here) << 0;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// DiagnoseSentinelCalls - This routine checks on method dispatch calls
|
|
/// (and other functions in future), which have been declared with sentinel
|
|
/// attribute. It warns if call does not have the sentinel argument.
|
|
///
|
|
void Sema::DiagnoseSentinelCalls(NamedDecl *D, SourceLocation Loc,
|
|
Expr **Args, unsigned NumArgs)
|
|
{
|
|
const SentinelAttr *attr = D->getAttr<SentinelAttr>();
|
|
if (!attr)
|
|
return;
|
|
int sentinelPos = attr->getSentinel();
|
|
int nullPos = attr->getNullPos();
|
|
|
|
// FIXME. ObjCMethodDecl and FunctionDecl need be derived from the same common
|
|
// base class. Then we won't be needing two versions of the same code.
|
|
unsigned int i = 0;
|
|
bool warnNotEnoughArgs = false;
|
|
int isMethod = 0;
|
|
if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
|
|
// skip over named parameters.
|
|
ObjCMethodDecl::param_iterator P, E = MD->param_end();
|
|
for (P = MD->param_begin(); (P != E && i < NumArgs); ++P) {
|
|
if (nullPos)
|
|
--nullPos;
|
|
else
|
|
++i;
|
|
}
|
|
warnNotEnoughArgs = (P != E || i >= NumArgs);
|
|
isMethod = 1;
|
|
}
|
|
else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
|
|
// skip over named parameters.
|
|
ObjCMethodDecl::param_iterator P, E = FD->param_end();
|
|
for (P = FD->param_begin(); (P != E && i < NumArgs); ++P) {
|
|
if (nullPos)
|
|
--nullPos;
|
|
else
|
|
++i;
|
|
}
|
|
warnNotEnoughArgs = (P != E || i >= NumArgs);
|
|
}
|
|
else if (VarDecl *V = dyn_cast<VarDecl>(D)) {
|
|
// block or function pointer call.
|
|
QualType Ty = V->getType();
|
|
if (Ty->isBlockPointerType() || Ty->isFunctionPointerType()) {
|
|
const FunctionType *FT = Ty->isFunctionPointerType()
|
|
? Ty->getAsPointerType()->getPointeeType()->getAsFunctionType()
|
|
: Ty->getAsBlockPointerType()->getPointeeType()->getAsFunctionType();
|
|
if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FT)) {
|
|
unsigned NumArgsInProto = Proto->getNumArgs();
|
|
unsigned k;
|
|
for (k = 0; (k != NumArgsInProto && i < NumArgs); k++) {
|
|
if (nullPos)
|
|
--nullPos;
|
|
else
|
|
++i;
|
|
}
|
|
warnNotEnoughArgs = (k != NumArgsInProto || i >= NumArgs);
|
|
}
|
|
if (Ty->isBlockPointerType())
|
|
isMethod = 2;
|
|
}
|
|
else
|
|
return;
|
|
}
|
|
else
|
|
return;
|
|
|
|
if (warnNotEnoughArgs) {
|
|
Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
|
|
Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
|
|
return;
|
|
}
|
|
int sentinel = i;
|
|
while (sentinelPos > 0 && i < NumArgs-1) {
|
|
--sentinelPos;
|
|
++i;
|
|
}
|
|
if (sentinelPos > 0) {
|
|
Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
|
|
Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
|
|
return;
|
|
}
|
|
while (i < NumArgs-1) {
|
|
++i;
|
|
++sentinel;
|
|
}
|
|
Expr *sentinelExpr = Args[sentinel];
|
|
if (sentinelExpr && (!sentinelExpr->getType()->isPointerType() ||
|
|
!sentinelExpr->isNullPointerConstant(Context))) {
|
|
Diag(Loc, diag::warn_missing_sentinel) << isMethod;
|
|
Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
|
|
}
|
|
return;
|
|
}
|
|
|
|
SourceRange Sema::getExprRange(ExprTy *E) const {
|
|
Expr *Ex = (Expr *)E;
|
|
return Ex? Ex->getSourceRange() : SourceRange();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Standard Promotions and Conversions
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
|
|
void Sema::DefaultFunctionArrayConversion(Expr *&E) {
|
|
QualType Ty = E->getType();
|
|
assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type");
|
|
|
|
if (Ty->isFunctionType())
|
|
ImpCastExprToType(E, Context.getPointerType(Ty));
|
|
else if (Ty->isArrayType()) {
|
|
// In C90 mode, arrays only promote to pointers if the array expression is
|
|
// an lvalue. The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
|
|
// type 'array of type' is converted to an expression that has type 'pointer
|
|
// to type'...". In C99 this was changed to: C99 6.3.2.1p3: "an expression
|
|
// that has type 'array of type' ...". The relevant change is "an lvalue"
|
|
// (C90) to "an expression" (C99).
|
|
//
|
|
// C++ 4.2p1:
|
|
// An lvalue or rvalue of type "array of N T" or "array of unknown bound of
|
|
// T" can be converted to an rvalue of type "pointer to T".
|
|
//
|
|
if (getLangOptions().C99 || getLangOptions().CPlusPlus ||
|
|
E->isLvalue(Context) == Expr::LV_Valid)
|
|
ImpCastExprToType(E, Context.getArrayDecayedType(Ty));
|
|
}
|
|
}
|
|
|
|
/// \brief Whether this is a promotable bitfield reference according
|
|
/// to C99 6.3.1.1p2, bullet 2.
|
|
///
|
|
/// \returns the type this bit-field will promote to, or NULL if no
|
|
/// promotion occurs.
|
|
static QualType isPromotableBitField(Expr *E, ASTContext &Context) {
|
|
FieldDecl *Field = E->getBitField();
|
|
if (!Field)
|
|
return QualType();
|
|
|
|
const BuiltinType *BT = Field->getType()->getAsBuiltinType();
|
|
if (!BT)
|
|
return QualType();
|
|
|
|
if (BT->getKind() != BuiltinType::Bool &&
|
|
BT->getKind() != BuiltinType::Int &&
|
|
BT->getKind() != BuiltinType::UInt)
|
|
return QualType();
|
|
|
|
llvm::APSInt BitWidthAP;
|
|
if (!Field->getBitWidth()->isIntegerConstantExpr(BitWidthAP, Context))
|
|
return QualType();
|
|
|
|
uint64_t BitWidth = BitWidthAP.getZExtValue();
|
|
uint64_t IntSize = Context.getTypeSize(Context.IntTy);
|
|
if (BitWidth < IntSize ||
|
|
(Field->getType()->isSignedIntegerType() && BitWidth == IntSize))
|
|
return Context.IntTy;
|
|
|
|
if (BitWidth == IntSize && Field->getType()->isUnsignedIntegerType())
|
|
return Context.UnsignedIntTy;
|
|
|
|
return QualType();
|
|
}
|
|
|
|
/// UsualUnaryConversions - Performs various conversions that are common to most
|
|
/// operators (C99 6.3). The conversions of array and function types are
|
|
/// sometimes surpressed. For example, the array->pointer conversion doesn't
|
|
/// apply if the array is an argument to the sizeof or address (&) operators.
|
|
/// In these instances, this routine should *not* be called.
|
|
Expr *Sema::UsualUnaryConversions(Expr *&Expr) {
|
|
QualType Ty = Expr->getType();
|
|
assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
|
|
|
|
// C99 6.3.1.1p2:
|
|
//
|
|
// The following may be used in an expression wherever an int or
|
|
// unsigned int may be used:
|
|
// - an object or expression with an integer type whose integer
|
|
// conversion rank is less than or equal to the rank of int
|
|
// and unsigned int.
|
|
// - A bit-field of type _Bool, int, signed int, or unsigned int.
|
|
//
|
|
// If an int can represent all values of the original type, the
|
|
// value is converted to an int; otherwise, it is converted to an
|
|
// unsigned int. These are called the integer promotions. All
|
|
// other types are unchanged by the integer promotions.
|
|
if (Ty->isPromotableIntegerType()) {
|
|
ImpCastExprToType(Expr, Context.IntTy);
|
|
return Expr;
|
|
} else {
|
|
QualType T = isPromotableBitField(Expr, Context);
|
|
if (!T.isNull()) {
|
|
ImpCastExprToType(Expr, T);
|
|
return Expr;
|
|
}
|
|
}
|
|
|
|
DefaultFunctionArrayConversion(Expr);
|
|
return Expr;
|
|
}
|
|
|
|
/// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
|
|
/// do not have a prototype. Arguments that have type float are promoted to
|
|
/// double. All other argument types are converted by UsualUnaryConversions().
|
|
void Sema::DefaultArgumentPromotion(Expr *&Expr) {
|
|
QualType Ty = Expr->getType();
|
|
assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
|
|
|
|
// If this is a 'float' (CVR qualified or typedef) promote to double.
|
|
if (const BuiltinType *BT = Ty->getAsBuiltinType())
|
|
if (BT->getKind() == BuiltinType::Float)
|
|
return ImpCastExprToType(Expr, Context.DoubleTy);
|
|
|
|
UsualUnaryConversions(Expr);
|
|
}
|
|
|
|
/// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but
|
|
/// will warn if the resulting type is not a POD type, and rejects ObjC
|
|
/// interfaces passed by value. This returns true if the argument type is
|
|
/// completely illegal.
|
|
bool Sema::DefaultVariadicArgumentPromotion(Expr *&Expr, VariadicCallType CT) {
|
|
DefaultArgumentPromotion(Expr);
|
|
|
|
if (Expr->getType()->isObjCInterfaceType()) {
|
|
Diag(Expr->getLocStart(),
|
|
diag::err_cannot_pass_objc_interface_to_vararg)
|
|
<< Expr->getType() << CT;
|
|
return true;
|
|
}
|
|
|
|
if (!Expr->getType()->isPODType())
|
|
Diag(Expr->getLocStart(), diag::warn_cannot_pass_non_pod_arg_to_vararg)
|
|
<< Expr->getType() << CT;
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
/// UsualArithmeticConversions - Performs various conversions that are common to
|
|
/// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
|
|
/// routine returns the first non-arithmetic type found. The client is
|
|
/// responsible for emitting appropriate error diagnostics.
|
|
/// FIXME: verify the conversion rules for "complex int" are consistent with
|
|
/// GCC.
|
|
QualType Sema::UsualArithmeticConversions(Expr *&lhsExpr, Expr *&rhsExpr,
|
|
bool isCompAssign) {
|
|
if (!isCompAssign)
|
|
UsualUnaryConversions(lhsExpr);
|
|
|
|
UsualUnaryConversions(rhsExpr);
|
|
|
|
// For conversion purposes, we ignore any qualifiers.
|
|
// For example, "const float" and "float" are equivalent.
|
|
QualType lhs =
|
|
Context.getCanonicalType(lhsExpr->getType()).getUnqualifiedType();
|
|
QualType rhs =
|
|
Context.getCanonicalType(rhsExpr->getType()).getUnqualifiedType();
|
|
|
|
// If both types are identical, no conversion is needed.
|
|
if (lhs == rhs)
|
|
return lhs;
|
|
|
|
// If either side is a non-arithmetic type (e.g. a pointer), we are done.
|
|
// The caller can deal with this (e.g. pointer + int).
|
|
if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
|
|
return lhs;
|
|
|
|
// Perform bitfield promotions.
|
|
QualType LHSBitfieldPromoteTy = isPromotableBitField(lhsExpr, Context);
|
|
if (!LHSBitfieldPromoteTy.isNull())
|
|
lhs = LHSBitfieldPromoteTy;
|
|
QualType RHSBitfieldPromoteTy = isPromotableBitField(rhsExpr, Context);
|
|
if (!RHSBitfieldPromoteTy.isNull())
|
|
rhs = RHSBitfieldPromoteTy;
|
|
|
|
QualType destType = UsualArithmeticConversionsType(lhs, rhs);
|
|
if (!isCompAssign)
|
|
ImpCastExprToType(lhsExpr, destType);
|
|
ImpCastExprToType(rhsExpr, destType);
|
|
return destType;
|
|
}
|
|
|
|
QualType Sema::UsualArithmeticConversionsType(QualType lhs, QualType rhs) {
|
|
// Perform the usual unary conversions. We do this early so that
|
|
// integral promotions to "int" can allow us to exit early, in the
|
|
// lhs == rhs check. Also, for conversion purposes, we ignore any
|
|
// qualifiers. For example, "const float" and "float" are
|
|
// equivalent.
|
|
if (lhs->isPromotableIntegerType())
|
|
lhs = Context.IntTy;
|
|
else
|
|
lhs = lhs.getUnqualifiedType();
|
|
if (rhs->isPromotableIntegerType())
|
|
rhs = Context.IntTy;
|
|
else
|
|
rhs = rhs.getUnqualifiedType();
|
|
|
|
// If both types are identical, no conversion is needed.
|
|
if (lhs == rhs)
|
|
return lhs;
|
|
|
|
// If either side is a non-arithmetic type (e.g. a pointer), we are done.
|
|
// The caller can deal with this (e.g. pointer + int).
|
|
if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
|
|
return lhs;
|
|
|
|
// At this point, we have two different arithmetic types.
|
|
|
|
// Handle complex types first (C99 6.3.1.8p1).
|
|
if (lhs->isComplexType() || rhs->isComplexType()) {
|
|
// if we have an integer operand, the result is the complex type.
|
|
if (rhs->isIntegerType() || rhs->isComplexIntegerType()) {
|
|
// convert the rhs to the lhs complex type.
|
|
return lhs;
|
|
}
|
|
if (lhs->isIntegerType() || lhs->isComplexIntegerType()) {
|
|
// convert the lhs to the rhs complex type.
|
|
return rhs;
|
|
}
|
|
// This handles complex/complex, complex/float, or float/complex.
|
|
// When both operands are complex, the shorter operand is converted to the
|
|
// type of the longer, and that is the type of the result. This corresponds
|
|
// to what is done when combining two real floating-point operands.
|
|
// The fun begins when size promotion occur across type domains.
|
|
// From H&S 6.3.4: When one operand is complex and the other is a real
|
|
// floating-point type, the less precise type is converted, within it's
|
|
// real or complex domain, to the precision of the other type. For example,
|
|
// when combining a "long double" with a "double _Complex", the
|
|
// "double _Complex" is promoted to "long double _Complex".
|
|
int result = Context.getFloatingTypeOrder(lhs, rhs);
|
|
|
|
if (result > 0) { // The left side is bigger, convert rhs.
|
|
rhs = Context.getFloatingTypeOfSizeWithinDomain(lhs, rhs);
|
|
} else if (result < 0) { // The right side is bigger, convert lhs.
|
|
lhs = Context.getFloatingTypeOfSizeWithinDomain(rhs, lhs);
|
|
}
|
|
// At this point, lhs and rhs have the same rank/size. Now, make sure the
|
|
// domains match. This is a requirement for our implementation, C99
|
|
// does not require this promotion.
|
|
if (lhs != rhs) { // Domains don't match, we have complex/float mix.
|
|
if (lhs->isRealFloatingType()) { // handle "double, _Complex double".
|
|
return rhs;
|
|
} else { // handle "_Complex double, double".
|
|
return lhs;
|
|
}
|
|
}
|
|
return lhs; // The domain/size match exactly.
|
|
}
|
|
// Now handle "real" floating types (i.e. float, double, long double).
|
|
if (lhs->isRealFloatingType() || rhs->isRealFloatingType()) {
|
|
// if we have an integer operand, the result is the real floating type.
|
|
if (rhs->isIntegerType()) {
|
|
// convert rhs to the lhs floating point type.
|
|
return lhs;
|
|
}
|
|
if (rhs->isComplexIntegerType()) {
|
|
// convert rhs to the complex floating point type.
|
|
return Context.getComplexType(lhs);
|
|
}
|
|
if (lhs->isIntegerType()) {
|
|
// convert lhs to the rhs floating point type.
|
|
return rhs;
|
|
}
|
|
if (lhs->isComplexIntegerType()) {
|
|
// convert lhs to the complex floating point type.
|
|
return Context.getComplexType(rhs);
|
|
}
|
|
// We have two real floating types, float/complex combos were handled above.
|
|
// Convert the smaller operand to the bigger result.
|
|
int result = Context.getFloatingTypeOrder(lhs, rhs);
|
|
if (result > 0) // convert the rhs
|
|
return lhs;
|
|
assert(result < 0 && "illegal float comparison");
|
|
return rhs; // convert the lhs
|
|
}
|
|
if (lhs->isComplexIntegerType() || rhs->isComplexIntegerType()) {
|
|
// Handle GCC complex int extension.
|
|
const ComplexType *lhsComplexInt = lhs->getAsComplexIntegerType();
|
|
const ComplexType *rhsComplexInt = rhs->getAsComplexIntegerType();
|
|
|
|
if (lhsComplexInt && rhsComplexInt) {
|
|
if (Context.getIntegerTypeOrder(lhsComplexInt->getElementType(),
|
|
rhsComplexInt->getElementType()) >= 0)
|
|
return lhs; // convert the rhs
|
|
return rhs;
|
|
} else if (lhsComplexInt && rhs->isIntegerType()) {
|
|
// convert the rhs to the lhs complex type.
|
|
return lhs;
|
|
} else if (rhsComplexInt && lhs->isIntegerType()) {
|
|
// convert the lhs to the rhs complex type.
|
|
return rhs;
|
|
}
|
|
}
|
|
// Finally, we have two differing integer types.
|
|
// The rules for this case are in C99 6.3.1.8
|
|
int compare = Context.getIntegerTypeOrder(lhs, rhs);
|
|
bool lhsSigned = lhs->isSignedIntegerType(),
|
|
rhsSigned = rhs->isSignedIntegerType();
|
|
QualType destType;
|
|
if (lhsSigned == rhsSigned) {
|
|
// Same signedness; use the higher-ranked type
|
|
destType = compare >= 0 ? lhs : rhs;
|
|
} else if (compare != (lhsSigned ? 1 : -1)) {
|
|
// The unsigned type has greater than or equal rank to the
|
|
// signed type, so use the unsigned type
|
|
destType = lhsSigned ? rhs : lhs;
|
|
} else if (Context.getIntWidth(lhs) != Context.getIntWidth(rhs)) {
|
|
// The two types are different widths; if we are here, that
|
|
// means the signed type is larger than the unsigned type, so
|
|
// use the signed type.
|
|
destType = lhsSigned ? lhs : rhs;
|
|
} else {
|
|
// The signed type is higher-ranked than the unsigned type,
|
|
// but isn't actually any bigger (like unsigned int and long
|
|
// on most 32-bit systems). Use the unsigned type corresponding
|
|
// to the signed type.
|
|
destType = Context.getCorrespondingUnsignedType(lhsSigned ? lhs : rhs);
|
|
}
|
|
return destType;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Semantic Analysis for various Expression Types
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
/// ActOnStringLiteral - The specified tokens were lexed as pasted string
|
|
/// fragments (e.g. "foo" "bar" L"baz"). The result string has to handle string
|
|
/// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
|
|
/// multiple tokens. However, the common case is that StringToks points to one
|
|
/// string.
|
|
///
|
|
Action::OwningExprResult
|
|
Sema::ActOnStringLiteral(const Token *StringToks, unsigned NumStringToks) {
|
|
assert(NumStringToks && "Must have at least one string!");
|
|
|
|
StringLiteralParser Literal(StringToks, NumStringToks, PP);
|
|
if (Literal.hadError)
|
|
return ExprError();
|
|
|
|
llvm::SmallVector<SourceLocation, 4> StringTokLocs;
|
|
for (unsigned i = 0; i != NumStringToks; ++i)
|
|
StringTokLocs.push_back(StringToks[i].getLocation());
|
|
|
|
QualType StrTy = Context.CharTy;
|
|
if (Literal.AnyWide) StrTy = Context.getWCharType();
|
|
if (Literal.Pascal) StrTy = Context.UnsignedCharTy;
|
|
|
|
// A C++ string literal has a const-qualified element type (C++ 2.13.4p1).
|
|
if (getLangOptions().CPlusPlus)
|
|
StrTy.addConst();
|
|
|
|
// Get an array type for the string, according to C99 6.4.5. This includes
|
|
// the nul terminator character as well as the string length for pascal
|
|
// strings.
|
|
StrTy = Context.getConstantArrayType(StrTy,
|
|
llvm::APInt(32, Literal.GetNumStringChars()+1),
|
|
ArrayType::Normal, 0);
|
|
|
|
// Pass &StringTokLocs[0], StringTokLocs.size() to factory!
|
|
return Owned(StringLiteral::Create(Context, Literal.GetString(),
|
|
Literal.GetStringLength(),
|
|
Literal.AnyWide, StrTy,
|
|
&StringTokLocs[0],
|
|
StringTokLocs.size()));
|
|
}
|
|
|
|
/// ShouldSnapshotBlockValueReference - Return true if a reference inside of
|
|
/// CurBlock to VD should cause it to be snapshotted (as we do for auto
|
|
/// variables defined outside the block) or false if this is not needed (e.g.
|
|
/// for values inside the block or for globals).
|
|
///
|
|
/// This also keeps the 'hasBlockDeclRefExprs' in the BlockSemaInfo records
|
|
/// up-to-date.
|
|
///
|
|
static bool ShouldSnapshotBlockValueReference(BlockSemaInfo *CurBlock,
|
|
ValueDecl *VD) {
|
|
// If the value is defined inside the block, we couldn't snapshot it even if
|
|
// we wanted to.
|
|
if (CurBlock->TheDecl == VD->getDeclContext())
|
|
return false;
|
|
|
|
// If this is an enum constant or function, it is constant, don't snapshot.
|
|
if (isa<EnumConstantDecl>(VD) || isa<FunctionDecl>(VD))
|
|
return false;
|
|
|
|
// If this is a reference to an extern, static, or global variable, no need to
|
|
// snapshot it.
|
|
// FIXME: What about 'const' variables in C++?
|
|
if (const VarDecl *Var = dyn_cast<VarDecl>(VD))
|
|
if (!Var->hasLocalStorage())
|
|
return false;
|
|
|
|
// Blocks that have these can't be constant.
|
|
CurBlock->hasBlockDeclRefExprs = true;
|
|
|
|
// If we have nested blocks, the decl may be declared in an outer block (in
|
|
// which case that outer block doesn't get "hasBlockDeclRefExprs") or it may
|
|
// be defined outside all of the current blocks (in which case the blocks do
|
|
// all get the bit). Walk the nesting chain.
|
|
for (BlockSemaInfo *NextBlock = CurBlock->PrevBlockInfo; NextBlock;
|
|
NextBlock = NextBlock->PrevBlockInfo) {
|
|
// If we found the defining block for the variable, don't mark the block as
|
|
// having a reference outside it.
|
|
if (NextBlock->TheDecl == VD->getDeclContext())
|
|
break;
|
|
|
|
// Otherwise, the DeclRef from the inner block causes the outer one to need
|
|
// a snapshot as well.
|
|
NextBlock->hasBlockDeclRefExprs = true;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
|
|
/// ActOnIdentifierExpr - The parser read an identifier in expression context,
|
|
/// validate it per-C99 6.5.1. HasTrailingLParen indicates whether this
|
|
/// identifier is used in a function call context.
|
|
/// SS is only used for a C++ qualified-id (foo::bar) to indicate the
|
|
/// class or namespace that the identifier must be a member of.
|
|
Sema::OwningExprResult Sema::ActOnIdentifierExpr(Scope *S, SourceLocation Loc,
|
|
IdentifierInfo &II,
|
|
bool HasTrailingLParen,
|
|
const CXXScopeSpec *SS,
|
|
bool isAddressOfOperand) {
|
|
return ActOnDeclarationNameExpr(S, Loc, &II, HasTrailingLParen, SS,
|
|
isAddressOfOperand);
|
|
}
|
|
|
|
/// BuildDeclRefExpr - Build either a DeclRefExpr or a
|
|
/// QualifiedDeclRefExpr based on whether or not SS is a
|
|
/// nested-name-specifier.
|
|
Sema::OwningExprResult
|
|
Sema::BuildDeclRefExpr(NamedDecl *D, QualType Ty, SourceLocation Loc,
|
|
bool TypeDependent, bool ValueDependent,
|
|
const CXXScopeSpec *SS) {
|
|
if (Context.getCanonicalType(Ty) == Context.UndeducedAutoTy) {
|
|
Diag(Loc,
|
|
diag::err_auto_variable_cannot_appear_in_own_initializer)
|
|
<< D->getDeclName();
|
|
return ExprError();
|
|
}
|
|
|
|
if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
|
|
if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
|
|
if (const FunctionDecl *FD = MD->getParent()->isLocalClass()) {
|
|
if (VD->hasLocalStorage() && VD->getDeclContext() != CurContext) {
|
|
Diag(Loc, diag::err_reference_to_local_var_in_enclosing_function)
|
|
<< D->getIdentifier() << FD->getDeclName();
|
|
Diag(D->getLocation(), diag::note_local_variable_declared_here)
|
|
<< D->getIdentifier();
|
|
return ExprError();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
MarkDeclarationReferenced(Loc, D);
|
|
|
|
Expr *E;
|
|
if (SS && !SS->isEmpty()) {
|
|
E = new (Context) QualifiedDeclRefExpr(D, Ty, Loc, TypeDependent,
|
|
ValueDependent, SS->getRange(),
|
|
static_cast<NestedNameSpecifier *>(SS->getScopeRep()));
|
|
} else
|
|
E = new (Context) DeclRefExpr(D, Ty, Loc, TypeDependent, ValueDependent);
|
|
|
|
return Owned(E);
|
|
}
|
|
|
|
/// getObjectForAnonymousRecordDecl - Retrieve the (unnamed) field or
|
|
/// variable corresponding to the anonymous union or struct whose type
|
|
/// is Record.
|
|
static Decl *getObjectForAnonymousRecordDecl(ASTContext &Context,
|
|
RecordDecl *Record) {
|
|
assert(Record->isAnonymousStructOrUnion() &&
|
|
"Record must be an anonymous struct or union!");
|
|
|
|
// FIXME: Once Decls are directly linked together, this will be an O(1)
|
|
// operation rather than a slow walk through DeclContext's vector (which
|
|
// itself will be eliminated). DeclGroups might make this even better.
|
|
DeclContext *Ctx = Record->getDeclContext();
|
|
for (DeclContext::decl_iterator D = Ctx->decls_begin(),
|
|
DEnd = Ctx->decls_end();
|
|
D != DEnd; ++D) {
|
|
if (*D == Record) {
|
|
// The object for the anonymous struct/union directly
|
|
// follows its type in the list of declarations.
|
|
++D;
|
|
assert(D != DEnd && "Missing object for anonymous record");
|
|
assert(!cast<NamedDecl>(*D)->getDeclName() && "Decl should be unnamed");
|
|
return *D;
|
|
}
|
|
}
|
|
|
|
assert(false && "Missing object for anonymous record");
|
|
return 0;
|
|
}
|
|
|
|
/// \brief Given a field that represents a member of an anonymous
|
|
/// struct/union, build the path from that field's context to the
|
|
/// actual member.
|
|
///
|
|
/// Construct the sequence of field member references we'll have to
|
|
/// perform to get to the field in the anonymous union/struct. The
|
|
/// list of members is built from the field outward, so traverse it
|
|
/// backwards to go from an object in the current context to the field
|
|
/// we found.
|
|
///
|
|
/// \returns The variable from which the field access should begin,
|
|
/// for an anonymous struct/union that is not a member of another
|
|
/// class. Otherwise, returns NULL.
|
|
VarDecl *Sema::BuildAnonymousStructUnionMemberPath(FieldDecl *Field,
|
|
llvm::SmallVectorImpl<FieldDecl *> &Path) {
|
|
assert(Field->getDeclContext()->isRecord() &&
|
|
cast<RecordDecl>(Field->getDeclContext())->isAnonymousStructOrUnion()
|
|
&& "Field must be stored inside an anonymous struct or union");
|
|
|
|
Path.push_back(Field);
|
|
VarDecl *BaseObject = 0;
|
|
DeclContext *Ctx = Field->getDeclContext();
|
|
do {
|
|
RecordDecl *Record = cast<RecordDecl>(Ctx);
|
|
Decl *AnonObject = getObjectForAnonymousRecordDecl(Context, Record);
|
|
if (FieldDecl *AnonField = dyn_cast<FieldDecl>(AnonObject))
|
|
Path.push_back(AnonField);
|
|
else {
|
|
BaseObject = cast<VarDecl>(AnonObject);
|
|
break;
|
|
}
|
|
Ctx = Ctx->getParent();
|
|
} while (Ctx->isRecord() &&
|
|
cast<RecordDecl>(Ctx)->isAnonymousStructOrUnion());
|
|
|
|
return BaseObject;
|
|
}
|
|
|
|
Sema::OwningExprResult
|
|
Sema::BuildAnonymousStructUnionMemberReference(SourceLocation Loc,
|
|
FieldDecl *Field,
|
|
Expr *BaseObjectExpr,
|
|
SourceLocation OpLoc) {
|
|
llvm::SmallVector<FieldDecl *, 4> AnonFields;
|
|
VarDecl *BaseObject = BuildAnonymousStructUnionMemberPath(Field,
|
|
AnonFields);
|
|
|
|
// Build the expression that refers to the base object, from
|
|
// which we will build a sequence of member references to each
|
|
// of the anonymous union objects and, eventually, the field we
|
|
// found via name lookup.
|
|
bool BaseObjectIsPointer = false;
|
|
unsigned ExtraQuals = 0;
|
|
if (BaseObject) {
|
|
// BaseObject is an anonymous struct/union variable (and is,
|
|
// therefore, not part of another non-anonymous record).
|
|
if (BaseObjectExpr) BaseObjectExpr->Destroy(Context);
|
|
MarkDeclarationReferenced(Loc, BaseObject);
|
|
BaseObjectExpr = new (Context) DeclRefExpr(BaseObject,BaseObject->getType(),
|
|
SourceLocation());
|
|
ExtraQuals
|
|
= Context.getCanonicalType(BaseObject->getType()).getCVRQualifiers();
|
|
} else if (BaseObjectExpr) {
|
|
// The caller provided the base object expression. Determine
|
|
// whether its a pointer and whether it adds any qualifiers to the
|
|
// anonymous struct/union fields we're looking into.
|
|
QualType ObjectType = BaseObjectExpr->getType();
|
|
if (const PointerType *ObjectPtr = ObjectType->getAsPointerType()) {
|
|
BaseObjectIsPointer = true;
|
|
ObjectType = ObjectPtr->getPointeeType();
|
|
}
|
|
ExtraQuals = Context.getCanonicalType(ObjectType).getCVRQualifiers();
|
|
} else {
|
|
// We've found a member of an anonymous struct/union that is
|
|
// inside a non-anonymous struct/union, so in a well-formed
|
|
// program our base object expression is "this".
|
|
if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
|
|
if (!MD->isStatic()) {
|
|
QualType AnonFieldType
|
|
= Context.getTagDeclType(
|
|
cast<RecordDecl>(AnonFields.back()->getDeclContext()));
|
|
QualType ThisType = Context.getTagDeclType(MD->getParent());
|
|
if ((Context.getCanonicalType(AnonFieldType)
|
|
== Context.getCanonicalType(ThisType)) ||
|
|
IsDerivedFrom(ThisType, AnonFieldType)) {
|
|
// Our base object expression is "this".
|
|
BaseObjectExpr = new (Context) CXXThisExpr(SourceLocation(),
|
|
MD->getThisType(Context));
|
|
BaseObjectIsPointer = true;
|
|
}
|
|
} else {
|
|
return ExprError(Diag(Loc,diag::err_invalid_member_use_in_static_method)
|
|
<< Field->getDeclName());
|
|
}
|
|
ExtraQuals = MD->getTypeQualifiers();
|
|
}
|
|
|
|
if (!BaseObjectExpr)
|
|
return ExprError(Diag(Loc, diag::err_invalid_non_static_member_use)
|
|
<< Field->getDeclName());
|
|
}
|
|
|
|
// Build the implicit member references to the field of the
|
|
// anonymous struct/union.
|
|
Expr *Result = BaseObjectExpr;
|
|
unsigned BaseAddrSpace = BaseObjectExpr->getType().getAddressSpace();
|
|
for (llvm::SmallVector<FieldDecl *, 4>::reverse_iterator
|
|
FI = AnonFields.rbegin(), FIEnd = AnonFields.rend();
|
|
FI != FIEnd; ++FI) {
|
|
QualType MemberType = (*FI)->getType();
|
|
if (!(*FI)->isMutable()) {
|
|
unsigned combinedQualifiers
|
|
= MemberType.getCVRQualifiers() | ExtraQuals;
|
|
MemberType = MemberType.getQualifiedType(combinedQualifiers);
|
|
}
|
|
if (BaseAddrSpace != MemberType.getAddressSpace())
|
|
MemberType = Context.getAddrSpaceQualType(MemberType, BaseAddrSpace);
|
|
MarkDeclarationReferenced(Loc, *FI);
|
|
Result = new (Context) MemberExpr(Result, BaseObjectIsPointer, *FI,
|
|
OpLoc, MemberType);
|
|
BaseObjectIsPointer = false;
|
|
ExtraQuals = Context.getCanonicalType(MemberType).getCVRQualifiers();
|
|
}
|
|
|
|
return Owned(Result);
|
|
}
|
|
|
|
/// ActOnDeclarationNameExpr - The parser has read some kind of name
|
|
/// (e.g., a C++ id-expression (C++ [expr.prim]p1)). This routine
|
|
/// performs lookup on that name and returns an expression that refers
|
|
/// to that name. This routine isn't directly called from the parser,
|
|
/// because the parser doesn't know about DeclarationName. Rather,
|
|
/// this routine is called by ActOnIdentifierExpr,
|
|
/// ActOnOperatorFunctionIdExpr, and ActOnConversionFunctionExpr,
|
|
/// which form the DeclarationName from the corresponding syntactic
|
|
/// forms.
|
|
///
|
|
/// HasTrailingLParen indicates whether this identifier is used in a
|
|
/// function call context. LookupCtx is only used for a C++
|
|
/// qualified-id (foo::bar) to indicate the class or namespace that
|
|
/// the identifier must be a member of.
|
|
///
|
|
/// isAddressOfOperand means that this expression is the direct operand
|
|
/// of an address-of operator. This matters because this is the only
|
|
/// situation where a qualified name referencing a non-static member may
|
|
/// appear outside a member function of this class.
|
|
Sema::OwningExprResult
|
|
Sema::ActOnDeclarationNameExpr(Scope *S, SourceLocation Loc,
|
|
DeclarationName Name, bool HasTrailingLParen,
|
|
const CXXScopeSpec *SS,
|
|
bool isAddressOfOperand) {
|
|
// Could be enum-constant, value decl, instance variable, etc.
|
|
if (SS && SS->isInvalid())
|
|
return ExprError();
|
|
|
|
// C++ [temp.dep.expr]p3:
|
|
// An id-expression is type-dependent if it contains:
|
|
// -- a nested-name-specifier that contains a class-name that
|
|
// names a dependent type.
|
|
// FIXME: Member of the current instantiation.
|
|
if (SS && isDependentScopeSpecifier(*SS)) {
|
|
return Owned(new (Context) UnresolvedDeclRefExpr(Name, Context.DependentTy,
|
|
Loc, SS->getRange(),
|
|
static_cast<NestedNameSpecifier *>(SS->getScopeRep()),
|
|
isAddressOfOperand));
|
|
}
|
|
|
|
LookupResult Lookup = LookupParsedName(S, SS, Name, LookupOrdinaryName,
|
|
false, true, Loc);
|
|
|
|
if (Lookup.isAmbiguous()) {
|
|
DiagnoseAmbiguousLookup(Lookup, Name, Loc,
|
|
SS && SS->isSet() ? SS->getRange()
|
|
: SourceRange());
|
|
return ExprError();
|
|
}
|
|
|
|
NamedDecl *D = Lookup.getAsDecl();
|
|
|
|
// If this reference is in an Objective-C method, then ivar lookup happens as
|
|
// well.
|
|
IdentifierInfo *II = Name.getAsIdentifierInfo();
|
|
if (II && getCurMethodDecl()) {
|
|
// There are two cases to handle here. 1) scoped lookup could have failed,
|
|
// in which case we should look for an ivar. 2) scoped lookup could have
|
|
// found a decl, but that decl is outside the current instance method (i.e.
|
|
// a global variable). In these two cases, we do a lookup for an ivar with
|
|
// this name, if the lookup sucedes, we replace it our current decl.
|
|
if (D == 0 || D->isDefinedOutsideFunctionOrMethod()) {
|
|
ObjCInterfaceDecl *IFace = getCurMethodDecl()->getClassInterface();
|
|
ObjCInterfaceDecl *ClassDeclared;
|
|
if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
|
|
// Check if referencing a field with __attribute__((deprecated)).
|
|
if (DiagnoseUseOfDecl(IV, Loc))
|
|
return ExprError();
|
|
|
|
// If we're referencing an invalid decl, just return this as a silent
|
|
// error node. The error diagnostic was already emitted on the decl.
|
|
if (IV->isInvalidDecl())
|
|
return ExprError();
|
|
|
|
bool IsClsMethod = getCurMethodDecl()->isClassMethod();
|
|
// If a class method attemps to use a free standing ivar, this is
|
|
// an error.
|
|
if (IsClsMethod && D && !D->isDefinedOutsideFunctionOrMethod())
|
|
return ExprError(Diag(Loc, diag::error_ivar_use_in_class_method)
|
|
<< IV->getDeclName());
|
|
// If a class method uses a global variable, even if an ivar with
|
|
// same name exists, use the global.
|
|
if (!IsClsMethod) {
|
|
if (IV->getAccessControl() == ObjCIvarDecl::Private &&
|
|
ClassDeclared != IFace)
|
|
Diag(Loc, diag::error_private_ivar_access) << IV->getDeclName();
|
|
// FIXME: This should use a new expr for a direct reference, don't
|
|
// turn this into Self->ivar, just return a BareIVarExpr or something.
|
|
IdentifierInfo &II = Context.Idents.get("self");
|
|
OwningExprResult SelfExpr = ActOnIdentifierExpr(S, SourceLocation(),
|
|
II, false);
|
|
MarkDeclarationReferenced(Loc, IV);
|
|
return Owned(new (Context)
|
|
ObjCIvarRefExpr(IV, IV->getType(), Loc,
|
|
SelfExpr.takeAs<Expr>(), true, true));
|
|
}
|
|
}
|
|
}
|
|
else if (getCurMethodDecl()->isInstanceMethod()) {
|
|
// We should warn if a local variable hides an ivar.
|
|
ObjCInterfaceDecl *IFace = getCurMethodDecl()->getClassInterface();
|
|
ObjCInterfaceDecl *ClassDeclared;
|
|
if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
|
|
if (IV->getAccessControl() != ObjCIvarDecl::Private ||
|
|
IFace == ClassDeclared)
|
|
Diag(Loc, diag::warn_ivar_use_hidden) << IV->getDeclName();
|
|
}
|
|
}
|
|
// Needed to implement property "super.method" notation.
|
|
if (D == 0 && II->isStr("super")) {
|
|
QualType T;
|
|
|
|
if (getCurMethodDecl()->isInstanceMethod())
|
|
T = Context.getObjCObjectPointerType(Context.getObjCInterfaceType(
|
|
getCurMethodDecl()->getClassInterface()));
|
|
else
|
|
T = Context.getObjCClassType();
|
|
return Owned(new (Context) ObjCSuperExpr(Loc, T));
|
|
}
|
|
}
|
|
|
|
// Determine whether this name might be a candidate for
|
|
// argument-dependent lookup.
|
|
bool ADL = getLangOptions().CPlusPlus && (!SS || !SS->isSet()) &&
|
|
HasTrailingLParen;
|
|
|
|
if (ADL && D == 0) {
|
|
// We've seen something of the form
|
|
//
|
|
// identifier(
|
|
//
|
|
// and we did not find any entity by the name
|
|
// "identifier". However, this identifier is still subject to
|
|
// argument-dependent lookup, so keep track of the name.
|
|
return Owned(new (Context) UnresolvedFunctionNameExpr(Name,
|
|
Context.OverloadTy,
|
|
Loc));
|
|
}
|
|
|
|
if (D == 0) {
|
|
// Otherwise, this could be an implicitly declared function reference (legal
|
|
// in C90, extension in C99).
|
|
if (HasTrailingLParen && II &&
|
|
!getLangOptions().CPlusPlus) // Not in C++.
|
|
D = ImplicitlyDefineFunction(Loc, *II, S);
|
|
else {
|
|
// If this name wasn't predeclared and if this is not a function call,
|
|
// diagnose the problem.
|
|
if (SS && !SS->isEmpty())
|
|
return ExprError(Diag(Loc, diag::err_typecheck_no_member)
|
|
<< Name << SS->getRange());
|
|
else if (Name.getNameKind() == DeclarationName::CXXOperatorName ||
|
|
Name.getNameKind() == DeclarationName::CXXConversionFunctionName)
|
|
return ExprError(Diag(Loc, diag::err_undeclared_use)
|
|
<< Name.getAsString());
|
|
else
|
|
return ExprError(Diag(Loc, diag::err_undeclared_var_use) << Name);
|
|
}
|
|
}
|
|
|
|
if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
|
|
// Warn about constructs like:
|
|
// if (void *X = foo()) { ... } else { X }.
|
|
// In the else block, the pointer is always false.
|
|
|
|
// FIXME: In a template instantiation, we don't have scope
|
|
// information to check this property.
|
|
if (Var->isDeclaredInCondition() && Var->getType()->isScalarType()) {
|
|
Scope *CheckS = S;
|
|
while (CheckS) {
|
|
if (CheckS->isWithinElse() &&
|
|
CheckS->getControlParent()->isDeclScope(DeclPtrTy::make(Var))) {
|
|
if (Var->getType()->isBooleanType())
|
|
ExprError(Diag(Loc, diag::warn_value_always_false)
|
|
<< Var->getDeclName());
|
|
else
|
|
ExprError(Diag(Loc, diag::warn_value_always_zero)
|
|
<< Var->getDeclName());
|
|
break;
|
|
}
|
|
|
|
// Move up one more control parent to check again.
|
|
CheckS = CheckS->getControlParent();
|
|
if (CheckS)
|
|
CheckS = CheckS->getParent();
|
|
}
|
|
}
|
|
} else if (FunctionDecl *Func = dyn_cast<FunctionDecl>(D)) {
|
|
if (!getLangOptions().CPlusPlus && !Func->hasPrototype()) {
|
|
// C99 DR 316 says that, if a function type comes from a
|
|
// function definition (without a prototype), that type is only
|
|
// used for checking compatibility. Therefore, when referencing
|
|
// the function, we pretend that we don't have the full function
|
|
// type.
|
|
if (DiagnoseUseOfDecl(Func, Loc))
|
|
return ExprError();
|
|
|
|
QualType T = Func->getType();
|
|
QualType NoProtoType = T;
|
|
if (const FunctionProtoType *Proto = T->getAsFunctionProtoType())
|
|
NoProtoType = Context.getFunctionNoProtoType(Proto->getResultType());
|
|
return BuildDeclRefExpr(Func, NoProtoType, Loc, false, false, SS);
|
|
}
|
|
}
|
|
|
|
return BuildDeclarationNameExpr(Loc, D, HasTrailingLParen, SS, isAddressOfOperand);
|
|
}
|
|
|
|
/// \brief Complete semantic analysis for a reference to the given declaration.
|
|
Sema::OwningExprResult
|
|
Sema::BuildDeclarationNameExpr(SourceLocation Loc, NamedDecl *D,
|
|
bool HasTrailingLParen,
|
|
const CXXScopeSpec *SS,
|
|
bool isAddressOfOperand) {
|
|
assert(D && "Cannot refer to a NULL declaration");
|
|
DeclarationName Name = D->getDeclName();
|
|
|
|
// If this is an expression of the form &Class::member, don't build an
|
|
// implicit member ref, because we want a pointer to the member in general,
|
|
// not any specific instance's member.
|
|
if (isAddressOfOperand && SS && !SS->isEmpty() && !HasTrailingLParen) {
|
|
DeclContext *DC = computeDeclContext(*SS);
|
|
if (D && isa<CXXRecordDecl>(DC)) {
|
|
QualType DType;
|
|
if (FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
|
|
DType = FD->getType().getNonReferenceType();
|
|
} else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
|
|
DType = Method->getType();
|
|
} else if (isa<OverloadedFunctionDecl>(D)) {
|
|
DType = Context.OverloadTy;
|
|
}
|
|
// Could be an inner type. That's diagnosed below, so ignore it here.
|
|
if (!DType.isNull()) {
|
|
// The pointer is type- and value-dependent if it points into something
|
|
// dependent.
|
|
bool Dependent = DC->isDependentContext();
|
|
return BuildDeclRefExpr(D, DType, Loc, Dependent, Dependent, SS);
|
|
}
|
|
}
|
|
}
|
|
|
|
// We may have found a field within an anonymous union or struct
|
|
// (C++ [class.union]).
|
|
if (FieldDecl *FD = dyn_cast<FieldDecl>(D))
|
|
if (cast<RecordDecl>(FD->getDeclContext())->isAnonymousStructOrUnion())
|
|
return BuildAnonymousStructUnionMemberReference(Loc, FD);
|
|
|
|
if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
|
|
if (!MD->isStatic()) {
|
|
// C++ [class.mfct.nonstatic]p2:
|
|
// [...] if name lookup (3.4.1) resolves the name in the
|
|
// id-expression to a nonstatic nontype member of class X or of
|
|
// a base class of X, the id-expression is transformed into a
|
|
// class member access expression (5.2.5) using (*this) (9.3.2)
|
|
// as the postfix-expression to the left of the '.' operator.
|
|
DeclContext *Ctx = 0;
|
|
QualType MemberType;
|
|
if (FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
|
|
Ctx = FD->getDeclContext();
|
|
MemberType = FD->getType();
|
|
|
|
if (const ReferenceType *RefType = MemberType->getAsReferenceType())
|
|
MemberType = RefType->getPointeeType();
|
|
else if (!FD->isMutable()) {
|
|
unsigned combinedQualifiers
|
|
= MemberType.getCVRQualifiers() | MD->getTypeQualifiers();
|
|
MemberType = MemberType.getQualifiedType(combinedQualifiers);
|
|
}
|
|
} else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
|
|
if (!Method->isStatic()) {
|
|
Ctx = Method->getParent();
|
|
MemberType = Method->getType();
|
|
}
|
|
} else if (OverloadedFunctionDecl *Ovl
|
|
= dyn_cast<OverloadedFunctionDecl>(D)) {
|
|
for (OverloadedFunctionDecl::function_iterator
|
|
Func = Ovl->function_begin(),
|
|
FuncEnd = Ovl->function_end();
|
|
Func != FuncEnd; ++Func) {
|
|
if (CXXMethodDecl *DMethod = dyn_cast<CXXMethodDecl>(*Func))
|
|
if (!DMethod->isStatic()) {
|
|
Ctx = Ovl->getDeclContext();
|
|
MemberType = Context.OverloadTy;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (Ctx && Ctx->isRecord()) {
|
|
QualType CtxType = Context.getTagDeclType(cast<CXXRecordDecl>(Ctx));
|
|
QualType ThisType = Context.getTagDeclType(MD->getParent());
|
|
if ((Context.getCanonicalType(CtxType)
|
|
== Context.getCanonicalType(ThisType)) ||
|
|
IsDerivedFrom(ThisType, CtxType)) {
|
|
// Build the implicit member access expression.
|
|
Expr *This = new (Context) CXXThisExpr(SourceLocation(),
|
|
MD->getThisType(Context));
|
|
MarkDeclarationReferenced(Loc, D);
|
|
return Owned(new (Context) MemberExpr(This, true, D,
|
|
Loc, MemberType));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
|
|
if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
|
|
if (MD->isStatic())
|
|
// "invalid use of member 'x' in static member function"
|
|
return ExprError(Diag(Loc,diag::err_invalid_member_use_in_static_method)
|
|
<< FD->getDeclName());
|
|
}
|
|
|
|
// Any other ways we could have found the field in a well-formed
|
|
// program would have been turned into implicit member expressions
|
|
// above.
|
|
return ExprError(Diag(Loc, diag::err_invalid_non_static_member_use)
|
|
<< FD->getDeclName());
|
|
}
|
|
|
|
if (isa<TypedefDecl>(D))
|
|
return ExprError(Diag(Loc, diag::err_unexpected_typedef) << Name);
|
|
if (isa<ObjCInterfaceDecl>(D))
|
|
return ExprError(Diag(Loc, diag::err_unexpected_interface) << Name);
|
|
if (isa<NamespaceDecl>(D))
|
|
return ExprError(Diag(Loc, diag::err_unexpected_namespace) << Name);
|
|
|
|
// Make the DeclRefExpr or BlockDeclRefExpr for the decl.
|
|
if (OverloadedFunctionDecl *Ovl = dyn_cast<OverloadedFunctionDecl>(D))
|
|
return BuildDeclRefExpr(Ovl, Context.OverloadTy, Loc,
|
|
false, false, SS);
|
|
else if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
|
|
return BuildDeclRefExpr(Template, Context.OverloadTy, Loc,
|
|
false, false, SS);
|
|
ValueDecl *VD = cast<ValueDecl>(D);
|
|
|
|
// Check whether this declaration can be used. Note that we suppress
|
|
// this check when we're going to perform argument-dependent lookup
|
|
// on this function name, because this might not be the function
|
|
// that overload resolution actually selects.
|
|
bool ADL = getLangOptions().CPlusPlus && (!SS || !SS->isSet()) &&
|
|
HasTrailingLParen;
|
|
if (!(ADL && isa<FunctionDecl>(VD)) && DiagnoseUseOfDecl(VD, Loc))
|
|
return ExprError();
|
|
|
|
// Only create DeclRefExpr's for valid Decl's.
|
|
if (VD->isInvalidDecl())
|
|
return ExprError();
|
|
|
|
// If the identifier reference is inside a block, and it refers to a value
|
|
// that is outside the block, create a BlockDeclRefExpr instead of a
|
|
// DeclRefExpr. This ensures the value is treated as a copy-in snapshot when
|
|
// the block is formed.
|
|
//
|
|
// We do not do this for things like enum constants, global variables, etc,
|
|
// as they do not get snapshotted.
|
|
//
|
|
if (CurBlock && ShouldSnapshotBlockValueReference(CurBlock, VD)) {
|
|
MarkDeclarationReferenced(Loc, VD);
|
|
QualType ExprTy = VD->getType().getNonReferenceType();
|
|
// The BlocksAttr indicates the variable is bound by-reference.
|
|
if (VD->getAttr<BlocksAttr>())
|
|
return Owned(new (Context) BlockDeclRefExpr(VD, ExprTy, Loc, true));
|
|
// This is to record that a 'const' was actually synthesize and added.
|
|
bool constAdded = !ExprTy.isConstQualified();
|
|
// Variable will be bound by-copy, make it const within the closure.
|
|
|
|
ExprTy.addConst();
|
|
return Owned(new (Context) BlockDeclRefExpr(VD, ExprTy, Loc, false,
|
|
constAdded));
|
|
}
|
|
// If this reference is not in a block or if the referenced variable is
|
|
// within the block, create a normal DeclRefExpr.
|
|
|
|
bool TypeDependent = false;
|
|
bool ValueDependent = false;
|
|
if (getLangOptions().CPlusPlus) {
|
|
// C++ [temp.dep.expr]p3:
|
|
// An id-expression is type-dependent if it contains:
|
|
// - an identifier that was declared with a dependent type,
|
|
if (VD->getType()->isDependentType())
|
|
TypeDependent = true;
|
|
// - FIXME: a template-id that is dependent,
|
|
// - a conversion-function-id that specifies a dependent type,
|
|
else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName &&
|
|
Name.getCXXNameType()->isDependentType())
|
|
TypeDependent = true;
|
|
// - a nested-name-specifier that contains a class-name that
|
|
// names a dependent type.
|
|
else if (SS && !SS->isEmpty()) {
|
|
for (DeclContext *DC = computeDeclContext(*SS);
|
|
DC; DC = DC->getParent()) {
|
|
// FIXME: could stop early at namespace scope.
|
|
if (DC->isRecord()) {
|
|
CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
|
|
if (Context.getTypeDeclType(Record)->isDependentType()) {
|
|
TypeDependent = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// C++ [temp.dep.constexpr]p2:
|
|
//
|
|
// An identifier is value-dependent if it is:
|
|
// - a name declared with a dependent type,
|
|
if (TypeDependent)
|
|
ValueDependent = true;
|
|
// - the name of a non-type template parameter,
|
|
else if (isa<NonTypeTemplateParmDecl>(VD))
|
|
ValueDependent = true;
|
|
// - a constant with integral or enumeration type and is
|
|
// initialized with an expression that is value-dependent
|
|
else if (const VarDecl *Dcl = dyn_cast<VarDecl>(VD)) {
|
|
if (Dcl->getType().getCVRQualifiers() == QualType::Const &&
|
|
Dcl->getInit()) {
|
|
ValueDependent = Dcl->getInit()->isValueDependent();
|
|
}
|
|
}
|
|
}
|
|
|
|
return BuildDeclRefExpr(VD, VD->getType().getNonReferenceType(), Loc,
|
|
TypeDependent, ValueDependent, SS);
|
|
}
|
|
|
|
Sema::OwningExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc,
|
|
tok::TokenKind Kind) {
|
|
PredefinedExpr::IdentType IT;
|
|
|
|
switch (Kind) {
|
|
default: assert(0 && "Unknown simple primary expr!");
|
|
case tok::kw___func__: IT = PredefinedExpr::Func; break; // [C99 6.4.2.2]
|
|
case tok::kw___FUNCTION__: IT = PredefinedExpr::Function; break;
|
|
case tok::kw___PRETTY_FUNCTION__: IT = PredefinedExpr::PrettyFunction; break;
|
|
}
|
|
|
|
// Pre-defined identifiers are of type char[x], where x is the length of the
|
|
// string.
|
|
unsigned Length;
|
|
if (FunctionDecl *FD = getCurFunctionDecl())
|
|
Length = FD->getIdentifier()->getLength();
|
|
else if (ObjCMethodDecl *MD = getCurMethodDecl())
|
|
Length = MD->getSynthesizedMethodSize();
|
|
else {
|
|
Diag(Loc, diag::ext_predef_outside_function);
|
|
// __PRETTY_FUNCTION__ -> "top level", the others produce an empty string.
|
|
Length = IT == PredefinedExpr::PrettyFunction ? strlen("top level") : 0;
|
|
}
|
|
|
|
|
|
llvm::APInt LengthI(32, Length + 1);
|
|
QualType ResTy = Context.CharTy.getQualifiedType(QualType::Const);
|
|
ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal, 0);
|
|
return Owned(new (Context) PredefinedExpr(Loc, ResTy, IT));
|
|
}
|
|
|
|
Sema::OwningExprResult Sema::ActOnCharacterConstant(const Token &Tok) {
|
|
llvm::SmallString<16> CharBuffer;
|
|
CharBuffer.resize(Tok.getLength());
|
|
const char *ThisTokBegin = &CharBuffer[0];
|
|
unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin);
|
|
|
|
CharLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
|
|
Tok.getLocation(), PP);
|
|
if (Literal.hadError())
|
|
return ExprError();
|
|
|
|
QualType type = getLangOptions().CPlusPlus ? Context.CharTy : Context.IntTy;
|
|
|
|
return Owned(new (Context) CharacterLiteral(Literal.getValue(),
|
|
Literal.isWide(),
|
|
type, Tok.getLocation()));
|
|
}
|
|
|
|
Action::OwningExprResult Sema::ActOnNumericConstant(const Token &Tok) {
|
|
// Fast path for a single digit (which is quite common). A single digit
|
|
// cannot have a trigraph, escaped newline, radix prefix, or type suffix.
|
|
if (Tok.getLength() == 1) {
|
|
const char Val = PP.getSpellingOfSingleCharacterNumericConstant(Tok);
|
|
unsigned IntSize = Context.Target.getIntWidth();
|
|
return Owned(new (Context) IntegerLiteral(llvm::APInt(IntSize, Val-'0'),
|
|
Context.IntTy, Tok.getLocation()));
|
|
}
|
|
|
|
llvm::SmallString<512> IntegerBuffer;
|
|
// Add padding so that NumericLiteralParser can overread by one character.
|
|
IntegerBuffer.resize(Tok.getLength()+1);
|
|
const char *ThisTokBegin = &IntegerBuffer[0];
|
|
|
|
// Get the spelling of the token, which eliminates trigraphs, etc.
|
|
unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin);
|
|
|
|
NumericLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
|
|
Tok.getLocation(), PP);
|
|
if (Literal.hadError)
|
|
return ExprError();
|
|
|
|
Expr *Res;
|
|
|
|
if (Literal.isFloatingLiteral()) {
|
|
QualType Ty;
|
|
if (Literal.isFloat)
|
|
Ty = Context.FloatTy;
|
|
else if (!Literal.isLong)
|
|
Ty = Context.DoubleTy;
|
|
else
|
|
Ty = Context.LongDoubleTy;
|
|
|
|
const llvm::fltSemantics &Format = Context.getFloatTypeSemantics(Ty);
|
|
|
|
// isExact will be set by GetFloatValue().
|
|
bool isExact = false;
|
|
llvm::APFloat Val = Literal.GetFloatValue(Format, &isExact);
|
|
Res = new (Context) FloatingLiteral(Val, isExact, Ty, Tok.getLocation());
|
|
|
|
} else if (!Literal.isIntegerLiteral()) {
|
|
return ExprError();
|
|
} else {
|
|
QualType Ty;
|
|
|
|
// long long is a C99 feature.
|
|
if (!getLangOptions().C99 && !getLangOptions().CPlusPlus0x &&
|
|
Literal.isLongLong)
|
|
Diag(Tok.getLocation(), diag::ext_longlong);
|
|
|
|
// Get the value in the widest-possible width.
|
|
llvm::APInt ResultVal(Context.Target.getIntMaxTWidth(), 0);
|
|
|
|
if (Literal.GetIntegerValue(ResultVal)) {
|
|
// If this value didn't fit into uintmax_t, warn and force to ull.
|
|
Diag(Tok.getLocation(), diag::warn_integer_too_large);
|
|
Ty = Context.UnsignedLongLongTy;
|
|
assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
|
|
"long long is not intmax_t?");
|
|
} else {
|
|
// If this value fits into a ULL, try to figure out what else it fits into
|
|
// according to the rules of C99 6.4.4.1p5.
|
|
|
|
// Octal, Hexadecimal, and integers with a U suffix are allowed to
|
|
// be an unsigned int.
|
|
bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
|
|
|
|
// Check from smallest to largest, picking the smallest type we can.
|
|
unsigned Width = 0;
|
|
if (!Literal.isLong && !Literal.isLongLong) {
|
|
// Are int/unsigned possibilities?
|
|
unsigned IntSize = Context.Target.getIntWidth();
|
|
|
|
// Does it fit in a unsigned int?
|
|
if (ResultVal.isIntN(IntSize)) {
|
|
// Does it fit in a signed int?
|
|
if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
|
|
Ty = Context.IntTy;
|
|
else if (AllowUnsigned)
|
|
Ty = Context.UnsignedIntTy;
|
|
Width = IntSize;
|
|
}
|
|
}
|
|
|
|
// Are long/unsigned long possibilities?
|
|
if (Ty.isNull() && !Literal.isLongLong) {
|
|
unsigned LongSize = Context.Target.getLongWidth();
|
|
|
|
// Does it fit in a unsigned long?
|
|
if (ResultVal.isIntN(LongSize)) {
|
|
// Does it fit in a signed long?
|
|
if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
|
|
Ty = Context.LongTy;
|
|
else if (AllowUnsigned)
|
|
Ty = Context.UnsignedLongTy;
|
|
Width = LongSize;
|
|
}
|
|
}
|
|
|
|
// Finally, check long long if needed.
|
|
if (Ty.isNull()) {
|
|
unsigned LongLongSize = Context.Target.getLongLongWidth();
|
|
|
|
// Does it fit in a unsigned long long?
|
|
if (ResultVal.isIntN(LongLongSize)) {
|
|
// Does it fit in a signed long long?
|
|
if (!Literal.isUnsigned && ResultVal[LongLongSize-1] == 0)
|
|
Ty = Context.LongLongTy;
|
|
else if (AllowUnsigned)
|
|
Ty = Context.UnsignedLongLongTy;
|
|
Width = LongLongSize;
|
|
}
|
|
}
|
|
|
|
// If we still couldn't decide a type, we probably have something that
|
|
// does not fit in a signed long long, but has no U suffix.
|
|
if (Ty.isNull()) {
|
|
Diag(Tok.getLocation(), diag::warn_integer_too_large_for_signed);
|
|
Ty = Context.UnsignedLongLongTy;
|
|
Width = Context.Target.getLongLongWidth();
|
|
}
|
|
|
|
if (ResultVal.getBitWidth() != Width)
|
|
ResultVal.trunc(Width);
|
|
}
|
|
Res = new (Context) IntegerLiteral(ResultVal, Ty, Tok.getLocation());
|
|
}
|
|
|
|
// If this is an imaginary literal, create the ImaginaryLiteral wrapper.
|
|
if (Literal.isImaginary)
|
|
Res = new (Context) ImaginaryLiteral(Res,
|
|
Context.getComplexType(Res->getType()));
|
|
|
|
return Owned(Res);
|
|
}
|
|
|
|
Action::OwningExprResult Sema::ActOnParenExpr(SourceLocation L,
|
|
SourceLocation R, ExprArg Val) {
|
|
Expr *E = Val.takeAs<Expr>();
|
|
assert((E != 0) && "ActOnParenExpr() missing expr");
|
|
return Owned(new (Context) ParenExpr(L, R, E));
|
|
}
|
|
|
|
/// The UsualUnaryConversions() function is *not* called by this routine.
|
|
/// See C99 6.3.2.1p[2-4] for more details.
|
|
bool Sema::CheckSizeOfAlignOfOperand(QualType exprType,
|
|
SourceLocation OpLoc,
|
|
const SourceRange &ExprRange,
|
|
bool isSizeof) {
|
|
if (exprType->isDependentType())
|
|
return false;
|
|
|
|
// C99 6.5.3.4p1:
|
|
if (isa<FunctionType>(exprType)) {
|
|
// alignof(function) is allowed as an extension.
|
|
if (isSizeof)
|
|
Diag(OpLoc, diag::ext_sizeof_function_type) << ExprRange;
|
|
return false;
|
|
}
|
|
|
|
// Allow sizeof(void)/alignof(void) as an extension.
|
|
if (exprType->isVoidType()) {
|
|
Diag(OpLoc, diag::ext_sizeof_void_type)
|
|
<< (isSizeof ? "sizeof" : "__alignof") << ExprRange;
|
|
return false;
|
|
}
|
|
|
|
if (RequireCompleteType(OpLoc, exprType,
|
|
isSizeof ? diag::err_sizeof_incomplete_type :
|
|
diag::err_alignof_incomplete_type,
|
|
ExprRange))
|
|
return true;
|
|
|
|
// Reject sizeof(interface) and sizeof(interface<proto>) in 64-bit mode.
|
|
if (LangOpts.ObjCNonFragileABI && exprType->isObjCInterfaceType()) {
|
|
Diag(OpLoc, diag::err_sizeof_nonfragile_interface)
|
|
<< exprType << isSizeof << ExprRange;
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool Sema::CheckAlignOfExpr(Expr *E, SourceLocation OpLoc,
|
|
const SourceRange &ExprRange) {
|
|
E = E->IgnoreParens();
|
|
|
|
// alignof decl is always ok.
|
|
if (isa<DeclRefExpr>(E))
|
|
return false;
|
|
|
|
// Cannot know anything else if the expression is dependent.
|
|
if (E->isTypeDependent())
|
|
return false;
|
|
|
|
if (E->getBitField()) {
|
|
Diag(OpLoc, diag::err_sizeof_alignof_bitfield) << 1 << ExprRange;
|
|
return true;
|
|
}
|
|
|
|
// Alignment of a field access is always okay, so long as it isn't a
|
|
// bit-field.
|
|
if (MemberExpr *ME = dyn_cast<MemberExpr>(E))
|
|
if (isa<FieldDecl>(ME->getMemberDecl()))
|
|
return false;
|
|
|
|
return CheckSizeOfAlignOfOperand(E->getType(), OpLoc, ExprRange, false);
|
|
}
|
|
|
|
/// \brief Build a sizeof or alignof expression given a type operand.
|
|
Action::OwningExprResult
|
|
Sema::CreateSizeOfAlignOfExpr(QualType T, SourceLocation OpLoc,
|
|
bool isSizeOf, SourceRange R) {
|
|
if (T.isNull())
|
|
return ExprError();
|
|
|
|
if (!T->isDependentType() &&
|
|
CheckSizeOfAlignOfOperand(T, OpLoc, R, isSizeOf))
|
|
return ExprError();
|
|
|
|
// C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
|
|
return Owned(new (Context) SizeOfAlignOfExpr(isSizeOf, T,
|
|
Context.getSizeType(), OpLoc,
|
|
R.getEnd()));
|
|
}
|
|
|
|
/// \brief Build a sizeof or alignof expression given an expression
|
|
/// operand.
|
|
Action::OwningExprResult
|
|
Sema::CreateSizeOfAlignOfExpr(Expr *E, SourceLocation OpLoc,
|
|
bool isSizeOf, SourceRange R) {
|
|
// Verify that the operand is valid.
|
|
bool isInvalid = false;
|
|
if (E->isTypeDependent()) {
|
|
// Delay type-checking for type-dependent expressions.
|
|
} else if (!isSizeOf) {
|
|
isInvalid = CheckAlignOfExpr(E, OpLoc, R);
|
|
} else if (E->getBitField()) { // C99 6.5.3.4p1.
|
|
Diag(OpLoc, diag::err_sizeof_alignof_bitfield) << 0;
|
|
isInvalid = true;
|
|
} else {
|
|
isInvalid = CheckSizeOfAlignOfOperand(E->getType(), OpLoc, R, true);
|
|
}
|
|
|
|
if (isInvalid)
|
|
return ExprError();
|
|
|
|
// C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
|
|
return Owned(new (Context) SizeOfAlignOfExpr(isSizeOf, E,
|
|
Context.getSizeType(), OpLoc,
|
|
R.getEnd()));
|
|
}
|
|
|
|
/// ActOnSizeOfAlignOfExpr - Handle @c sizeof(type) and @c sizeof @c expr and
|
|
/// the same for @c alignof and @c __alignof
|
|
/// Note that the ArgRange is invalid if isType is false.
|
|
Action::OwningExprResult
|
|
Sema::ActOnSizeOfAlignOfExpr(SourceLocation OpLoc, bool isSizeof, bool isType,
|
|
void *TyOrEx, const SourceRange &ArgRange) {
|
|
// If error parsing type, ignore.
|
|
if (TyOrEx == 0) return ExprError();
|
|
|
|
if (isType) {
|
|
QualType ArgTy = QualType::getFromOpaquePtr(TyOrEx);
|
|
return CreateSizeOfAlignOfExpr(ArgTy, OpLoc, isSizeof, ArgRange);
|
|
}
|
|
|
|
// Get the end location.
|
|
Expr *ArgEx = (Expr *)TyOrEx;
|
|
Action::OwningExprResult Result
|
|
= CreateSizeOfAlignOfExpr(ArgEx, OpLoc, isSizeof, ArgEx->getSourceRange());
|
|
|
|
if (Result.isInvalid())
|
|
DeleteExpr(ArgEx);
|
|
|
|
return move(Result);
|
|
}
|
|
|
|
QualType Sema::CheckRealImagOperand(Expr *&V, SourceLocation Loc, bool isReal) {
|
|
if (V->isTypeDependent())
|
|
return Context.DependentTy;
|
|
|
|
// These operators return the element type of a complex type.
|
|
if (const ComplexType *CT = V->getType()->getAsComplexType())
|
|
return CT->getElementType();
|
|
|
|
// Otherwise they pass through real integer and floating point types here.
|
|
if (V->getType()->isArithmeticType())
|
|
return V->getType();
|
|
|
|
// Reject anything else.
|
|
Diag(Loc, diag::err_realimag_invalid_type) << V->getType()
|
|
<< (isReal ? "__real" : "__imag");
|
|
return QualType();
|
|
}
|
|
|
|
|
|
|
|
Action::OwningExprResult
|
|
Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
|
|
tok::TokenKind Kind, ExprArg Input) {
|
|
Expr *Arg = (Expr *)Input.get();
|
|
|
|
UnaryOperator::Opcode Opc;
|
|
switch (Kind) {
|
|
default: assert(0 && "Unknown unary op!");
|
|
case tok::plusplus: Opc = UnaryOperator::PostInc; break;
|
|
case tok::minusminus: Opc = UnaryOperator::PostDec; break;
|
|
}
|
|
|
|
if (getLangOptions().CPlusPlus &&
|
|
(Arg->getType()->isRecordType() || Arg->getType()->isEnumeralType())) {
|
|
// Which overloaded operator?
|
|
OverloadedOperatorKind OverOp =
|
|
(Opc == UnaryOperator::PostInc)? OO_PlusPlus : OO_MinusMinus;
|
|
|
|
// C++ [over.inc]p1:
|
|
//
|
|
// [...] If the function is a member function with one
|
|
// parameter (which shall be of type int) or a non-member
|
|
// function with two parameters (the second of which shall be
|
|
// of type int), it defines the postfix increment operator ++
|
|
// for objects of that type. When the postfix increment is
|
|
// called as a result of using the ++ operator, the int
|
|
// argument will have value zero.
|
|
Expr *Args[2] = {
|
|
Arg,
|
|
new (Context) IntegerLiteral(llvm::APInt(Context.Target.getIntWidth(), 0,
|
|
/*isSigned=*/true), Context.IntTy, SourceLocation())
|
|
};
|
|
|
|
// Build the candidate set for overloading
|
|
OverloadCandidateSet CandidateSet;
|
|
AddOperatorCandidates(OverOp, S, OpLoc, Args, 2, CandidateSet);
|
|
|
|
// Perform overload resolution.
|
|
OverloadCandidateSet::iterator Best;
|
|
switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
|
|
case OR_Success: {
|
|
// We found a built-in operator or an overloaded operator.
|
|
FunctionDecl *FnDecl = Best->Function;
|
|
|
|
if (FnDecl) {
|
|
// We matched an overloaded operator. Build a call to that
|
|
// operator.
|
|
|
|
// Convert the arguments.
|
|
if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
|
|
if (PerformObjectArgumentInitialization(Arg, Method))
|
|
return ExprError();
|
|
} else {
|
|
// Convert the arguments.
|
|
if (PerformCopyInitialization(Arg,
|
|
FnDecl->getParamDecl(0)->getType(),
|
|
"passing"))
|
|
return ExprError();
|
|
}
|
|
|
|
// Determine the result type
|
|
QualType ResultTy
|
|
= FnDecl->getType()->getAsFunctionType()->getResultType();
|
|
ResultTy = ResultTy.getNonReferenceType();
|
|
|
|
// Build the actual expression node.
|
|
Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
|
|
SourceLocation());
|
|
UsualUnaryConversions(FnExpr);
|
|
|
|
Input.release();
|
|
Args[0] = Arg;
|
|
return Owned(new (Context) CXXOperatorCallExpr(Context, OverOp, FnExpr,
|
|
Args, 2, ResultTy,
|
|
OpLoc));
|
|
} else {
|
|
// We matched a built-in operator. Convert the arguments, then
|
|
// break out so that we will build the appropriate built-in
|
|
// operator node.
|
|
if (PerformCopyInitialization(Arg, Best->BuiltinTypes.ParamTypes[0],
|
|
"passing"))
|
|
return ExprError();
|
|
|
|
break;
|
|
}
|
|
}
|
|
|
|
case OR_No_Viable_Function:
|
|
// No viable function; fall through to handling this as a
|
|
// built-in operator, which will produce an error message for us.
|
|
break;
|
|
|
|
case OR_Ambiguous:
|
|
Diag(OpLoc, diag::err_ovl_ambiguous_oper)
|
|
<< UnaryOperator::getOpcodeStr(Opc)
|
|
<< Arg->getSourceRange();
|
|
PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
|
|
return ExprError();
|
|
|
|
case OR_Deleted:
|
|
Diag(OpLoc, diag::err_ovl_deleted_oper)
|
|
<< Best->Function->isDeleted()
|
|
<< UnaryOperator::getOpcodeStr(Opc)
|
|
<< Arg->getSourceRange();
|
|
PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
|
|
return ExprError();
|
|
}
|
|
|
|
// Either we found no viable overloaded operator or we matched a
|
|
// built-in operator. In either case, fall through to trying to
|
|
// build a built-in operation.
|
|
}
|
|
|
|
Input.release();
|
|
Input = Arg;
|
|
return CreateBuiltinUnaryOp(OpLoc, Opc, move(Input));
|
|
}
|
|
|
|
Action::OwningExprResult
|
|
Sema::ActOnArraySubscriptExpr(Scope *S, ExprArg Base, SourceLocation LLoc,
|
|
ExprArg Idx, SourceLocation RLoc) {
|
|
Expr *LHSExp = static_cast<Expr*>(Base.get()),
|
|
*RHSExp = static_cast<Expr*>(Idx.get());
|
|
|
|
if (getLangOptions().CPlusPlus &&
|
|
(LHSExp->isTypeDependent() || RHSExp->isTypeDependent())) {
|
|
Base.release();
|
|
Idx.release();
|
|
return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp,
|
|
Context.DependentTy, RLoc));
|
|
}
|
|
|
|
if (getLangOptions().CPlusPlus &&
|
|
(LHSExp->getType()->isRecordType() ||
|
|
LHSExp->getType()->isEnumeralType() ||
|
|
RHSExp->getType()->isRecordType() ||
|
|
RHSExp->getType()->isEnumeralType())) {
|
|
// Add the appropriate overloaded operators (C++ [over.match.oper])
|
|
// to the candidate set.
|
|
OverloadCandidateSet CandidateSet;
|
|
Expr *Args[2] = { LHSExp, RHSExp };
|
|
AddOperatorCandidates(OO_Subscript, S, LLoc, Args, 2, CandidateSet,
|
|
SourceRange(LLoc, RLoc));
|
|
|
|
// Perform overload resolution.
|
|
OverloadCandidateSet::iterator Best;
|
|
switch (BestViableFunction(CandidateSet, LLoc, Best)) {
|
|
case OR_Success: {
|
|
// We found a built-in operator or an overloaded operator.
|
|
FunctionDecl *FnDecl = Best->Function;
|
|
|
|
if (FnDecl) {
|
|
// We matched an overloaded operator. Build a call to that
|
|
// operator.
|
|
|
|
// Convert the arguments.
|
|
if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
|
|
if (PerformObjectArgumentInitialization(LHSExp, Method) ||
|
|
PerformCopyInitialization(RHSExp,
|
|
FnDecl->getParamDecl(0)->getType(),
|
|
"passing"))
|
|
return ExprError();
|
|
} else {
|
|
// Convert the arguments.
|
|
if (PerformCopyInitialization(LHSExp,
|
|
FnDecl->getParamDecl(0)->getType(),
|
|
"passing") ||
|
|
PerformCopyInitialization(RHSExp,
|
|
FnDecl->getParamDecl(1)->getType(),
|
|
"passing"))
|
|
return ExprError();
|
|
}
|
|
|
|
// Determine the result type
|
|
QualType ResultTy
|
|
= FnDecl->getType()->getAsFunctionType()->getResultType();
|
|
ResultTy = ResultTy.getNonReferenceType();
|
|
|
|
// Build the actual expression node.
|
|
Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
|
|
SourceLocation());
|
|
UsualUnaryConversions(FnExpr);
|
|
|
|
Base.release();
|
|
Idx.release();
|
|
Args[0] = LHSExp;
|
|
Args[1] = RHSExp;
|
|
return Owned(new (Context) CXXOperatorCallExpr(Context, OO_Subscript,
|
|
FnExpr, Args, 2,
|
|
ResultTy, LLoc));
|
|
} else {
|
|
// We matched a built-in operator. Convert the arguments, then
|
|
// break out so that we will build the appropriate built-in
|
|
// operator node.
|
|
if (PerformCopyInitialization(LHSExp, Best->BuiltinTypes.ParamTypes[0],
|
|
"passing") ||
|
|
PerformCopyInitialization(RHSExp, Best->BuiltinTypes.ParamTypes[1],
|
|
"passing"))
|
|
return ExprError();
|
|
|
|
break;
|
|
}
|
|
}
|
|
|
|
case OR_No_Viable_Function:
|
|
// No viable function; fall through to handling this as a
|
|
// built-in operator, which will produce an error message for us.
|
|
break;
|
|
|
|
case OR_Ambiguous:
|
|
Diag(LLoc, diag::err_ovl_ambiguous_oper)
|
|
<< "[]"
|
|
<< LHSExp->getSourceRange() << RHSExp->getSourceRange();
|
|
PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
|
|
return ExprError();
|
|
|
|
case OR_Deleted:
|
|
Diag(LLoc, diag::err_ovl_deleted_oper)
|
|
<< Best->Function->isDeleted()
|
|
<< "[]"
|
|
<< LHSExp->getSourceRange() << RHSExp->getSourceRange();
|
|
PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
|
|
return ExprError();
|
|
}
|
|
|
|
// Either we found no viable overloaded operator or we matched a
|
|
// built-in operator. In either case, fall through to trying to
|
|
// build a built-in operation.
|
|
}
|
|
|
|
// Perform default conversions.
|
|
DefaultFunctionArrayConversion(LHSExp);
|
|
DefaultFunctionArrayConversion(RHSExp);
|
|
|
|
QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
|
|
|
|
// C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
|
|
// to the expression *((e1)+(e2)). This means the array "Base" may actually be
|
|
// in the subscript position. As a result, we need to derive the array base
|
|
// and index from the expression types.
|
|
Expr *BaseExpr, *IndexExpr;
|
|
QualType ResultType;
|
|
if (LHSTy->isDependentType() || RHSTy->isDependentType()) {
|
|
BaseExpr = LHSExp;
|
|
IndexExpr = RHSExp;
|
|
ResultType = Context.DependentTy;
|
|
} else if (const PointerType *PTy = LHSTy->getAsPointerType()) {
|
|
BaseExpr = LHSExp;
|
|
IndexExpr = RHSExp;
|
|
ResultType = PTy->getPointeeType();
|
|
} else if (const PointerType *PTy = RHSTy->getAsPointerType()) {
|
|
// Handle the uncommon case of "123[Ptr]".
|
|
BaseExpr = RHSExp;
|
|
IndexExpr = LHSExp;
|
|
ResultType = PTy->getPointeeType();
|
|
} else if (const ObjCObjectPointerType *PTy =
|
|
LHSTy->getAsObjCObjectPointerType()) {
|
|
BaseExpr = LHSExp;
|
|
IndexExpr = RHSExp;
|
|
ResultType = PTy->getPointeeType();
|
|
} else if (const ObjCObjectPointerType *PTy =
|
|
RHSTy->getAsObjCObjectPointerType()) {
|
|
// Handle the uncommon case of "123[Ptr]".
|
|
BaseExpr = RHSExp;
|
|
IndexExpr = LHSExp;
|
|
ResultType = PTy->getPointeeType();
|
|
} else if (const VectorType *VTy = LHSTy->getAsVectorType()) {
|
|
BaseExpr = LHSExp; // vectors: V[123]
|
|
IndexExpr = RHSExp;
|
|
|
|
// FIXME: need to deal with const...
|
|
ResultType = VTy->getElementType();
|
|
} else if (LHSTy->isArrayType()) {
|
|
// If we see an array that wasn't promoted by
|
|
// DefaultFunctionArrayConversion, it must be an array that
|
|
// wasn't promoted because of the C90 rule that doesn't
|
|
// allow promoting non-lvalue arrays. Warn, then
|
|
// force the promotion here.
|
|
Diag(LHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
|
|
LHSExp->getSourceRange();
|
|
ImpCastExprToType(LHSExp, Context.getArrayDecayedType(LHSTy));
|
|
LHSTy = LHSExp->getType();
|
|
|
|
BaseExpr = LHSExp;
|
|
IndexExpr = RHSExp;
|
|
ResultType = LHSTy->getAsPointerType()->getPointeeType();
|
|
} else if (RHSTy->isArrayType()) {
|
|
// Same as previous, except for 123[f().a] case
|
|
Diag(RHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
|
|
RHSExp->getSourceRange();
|
|
ImpCastExprToType(RHSExp, Context.getArrayDecayedType(RHSTy));
|
|
RHSTy = RHSExp->getType();
|
|
|
|
BaseExpr = RHSExp;
|
|
IndexExpr = LHSExp;
|
|
ResultType = RHSTy->getAsPointerType()->getPointeeType();
|
|
} else {
|
|
return ExprError(Diag(LLoc, diag::err_typecheck_subscript_value)
|
|
<< LHSExp->getSourceRange() << RHSExp->getSourceRange());
|
|
}
|
|
// C99 6.5.2.1p1
|
|
if (!IndexExpr->getType()->isIntegerType() && !IndexExpr->isTypeDependent())
|
|
return ExprError(Diag(LLoc, diag::err_typecheck_subscript_not_integer)
|
|
<< IndexExpr->getSourceRange());
|
|
|
|
// C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
|
|
// C++ [expr.sub]p1: The type "T" shall be a completely-defined object
|
|
// type. Note that Functions are not objects, and that (in C99 parlance)
|
|
// incomplete types are not object types.
|
|
if (ResultType->isFunctionType()) {
|
|
Diag(BaseExpr->getLocStart(), diag::err_subscript_function_type)
|
|
<< ResultType << BaseExpr->getSourceRange();
|
|
return ExprError();
|
|
}
|
|
|
|
if (!ResultType->isDependentType() &&
|
|
RequireCompleteType(LLoc, ResultType, diag::err_subscript_incomplete_type,
|
|
BaseExpr->getSourceRange()))
|
|
return ExprError();
|
|
|
|
// Diagnose bad cases where we step over interface counts.
|
|
if (ResultType->isObjCInterfaceType() && LangOpts.ObjCNonFragileABI) {
|
|
Diag(LLoc, diag::err_subscript_nonfragile_interface)
|
|
<< ResultType << BaseExpr->getSourceRange();
|
|
return ExprError();
|
|
}
|
|
|
|
Base.release();
|
|
Idx.release();
|
|
return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp,
|
|
ResultType, RLoc));
|
|
}
|
|
|
|
QualType Sema::
|
|
CheckExtVectorComponent(QualType baseType, SourceLocation OpLoc,
|
|
IdentifierInfo &CompName, SourceLocation CompLoc) {
|
|
const ExtVectorType *vecType = baseType->getAsExtVectorType();
|
|
|
|
// The vector accessor can't exceed the number of elements.
|
|
const char *compStr = CompName.getName();
|
|
|
|
// This flag determines whether or not the component is one of the four
|
|
// special names that indicate a subset of exactly half the elements are
|
|
// to be selected.
|
|
bool HalvingSwizzle = false;
|
|
|
|
// This flag determines whether or not CompName has an 's' char prefix,
|
|
// indicating that it is a string of hex values to be used as vector indices.
|
|
bool HexSwizzle = *compStr == 's' || *compStr == 'S';
|
|
|
|
// Check that we've found one of the special components, or that the component
|
|
// names must come from the same set.
|
|
if (!strcmp(compStr, "hi") || !strcmp(compStr, "lo") ||
|
|
!strcmp(compStr, "even") || !strcmp(compStr, "odd")) {
|
|
HalvingSwizzle = true;
|
|
} else if (vecType->getPointAccessorIdx(*compStr) != -1) {
|
|
do
|
|
compStr++;
|
|
while (*compStr && vecType->getPointAccessorIdx(*compStr) != -1);
|
|
} else if (HexSwizzle || vecType->getNumericAccessorIdx(*compStr) != -1) {
|
|
do
|
|
compStr++;
|
|
while (*compStr && vecType->getNumericAccessorIdx(*compStr) != -1);
|
|
}
|
|
|
|
if (!HalvingSwizzle && *compStr) {
|
|
// We didn't get to the end of the string. This means the component names
|
|
// didn't come from the same set *or* we encountered an illegal name.
|
|
Diag(OpLoc, diag::err_ext_vector_component_name_illegal)
|
|
<< std::string(compStr,compStr+1) << SourceRange(CompLoc);
|
|
return QualType();
|
|
}
|
|
|
|
// Ensure no component accessor exceeds the width of the vector type it
|
|
// operates on.
|
|
if (!HalvingSwizzle) {
|
|
compStr = CompName.getName();
|
|
|
|
if (HexSwizzle)
|
|
compStr++;
|
|
|
|
while (*compStr) {
|
|
if (!vecType->isAccessorWithinNumElements(*compStr++)) {
|
|
Diag(OpLoc, diag::err_ext_vector_component_exceeds_length)
|
|
<< baseType << SourceRange(CompLoc);
|
|
return QualType();
|
|
}
|
|
}
|
|
}
|
|
|
|
// If this is a halving swizzle, verify that the base type has an even
|
|
// number of elements.
|
|
if (HalvingSwizzle && (vecType->getNumElements() & 1U)) {
|
|
Diag(OpLoc, diag::err_ext_vector_component_requires_even)
|
|
<< baseType << SourceRange(CompLoc);
|
|
return QualType();
|
|
}
|
|
|
|
// The component accessor looks fine - now we need to compute the actual type.
|
|
// The vector type is implied by the component accessor. For example,
|
|
// vec4.b is a float, vec4.xy is a vec2, vec4.rgb is a vec3, etc.
|
|
// vec4.s0 is a float, vec4.s23 is a vec3, etc.
|
|
// vec4.hi, vec4.lo, vec4.e, and vec4.o all return vec2.
|
|
unsigned CompSize = HalvingSwizzle ? vecType->getNumElements() / 2
|
|
: CompName.getLength();
|
|
if (HexSwizzle)
|
|
CompSize--;
|
|
|
|
if (CompSize == 1)
|
|
return vecType->getElementType();
|
|
|
|
QualType VT = Context.getExtVectorType(vecType->getElementType(), CompSize);
|
|
// Now look up the TypeDefDecl from the vector type. Without this,
|
|
// diagostics look bad. We want extended vector types to appear built-in.
|
|
for (unsigned i = 0, E = ExtVectorDecls.size(); i != E; ++i) {
|
|
if (ExtVectorDecls[i]->getUnderlyingType() == VT)
|
|
return Context.getTypedefType(ExtVectorDecls[i]);
|
|
}
|
|
return VT; // should never get here (a typedef type should always be found).
|
|
}
|
|
|
|
static Decl *FindGetterNameDeclFromProtocolList(const ObjCProtocolDecl*PDecl,
|
|
IdentifierInfo &Member,
|
|
const Selector &Sel,
|
|
ASTContext &Context) {
|
|
|
|
if (ObjCPropertyDecl *PD = PDecl->FindPropertyDeclaration(&Member))
|
|
return PD;
|
|
if (ObjCMethodDecl *OMD = PDecl->getInstanceMethod(Sel))
|
|
return OMD;
|
|
|
|
for (ObjCProtocolDecl::protocol_iterator I = PDecl->protocol_begin(),
|
|
E = PDecl->protocol_end(); I != E; ++I) {
|
|
if (Decl *D = FindGetterNameDeclFromProtocolList(*I, Member, Sel,
|
|
Context))
|
|
return D;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static Decl *FindGetterNameDecl(const ObjCObjectPointerType *QIdTy,
|
|
IdentifierInfo &Member,
|
|
const Selector &Sel,
|
|
ASTContext &Context) {
|
|
// Check protocols on qualified interfaces.
|
|
Decl *GDecl = 0;
|
|
for (ObjCObjectPointerType::qual_iterator I = QIdTy->qual_begin(),
|
|
E = QIdTy->qual_end(); I != E; ++I) {
|
|
if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(&Member)) {
|
|
GDecl = PD;
|
|
break;
|
|
}
|
|
// Also must look for a getter name which uses property syntax.
|
|
if (ObjCMethodDecl *OMD = (*I)->getInstanceMethod(Sel)) {
|
|
GDecl = OMD;
|
|
break;
|
|
}
|
|
}
|
|
if (!GDecl) {
|
|
for (ObjCObjectPointerType::qual_iterator I = QIdTy->qual_begin(),
|
|
E = QIdTy->qual_end(); I != E; ++I) {
|
|
// Search in the protocol-qualifier list of current protocol.
|
|
GDecl = FindGetterNameDeclFromProtocolList(*I, Member, Sel, Context);
|
|
if (GDecl)
|
|
return GDecl;
|
|
}
|
|
}
|
|
return GDecl;
|
|
}
|
|
|
|
/// FindMethodInNestedImplementations - Look up a method in current and
|
|
/// all base class implementations.
|
|
///
|
|
ObjCMethodDecl *Sema::FindMethodInNestedImplementations(
|
|
const ObjCInterfaceDecl *IFace,
|
|
const Selector &Sel) {
|
|
ObjCMethodDecl *Method = 0;
|
|
if (ObjCImplementationDecl *ImpDecl = IFace->getImplementation())
|
|
Method = ImpDecl->getInstanceMethod(Sel);
|
|
|
|
if (!Method && IFace->getSuperClass())
|
|
return FindMethodInNestedImplementations(IFace->getSuperClass(), Sel);
|
|
return Method;
|
|
}
|
|
|
|
Action::OwningExprResult
|
|
Sema::ActOnMemberReferenceExpr(Scope *S, ExprArg Base, SourceLocation OpLoc,
|
|
tok::TokenKind OpKind, SourceLocation MemberLoc,
|
|
IdentifierInfo &Member,
|
|
DeclPtrTy ObjCImpDecl) {
|
|
Expr *BaseExpr = Base.takeAs<Expr>();
|
|
assert(BaseExpr && "no record expression");
|
|
|
|
// Perform default conversions.
|
|
DefaultFunctionArrayConversion(BaseExpr);
|
|
|
|
QualType BaseType = BaseExpr->getType();
|
|
assert(!BaseType.isNull() && "no type for member expression");
|
|
|
|
// Get the type being accessed in BaseType. If this is an arrow, the BaseExpr
|
|
// must have pointer type, and the accessed type is the pointee.
|
|
if (OpKind == tok::arrow) {
|
|
if (BaseType->isDependentType())
|
|
return Owned(new (Context) CXXUnresolvedMemberExpr(Context,
|
|
BaseExpr, true,
|
|
OpLoc,
|
|
DeclarationName(&Member),
|
|
MemberLoc));
|
|
else if (const PointerType *PT = BaseType->getAsPointerType())
|
|
BaseType = PT->getPointeeType();
|
|
else if (BaseType->isObjCObjectPointerType())
|
|
;
|
|
else if (getLangOptions().CPlusPlus && BaseType->isRecordType())
|
|
return Owned(BuildOverloadedArrowExpr(S, BaseExpr, OpLoc,
|
|
MemberLoc, Member));
|
|
else
|
|
return ExprError(Diag(MemberLoc,
|
|
diag::err_typecheck_member_reference_arrow)
|
|
<< BaseType << BaseExpr->getSourceRange());
|
|
} else {
|
|
if (BaseType->isDependentType()) {
|
|
// Require that the base type isn't a pointer type
|
|
// (so we'll report an error for)
|
|
// T* t;
|
|
// t.f;
|
|
//
|
|
// In Obj-C++, however, the above expression is valid, since it could be
|
|
// accessing the 'f' property if T is an Obj-C interface. The extra check
|
|
// allows this, while still reporting an error if T is a struct pointer.
|
|
const PointerType *PT = BaseType->getAsPointerType();
|
|
|
|
if (!PT || (getLangOptions().ObjC1 &&
|
|
!PT->getPointeeType()->isRecordType()))
|
|
return Owned(new (Context) CXXUnresolvedMemberExpr(Context,
|
|
BaseExpr, false,
|
|
OpLoc,
|
|
DeclarationName(&Member),
|
|
MemberLoc));
|
|
}
|
|
}
|
|
|
|
// Handle field access to simple records. This also handles access to fields
|
|
// of the ObjC 'id' struct.
|
|
if (const RecordType *RTy = BaseType->getAsRecordType()) {
|
|
RecordDecl *RDecl = RTy->getDecl();
|
|
if (RequireCompleteType(OpLoc, BaseType,
|
|
diag::err_typecheck_incomplete_tag,
|
|
BaseExpr->getSourceRange()))
|
|
return ExprError();
|
|
|
|
// The record definition is complete, now make sure the member is valid.
|
|
// FIXME: Qualified name lookup for C++ is a bit more complicated than this.
|
|
LookupResult Result
|
|
= LookupQualifiedName(RDecl, DeclarationName(&Member),
|
|
LookupMemberName, false);
|
|
|
|
if (!Result)
|
|
return ExprError(Diag(MemberLoc, diag::err_typecheck_no_member)
|
|
<< &Member << BaseExpr->getSourceRange());
|
|
if (Result.isAmbiguous()) {
|
|
DiagnoseAmbiguousLookup(Result, DeclarationName(&Member),
|
|
MemberLoc, BaseExpr->getSourceRange());
|
|
return ExprError();
|
|
}
|
|
|
|
NamedDecl *MemberDecl = Result;
|
|
|
|
// If the decl being referenced had an error, return an error for this
|
|
// sub-expr without emitting another error, in order to avoid cascading
|
|
// error cases.
|
|
if (MemberDecl->isInvalidDecl())
|
|
return ExprError();
|
|
|
|
// Check the use of this field
|
|
if (DiagnoseUseOfDecl(MemberDecl, MemberLoc))
|
|
return ExprError();
|
|
|
|
if (FieldDecl *FD = dyn_cast<FieldDecl>(MemberDecl)) {
|
|
// We may have found a field within an anonymous union or struct
|
|
// (C++ [class.union]).
|
|
if (cast<RecordDecl>(FD->getDeclContext())->isAnonymousStructOrUnion())
|
|
return BuildAnonymousStructUnionMemberReference(MemberLoc, FD,
|
|
BaseExpr, OpLoc);
|
|
|
|
// Figure out the type of the member; see C99 6.5.2.3p3, C++ [expr.ref]
|
|
QualType MemberType = FD->getType();
|
|
if (const ReferenceType *Ref = MemberType->getAsReferenceType())
|
|
MemberType = Ref->getPointeeType();
|
|
else {
|
|
unsigned BaseAddrSpace = BaseType.getAddressSpace();
|
|
unsigned combinedQualifiers =
|
|
MemberType.getCVRQualifiers() | BaseType.getCVRQualifiers();
|
|
if (FD->isMutable())
|
|
combinedQualifiers &= ~QualType::Const;
|
|
MemberType = MemberType.getQualifiedType(combinedQualifiers);
|
|
if (BaseAddrSpace != MemberType.getAddressSpace())
|
|
MemberType = Context.getAddrSpaceQualType(MemberType, BaseAddrSpace);
|
|
}
|
|
|
|
MarkDeclarationReferenced(MemberLoc, FD);
|
|
return Owned(new (Context) MemberExpr(BaseExpr, OpKind == tok::arrow, FD,
|
|
MemberLoc, MemberType));
|
|
}
|
|
|
|
if (VarDecl *Var = dyn_cast<VarDecl>(MemberDecl)) {
|
|
MarkDeclarationReferenced(MemberLoc, MemberDecl);
|
|
return Owned(new (Context) MemberExpr(BaseExpr, OpKind == tok::arrow,
|
|
Var, MemberLoc,
|
|
Var->getType().getNonReferenceType()));
|
|
}
|
|
if (FunctionDecl *MemberFn = dyn_cast<FunctionDecl>(MemberDecl)) {
|
|
MarkDeclarationReferenced(MemberLoc, MemberDecl);
|
|
return Owned(new (Context) MemberExpr(BaseExpr, OpKind == tok::arrow,
|
|
MemberFn, MemberLoc,
|
|
MemberFn->getType()));
|
|
}
|
|
if (OverloadedFunctionDecl *Ovl
|
|
= dyn_cast<OverloadedFunctionDecl>(MemberDecl))
|
|
return Owned(new (Context) MemberExpr(BaseExpr, OpKind == tok::arrow, Ovl,
|
|
MemberLoc, Context.OverloadTy));
|
|
if (EnumConstantDecl *Enum = dyn_cast<EnumConstantDecl>(MemberDecl)) {
|
|
MarkDeclarationReferenced(MemberLoc, MemberDecl);
|
|
return Owned(new (Context) MemberExpr(BaseExpr, OpKind == tok::arrow,
|
|
Enum, MemberLoc, Enum->getType()));
|
|
}
|
|
if (isa<TypeDecl>(MemberDecl))
|
|
return ExprError(Diag(MemberLoc,diag::err_typecheck_member_reference_type)
|
|
<< DeclarationName(&Member) << int(OpKind == tok::arrow));
|
|
|
|
// We found a declaration kind that we didn't expect. This is a
|
|
// generic error message that tells the user that she can't refer
|
|
// to this member with '.' or '->'.
|
|
return ExprError(Diag(MemberLoc,
|
|
diag::err_typecheck_member_reference_unknown)
|
|
<< DeclarationName(&Member) << int(OpKind == tok::arrow));
|
|
}
|
|
|
|
// Handle properties on ObjC 'Class' types.
|
|
if (OpKind == tok::period && BaseType->isObjCClassType()) {
|
|
// Also must look for a getter name which uses property syntax.
|
|
Selector Sel = PP.getSelectorTable().getNullarySelector(&Member);
|
|
if (ObjCMethodDecl *MD = getCurMethodDecl()) {
|
|
ObjCInterfaceDecl *IFace = MD->getClassInterface();
|
|
ObjCMethodDecl *Getter;
|
|
// FIXME: need to also look locally in the implementation.
|
|
if ((Getter = IFace->lookupClassMethod(Sel))) {
|
|
// Check the use of this method.
|
|
if (DiagnoseUseOfDecl(Getter, MemberLoc))
|
|
return ExprError();
|
|
}
|
|
// If we found a getter then this may be a valid dot-reference, we
|
|
// will look for the matching setter, in case it is needed.
|
|
Selector SetterSel =
|
|
SelectorTable::constructSetterName(PP.getIdentifierTable(),
|
|
PP.getSelectorTable(), &Member);
|
|
ObjCMethodDecl *Setter = IFace->lookupClassMethod(SetterSel);
|
|
if (!Setter) {
|
|
// If this reference is in an @implementation, also check for 'private'
|
|
// methods.
|
|
Setter = FindMethodInNestedImplementations(IFace, SetterSel);
|
|
}
|
|
// Look through local category implementations associated with the class.
|
|
if (!Setter)
|
|
Setter = IFace->getCategoryClassMethod(SetterSel);
|
|
|
|
if (Setter && DiagnoseUseOfDecl(Setter, MemberLoc))
|
|
return ExprError();
|
|
|
|
if (Getter || Setter) {
|
|
QualType PType;
|
|
|
|
if (Getter)
|
|
PType = Getter->getResultType();
|
|
else {
|
|
for (ObjCMethodDecl::param_iterator PI = Setter->param_begin(),
|
|
E = Setter->param_end(); PI != E; ++PI)
|
|
PType = (*PI)->getType();
|
|
}
|
|
// FIXME: we must check that the setter has property type.
|
|
return Owned(new (Context) ObjCKVCRefExpr(Getter, PType,
|
|
Setter, MemberLoc, BaseExpr));
|
|
}
|
|
return ExprError(Diag(MemberLoc, diag::err_property_not_found)
|
|
<< &Member << BaseType);
|
|
}
|
|
}
|
|
// Handle access to Objective-C instance variables, such as "Obj->ivar" and
|
|
// (*Obj).ivar.
|
|
if ((OpKind == tok::arrow && BaseType->isObjCObjectPointerType()) ||
|
|
(OpKind == tok::period && BaseType->isObjCInterfaceType())) {
|
|
const ObjCObjectPointerType *OPT = BaseType->getAsObjCObjectPointerType();
|
|
const ObjCInterfaceType *IFaceT =
|
|
OPT ? OPT->getInterfaceType() : BaseType->getAsObjCInterfaceType();
|
|
|
|
if (IFaceT) {
|
|
ObjCInterfaceDecl *IDecl = IFaceT->getDecl();
|
|
ObjCInterfaceDecl *ClassDeclared;
|
|
ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(&Member, ClassDeclared);
|
|
|
|
if (IV) {
|
|
// If the decl being referenced had an error, return an error for this
|
|
// sub-expr without emitting another error, in order to avoid cascading
|
|
// error cases.
|
|
if (IV->isInvalidDecl())
|
|
return ExprError();
|
|
|
|
// Check whether we can reference this field.
|
|
if (DiagnoseUseOfDecl(IV, MemberLoc))
|
|
return ExprError();
|
|
if (IV->getAccessControl() != ObjCIvarDecl::Public &&
|
|
IV->getAccessControl() != ObjCIvarDecl::Package) {
|
|
ObjCInterfaceDecl *ClassOfMethodDecl = 0;
|
|
if (ObjCMethodDecl *MD = getCurMethodDecl())
|
|
ClassOfMethodDecl = MD->getClassInterface();
|
|
else if (ObjCImpDecl && getCurFunctionDecl()) {
|
|
// Case of a c-function declared inside an objc implementation.
|
|
// FIXME: For a c-style function nested inside an objc implementation
|
|
// class, there is no implementation context available, so we pass
|
|
// down the context as argument to this routine. Ideally, this context
|
|
// need be passed down in the AST node and somehow calculated from the
|
|
// AST for a function decl.
|
|
Decl *ImplDecl = ObjCImpDecl.getAs<Decl>();
|
|
if (ObjCImplementationDecl *IMPD =
|
|
dyn_cast<ObjCImplementationDecl>(ImplDecl))
|
|
ClassOfMethodDecl = IMPD->getClassInterface();
|
|
else if (ObjCCategoryImplDecl* CatImplClass =
|
|
dyn_cast<ObjCCategoryImplDecl>(ImplDecl))
|
|
ClassOfMethodDecl = CatImplClass->getClassInterface();
|
|
}
|
|
|
|
if (IV->getAccessControl() == ObjCIvarDecl::Private) {
|
|
if (ClassDeclared != IDecl ||
|
|
ClassOfMethodDecl != ClassDeclared)
|
|
Diag(MemberLoc, diag::error_private_ivar_access)
|
|
<< IV->getDeclName();
|
|
}
|
|
// @protected
|
|
else if (!IDecl->isSuperClassOf(ClassOfMethodDecl))
|
|
Diag(MemberLoc, diag::error_protected_ivar_access)
|
|
<< IV->getDeclName();
|
|
}
|
|
|
|
return Owned(new (Context) ObjCIvarRefExpr(IV, IV->getType(),
|
|
MemberLoc, BaseExpr,
|
|
OpKind == tok::arrow));
|
|
}
|
|
return ExprError(Diag(MemberLoc, diag::err_typecheck_member_reference_ivar)
|
|
<< IDecl->getDeclName() << &Member
|
|
<< BaseExpr->getSourceRange());
|
|
}
|
|
// We don't have an interface. FIXME: deal with ObjC builtin 'id' type.
|
|
}
|
|
// Handle properties on 'id' and qualified "id".
|
|
if (OpKind == tok::period && (BaseType->isObjCIdType() ||
|
|
BaseType->isObjCQualifiedIdType())) {
|
|
const ObjCObjectPointerType *QIdTy = BaseType->getAsObjCObjectPointerType();
|
|
|
|
// Check protocols on qualified interfaces.
|
|
Selector Sel = PP.getSelectorTable().getNullarySelector(&Member);
|
|
if (Decl *PMDecl = FindGetterNameDecl(QIdTy, Member, Sel, Context)) {
|
|
if (ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(PMDecl)) {
|
|
// Check the use of this declaration
|
|
if (DiagnoseUseOfDecl(PD, MemberLoc))
|
|
return ExprError();
|
|
|
|
return Owned(new (Context) ObjCPropertyRefExpr(PD, PD->getType(),
|
|
MemberLoc, BaseExpr));
|
|
}
|
|
if (ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(PMDecl)) {
|
|
// Check the use of this method.
|
|
if (DiagnoseUseOfDecl(OMD, MemberLoc))
|
|
return ExprError();
|
|
|
|
return Owned(new (Context) ObjCMessageExpr(BaseExpr, Sel,
|
|
OMD->getResultType(),
|
|
OMD, OpLoc, MemberLoc,
|
|
NULL, 0));
|
|
}
|
|
}
|
|
|
|
return ExprError(Diag(MemberLoc, diag::err_property_not_found)
|
|
<< &Member << BaseType);
|
|
}
|
|
// Handle Objective-C property access, which is "Obj.property" where Obj is a
|
|
// pointer to a (potentially qualified) interface type.
|
|
const ObjCObjectPointerType *OPT;
|
|
if (OpKind == tok::period &&
|
|
(OPT = BaseType->getAsObjCInterfacePointerType())) {
|
|
const ObjCInterfaceType *IFaceT = OPT->getInterfaceType();
|
|
ObjCInterfaceDecl *IFace = IFaceT->getDecl();
|
|
|
|
// Search for a declared property first.
|
|
if (ObjCPropertyDecl *PD = IFace->FindPropertyDeclaration(&Member)) {
|
|
// Check whether we can reference this property.
|
|
if (DiagnoseUseOfDecl(PD, MemberLoc))
|
|
return ExprError();
|
|
QualType ResTy = PD->getType();
|
|
Selector Sel = PP.getSelectorTable().getNullarySelector(&Member);
|
|
ObjCMethodDecl *Getter = IFace->lookupInstanceMethod(Sel);
|
|
if (DiagnosePropertyAccessorMismatch(PD, Getter, MemberLoc))
|
|
ResTy = Getter->getResultType();
|
|
return Owned(new (Context) ObjCPropertyRefExpr(PD, ResTy,
|
|
MemberLoc, BaseExpr));
|
|
}
|
|
// Check protocols on qualified interfaces.
|
|
for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
|
|
E = OPT->qual_end(); I != E; ++I)
|
|
if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(&Member)) {
|
|
// Check whether we can reference this property.
|
|
if (DiagnoseUseOfDecl(PD, MemberLoc))
|
|
return ExprError();
|
|
|
|
return Owned(new (Context) ObjCPropertyRefExpr(PD, PD->getType(),
|
|
MemberLoc, BaseExpr));
|
|
}
|
|
for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
|
|
E = OPT->qual_end(); I != E; ++I)
|
|
if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(&Member)) {
|
|
// Check whether we can reference this property.
|
|
if (DiagnoseUseOfDecl(PD, MemberLoc))
|
|
return ExprError();
|
|
|
|
return Owned(new (Context) ObjCPropertyRefExpr(PD, PD->getType(),
|
|
MemberLoc, BaseExpr));
|
|
}
|
|
// If that failed, look for an "implicit" property by seeing if the nullary
|
|
// selector is implemented.
|
|
|
|
// FIXME: The logic for looking up nullary and unary selectors should be
|
|
// shared with the code in ActOnInstanceMessage.
|
|
|
|
Selector Sel = PP.getSelectorTable().getNullarySelector(&Member);
|
|
ObjCMethodDecl *Getter = IFace->lookupInstanceMethod(Sel);
|
|
|
|
// If this reference is in an @implementation, check for 'private' methods.
|
|
if (!Getter)
|
|
Getter = FindMethodInNestedImplementations(IFace, Sel);
|
|
|
|
// Look through local category implementations associated with the class.
|
|
if (!Getter)
|
|
Getter = IFace->getCategoryInstanceMethod(Sel);
|
|
if (Getter) {
|
|
// Check if we can reference this property.
|
|
if (DiagnoseUseOfDecl(Getter, MemberLoc))
|
|
return ExprError();
|
|
}
|
|
// If we found a getter then this may be a valid dot-reference, we
|
|
// will look for the matching setter, in case it is needed.
|
|
Selector SetterSel =
|
|
SelectorTable::constructSetterName(PP.getIdentifierTable(),
|
|
PP.getSelectorTable(), &Member);
|
|
ObjCMethodDecl *Setter = IFace->lookupInstanceMethod(SetterSel);
|
|
if (!Setter) {
|
|
// If this reference is in an @implementation, also check for 'private'
|
|
// methods.
|
|
Setter = FindMethodInNestedImplementations(IFace, SetterSel);
|
|
}
|
|
// Look through local category implementations associated with the class.
|
|
if (!Setter)
|
|
Setter = IFace->getCategoryInstanceMethod(SetterSel);
|
|
|
|
if (Setter && DiagnoseUseOfDecl(Setter, MemberLoc))
|
|
return ExprError();
|
|
|
|
if (Getter || Setter) {
|
|
QualType PType;
|
|
|
|
if (Getter)
|
|
PType = Getter->getResultType();
|
|
else {
|
|
for (ObjCMethodDecl::param_iterator PI = Setter->param_begin(),
|
|
E = Setter->param_end(); PI != E; ++PI)
|
|
PType = (*PI)->getType();
|
|
}
|
|
// FIXME: we must check that the setter has property type.
|
|
return Owned(new (Context) ObjCKVCRefExpr(Getter, PType,
|
|
Setter, MemberLoc, BaseExpr));
|
|
}
|
|
return ExprError(Diag(MemberLoc, diag::err_property_not_found)
|
|
<< &Member << BaseType);
|
|
}
|
|
|
|
// Handle 'field access' to vectors, such as 'V.xx'.
|
|
if (BaseType->isExtVectorType()) {
|
|
QualType ret = CheckExtVectorComponent(BaseType, OpLoc, Member, MemberLoc);
|
|
if (ret.isNull())
|
|
return ExprError();
|
|
return Owned(new (Context) ExtVectorElementExpr(ret, BaseExpr, Member,
|
|
MemberLoc));
|
|
}
|
|
|
|
Diag(MemberLoc, diag::err_typecheck_member_reference_struct_union)
|
|
<< BaseType << BaseExpr->getSourceRange();
|
|
|
|
// If the user is trying to apply -> or . to a function or function
|
|
// pointer, it's probably because they forgot parentheses to call
|
|
// the function. Suggest the addition of those parentheses.
|
|
if (BaseType == Context.OverloadTy ||
|
|
BaseType->isFunctionType() ||
|
|
(BaseType->isPointerType() &&
|
|
BaseType->getAsPointerType()->isFunctionType())) {
|
|
SourceLocation Loc = PP.getLocForEndOfToken(BaseExpr->getLocEnd());
|
|
Diag(Loc, diag::note_member_reference_needs_call)
|
|
<< CodeModificationHint::CreateInsertion(Loc, "()");
|
|
}
|
|
|
|
return ExprError();
|
|
}
|
|
|
|
/// ConvertArgumentsForCall - Converts the arguments specified in
|
|
/// Args/NumArgs to the parameter types of the function FDecl with
|
|
/// function prototype Proto. Call is the call expression itself, and
|
|
/// Fn is the function expression. For a C++ member function, this
|
|
/// routine does not attempt to convert the object argument. Returns
|
|
/// true if the call is ill-formed.
|
|
bool
|
|
Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
|
|
FunctionDecl *FDecl,
|
|
const FunctionProtoType *Proto,
|
|
Expr **Args, unsigned NumArgs,
|
|
SourceLocation RParenLoc) {
|
|
// C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
|
|
// assignment, to the types of the corresponding parameter, ...
|
|
unsigned NumArgsInProto = Proto->getNumArgs();
|
|
unsigned NumArgsToCheck = NumArgs;
|
|
bool Invalid = false;
|
|
|
|
// If too few arguments are available (and we don't have default
|
|
// arguments for the remaining parameters), don't make the call.
|
|
if (NumArgs < NumArgsInProto) {
|
|
if (!FDecl || NumArgs < FDecl->getMinRequiredArguments())
|
|
return Diag(RParenLoc, diag::err_typecheck_call_too_few_args)
|
|
<< Fn->getType()->isBlockPointerType() << Fn->getSourceRange();
|
|
// Use default arguments for missing arguments
|
|
NumArgsToCheck = NumArgsInProto;
|
|
Call->setNumArgs(Context, NumArgsInProto);
|
|
}
|
|
|
|
// If too many are passed and not variadic, error on the extras and drop
|
|
// them.
|
|
if (NumArgs > NumArgsInProto) {
|
|
if (!Proto->isVariadic()) {
|
|
Diag(Args[NumArgsInProto]->getLocStart(),
|
|
diag::err_typecheck_call_too_many_args)
|
|
<< Fn->getType()->isBlockPointerType() << Fn->getSourceRange()
|
|
<< SourceRange(Args[NumArgsInProto]->getLocStart(),
|
|
Args[NumArgs-1]->getLocEnd());
|
|
// This deletes the extra arguments.
|
|
Call->setNumArgs(Context, NumArgsInProto);
|
|
Invalid = true;
|
|
}
|
|
NumArgsToCheck = NumArgsInProto;
|
|
}
|
|
|
|
// Continue to check argument types (even if we have too few/many args).
|
|
for (unsigned i = 0; i != NumArgsToCheck; i++) {
|
|
QualType ProtoArgType = Proto->getArgType(i);
|
|
|
|
Expr *Arg;
|
|
if (i < NumArgs) {
|
|
Arg = Args[i];
|
|
|
|
if (RequireCompleteType(Arg->getSourceRange().getBegin(),
|
|
ProtoArgType,
|
|
diag::err_call_incomplete_argument,
|
|
Arg->getSourceRange()))
|
|
return true;
|
|
|
|
// Pass the argument.
|
|
if (PerformCopyInitialization(Arg, ProtoArgType, "passing"))
|
|
return true;
|
|
} else {
|
|
if (FDecl->getParamDecl(i)->hasUnparsedDefaultArg()) {
|
|
Diag (Call->getSourceRange().getBegin(),
|
|
diag::err_use_of_default_argument_to_function_declared_later) <<
|
|
FDecl << cast<CXXRecordDecl>(FDecl->getDeclContext())->getDeclName();
|
|
Diag(UnparsedDefaultArgLocs[FDecl->getParamDecl(i)],
|
|
diag::note_default_argument_declared_here);
|
|
} else {
|
|
Expr *DefaultExpr = FDecl->getParamDecl(i)->getDefaultArg();
|
|
|
|
// If the default expression creates temporaries, we need to
|
|
// push them to the current stack of expression temporaries so they'll
|
|
// be properly destroyed.
|
|
if (CXXExprWithTemporaries *E
|
|
= dyn_cast_or_null<CXXExprWithTemporaries>(DefaultExpr)) {
|
|
assert(!E->shouldDestroyTemporaries() &&
|
|
"Can't destroy temporaries in a default argument expr!");
|
|
for (unsigned I = 0, N = E->getNumTemporaries(); I != N; ++I)
|
|
ExprTemporaries.push_back(E->getTemporary(I));
|
|
}
|
|
}
|
|
|
|
// We already type-checked the argument, so we know it works.
|
|
Arg = new (Context) CXXDefaultArgExpr(FDecl->getParamDecl(i));
|
|
}
|
|
|
|
QualType ArgType = Arg->getType();
|
|
|
|
Call->setArg(i, Arg);
|
|
}
|
|
|
|
// If this is a variadic call, handle args passed through "...".
|
|
if (Proto->isVariadic()) {
|
|
VariadicCallType CallType = VariadicFunction;
|
|
if (Fn->getType()->isBlockPointerType())
|
|
CallType = VariadicBlock; // Block
|
|
else if (isa<MemberExpr>(Fn))
|
|
CallType = VariadicMethod;
|
|
|
|
// Promote the arguments (C99 6.5.2.2p7).
|
|
for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
|
|
Expr *Arg = Args[i];
|
|
Invalid |= DefaultVariadicArgumentPromotion(Arg, CallType);
|
|
Call->setArg(i, Arg);
|
|
}
|
|
}
|
|
|
|
return Invalid;
|
|
}
|
|
|
|
/// ActOnCallExpr - Handle a call to Fn with the specified array of arguments.
|
|
/// This provides the location of the left/right parens and a list of comma
|
|
/// locations.
|
|
Action::OwningExprResult
|
|
Sema::ActOnCallExpr(Scope *S, ExprArg fn, SourceLocation LParenLoc,
|
|
MultiExprArg args,
|
|
SourceLocation *CommaLocs, SourceLocation RParenLoc) {
|
|
unsigned NumArgs = args.size();
|
|
Expr *Fn = fn.takeAs<Expr>();
|
|
Expr **Args = reinterpret_cast<Expr**>(args.release());
|
|
assert(Fn && "no function call expression");
|
|
FunctionDecl *FDecl = NULL;
|
|
NamedDecl *NDecl = NULL;
|
|
DeclarationName UnqualifiedName;
|
|
|
|
if (getLangOptions().CPlusPlus) {
|
|
// Determine whether this is a dependent call inside a C++ template,
|
|
// in which case we won't do any semantic analysis now.
|
|
// FIXME: Will need to cache the results of name lookup (including ADL) in
|
|
// Fn.
|
|
bool Dependent = false;
|
|
if (Fn->isTypeDependent())
|
|
Dependent = true;
|
|
else if (Expr::hasAnyTypeDependentArguments(Args, NumArgs))
|
|
Dependent = true;
|
|
|
|
if (Dependent)
|
|
return Owned(new (Context) CallExpr(Context, Fn, Args, NumArgs,
|
|
Context.DependentTy, RParenLoc));
|
|
|
|
// Determine whether this is a call to an object (C++ [over.call.object]).
|
|
if (Fn->getType()->isRecordType())
|
|
return Owned(BuildCallToObjectOfClassType(S, Fn, LParenLoc, Args, NumArgs,
|
|
CommaLocs, RParenLoc));
|
|
|
|
// Determine whether this is a call to a member function.
|
|
if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(Fn->IgnoreParens())) {
|
|
NamedDecl *MemDecl = MemExpr->getMemberDecl();
|
|
if (isa<OverloadedFunctionDecl>(MemDecl) ||
|
|
isa<CXXMethodDecl>(MemDecl) ||
|
|
(isa<FunctionTemplateDecl>(MemDecl) &&
|
|
isa<CXXMethodDecl>(
|
|
cast<FunctionTemplateDecl>(MemDecl)->getTemplatedDecl())))
|
|
return Owned(BuildCallToMemberFunction(S, Fn, LParenLoc, Args, NumArgs,
|
|
CommaLocs, RParenLoc));
|
|
}
|
|
}
|
|
|
|
// If we're directly calling a function, get the appropriate declaration.
|
|
// Also, in C++, keep track of whether we should perform argument-dependent
|
|
// lookup and whether there were any explicitly-specified template arguments.
|
|
Expr *FnExpr = Fn;
|
|
bool ADL = true;
|
|
bool HasExplicitTemplateArgs = 0;
|
|
const TemplateArgument *ExplicitTemplateArgs = 0;
|
|
unsigned NumExplicitTemplateArgs = 0;
|
|
while (true) {
|
|
if (ImplicitCastExpr *IcExpr = dyn_cast<ImplicitCastExpr>(FnExpr))
|
|
FnExpr = IcExpr->getSubExpr();
|
|
else if (ParenExpr *PExpr = dyn_cast<ParenExpr>(FnExpr)) {
|
|
// Parentheses around a function disable ADL
|
|
// (C++0x [basic.lookup.argdep]p1).
|
|
ADL = false;
|
|
FnExpr = PExpr->getSubExpr();
|
|
} else if (isa<UnaryOperator>(FnExpr) &&
|
|
cast<UnaryOperator>(FnExpr)->getOpcode()
|
|
== UnaryOperator::AddrOf) {
|
|
FnExpr = cast<UnaryOperator>(FnExpr)->getSubExpr();
|
|
} else if (DeclRefExpr *DRExpr = dyn_cast<DeclRefExpr>(FnExpr)) {
|
|
// Qualified names disable ADL (C++0x [basic.lookup.argdep]p1).
|
|
ADL &= !isa<QualifiedDeclRefExpr>(DRExpr);
|
|
NDecl = dyn_cast<NamedDecl>(DRExpr->getDecl());
|
|
break;
|
|
} else if (UnresolvedFunctionNameExpr *DepName
|
|
= dyn_cast<UnresolvedFunctionNameExpr>(FnExpr)) {
|
|
UnqualifiedName = DepName->getName();
|
|
break;
|
|
} else if (TemplateIdRefExpr *TemplateIdRef
|
|
= dyn_cast<TemplateIdRefExpr>(FnExpr)) {
|
|
NDecl = TemplateIdRef->getTemplateName().getAsTemplateDecl();
|
|
HasExplicitTemplateArgs = true;
|
|
ExplicitTemplateArgs = TemplateIdRef->getTemplateArgs();
|
|
NumExplicitTemplateArgs = TemplateIdRef->getNumTemplateArgs();
|
|
|
|
// C++ [temp.arg.explicit]p6:
|
|
// [Note: For simple function names, argument dependent lookup (3.4.2)
|
|
// applies even when the function name is not visible within the
|
|
// scope of the call. This is because the call still has the syntactic
|
|
// form of a function call (3.4.1). But when a function template with
|
|
// explicit template arguments is used, the call does not have the
|
|
// correct syntactic form unless there is a function template with
|
|
// that name visible at the point of the call. If no such name is
|
|
// visible, the call is not syntactically well-formed and
|
|
// argument-dependent lookup does not apply. If some such name is
|
|
// visible, argument dependent lookup applies and additional function
|
|
// templates may be found in other namespaces.
|
|
//
|
|
// The summary of this paragraph is that, if we get to this point and the
|
|
// template-id was not a qualified name, then argument-dependent lookup
|
|
// is still possible.
|
|
if (TemplateIdRef->getQualifier())
|
|
ADL = false;
|
|
break;
|
|
} else {
|
|
// Any kind of name that does not refer to a declaration (or
|
|
// set of declarations) disables ADL (C++0x [basic.lookup.argdep]p3).
|
|
ADL = false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
OverloadedFunctionDecl *Ovl = 0;
|
|
FunctionTemplateDecl *FunctionTemplate = 0;
|
|
if (NDecl) {
|
|
FDecl = dyn_cast<FunctionDecl>(NDecl);
|
|
if ((FunctionTemplate = dyn_cast<FunctionTemplateDecl>(NDecl)))
|
|
FDecl = FunctionTemplate->getTemplatedDecl();
|
|
else
|
|
FDecl = dyn_cast<FunctionDecl>(NDecl);
|
|
Ovl = dyn_cast<OverloadedFunctionDecl>(NDecl);
|
|
}
|
|
|
|
if (Ovl || FunctionTemplate ||
|
|
(getLangOptions().CPlusPlus && (FDecl || UnqualifiedName))) {
|
|
// We don't perform ADL for implicit declarations of builtins.
|
|
if (FDecl && FDecl->getBuiltinID(Context) && FDecl->isImplicit())
|
|
ADL = false;
|
|
|
|
// We don't perform ADL in C.
|
|
if (!getLangOptions().CPlusPlus)
|
|
ADL = false;
|
|
|
|
if (Ovl || FunctionTemplate || ADL) {
|
|
FDecl = ResolveOverloadedCallFn(Fn, NDecl, UnqualifiedName,
|
|
HasExplicitTemplateArgs,
|
|
ExplicitTemplateArgs,
|
|
NumExplicitTemplateArgs,
|
|
LParenLoc, Args, NumArgs, CommaLocs,
|
|
RParenLoc, ADL);
|
|
if (!FDecl)
|
|
return ExprError();
|
|
|
|
// Update Fn to refer to the actual function selected.
|
|
Expr *NewFn = 0;
|
|
if (QualifiedDeclRefExpr *QDRExpr
|
|
= dyn_cast<QualifiedDeclRefExpr>(FnExpr))
|
|
NewFn = new (Context) QualifiedDeclRefExpr(FDecl, FDecl->getType(),
|
|
QDRExpr->getLocation(),
|
|
false, false,
|
|
QDRExpr->getQualifierRange(),
|
|
QDRExpr->getQualifier());
|
|
else
|
|
NewFn = new (Context) DeclRefExpr(FDecl, FDecl->getType(),
|
|
Fn->getSourceRange().getBegin());
|
|
Fn->Destroy(Context);
|
|
Fn = NewFn;
|
|
}
|
|
}
|
|
|
|
// Promote the function operand.
|
|
UsualUnaryConversions(Fn);
|
|
|
|
// Make the call expr early, before semantic checks. This guarantees cleanup
|
|
// of arguments and function on error.
|
|
ExprOwningPtr<CallExpr> TheCall(this, new (Context) CallExpr(Context, Fn,
|
|
Args, NumArgs,
|
|
Context.BoolTy,
|
|
RParenLoc));
|
|
|
|
const FunctionType *FuncT;
|
|
if (!Fn->getType()->isBlockPointerType()) {
|
|
// C99 6.5.2.2p1 - "The expression that denotes the called function shall
|
|
// have type pointer to function".
|
|
const PointerType *PT = Fn->getType()->getAsPointerType();
|
|
if (PT == 0)
|
|
return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
|
|
<< Fn->getType() << Fn->getSourceRange());
|
|
FuncT = PT->getPointeeType()->getAsFunctionType();
|
|
} else { // This is a block call.
|
|
FuncT = Fn->getType()->getAsBlockPointerType()->getPointeeType()->
|
|
getAsFunctionType();
|
|
}
|
|
if (FuncT == 0)
|
|
return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
|
|
<< Fn->getType() << Fn->getSourceRange());
|
|
|
|
// Check for a valid return type
|
|
if (!FuncT->getResultType()->isVoidType() &&
|
|
RequireCompleteType(Fn->getSourceRange().getBegin(),
|
|
FuncT->getResultType(),
|
|
diag::err_call_incomplete_return,
|
|
TheCall->getSourceRange()))
|
|
return ExprError();
|
|
|
|
// We know the result type of the call, set it.
|
|
TheCall->setType(FuncT->getResultType().getNonReferenceType());
|
|
|
|
if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FuncT)) {
|
|
if (ConvertArgumentsForCall(&*TheCall, Fn, FDecl, Proto, Args, NumArgs,
|
|
RParenLoc))
|
|
return ExprError();
|
|
} else {
|
|
assert(isa<FunctionNoProtoType>(FuncT) && "Unknown FunctionType!");
|
|
|
|
if (FDecl) {
|
|
// Check if we have too few/too many template arguments, based
|
|
// on our knowledge of the function definition.
|
|
const FunctionDecl *Def = 0;
|
|
if (FDecl->getBody(Def) && NumArgs != Def->param_size()) {
|
|
const FunctionProtoType *Proto =
|
|
Def->getType()->getAsFunctionProtoType();
|
|
if (!Proto || !(Proto->isVariadic() && NumArgs >= Def->param_size())) {
|
|
Diag(RParenLoc, diag::warn_call_wrong_number_of_arguments)
|
|
<< (NumArgs > Def->param_size()) << FDecl << Fn->getSourceRange();
|
|
}
|
|
}
|
|
}
|
|
|
|
// Promote the arguments (C99 6.5.2.2p6).
|
|
for (unsigned i = 0; i != NumArgs; i++) {
|
|
Expr *Arg = Args[i];
|
|
DefaultArgumentPromotion(Arg);
|
|
if (RequireCompleteType(Arg->getSourceRange().getBegin(),
|
|
Arg->getType(),
|
|
diag::err_call_incomplete_argument,
|
|
Arg->getSourceRange()))
|
|
return ExprError();
|
|
TheCall->setArg(i, Arg);
|
|
}
|
|
}
|
|
|
|
if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
|
|
if (!Method->isStatic())
|
|
return ExprError(Diag(LParenLoc, diag::err_member_call_without_object)
|
|
<< Fn->getSourceRange());
|
|
|
|
// Check for sentinels
|
|
if (NDecl)
|
|
DiagnoseSentinelCalls(NDecl, LParenLoc, Args, NumArgs);
|
|
// Do special checking on direct calls to functions.
|
|
if (FDecl)
|
|
return CheckFunctionCall(FDecl, TheCall.take());
|
|
if (NDecl)
|
|
return CheckBlockCall(NDecl, TheCall.take());
|
|
|
|
return Owned(TheCall.take());
|
|
}
|
|
|
|
Action::OwningExprResult
|
|
Sema::ActOnCompoundLiteral(SourceLocation LParenLoc, TypeTy *Ty,
|
|
SourceLocation RParenLoc, ExprArg InitExpr) {
|
|
assert((Ty != 0) && "ActOnCompoundLiteral(): missing type");
|
|
QualType literalType = QualType::getFromOpaquePtr(Ty);
|
|
// FIXME: put back this assert when initializers are worked out.
|
|
//assert((InitExpr != 0) && "ActOnCompoundLiteral(): missing expression");
|
|
Expr *literalExpr = static_cast<Expr*>(InitExpr.get());
|
|
|
|
if (literalType->isArrayType()) {
|
|
if (literalType->isVariableArrayType())
|
|
return ExprError(Diag(LParenLoc, diag::err_variable_object_no_init)
|
|
<< SourceRange(LParenLoc, literalExpr->getSourceRange().getEnd()));
|
|
} else if (!literalType->isDependentType() &&
|
|
RequireCompleteType(LParenLoc, literalType,
|
|
diag::err_typecheck_decl_incomplete_type,
|
|
SourceRange(LParenLoc, literalExpr->getSourceRange().getEnd())))
|
|
return ExprError();
|
|
|
|
if (CheckInitializerTypes(literalExpr, literalType, LParenLoc,
|
|
DeclarationName(), /*FIXME:DirectInit=*/false))
|
|
return ExprError();
|
|
|
|
bool isFileScope = getCurFunctionOrMethodDecl() == 0;
|
|
if (isFileScope) { // 6.5.2.5p3
|
|
if (CheckForConstantInitializer(literalExpr, literalType))
|
|
return ExprError();
|
|
}
|
|
InitExpr.release();
|
|
return Owned(new (Context) CompoundLiteralExpr(LParenLoc, literalType,
|
|
literalExpr, isFileScope));
|
|
}
|
|
|
|
Action::OwningExprResult
|
|
Sema::ActOnInitList(SourceLocation LBraceLoc, MultiExprArg initlist,
|
|
SourceLocation RBraceLoc) {
|
|
unsigned NumInit = initlist.size();
|
|
Expr **InitList = reinterpret_cast<Expr**>(initlist.release());
|
|
|
|
// Semantic analysis for initializers is done by ActOnDeclarator() and
|
|
// CheckInitializer() - it requires knowledge of the object being intialized.
|
|
|
|
InitListExpr *E = new (Context) InitListExpr(LBraceLoc, InitList, NumInit,
|
|
RBraceLoc);
|
|
E->setType(Context.VoidTy); // FIXME: just a place holder for now.
|
|
return Owned(E);
|
|
}
|
|
|
|
/// CheckCastTypes - Check type constraints for casting between types.
|
|
bool Sema::CheckCastTypes(SourceRange TyR, QualType castType, Expr *&castExpr) {
|
|
UsualUnaryConversions(castExpr);
|
|
|
|
// C99 6.5.4p2: the cast type needs to be void or scalar and the expression
|
|
// type needs to be scalar.
|
|
if (castType->isVoidType()) {
|
|
// Cast to void allows any expr type.
|
|
} else if (castType->isDependentType() || castExpr->isTypeDependent()) {
|
|
// We can't check any more until template instantiation time.
|
|
} else if (!castType->isScalarType() && !castType->isVectorType()) {
|
|
if (Context.getCanonicalType(castType).getUnqualifiedType() ==
|
|
Context.getCanonicalType(castExpr->getType().getUnqualifiedType()) &&
|
|
(castType->isStructureType() || castType->isUnionType())) {
|
|
// GCC struct/union extension: allow cast to self.
|
|
// FIXME: Check that the cast destination type is complete.
|
|
Diag(TyR.getBegin(), diag::ext_typecheck_cast_nonscalar)
|
|
<< castType << castExpr->getSourceRange();
|
|
} else if (castType->isUnionType()) {
|
|
// GCC cast to union extension
|
|
RecordDecl *RD = castType->getAsRecordType()->getDecl();
|
|
RecordDecl::field_iterator Field, FieldEnd;
|
|
for (Field = RD->field_begin(), FieldEnd = RD->field_end();
|
|
Field != FieldEnd; ++Field) {
|
|
if (Context.getCanonicalType(Field->getType()).getUnqualifiedType() ==
|
|
Context.getCanonicalType(castExpr->getType()).getUnqualifiedType()) {
|
|
Diag(TyR.getBegin(), diag::ext_typecheck_cast_to_union)
|
|
<< castExpr->getSourceRange();
|
|
break;
|
|
}
|
|
}
|
|
if (Field == FieldEnd)
|
|
return Diag(TyR.getBegin(), diag::err_typecheck_cast_to_union_no_type)
|
|
<< castExpr->getType() << castExpr->getSourceRange();
|
|
} else {
|
|
// Reject any other conversions to non-scalar types.
|
|
return Diag(TyR.getBegin(), diag::err_typecheck_cond_expect_scalar)
|
|
<< castType << castExpr->getSourceRange();
|
|
}
|
|
} else if (!castExpr->getType()->isScalarType() &&
|
|
!castExpr->getType()->isVectorType()) {
|
|
return Diag(castExpr->getLocStart(),
|
|
diag::err_typecheck_expect_scalar_operand)
|
|
<< castExpr->getType() << castExpr->getSourceRange();
|
|
} else if (castType->isExtVectorType()) {
|
|
if (CheckExtVectorCast(TyR, castType, castExpr->getType()))
|
|
return true;
|
|
} else if (castType->isVectorType()) {
|
|
if (CheckVectorCast(TyR, castType, castExpr->getType()))
|
|
return true;
|
|
} else if (castExpr->getType()->isVectorType()) {
|
|
if (CheckVectorCast(TyR, castExpr->getType(), castType))
|
|
return true;
|
|
} else if (getLangOptions().ObjC1 && isa<ObjCSuperExpr>(castExpr)) {
|
|
return Diag(castExpr->getLocStart(), diag::err_illegal_super_cast) << TyR;
|
|
} else if (!castType->isArithmeticType()) {
|
|
QualType castExprType = castExpr->getType();
|
|
if (!castExprType->isIntegralType() && castExprType->isArithmeticType())
|
|
return Diag(castExpr->getLocStart(),
|
|
diag::err_cast_pointer_from_non_pointer_int)
|
|
<< castExprType << castExpr->getSourceRange();
|
|
} else if (!castExpr->getType()->isArithmeticType()) {
|
|
if (!castType->isIntegralType() && castType->isArithmeticType())
|
|
return Diag(castExpr->getLocStart(),
|
|
diag::err_cast_pointer_to_non_pointer_int)
|
|
<< castType << castExpr->getSourceRange();
|
|
}
|
|
if (isa<ObjCSelectorExpr>(castExpr))
|
|
return Diag(castExpr->getLocStart(), diag::err_cast_selector_expr);
|
|
return false;
|
|
}
|
|
|
|
bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty) {
|
|
assert(VectorTy->isVectorType() && "Not a vector type!");
|
|
|
|
if (Ty->isVectorType() || Ty->isIntegerType()) {
|
|
if (Context.getTypeSize(VectorTy) != Context.getTypeSize(Ty))
|
|
return Diag(R.getBegin(),
|
|
Ty->isVectorType() ?
|
|
diag::err_invalid_conversion_between_vectors :
|
|
diag::err_invalid_conversion_between_vector_and_integer)
|
|
<< VectorTy << Ty << R;
|
|
} else
|
|
return Diag(R.getBegin(),
|
|
diag::err_invalid_conversion_between_vector_and_scalar)
|
|
<< VectorTy << Ty << R;
|
|
|
|
return false;
|
|
}
|
|
|
|
bool Sema::CheckExtVectorCast(SourceRange R, QualType DestTy, QualType SrcTy) {
|
|
assert(DestTy->isExtVectorType() && "Not an extended vector type!");
|
|
|
|
// If SrcTy is a VectorType, the total size must match to explicitly cast to
|
|
// an ExtVectorType.
|
|
if (SrcTy->isVectorType()) {
|
|
if (Context.getTypeSize(DestTy) != Context.getTypeSize(SrcTy))
|
|
return Diag(R.getBegin(),diag::err_invalid_conversion_between_ext_vectors)
|
|
<< DestTy << SrcTy << R;
|
|
return false;
|
|
}
|
|
|
|
// All non-pointer scalars can be cast to ExtVector type. The appropriate
|
|
// conversion will take place first from scalar to elt type, and then
|
|
// splat from elt type to vector.
|
|
if (SrcTy->isPointerType())
|
|
return Diag(R.getBegin(),
|
|
diag::err_invalid_conversion_between_vector_and_scalar)
|
|
<< DestTy << SrcTy << R;
|
|
return false;
|
|
}
|
|
|
|
Action::OwningExprResult
|
|
Sema::ActOnCastExpr(SourceLocation LParenLoc, TypeTy *Ty,
|
|
SourceLocation RParenLoc, ExprArg Op) {
|
|
assert((Ty != 0) && (Op.get() != 0) &&
|
|
"ActOnCastExpr(): missing type or expr");
|
|
|
|
Expr *castExpr = Op.takeAs<Expr>();
|
|
QualType castType = QualType::getFromOpaquePtr(Ty);
|
|
|
|
if (CheckCastTypes(SourceRange(LParenLoc, RParenLoc), castType, castExpr))
|
|
return ExprError();
|
|
return Owned(new (Context) CStyleCastExpr(castType, castExpr, castType,
|
|
LParenLoc, RParenLoc));
|
|
}
|
|
|
|
/// Note that lhs is not null here, even if this is the gnu "x ?: y" extension.
|
|
/// In that case, lhs = cond.
|
|
/// C99 6.5.15
|
|
QualType Sema::CheckConditionalOperands(Expr *&Cond, Expr *&LHS, Expr *&RHS,
|
|
SourceLocation QuestionLoc) {
|
|
// C++ is sufficiently different to merit its own checker.
|
|
if (getLangOptions().CPlusPlus)
|
|
return CXXCheckConditionalOperands(Cond, LHS, RHS, QuestionLoc);
|
|
|
|
UsualUnaryConversions(Cond);
|
|
UsualUnaryConversions(LHS);
|
|
UsualUnaryConversions(RHS);
|
|
QualType CondTy = Cond->getType();
|
|
QualType LHSTy = LHS->getType();
|
|
QualType RHSTy = RHS->getType();
|
|
|
|
// first, check the condition.
|
|
if (!CondTy->isScalarType()) { // C99 6.5.15p2
|
|
Diag(Cond->getLocStart(), diag::err_typecheck_cond_expect_scalar)
|
|
<< CondTy;
|
|
return QualType();
|
|
}
|
|
|
|
// Now check the two expressions.
|
|
|
|
// If both operands have arithmetic type, do the usual arithmetic conversions
|
|
// to find a common type: C99 6.5.15p3,5.
|
|
if (LHSTy->isArithmeticType() && RHSTy->isArithmeticType()) {
|
|
UsualArithmeticConversions(LHS, RHS);
|
|
return LHS->getType();
|
|
}
|
|
|
|
// If both operands are the same structure or union type, the result is that
|
|
// type.
|
|
if (const RecordType *LHSRT = LHSTy->getAsRecordType()) { // C99 6.5.15p3
|
|
if (const RecordType *RHSRT = RHSTy->getAsRecordType())
|
|
if (LHSRT->getDecl() == RHSRT->getDecl())
|
|
// "If both the operands have structure or union type, the result has
|
|
// that type." This implies that CV qualifiers are dropped.
|
|
return LHSTy.getUnqualifiedType();
|
|
// FIXME: Type of conditional expression must be complete in C mode.
|
|
}
|
|
|
|
// C99 6.5.15p5: "If both operands have void type, the result has void type."
|
|
// The following || allows only one side to be void (a GCC-ism).
|
|
if (LHSTy->isVoidType() || RHSTy->isVoidType()) {
|
|
if (!LHSTy->isVoidType())
|
|
Diag(RHS->getLocStart(), diag::ext_typecheck_cond_one_void)
|
|
<< RHS->getSourceRange();
|
|
if (!RHSTy->isVoidType())
|
|
Diag(LHS->getLocStart(), diag::ext_typecheck_cond_one_void)
|
|
<< LHS->getSourceRange();
|
|
ImpCastExprToType(LHS, Context.VoidTy);
|
|
ImpCastExprToType(RHS, Context.VoidTy);
|
|
return Context.VoidTy;
|
|
}
|
|
// C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
|
|
// the type of the other operand."
|
|
if ((LHSTy->isAnyPointerType() || LHSTy->isBlockPointerType()) &&
|
|
RHS->isNullPointerConstant(Context)) {
|
|
ImpCastExprToType(RHS, LHSTy); // promote the null to a pointer.
|
|
return LHSTy;
|
|
}
|
|
if ((RHSTy->isAnyPointerType() || RHSTy->isBlockPointerType()) &&
|
|
LHS->isNullPointerConstant(Context)) {
|
|
ImpCastExprToType(LHS, RHSTy); // promote the null to a pointer.
|
|
return RHSTy;
|
|
}
|
|
// Handle block pointer types.
|
|
if (LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType()) {
|
|
if (!LHSTy->isBlockPointerType() || !RHSTy->isBlockPointerType()) {
|
|
if (LHSTy->isVoidPointerType() || RHSTy->isVoidPointerType()) {
|
|
QualType destType = Context.getPointerType(Context.VoidTy);
|
|
ImpCastExprToType(LHS, destType);
|
|
ImpCastExprToType(RHS, destType);
|
|
return destType;
|
|
}
|
|
Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
|
|
<< LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
|
|
return QualType();
|
|
}
|
|
// We have 2 block pointer types.
|
|
if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
|
|
// Two identical block pointer types are always compatible.
|
|
return LHSTy;
|
|
}
|
|
// The block pointer types aren't identical, continue checking.
|
|
QualType lhptee = LHSTy->getAsBlockPointerType()->getPointeeType();
|
|
QualType rhptee = RHSTy->getAsBlockPointerType()->getPointeeType();
|
|
|
|
if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(),
|
|
rhptee.getUnqualifiedType())) {
|
|
Diag(QuestionLoc, diag::warn_typecheck_cond_incompatible_pointers)
|
|
<< LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
|
|
// In this situation, we assume void* type. No especially good
|
|
// reason, but this is what gcc does, and we do have to pick
|
|
// to get a consistent AST.
|
|
QualType incompatTy = Context.getPointerType(Context.VoidTy);
|
|
ImpCastExprToType(LHS, incompatTy);
|
|
ImpCastExprToType(RHS, incompatTy);
|
|
return incompatTy;
|
|
}
|
|
// The block pointer types are compatible.
|
|
ImpCastExprToType(LHS, LHSTy);
|
|
ImpCastExprToType(RHS, LHSTy);
|
|
return LHSTy;
|
|
}
|
|
// Check constraints for Objective-C object pointers types.
|
|
if (LHSTy->isObjCObjectPointerType() && RHSTy->isObjCObjectPointerType()) {
|
|
|
|
if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
|
|
// Two identical object pointer types are always compatible.
|
|
return LHSTy;
|
|
}
|
|
const ObjCObjectPointerType *LHSOPT = LHSTy->getAsObjCObjectPointerType();
|
|
const ObjCObjectPointerType *RHSOPT = RHSTy->getAsObjCObjectPointerType();
|
|
QualType compositeType = LHSTy;
|
|
|
|
// If both operands are interfaces and either operand can be
|
|
// assigned to the other, use that type as the composite
|
|
// type. This allows
|
|
// xxx ? (A*) a : (B*) b
|
|
// where B is a subclass of A.
|
|
//
|
|
// Additionally, as for assignment, if either type is 'id'
|
|
// allow silent coercion. Finally, if the types are
|
|
// incompatible then make sure to use 'id' as the composite
|
|
// type so the result is acceptable for sending messages to.
|
|
|
|
// FIXME: Consider unifying with 'areComparableObjCPointerTypes'.
|
|
// It could return the composite type.
|
|
if (Context.canAssignObjCInterfaces(LHSOPT, RHSOPT)) {
|
|
compositeType = LHSTy;
|
|
} else if (Context.canAssignObjCInterfaces(RHSOPT, LHSOPT)) {
|
|
compositeType = RHSTy;
|
|
} else if ((LHSTy->isObjCQualifiedIdType() ||
|
|
RHSTy->isObjCQualifiedIdType()) &&
|
|
Context.ObjCQualifiedIdTypesAreCompatible(LHSTy, RHSTy, true)) {
|
|
// Need to handle "id<xx>" explicitly.
|
|
// GCC allows qualified id and any Objective-C type to devolve to
|
|
// id. Currently localizing to here until clear this should be
|
|
// part of ObjCQualifiedIdTypesAreCompatible.
|
|
compositeType = Context.getObjCIdType();
|
|
} else if (LHSTy->isObjCIdType() || RHSTy->isObjCIdType()) {
|
|
compositeType = Context.getObjCIdType();
|
|
} else {
|
|
Diag(QuestionLoc, diag::ext_typecheck_cond_incompatible_operands)
|
|
<< LHSTy << RHSTy
|
|
<< LHS->getSourceRange() << RHS->getSourceRange();
|
|
QualType incompatTy = Context.getObjCIdType();
|
|
ImpCastExprToType(LHS, incompatTy);
|
|
ImpCastExprToType(RHS, incompatTy);
|
|
return incompatTy;
|
|
}
|
|
// The object pointer types are compatible.
|
|
ImpCastExprToType(LHS, compositeType);
|
|
ImpCastExprToType(RHS, compositeType);
|
|
return compositeType;
|
|
}
|
|
// Check constraints for C object pointers types (C99 6.5.15p3,6).
|
|
if (LHSTy->isPointerType() && RHSTy->isPointerType()) {
|
|
// get the "pointed to" types
|
|
QualType lhptee = LHSTy->getAsPointerType()->getPointeeType();
|
|
QualType rhptee = RHSTy->getAsPointerType()->getPointeeType();
|
|
|
|
// ignore qualifiers on void (C99 6.5.15p3, clause 6)
|
|
if (lhptee->isVoidType() && rhptee->isIncompleteOrObjectType()) {
|
|
// Figure out necessary qualifiers (C99 6.5.15p6)
|
|
QualType destPointee=lhptee.getQualifiedType(rhptee.getCVRQualifiers());
|
|
QualType destType = Context.getPointerType(destPointee);
|
|
ImpCastExprToType(LHS, destType); // add qualifiers if necessary
|
|
ImpCastExprToType(RHS, destType); // promote to void*
|
|
return destType;
|
|
}
|
|
if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) {
|
|
QualType destPointee=rhptee.getQualifiedType(lhptee.getCVRQualifiers());
|
|
QualType destType = Context.getPointerType(destPointee);
|
|
ImpCastExprToType(LHS, destType); // add qualifiers if necessary
|
|
ImpCastExprToType(RHS, destType); // promote to void*
|
|
return destType;
|
|
}
|
|
|
|
if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
|
|
// Two identical pointer types are always compatible.
|
|
return LHSTy;
|
|
}
|
|
if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(),
|
|
rhptee.getUnqualifiedType())) {
|
|
Diag(QuestionLoc, diag::warn_typecheck_cond_incompatible_pointers)
|
|
<< LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
|
|
// In this situation, we assume void* type. No especially good
|
|
// reason, but this is what gcc does, and we do have to pick
|
|
// to get a consistent AST.
|
|
QualType incompatTy = Context.getPointerType(Context.VoidTy);
|
|
ImpCastExprToType(LHS, incompatTy);
|
|
ImpCastExprToType(RHS, incompatTy);
|
|
return incompatTy;
|
|
}
|
|
// The pointer types are compatible.
|
|
// C99 6.5.15p6: If both operands are pointers to compatible types *or* to
|
|
// differently qualified versions of compatible types, the result type is
|
|
// a pointer to an appropriately qualified version of the *composite*
|
|
// type.
|
|
// FIXME: Need to calculate the composite type.
|
|
// FIXME: Need to add qualifiers
|
|
ImpCastExprToType(LHS, LHSTy);
|
|
ImpCastExprToType(RHS, LHSTy);
|
|
return LHSTy;
|
|
}
|
|
|
|
// GCC compatibility: soften pointer/integer mismatch.
|
|
if (RHSTy->isPointerType() && LHSTy->isIntegerType()) {
|
|
Diag(QuestionLoc, diag::warn_typecheck_cond_pointer_integer_mismatch)
|
|
<< LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
|
|
ImpCastExprToType(LHS, RHSTy); // promote the integer to a pointer.
|
|
return RHSTy;
|
|
}
|
|
if (LHSTy->isPointerType() && RHSTy->isIntegerType()) {
|
|
Diag(QuestionLoc, diag::warn_typecheck_cond_pointer_integer_mismatch)
|
|
<< LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
|
|
ImpCastExprToType(RHS, LHSTy); // promote the integer to a pointer.
|
|
return LHSTy;
|
|
}
|
|
|
|
// Otherwise, the operands are not compatible.
|
|
Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
|
|
<< LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
|
|
return QualType();
|
|
}
|
|
|
|
/// ActOnConditionalOp - Parse a ?: operation. Note that 'LHS' may be null
|
|
/// in the case of a the GNU conditional expr extension.
|
|
Action::OwningExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
|
|
SourceLocation ColonLoc,
|
|
ExprArg Cond, ExprArg LHS,
|
|
ExprArg RHS) {
|
|
Expr *CondExpr = (Expr *) Cond.get();
|
|
Expr *LHSExpr = (Expr *) LHS.get(), *RHSExpr = (Expr *) RHS.get();
|
|
|
|
// If this is the gnu "x ?: y" extension, analyze the types as though the LHS
|
|
// was the condition.
|
|
bool isLHSNull = LHSExpr == 0;
|
|
if (isLHSNull)
|
|
LHSExpr = CondExpr;
|
|
|
|
QualType result = CheckConditionalOperands(CondExpr, LHSExpr,
|
|
RHSExpr, QuestionLoc);
|
|
if (result.isNull())
|
|
return ExprError();
|
|
|
|
Cond.release();
|
|
LHS.release();
|
|
RHS.release();
|
|
return Owned(new (Context) ConditionalOperator(CondExpr,
|
|
isLHSNull ? 0 : LHSExpr,
|
|
RHSExpr, result));
|
|
}
|
|
|
|
// CheckPointerTypesForAssignment - This is a very tricky routine (despite
|
|
// being closely modeled after the C99 spec:-). The odd characteristic of this
|
|
// routine is it effectively iqnores the qualifiers on the top level pointee.
|
|
// This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
|
|
// FIXME: add a couple examples in this comment.
|
|
Sema::AssignConvertType
|
|
Sema::CheckPointerTypesForAssignment(QualType lhsType, QualType rhsType) {
|
|
QualType lhptee, rhptee;
|
|
|
|
// get the "pointed to" type (ignoring qualifiers at the top level)
|
|
lhptee = lhsType->getAsPointerType()->getPointeeType();
|
|
rhptee = rhsType->getAsPointerType()->getPointeeType();
|
|
|
|
// make sure we operate on the canonical type
|
|
lhptee = Context.getCanonicalType(lhptee);
|
|
rhptee = Context.getCanonicalType(rhptee);
|
|
|
|
AssignConvertType ConvTy = Compatible;
|
|
|
|
// C99 6.5.16.1p1: This following citation is common to constraints
|
|
// 3 & 4 (below). ...and the type *pointed to* by the left has all the
|
|
// qualifiers of the type *pointed to* by the right;
|
|
// FIXME: Handle ExtQualType
|
|
if (!lhptee.isAtLeastAsQualifiedAs(rhptee))
|
|
ConvTy = CompatiblePointerDiscardsQualifiers;
|
|
|
|
// C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
|
|
// incomplete type and the other is a pointer to a qualified or unqualified
|
|
// version of void...
|
|
if (lhptee->isVoidType()) {
|
|
if (rhptee->isIncompleteOrObjectType())
|
|
return ConvTy;
|
|
|
|
// As an extension, we allow cast to/from void* to function pointer.
|
|
assert(rhptee->isFunctionType());
|
|
return FunctionVoidPointer;
|
|
}
|
|
|
|
if (rhptee->isVoidType()) {
|
|
if (lhptee->isIncompleteOrObjectType())
|
|
return ConvTy;
|
|
|
|
// As an extension, we allow cast to/from void* to function pointer.
|
|
assert(lhptee->isFunctionType());
|
|
return FunctionVoidPointer;
|
|
}
|
|
// C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
|
|
// unqualified versions of compatible types, ...
|
|
lhptee = lhptee.getUnqualifiedType();
|
|
rhptee = rhptee.getUnqualifiedType();
|
|
if (!Context.typesAreCompatible(lhptee, rhptee)) {
|
|
// Check if the pointee types are compatible ignoring the sign.
|
|
// We explicitly check for char so that we catch "char" vs
|
|
// "unsigned char" on systems where "char" is unsigned.
|
|
if (lhptee->isCharType()) {
|
|
lhptee = Context.UnsignedCharTy;
|
|
} else if (lhptee->isSignedIntegerType()) {
|
|
lhptee = Context.getCorrespondingUnsignedType(lhptee);
|
|
}
|
|
if (rhptee->isCharType()) {
|
|
rhptee = Context.UnsignedCharTy;
|
|
} else if (rhptee->isSignedIntegerType()) {
|
|
rhptee = Context.getCorrespondingUnsignedType(rhptee);
|
|
}
|
|
if (lhptee == rhptee) {
|
|
// Types are compatible ignoring the sign. Qualifier incompatibility
|
|
// takes priority over sign incompatibility because the sign
|
|
// warning can be disabled.
|
|
if (ConvTy != Compatible)
|
|
return ConvTy;
|
|
return IncompatiblePointerSign;
|
|
}
|
|
// General pointer incompatibility takes priority over qualifiers.
|
|
return IncompatiblePointer;
|
|
}
|
|
return ConvTy;
|
|
}
|
|
|
|
/// CheckBlockPointerTypesForAssignment - This routine determines whether two
|
|
/// block pointer types are compatible or whether a block and normal pointer
|
|
/// are compatible. It is more restrict than comparing two function pointer
|
|
// types.
|
|
Sema::AssignConvertType
|
|
Sema::CheckBlockPointerTypesForAssignment(QualType lhsType,
|
|
QualType rhsType) {
|
|
QualType lhptee, rhptee;
|
|
|
|
// get the "pointed to" type (ignoring qualifiers at the top level)
|
|
lhptee = lhsType->getAsBlockPointerType()->getPointeeType();
|
|
rhptee = rhsType->getAsBlockPointerType()->getPointeeType();
|
|
|
|
// make sure we operate on the canonical type
|
|
lhptee = Context.getCanonicalType(lhptee);
|
|
rhptee = Context.getCanonicalType(rhptee);
|
|
|
|
AssignConvertType ConvTy = Compatible;
|
|
|
|
// For blocks we enforce that qualifiers are identical.
|
|
if (lhptee.getCVRQualifiers() != rhptee.getCVRQualifiers())
|
|
ConvTy = CompatiblePointerDiscardsQualifiers;
|
|
|
|
if (!Context.typesAreCompatible(lhptee, rhptee))
|
|
return IncompatibleBlockPointer;
|
|
return ConvTy;
|
|
}
|
|
|
|
/// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
|
|
/// has code to accommodate several GCC extensions when type checking
|
|
/// pointers. Here are some objectionable examples that GCC considers warnings:
|
|
///
|
|
/// int a, *pint;
|
|
/// short *pshort;
|
|
/// struct foo *pfoo;
|
|
///
|
|
/// pint = pshort; // warning: assignment from incompatible pointer type
|
|
/// a = pint; // warning: assignment makes integer from pointer without a cast
|
|
/// pint = a; // warning: assignment makes pointer from integer without a cast
|
|
/// pint = pfoo; // warning: assignment from incompatible pointer type
|
|
///
|
|
/// As a result, the code for dealing with pointers is more complex than the
|
|
/// C99 spec dictates.
|
|
///
|
|
Sema::AssignConvertType
|
|
Sema::CheckAssignmentConstraints(QualType lhsType, QualType rhsType) {
|
|
// Get canonical types. We're not formatting these types, just comparing
|
|
// them.
|
|
lhsType = Context.getCanonicalType(lhsType).getUnqualifiedType();
|
|
rhsType = Context.getCanonicalType(rhsType).getUnqualifiedType();
|
|
|
|
if (lhsType == rhsType)
|
|
return Compatible; // Common case: fast path an exact match.
|
|
|
|
// If the left-hand side is a reference type, then we are in a
|
|
// (rare!) case where we've allowed the use of references in C,
|
|
// e.g., as a parameter type in a built-in function. In this case,
|
|
// just make sure that the type referenced is compatible with the
|
|
// right-hand side type. The caller is responsible for adjusting
|
|
// lhsType so that the resulting expression does not have reference
|
|
// type.
|
|
if (const ReferenceType *lhsTypeRef = lhsType->getAsReferenceType()) {
|
|
if (Context.typesAreCompatible(lhsTypeRef->getPointeeType(), rhsType))
|
|
return Compatible;
|
|
return Incompatible;
|
|
}
|
|
// Allow scalar to ExtVector assignments, and assignments of an ExtVector type
|
|
// to the same ExtVector type.
|
|
if (lhsType->isExtVectorType()) {
|
|
if (rhsType->isExtVectorType())
|
|
return lhsType == rhsType ? Compatible : Incompatible;
|
|
if (!rhsType->isVectorType() && rhsType->isArithmeticType())
|
|
return Compatible;
|
|
}
|
|
|
|
if (lhsType->isVectorType() || rhsType->isVectorType()) {
|
|
// If we are allowing lax vector conversions, and LHS and RHS are both
|
|
// vectors, the total size only needs to be the same. This is a bitcast;
|
|
// no bits are changed but the result type is different.
|
|
if (getLangOptions().LaxVectorConversions &&
|
|
lhsType->isVectorType() && rhsType->isVectorType()) {
|
|
if (Context.getTypeSize(lhsType) == Context.getTypeSize(rhsType))
|
|
return IncompatibleVectors;
|
|
}
|
|
return Incompatible;
|
|
}
|
|
|
|
if (lhsType->isArithmeticType() && rhsType->isArithmeticType())
|
|
return Compatible;
|
|
|
|
if (isa<PointerType>(lhsType)) {
|
|
if (rhsType->isIntegerType())
|
|
return IntToPointer;
|
|
|
|
if (isa<PointerType>(rhsType))
|
|
return CheckPointerTypesForAssignment(lhsType, rhsType);
|
|
|
|
// In general, C pointers are not compatible with ObjC object pointers.
|
|
if (isa<ObjCObjectPointerType>(rhsType)) {
|
|
if (lhsType->isVoidPointerType()) // an exception to the rule.
|
|
return Compatible;
|
|
return IncompatiblePointer;
|
|
}
|
|
if (rhsType->getAsBlockPointerType()) {
|
|
if (lhsType->getAsPointerType()->getPointeeType()->isVoidType())
|
|
return Compatible;
|
|
|
|
// Treat block pointers as objects.
|
|
if (getLangOptions().ObjC1 && lhsType->isObjCIdType())
|
|
return Compatible;
|
|
}
|
|
return Incompatible;
|
|
}
|
|
|
|
if (isa<BlockPointerType>(lhsType)) {
|
|
if (rhsType->isIntegerType())
|
|
return IntToBlockPointer;
|
|
|
|
// Treat block pointers as objects.
|
|
if (getLangOptions().ObjC1 && rhsType->isObjCIdType())
|
|
return Compatible;
|
|
|
|
if (rhsType->isBlockPointerType())
|
|
return CheckBlockPointerTypesForAssignment(lhsType, rhsType);
|
|
|
|
if (const PointerType *RHSPT = rhsType->getAsPointerType()) {
|
|
if (RHSPT->getPointeeType()->isVoidType())
|
|
return Compatible;
|
|
}
|
|
return Incompatible;
|
|
}
|
|
|
|
if (isa<ObjCObjectPointerType>(lhsType)) {
|
|
if (rhsType->isIntegerType())
|
|
return IntToPointer;
|
|
|
|
// In general, C pointers are not compatible with ObjC object pointers.
|
|
if (isa<PointerType>(rhsType)) {
|
|
if (rhsType->isVoidPointerType()) // an exception to the rule.
|
|
return Compatible;
|
|
return IncompatiblePointer;
|
|
}
|
|
if (rhsType->isObjCObjectPointerType()) {
|
|
if (lhsType->isObjCBuiltinType() || rhsType->isObjCBuiltinType())
|
|
return Compatible;
|
|
if (Context.typesAreCompatible(lhsType, rhsType))
|
|
return Compatible;
|
|
if (lhsType->isObjCQualifiedIdType() || rhsType->isObjCQualifiedIdType())
|
|
return IncompatibleObjCQualifiedId;
|
|
return IncompatiblePointer;
|
|
}
|
|
if (const PointerType *RHSPT = rhsType->getAsPointerType()) {
|
|
if (RHSPT->getPointeeType()->isVoidType())
|
|
return Compatible;
|
|
}
|
|
// Treat block pointers as objects.
|
|
if (rhsType->isBlockPointerType())
|
|
return Compatible;
|
|
return Incompatible;
|
|
}
|
|
if (isa<PointerType>(rhsType)) {
|
|
// C99 6.5.16.1p1: the left operand is _Bool and the right is a pointer.
|
|
if (lhsType == Context.BoolTy)
|
|
return Compatible;
|
|
|
|
if (lhsType->isIntegerType())
|
|
return PointerToInt;
|
|
|
|
if (isa<PointerType>(lhsType))
|
|
return CheckPointerTypesForAssignment(lhsType, rhsType);
|
|
|
|
if (isa<BlockPointerType>(lhsType) &&
|
|
rhsType->getAsPointerType()->getPointeeType()->isVoidType())
|
|
return Compatible;
|
|
return Incompatible;
|
|
}
|
|
if (isa<ObjCObjectPointerType>(rhsType)) {
|
|
// C99 6.5.16.1p1: the left operand is _Bool and the right is a pointer.
|
|
if (lhsType == Context.BoolTy)
|
|
return Compatible;
|
|
|
|
if (lhsType->isIntegerType())
|
|
return PointerToInt;
|
|
|
|
// In general, C pointers are not compatible with ObjC object pointers.
|
|
if (isa<PointerType>(lhsType)) {
|
|
if (lhsType->isVoidPointerType()) // an exception to the rule.
|
|
return Compatible;
|
|
return IncompatiblePointer;
|
|
}
|
|
if (isa<BlockPointerType>(lhsType) &&
|
|
rhsType->getAsPointerType()->getPointeeType()->isVoidType())
|
|
return Compatible;
|
|
return Incompatible;
|
|
}
|
|
|
|
if (isa<TagType>(lhsType) && isa<TagType>(rhsType)) {
|
|
if (Context.typesAreCompatible(lhsType, rhsType))
|
|
return Compatible;
|
|
}
|
|
return Incompatible;
|
|
}
|
|
|
|
/// \brief Constructs a transparent union from an expression that is
|
|
/// used to initialize the transparent union.
|
|
static void ConstructTransparentUnion(ASTContext &C, Expr *&E,
|
|
QualType UnionType, FieldDecl *Field) {
|
|
// Build an initializer list that designates the appropriate member
|
|
// of the transparent union.
|
|
InitListExpr *Initializer = new (C) InitListExpr(SourceLocation(),
|
|
&E, 1,
|
|
SourceLocation());
|
|
Initializer->setType(UnionType);
|
|
Initializer->setInitializedFieldInUnion(Field);
|
|
|
|
// Build a compound literal constructing a value of the transparent
|
|
// union type from this initializer list.
|
|
E = new (C) CompoundLiteralExpr(SourceLocation(), UnionType, Initializer,
|
|
false);
|
|
}
|
|
|
|
Sema::AssignConvertType
|
|
Sema::CheckTransparentUnionArgumentConstraints(QualType ArgType, Expr *&rExpr) {
|
|
QualType FromType = rExpr->getType();
|
|
|
|
// If the ArgType is a Union type, we want to handle a potential
|
|
// transparent_union GCC extension.
|
|
const RecordType *UT = ArgType->getAsUnionType();
|
|
if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
|
|
return Incompatible;
|
|
|
|
// The field to initialize within the transparent union.
|
|
RecordDecl *UD = UT->getDecl();
|
|
FieldDecl *InitField = 0;
|
|
// It's compatible if the expression matches any of the fields.
|
|
for (RecordDecl::field_iterator it = UD->field_begin(),
|
|
itend = UD->field_end();
|
|
it != itend; ++it) {
|
|
if (it->getType()->isPointerType()) {
|
|
// If the transparent union contains a pointer type, we allow:
|
|
// 1) void pointer
|
|
// 2) null pointer constant
|
|
if (FromType->isPointerType())
|
|
if (FromType->getAsPointerType()->getPointeeType()->isVoidType()) {
|
|
ImpCastExprToType(rExpr, it->getType());
|
|
InitField = *it;
|
|
break;
|
|
}
|
|
|
|
if (rExpr->isNullPointerConstant(Context)) {
|
|
ImpCastExprToType(rExpr, it->getType());
|
|
InitField = *it;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (CheckAssignmentConstraints(it->getType(), rExpr->getType())
|
|
== Compatible) {
|
|
InitField = *it;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!InitField)
|
|
return Incompatible;
|
|
|
|
ConstructTransparentUnion(Context, rExpr, ArgType, InitField);
|
|
return Compatible;
|
|
}
|
|
|
|
Sema::AssignConvertType
|
|
Sema::CheckSingleAssignmentConstraints(QualType lhsType, Expr *&rExpr) {
|
|
if (getLangOptions().CPlusPlus) {
|
|
if (!lhsType->isRecordType()) {
|
|
// C++ 5.17p3: If the left operand is not of class type, the
|
|
// expression is implicitly converted (C++ 4) to the
|
|
// cv-unqualified type of the left operand.
|
|
if (PerformImplicitConversion(rExpr, lhsType.getUnqualifiedType(),
|
|
"assigning"))
|
|
return Incompatible;
|
|
return Compatible;
|
|
}
|
|
|
|
// FIXME: Currently, we fall through and treat C++ classes like C
|
|
// structures.
|
|
}
|
|
|
|
// C99 6.5.16.1p1: the left operand is a pointer and the right is
|
|
// a null pointer constant.
|
|
if ((lhsType->isPointerType() ||
|
|
lhsType->isObjCObjectPointerType() ||
|
|
lhsType->isBlockPointerType())
|
|
&& rExpr->isNullPointerConstant(Context)) {
|
|
ImpCastExprToType(rExpr, lhsType);
|
|
return Compatible;
|
|
}
|
|
|
|
// This check seems unnatural, however it is necessary to ensure the proper
|
|
// conversion of functions/arrays. If the conversion were done for all
|
|
// DeclExpr's (created by ActOnIdentifierExpr), it would mess up the unary
|
|
// expressions that surpress this implicit conversion (&, sizeof).
|
|
//
|
|
// Suppress this for references: C++ 8.5.3p5.
|
|
if (!lhsType->isReferenceType())
|
|
DefaultFunctionArrayConversion(rExpr);
|
|
|
|
Sema::AssignConvertType result =
|
|
CheckAssignmentConstraints(lhsType, rExpr->getType());
|
|
|
|
// C99 6.5.16.1p2: The value of the right operand is converted to the
|
|
// type of the assignment expression.
|
|
// CheckAssignmentConstraints allows the left-hand side to be a reference,
|
|
// so that we can use references in built-in functions even in C.
|
|
// The getNonReferenceType() call makes sure that the resulting expression
|
|
// does not have reference type.
|
|
if (result != Incompatible && rExpr->getType() != lhsType)
|
|
ImpCastExprToType(rExpr, lhsType.getNonReferenceType());
|
|
return result;
|
|
}
|
|
|
|
QualType Sema::InvalidOperands(SourceLocation Loc, Expr *&lex, Expr *&rex) {
|
|
Diag(Loc, diag::err_typecheck_invalid_operands)
|
|
<< lex->getType() << rex->getType()
|
|
<< lex->getSourceRange() << rex->getSourceRange();
|
|
return QualType();
|
|
}
|
|
|
|
inline QualType Sema::CheckVectorOperands(SourceLocation Loc, Expr *&lex,
|
|
Expr *&rex) {
|
|
// For conversion purposes, we ignore any qualifiers.
|
|
// For example, "const float" and "float" are equivalent.
|
|
QualType lhsType =
|
|
Context.getCanonicalType(lex->getType()).getUnqualifiedType();
|
|
QualType rhsType =
|
|
Context.getCanonicalType(rex->getType()).getUnqualifiedType();
|
|
|
|
// If the vector types are identical, return.
|
|
if (lhsType == rhsType)
|
|
return lhsType;
|
|
|
|
// Handle the case of a vector & extvector type of the same size and element
|
|
// type. It would be nice if we only had one vector type someday.
|
|
if (getLangOptions().LaxVectorConversions) {
|
|
// FIXME: Should we warn here?
|
|
if (const VectorType *LV = lhsType->getAsVectorType()) {
|
|
if (const VectorType *RV = rhsType->getAsVectorType())
|
|
if (LV->getElementType() == RV->getElementType() &&
|
|
LV->getNumElements() == RV->getNumElements()) {
|
|
return lhsType->isExtVectorType() ? lhsType : rhsType;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Canonicalize the ExtVector to the LHS, remember if we swapped so we can
|
|
// swap back (so that we don't reverse the inputs to a subtract, for instance.
|
|
bool swapped = false;
|
|
if (rhsType->isExtVectorType()) {
|
|
swapped = true;
|
|
std::swap(rex, lex);
|
|
std::swap(rhsType, lhsType);
|
|
}
|
|
|
|
// Handle the case of an ext vector and scalar.
|
|
if (const ExtVectorType *LV = lhsType->getAsExtVectorType()) {
|
|
QualType EltTy = LV->getElementType();
|
|
if (EltTy->isIntegralType() && rhsType->isIntegralType()) {
|
|
if (Context.getIntegerTypeOrder(EltTy, rhsType) >= 0) {
|
|
ImpCastExprToType(rex, lhsType);
|
|
if (swapped) std::swap(rex, lex);
|
|
return lhsType;
|
|
}
|
|
}
|
|
if (EltTy->isRealFloatingType() && rhsType->isScalarType() &&
|
|
rhsType->isRealFloatingType()) {
|
|
if (Context.getFloatingTypeOrder(EltTy, rhsType) >= 0) {
|
|
ImpCastExprToType(rex, lhsType);
|
|
if (swapped) std::swap(rex, lex);
|
|
return lhsType;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Vectors of different size or scalar and non-ext-vector are errors.
|
|
Diag(Loc, diag::err_typecheck_vector_not_convertable)
|
|
<< lex->getType() << rex->getType()
|
|
<< lex->getSourceRange() << rex->getSourceRange();
|
|
return QualType();
|
|
}
|
|
|
|
inline QualType Sema::CheckMultiplyDivideOperands(
|
|
Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign)
|
|
{
|
|
if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
|
|
return CheckVectorOperands(Loc, lex, rex);
|
|
|
|
QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
|
|
|
|
if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
|
|
return compType;
|
|
return InvalidOperands(Loc, lex, rex);
|
|
}
|
|
|
|
inline QualType Sema::CheckRemainderOperands(
|
|
Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign)
|
|
{
|
|
if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
|
|
if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
|
|
return CheckVectorOperands(Loc, lex, rex);
|
|
return InvalidOperands(Loc, lex, rex);
|
|
}
|
|
|
|
QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
|
|
|
|
if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
|
|
return compType;
|
|
return InvalidOperands(Loc, lex, rex);
|
|
}
|
|
|
|
inline QualType Sema::CheckAdditionOperands( // C99 6.5.6
|
|
Expr *&lex, Expr *&rex, SourceLocation Loc, QualType* CompLHSTy)
|
|
{
|
|
if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
|
|
QualType compType = CheckVectorOperands(Loc, lex, rex);
|
|
if (CompLHSTy) *CompLHSTy = compType;
|
|
return compType;
|
|
}
|
|
|
|
QualType compType = UsualArithmeticConversions(lex, rex, CompLHSTy);
|
|
|
|
// handle the common case first (both operands are arithmetic).
|
|
if (lex->getType()->isArithmeticType() &&
|
|
rex->getType()->isArithmeticType()) {
|
|
if (CompLHSTy) *CompLHSTy = compType;
|
|
return compType;
|
|
}
|
|
|
|
// Put any potential pointer into PExp
|
|
Expr* PExp = lex, *IExp = rex;
|
|
if (IExp->getType()->isAnyPointerType())
|
|
std::swap(PExp, IExp);
|
|
|
|
if (PExp->getType()->isAnyPointerType()) {
|
|
|
|
if (IExp->getType()->isIntegerType()) {
|
|
QualType PointeeTy = PExp->getType()->getPointeeType();
|
|
|
|
// Check for arithmetic on pointers to incomplete types.
|
|
if (PointeeTy->isVoidType()) {
|
|
if (getLangOptions().CPlusPlus) {
|
|
Diag(Loc, diag::err_typecheck_pointer_arith_void_type)
|
|
<< lex->getSourceRange() << rex->getSourceRange();
|
|
return QualType();
|
|
}
|
|
|
|
// GNU extension: arithmetic on pointer to void
|
|
Diag(Loc, diag::ext_gnu_void_ptr)
|
|
<< lex->getSourceRange() << rex->getSourceRange();
|
|
} else if (PointeeTy->isFunctionType()) {
|
|
if (getLangOptions().CPlusPlus) {
|
|
Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
|
|
<< lex->getType() << lex->getSourceRange();
|
|
return QualType();
|
|
}
|
|
|
|
// GNU extension: arithmetic on pointer to function
|
|
Diag(Loc, diag::ext_gnu_ptr_func_arith)
|
|
<< lex->getType() << lex->getSourceRange();
|
|
} else {
|
|
// Check if we require a complete type.
|
|
if (((PExp->getType()->isPointerType() &&
|
|
!PExp->getType()->isDependentType()) ||
|
|
PExp->getType()->isObjCObjectPointerType()) &&
|
|
RequireCompleteType(Loc, PointeeTy,
|
|
diag::err_typecheck_arithmetic_incomplete_type,
|
|
PExp->getSourceRange(), SourceRange(),
|
|
PExp->getType()))
|
|
return QualType();
|
|
}
|
|
// Diagnose bad cases where we step over interface counts.
|
|
if (PointeeTy->isObjCInterfaceType() && LangOpts.ObjCNonFragileABI) {
|
|
Diag(Loc, diag::err_arithmetic_nonfragile_interface)
|
|
<< PointeeTy << PExp->getSourceRange();
|
|
return QualType();
|
|
}
|
|
|
|
if (CompLHSTy) {
|
|
QualType LHSTy = lex->getType();
|
|
if (LHSTy->isPromotableIntegerType())
|
|
LHSTy = Context.IntTy;
|
|
else {
|
|
QualType T = isPromotableBitField(lex, Context);
|
|
if (!T.isNull())
|
|
LHSTy = T;
|
|
}
|
|
|
|
*CompLHSTy = LHSTy;
|
|
}
|
|
return PExp->getType();
|
|
}
|
|
}
|
|
|
|
return InvalidOperands(Loc, lex, rex);
|
|
}
|
|
|
|
// C99 6.5.6
|
|
QualType Sema::CheckSubtractionOperands(Expr *&lex, Expr *&rex,
|
|
SourceLocation Loc, QualType* CompLHSTy) {
|
|
if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
|
|
QualType compType = CheckVectorOperands(Loc, lex, rex);
|
|
if (CompLHSTy) *CompLHSTy = compType;
|
|
return compType;
|
|
}
|
|
|
|
QualType compType = UsualArithmeticConversions(lex, rex, CompLHSTy);
|
|
|
|
// Enforce type constraints: C99 6.5.6p3.
|
|
|
|
// Handle the common case first (both operands are arithmetic).
|
|
if (lex->getType()->isArithmeticType()
|
|
&& rex->getType()->isArithmeticType()) {
|
|
if (CompLHSTy) *CompLHSTy = compType;
|
|
return compType;
|
|
}
|
|
|
|
// Either ptr - int or ptr - ptr.
|
|
if (lex->getType()->isAnyPointerType()) {
|
|
QualType lpointee = lex->getType()->getPointeeType();
|
|
|
|
// The LHS must be an completely-defined object type.
|
|
|
|
bool ComplainAboutVoid = false;
|
|
Expr *ComplainAboutFunc = 0;
|
|
if (lpointee->isVoidType()) {
|
|
if (getLangOptions().CPlusPlus) {
|
|
Diag(Loc, diag::err_typecheck_pointer_arith_void_type)
|
|
<< lex->getSourceRange() << rex->getSourceRange();
|
|
return QualType();
|
|
}
|
|
|
|
// GNU C extension: arithmetic on pointer to void
|
|
ComplainAboutVoid = true;
|
|
} else if (lpointee->isFunctionType()) {
|
|
if (getLangOptions().CPlusPlus) {
|
|
Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
|
|
<< lex->getType() << lex->getSourceRange();
|
|
return QualType();
|
|
}
|
|
|
|
// GNU C extension: arithmetic on pointer to function
|
|
ComplainAboutFunc = lex;
|
|
} else if (!lpointee->isDependentType() &&
|
|
RequireCompleteType(Loc, lpointee,
|
|
diag::err_typecheck_sub_ptr_object,
|
|
lex->getSourceRange(),
|
|
SourceRange(),
|
|
lex->getType()))
|
|
return QualType();
|
|
|
|
// Diagnose bad cases where we step over interface counts.
|
|
if (lpointee->isObjCInterfaceType() && LangOpts.ObjCNonFragileABI) {
|
|
Diag(Loc, diag::err_arithmetic_nonfragile_interface)
|
|
<< lpointee << lex->getSourceRange();
|
|
return QualType();
|
|
}
|
|
|
|
// The result type of a pointer-int computation is the pointer type.
|
|
if (rex->getType()->isIntegerType()) {
|
|
if (ComplainAboutVoid)
|
|
Diag(Loc, diag::ext_gnu_void_ptr)
|
|
<< lex->getSourceRange() << rex->getSourceRange();
|
|
if (ComplainAboutFunc)
|
|
Diag(Loc, diag::ext_gnu_ptr_func_arith)
|
|
<< ComplainAboutFunc->getType()
|
|
<< ComplainAboutFunc->getSourceRange();
|
|
|
|
if (CompLHSTy) *CompLHSTy = lex->getType();
|
|
return lex->getType();
|
|
}
|
|
|
|
// Handle pointer-pointer subtractions.
|
|
if (const PointerType *RHSPTy = rex->getType()->getAsPointerType()) {
|
|
QualType rpointee = RHSPTy->getPointeeType();
|
|
|
|
// RHS must be a completely-type object type.
|
|
// Handle the GNU void* extension.
|
|
if (rpointee->isVoidType()) {
|
|
if (getLangOptions().CPlusPlus) {
|
|
Diag(Loc, diag::err_typecheck_pointer_arith_void_type)
|
|
<< lex->getSourceRange() << rex->getSourceRange();
|
|
return QualType();
|
|
}
|
|
|
|
ComplainAboutVoid = true;
|
|
} else if (rpointee->isFunctionType()) {
|
|
if (getLangOptions().CPlusPlus) {
|
|
Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
|
|
<< rex->getType() << rex->getSourceRange();
|
|
return QualType();
|
|
}
|
|
|
|
// GNU extension: arithmetic on pointer to function
|
|
if (!ComplainAboutFunc)
|
|
ComplainAboutFunc = rex;
|
|
} else if (!rpointee->isDependentType() &&
|
|
RequireCompleteType(Loc, rpointee,
|
|
diag::err_typecheck_sub_ptr_object,
|
|
rex->getSourceRange(),
|
|
SourceRange(),
|
|
rex->getType()))
|
|
return QualType();
|
|
|
|
if (getLangOptions().CPlusPlus) {
|
|
// Pointee types must be the same: C++ [expr.add]
|
|
if (!Context.hasSameUnqualifiedType(lpointee, rpointee)) {
|
|
Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
|
|
<< lex->getType() << rex->getType()
|
|
<< lex->getSourceRange() << rex->getSourceRange();
|
|
return QualType();
|
|
}
|
|
} else {
|
|
// Pointee types must be compatible C99 6.5.6p3
|
|
if (!Context.typesAreCompatible(
|
|
Context.getCanonicalType(lpointee).getUnqualifiedType(),
|
|
Context.getCanonicalType(rpointee).getUnqualifiedType())) {
|
|
Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
|
|
<< lex->getType() << rex->getType()
|
|
<< lex->getSourceRange() << rex->getSourceRange();
|
|
return QualType();
|
|
}
|
|
}
|
|
|
|
if (ComplainAboutVoid)
|
|
Diag(Loc, diag::ext_gnu_void_ptr)
|
|
<< lex->getSourceRange() << rex->getSourceRange();
|
|
if (ComplainAboutFunc)
|
|
Diag(Loc, diag::ext_gnu_ptr_func_arith)
|
|
<< ComplainAboutFunc->getType()
|
|
<< ComplainAboutFunc->getSourceRange();
|
|
|
|
if (CompLHSTy) *CompLHSTy = lex->getType();
|
|
return Context.getPointerDiffType();
|
|
}
|
|
}
|
|
|
|
return InvalidOperands(Loc, lex, rex);
|
|
}
|
|
|
|
// C99 6.5.7
|
|
QualType Sema::CheckShiftOperands(Expr *&lex, Expr *&rex, SourceLocation Loc,
|
|
bool isCompAssign) {
|
|
// C99 6.5.7p2: Each of the operands shall have integer type.
|
|
if (!lex->getType()->isIntegerType() || !rex->getType()->isIntegerType())
|
|
return InvalidOperands(Loc, lex, rex);
|
|
|
|
// Shifts don't perform usual arithmetic conversions, they just do integer
|
|
// promotions on each operand. C99 6.5.7p3
|
|
QualType LHSTy;
|
|
if (lex->getType()->isPromotableIntegerType())
|
|
LHSTy = Context.IntTy;
|
|
else {
|
|
LHSTy = isPromotableBitField(lex, Context);
|
|
if (LHSTy.isNull())
|
|
LHSTy = lex->getType();
|
|
}
|
|
if (!isCompAssign)
|
|
ImpCastExprToType(lex, LHSTy);
|
|
|
|
UsualUnaryConversions(rex);
|
|
|
|
// "The type of the result is that of the promoted left operand."
|
|
return LHSTy;
|
|
}
|
|
|
|
// C99 6.5.8, C++ [expr.rel]
|
|
QualType Sema::CheckCompareOperands(Expr *&lex, Expr *&rex, SourceLocation Loc,
|
|
unsigned OpaqueOpc, bool isRelational) {
|
|
BinaryOperator::Opcode Opc = (BinaryOperator::Opcode)OpaqueOpc;
|
|
|
|
if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
|
|
return CheckVectorCompareOperands(lex, rex, Loc, isRelational);
|
|
|
|
// C99 6.5.8p3 / C99 6.5.9p4
|
|
if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
|
|
UsualArithmeticConversions(lex, rex);
|
|
else {
|
|
UsualUnaryConversions(lex);
|
|
UsualUnaryConversions(rex);
|
|
}
|
|
QualType lType = lex->getType();
|
|
QualType rType = rex->getType();
|
|
|
|
if (!lType->isFloatingType()
|
|
&& !(lType->isBlockPointerType() && isRelational)) {
|
|
// For non-floating point types, check for self-comparisons of the form
|
|
// x == x, x != x, x < x, etc. These always evaluate to a constant, and
|
|
// often indicate logic errors in the program.
|
|
// NOTE: Don't warn about comparisons of enum constants. These can arise
|
|
// from macro expansions, and are usually quite deliberate.
|
|
Expr *LHSStripped = lex->IgnoreParens();
|
|
Expr *RHSStripped = rex->IgnoreParens();
|
|
if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LHSStripped))
|
|
if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RHSStripped))
|
|
if (DRL->getDecl() == DRR->getDecl() &&
|
|
!isa<EnumConstantDecl>(DRL->getDecl()))
|
|
Diag(Loc, diag::warn_selfcomparison);
|
|
|
|
if (isa<CastExpr>(LHSStripped))
|
|
LHSStripped = LHSStripped->IgnoreParenCasts();
|
|
if (isa<CastExpr>(RHSStripped))
|
|
RHSStripped = RHSStripped->IgnoreParenCasts();
|
|
|
|
// Warn about comparisons against a string constant (unless the other
|
|
// operand is null), the user probably wants strcmp.
|
|
Expr *literalString = 0;
|
|
Expr *literalStringStripped = 0;
|
|
if ((isa<StringLiteral>(LHSStripped) || isa<ObjCEncodeExpr>(LHSStripped)) &&
|
|
!RHSStripped->isNullPointerConstant(Context)) {
|
|
literalString = lex;
|
|
literalStringStripped = LHSStripped;
|
|
}
|
|
else if ((isa<StringLiteral>(RHSStripped) ||
|
|
isa<ObjCEncodeExpr>(RHSStripped)) &&
|
|
!LHSStripped->isNullPointerConstant(Context)) {
|
|
literalString = rex;
|
|
literalStringStripped = RHSStripped;
|
|
}
|
|
|
|
if (literalString) {
|
|
std::string resultComparison;
|
|
switch (Opc) {
|
|
case BinaryOperator::LT: resultComparison = ") < 0"; break;
|
|
case BinaryOperator::GT: resultComparison = ") > 0"; break;
|
|
case BinaryOperator::LE: resultComparison = ") <= 0"; break;
|
|
case BinaryOperator::GE: resultComparison = ") >= 0"; break;
|
|
case BinaryOperator::EQ: resultComparison = ") == 0"; break;
|
|
case BinaryOperator::NE: resultComparison = ") != 0"; break;
|
|
default: assert(false && "Invalid comparison operator");
|
|
}
|
|
Diag(Loc, diag::warn_stringcompare)
|
|
<< isa<ObjCEncodeExpr>(literalStringStripped)
|
|
<< literalString->getSourceRange()
|
|
<< CodeModificationHint::CreateReplacement(SourceRange(Loc), ", ")
|
|
<< CodeModificationHint::CreateInsertion(lex->getLocStart(),
|
|
"strcmp(")
|
|
<< CodeModificationHint::CreateInsertion(
|
|
PP.getLocForEndOfToken(rex->getLocEnd()),
|
|
resultComparison);
|
|
}
|
|
}
|
|
|
|
// The result of comparisons is 'bool' in C++, 'int' in C.
|
|
QualType ResultTy = getLangOptions().CPlusPlus? Context.BoolTy :Context.IntTy;
|
|
|
|
if (isRelational) {
|
|
if (lType->isRealType() && rType->isRealType())
|
|
return ResultTy;
|
|
} else {
|
|
// Check for comparisons of floating point operands using != and ==.
|
|
if (lType->isFloatingType()) {
|
|
assert(rType->isFloatingType());
|
|
CheckFloatComparison(Loc,lex,rex);
|
|
}
|
|
|
|
if (lType->isArithmeticType() && rType->isArithmeticType())
|
|
return ResultTy;
|
|
}
|
|
|
|
bool LHSIsNull = lex->isNullPointerConstant(Context);
|
|
bool RHSIsNull = rex->isNullPointerConstant(Context);
|
|
|
|
// All of the following pointer related warnings are GCC extensions, except
|
|
// when handling null pointer constants. One day, we can consider making them
|
|
// errors (when -pedantic-errors is enabled).
|
|
if (lType->isPointerType() && rType->isPointerType()) { // C99 6.5.8p2
|
|
QualType LCanPointeeTy =
|
|
Context.getCanonicalType(lType->getAsPointerType()->getPointeeType());
|
|
QualType RCanPointeeTy =
|
|
Context.getCanonicalType(rType->getAsPointerType()->getPointeeType());
|
|
|
|
if (isRelational) {
|
|
if (lType->isFunctionPointerType() || rType->isFunctionPointerType()) {
|
|
Diag(Loc, diag::ext_typecheck_ordered_comparison_of_function_pointers)
|
|
<< lType << rType << lex->getSourceRange() << rex->getSourceRange();
|
|
}
|
|
if (LCanPointeeTy->isVoidType() != RCanPointeeTy->isVoidType()) {
|
|
Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
|
|
<< lType << rType << lex->getSourceRange() << rex->getSourceRange();
|
|
}
|
|
} else {
|
|
if (lType->isFunctionPointerType() != rType->isFunctionPointerType()) {
|
|
if (!LHSIsNull && !RHSIsNull)
|
|
Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
|
|
<< lType << rType << lex->getSourceRange() << rex->getSourceRange();
|
|
}
|
|
}
|
|
|
|
// Simple check: if the pointee types are identical, we're done.
|
|
if (LCanPointeeTy == RCanPointeeTy)
|
|
return ResultTy;
|
|
|
|
if (getLangOptions().CPlusPlus) {
|
|
// C++ [expr.rel]p2:
|
|
// [...] Pointer conversions (4.10) and qualification
|
|
// conversions (4.4) are performed on pointer operands (or on
|
|
// a pointer operand and a null pointer constant) to bring
|
|
// them to their composite pointer type. [...]
|
|
//
|
|
// C++ [expr.eq]p2 uses the same notion for (in)equality
|
|
// comparisons of pointers.
|
|
QualType T = FindCompositePointerType(lex, rex);
|
|
if (T.isNull()) {
|
|
Diag(Loc, diag::err_typecheck_comparison_of_distinct_pointers)
|
|
<< lType << rType << lex->getSourceRange() << rex->getSourceRange();
|
|
return QualType();
|
|
}
|
|
|
|
ImpCastExprToType(lex, T);
|
|
ImpCastExprToType(rex, T);
|
|
return ResultTy;
|
|
}
|
|
|
|
if (!LHSIsNull && !RHSIsNull && // C99 6.5.9p2
|
|
!LCanPointeeTy->isVoidType() && !RCanPointeeTy->isVoidType() &&
|
|
!Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(),
|
|
RCanPointeeTy.getUnqualifiedType())) {
|
|
Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
|
|
<< lType << rType << lex->getSourceRange() << rex->getSourceRange();
|
|
}
|
|
ImpCastExprToType(rex, lType); // promote the pointer to pointer
|
|
return ResultTy;
|
|
}
|
|
// C++ allows comparison of pointers with null pointer constants.
|
|
if (getLangOptions().CPlusPlus) {
|
|
if (lType->isPointerType() && RHSIsNull) {
|
|
ImpCastExprToType(rex, lType);
|
|
return ResultTy;
|
|
}
|
|
if (rType->isPointerType() && LHSIsNull) {
|
|
ImpCastExprToType(lex, rType);
|
|
return ResultTy;
|
|
}
|
|
// And comparison of nullptr_t with itself.
|
|
if (lType->isNullPtrType() && rType->isNullPtrType())
|
|
return ResultTy;
|
|
}
|
|
// Handle block pointer types.
|
|
if (!isRelational && lType->isBlockPointerType() && rType->isBlockPointerType()) {
|
|
QualType lpointee = lType->getAsBlockPointerType()->getPointeeType();
|
|
QualType rpointee = rType->getAsBlockPointerType()->getPointeeType();
|
|
|
|
if (!LHSIsNull && !RHSIsNull &&
|
|
!Context.typesAreCompatible(lpointee, rpointee)) {
|
|
Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
|
|
<< lType << rType << lex->getSourceRange() << rex->getSourceRange();
|
|
}
|
|
ImpCastExprToType(rex, lType); // promote the pointer to pointer
|
|
return ResultTy;
|
|
}
|
|
// Allow block pointers to be compared with null pointer constants.
|
|
if (!isRelational
|
|
&& ((lType->isBlockPointerType() && rType->isPointerType())
|
|
|| (lType->isPointerType() && rType->isBlockPointerType()))) {
|
|
if (!LHSIsNull && !RHSIsNull) {
|
|
if (!((rType->isPointerType() && rType->getAsPointerType()
|
|
->getPointeeType()->isVoidType())
|
|
|| (lType->isPointerType() && lType->getAsPointerType()
|
|
->getPointeeType()->isVoidType())))
|
|
Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
|
|
<< lType << rType << lex->getSourceRange() << rex->getSourceRange();
|
|
}
|
|
ImpCastExprToType(rex, lType); // promote the pointer to pointer
|
|
return ResultTy;
|
|
}
|
|
|
|
if ((lType->isObjCObjectPointerType() || rType->isObjCObjectPointerType())) {
|
|
if (lType->isPointerType() || rType->isPointerType()) {
|
|
const PointerType *LPT = lType->getAsPointerType();
|
|
const PointerType *RPT = rType->getAsPointerType();
|
|
bool LPtrToVoid = LPT ?
|
|
Context.getCanonicalType(LPT->getPointeeType())->isVoidType() : false;
|
|
bool RPtrToVoid = RPT ?
|
|
Context.getCanonicalType(RPT->getPointeeType())->isVoidType() : false;
|
|
|
|
if (!LPtrToVoid && !RPtrToVoid &&
|
|
!Context.typesAreCompatible(lType, rType)) {
|
|
Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
|
|
<< lType << rType << lex->getSourceRange() << rex->getSourceRange();
|
|
}
|
|
ImpCastExprToType(rex, lType);
|
|
return ResultTy;
|
|
}
|
|
if (lType->isObjCObjectPointerType() && rType->isObjCObjectPointerType()) {
|
|
if (!Context.areComparableObjCPointerTypes(lType, rType)) {
|
|
Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
|
|
<< lType << rType << lex->getSourceRange() << rex->getSourceRange();
|
|
}
|
|
ImpCastExprToType(rex, lType);
|
|
return ResultTy;
|
|
}
|
|
}
|
|
if (lType->isAnyPointerType() && rType->isIntegerType()) {
|
|
if (isRelational)
|
|
Diag(Loc, diag::ext_typecheck_ordered_comparison_of_pointer_integer)
|
|
<< lType << rType << lex->getSourceRange() << rex->getSourceRange();
|
|
else if (!RHSIsNull)
|
|
Diag(Loc, diag::ext_typecheck_comparison_of_pointer_integer)
|
|
<< lType << rType << lex->getSourceRange() << rex->getSourceRange();
|
|
ImpCastExprToType(rex, lType); // promote the integer to pointer
|
|
return ResultTy;
|
|
}
|
|
if (lType->isIntegerType() && rType->isAnyPointerType()) {
|
|
if (isRelational)
|
|
Diag(Loc, diag::ext_typecheck_ordered_comparison_of_pointer_integer)
|
|
<< lType << rType << lex->getSourceRange() << rex->getSourceRange();
|
|
else if (!LHSIsNull)
|
|
Diag(Loc, diag::ext_typecheck_comparison_of_pointer_integer)
|
|
<< lType << rType << lex->getSourceRange() << rex->getSourceRange();
|
|
ImpCastExprToType(lex, rType); // promote the integer to pointer
|
|
return ResultTy;
|
|
}
|
|
// Handle block pointers.
|
|
if (!isRelational && RHSIsNull
|
|
&& lType->isBlockPointerType() && rType->isIntegerType()) {
|
|
ImpCastExprToType(rex, lType); // promote the integer to pointer
|
|
return ResultTy;
|
|
}
|
|
if (!isRelational && LHSIsNull
|
|
&& lType->isIntegerType() && rType->isBlockPointerType()) {
|
|
ImpCastExprToType(lex, rType); // promote the integer to pointer
|
|
return ResultTy;
|
|
}
|
|
return InvalidOperands(Loc, lex, rex);
|
|
}
|
|
|
|
/// CheckVectorCompareOperands - vector comparisons are a clang extension that
|
|
/// operates on extended vector types. Instead of producing an IntTy result,
|
|
/// like a scalar comparison, a vector comparison produces a vector of integer
|
|
/// types.
|
|
QualType Sema::CheckVectorCompareOperands(Expr *&lex, Expr *&rex,
|
|
SourceLocation Loc,
|
|
bool isRelational) {
|
|
// Check to make sure we're operating on vectors of the same type and width,
|
|
// Allowing one side to be a scalar of element type.
|
|
QualType vType = CheckVectorOperands(Loc, lex, rex);
|
|
if (vType.isNull())
|
|
return vType;
|
|
|
|
QualType lType = lex->getType();
|
|
QualType rType = rex->getType();
|
|
|
|
// For non-floating point types, check for self-comparisons of the form
|
|
// x == x, x != x, x < x, etc. These always evaluate to a constant, and
|
|
// often indicate logic errors in the program.
|
|
if (!lType->isFloatingType()) {
|
|
if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(lex->IgnoreParens()))
|
|
if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(rex->IgnoreParens()))
|
|
if (DRL->getDecl() == DRR->getDecl())
|
|
Diag(Loc, diag::warn_selfcomparison);
|
|
}
|
|
|
|
// Check for comparisons of floating point operands using != and ==.
|
|
if (!isRelational && lType->isFloatingType()) {
|
|
assert (rType->isFloatingType());
|
|
CheckFloatComparison(Loc,lex,rex);
|
|
}
|
|
|
|
// Return the type for the comparison, which is the same as vector type for
|
|
// integer vectors, or an integer type of identical size and number of
|
|
// elements for floating point vectors.
|
|
if (lType->isIntegerType())
|
|
return lType;
|
|
|
|
const VectorType *VTy = lType->getAsVectorType();
|
|
unsigned TypeSize = Context.getTypeSize(VTy->getElementType());
|
|
if (TypeSize == Context.getTypeSize(Context.IntTy))
|
|
return Context.getExtVectorType(Context.IntTy, VTy->getNumElements());
|
|
if (TypeSize == Context.getTypeSize(Context.LongTy))
|
|
return Context.getExtVectorType(Context.LongTy, VTy->getNumElements());
|
|
|
|
assert(TypeSize == Context.getTypeSize(Context.LongLongTy) &&
|
|
"Unhandled vector element size in vector compare");
|
|
return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements());
|
|
}
|
|
|
|
inline QualType Sema::CheckBitwiseOperands(
|
|
Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign)
|
|
{
|
|
if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
|
|
return CheckVectorOperands(Loc, lex, rex);
|
|
|
|
QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
|
|
|
|
if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
|
|
return compType;
|
|
return InvalidOperands(Loc, lex, rex);
|
|
}
|
|
|
|
inline QualType Sema::CheckLogicalOperands( // C99 6.5.[13,14]
|
|
Expr *&lex, Expr *&rex, SourceLocation Loc)
|
|
{
|
|
UsualUnaryConversions(lex);
|
|
UsualUnaryConversions(rex);
|
|
|
|
if (lex->getType()->isScalarType() && rex->getType()->isScalarType())
|
|
return Context.IntTy;
|
|
return InvalidOperands(Loc, lex, rex);
|
|
}
|
|
|
|
/// IsReadonlyProperty - Verify that otherwise a valid l-value expression
|
|
/// is a read-only property; return true if so. A readonly property expression
|
|
/// depends on various declarations and thus must be treated specially.
|
|
///
|
|
static bool IsReadonlyProperty(Expr *E, Sema &S)
|
|
{
|
|
if (E->getStmtClass() == Expr::ObjCPropertyRefExprClass) {
|
|
const ObjCPropertyRefExpr* PropExpr = cast<ObjCPropertyRefExpr>(E);
|
|
if (ObjCPropertyDecl *PDecl = PropExpr->getProperty()) {
|
|
QualType BaseType = PropExpr->getBase()->getType();
|
|
if (const ObjCObjectPointerType *OPT =
|
|
BaseType->getAsObjCInterfacePointerType())
|
|
if (ObjCInterfaceDecl *IFace = OPT->getInterfaceDecl())
|
|
if (S.isPropertyReadonly(PDecl, IFace))
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// CheckForModifiableLvalue - Verify that E is a modifiable lvalue. If not,
|
|
/// emit an error and return true. If so, return false.
|
|
static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) {
|
|
SourceLocation OrigLoc = Loc;
|
|
Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(S.Context,
|
|
&Loc);
|
|
if (IsLV == Expr::MLV_Valid && IsReadonlyProperty(E, S))
|
|
IsLV = Expr::MLV_ReadonlyProperty;
|
|
if (IsLV == Expr::MLV_Valid)
|
|
return false;
|
|
|
|
unsigned Diag = 0;
|
|
bool NeedType = false;
|
|
switch (IsLV) { // C99 6.5.16p2
|
|
default: assert(0 && "Unknown result from isModifiableLvalue!");
|
|
case Expr::MLV_ConstQualified: Diag = diag::err_typecheck_assign_const; break;
|
|
case Expr::MLV_ArrayType:
|
|
Diag = diag::err_typecheck_array_not_modifiable_lvalue;
|
|
NeedType = true;
|
|
break;
|
|
case Expr::MLV_NotObjectType:
|
|
Diag = diag::err_typecheck_non_object_not_modifiable_lvalue;
|
|
NeedType = true;
|
|
break;
|
|
case Expr::MLV_LValueCast:
|
|
Diag = diag::err_typecheck_lvalue_casts_not_supported;
|
|
break;
|
|
case Expr::MLV_InvalidExpression:
|
|
Diag = diag::err_typecheck_expression_not_modifiable_lvalue;
|
|
break;
|
|
case Expr::MLV_IncompleteType:
|
|
case Expr::MLV_IncompleteVoidType:
|
|
return S.RequireCompleteType(Loc, E->getType(),
|
|
diag::err_typecheck_incomplete_type_not_modifiable_lvalue,
|
|
E->getSourceRange());
|
|
case Expr::MLV_DuplicateVectorComponents:
|
|
Diag = diag::err_typecheck_duplicate_vector_components_not_mlvalue;
|
|
break;
|
|
case Expr::MLV_NotBlockQualified:
|
|
Diag = diag::err_block_decl_ref_not_modifiable_lvalue;
|
|
break;
|
|
case Expr::MLV_ReadonlyProperty:
|
|
Diag = diag::error_readonly_property_assignment;
|
|
break;
|
|
case Expr::MLV_NoSetterProperty:
|
|
Diag = diag::error_nosetter_property_assignment;
|
|
break;
|
|
}
|
|
|
|
SourceRange Assign;
|
|
if (Loc != OrigLoc)
|
|
Assign = SourceRange(OrigLoc, OrigLoc);
|
|
if (NeedType)
|
|
S.Diag(Loc, Diag) << E->getType() << E->getSourceRange() << Assign;
|
|
else
|
|
S.Diag(Loc, Diag) << E->getSourceRange() << Assign;
|
|
return true;
|
|
}
|
|
|
|
|
|
|
|
// C99 6.5.16.1
|
|
QualType Sema::CheckAssignmentOperands(Expr *LHS, Expr *&RHS,
|
|
SourceLocation Loc,
|
|
QualType CompoundType) {
|
|
// Verify that LHS is a modifiable lvalue, and emit error if not.
|
|
if (CheckForModifiableLvalue(LHS, Loc, *this))
|
|
return QualType();
|
|
|
|
QualType LHSType = LHS->getType();
|
|
QualType RHSType = CompoundType.isNull() ? RHS->getType() : CompoundType;
|
|
|
|
AssignConvertType ConvTy;
|
|
if (CompoundType.isNull()) {
|
|
// Simple assignment "x = y".
|
|
ConvTy = CheckSingleAssignmentConstraints(LHSType, RHS);
|
|
// Special case of NSObject attributes on c-style pointer types.
|
|
if (ConvTy == IncompatiblePointer &&
|
|
((Context.isObjCNSObjectType(LHSType) &&
|
|
RHSType->isObjCObjectPointerType()) ||
|
|
(Context.isObjCNSObjectType(RHSType) &&
|
|
LHSType->isObjCObjectPointerType())))
|
|
ConvTy = Compatible;
|
|
|
|
// If the RHS is a unary plus or minus, check to see if they = and + are
|
|
// right next to each other. If so, the user may have typo'd "x =+ 4"
|
|
// instead of "x += 4".
|
|
Expr *RHSCheck = RHS;
|
|
if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(RHSCheck))
|
|
RHSCheck = ICE->getSubExpr();
|
|
if (UnaryOperator *UO = dyn_cast<UnaryOperator>(RHSCheck)) {
|
|
if ((UO->getOpcode() == UnaryOperator::Plus ||
|
|
UO->getOpcode() == UnaryOperator::Minus) &&
|
|
Loc.isFileID() && UO->getOperatorLoc().isFileID() &&
|
|
// Only if the two operators are exactly adjacent.
|
|
Loc.getFileLocWithOffset(1) == UO->getOperatorLoc() &&
|
|
// And there is a space or other character before the subexpr of the
|
|
// unary +/-. We don't want to warn on "x=-1".
|
|
Loc.getFileLocWithOffset(2) != UO->getSubExpr()->getLocStart() &&
|
|
UO->getSubExpr()->getLocStart().isFileID()) {
|
|
Diag(Loc, diag::warn_not_compound_assign)
|
|
<< (UO->getOpcode() == UnaryOperator::Plus ? "+" : "-")
|
|
<< SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc());
|
|
}
|
|
}
|
|
} else {
|
|
// Compound assignment "x += y"
|
|
ConvTy = CheckAssignmentConstraints(LHSType, RHSType);
|
|
}
|
|
|
|
if (DiagnoseAssignmentResult(ConvTy, Loc, LHSType, RHSType,
|
|
RHS, "assigning"))
|
|
return QualType();
|
|
|
|
// C99 6.5.16p3: The type of an assignment expression is the type of the
|
|
// left operand unless the left operand has qualified type, in which case
|
|
// it is the unqualified version of the type of the left operand.
|
|
// C99 6.5.16.1p2: In simple assignment, the value of the right operand
|
|
// is converted to the type of the assignment expression (above).
|
|
// C++ 5.17p1: the type of the assignment expression is that of its left
|
|
// operand.
|
|
return LHSType.getUnqualifiedType();
|
|
}
|
|
|
|
// C99 6.5.17
|
|
QualType Sema::CheckCommaOperands(Expr *LHS, Expr *&RHS, SourceLocation Loc) {
|
|
// Comma performs lvalue conversion (C99 6.3.2.1), but not unary conversions.
|
|
DefaultFunctionArrayConversion(RHS);
|
|
|
|
// FIXME: Check that RHS type is complete in C mode (it's legal for it to be
|
|
// incomplete in C++).
|
|
|
|
return RHS->getType();
|
|
}
|
|
|
|
/// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
|
|
/// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
|
|
QualType Sema::CheckIncrementDecrementOperand(Expr *Op, SourceLocation OpLoc,
|
|
bool isInc) {
|
|
if (Op->isTypeDependent())
|
|
return Context.DependentTy;
|
|
|
|
QualType ResType = Op->getType();
|
|
assert(!ResType.isNull() && "no type for increment/decrement expression");
|
|
|
|
if (getLangOptions().CPlusPlus && ResType->isBooleanType()) {
|
|
// Decrement of bool is not allowed.
|
|
if (!isInc) {
|
|
Diag(OpLoc, diag::err_decrement_bool) << Op->getSourceRange();
|
|
return QualType();
|
|
}
|
|
// Increment of bool sets it to true, but is deprecated.
|
|
Diag(OpLoc, diag::warn_increment_bool) << Op->getSourceRange();
|
|
} else if (ResType->isRealType()) {
|
|
// OK!
|
|
} else if (ResType->isAnyPointerType()) {
|
|
QualType PointeeTy = ResType->getPointeeType();
|
|
|
|
// C99 6.5.2.4p2, 6.5.6p2
|
|
if (PointeeTy->isVoidType()) {
|
|
if (getLangOptions().CPlusPlus) {
|
|
Diag(OpLoc, diag::err_typecheck_pointer_arith_void_type)
|
|
<< Op->getSourceRange();
|
|
return QualType();
|
|
}
|
|
|
|
// Pointer to void is a GNU extension in C.
|
|
Diag(OpLoc, diag::ext_gnu_void_ptr) << Op->getSourceRange();
|
|
} else if (PointeeTy->isFunctionType()) {
|
|
if (getLangOptions().CPlusPlus) {
|
|
Diag(OpLoc, diag::err_typecheck_pointer_arith_function_type)
|
|
<< Op->getType() << Op->getSourceRange();
|
|
return QualType();
|
|
}
|
|
|
|
Diag(OpLoc, diag::ext_gnu_ptr_func_arith)
|
|
<< ResType << Op->getSourceRange();
|
|
} else if (RequireCompleteType(OpLoc, PointeeTy,
|
|
diag::err_typecheck_arithmetic_incomplete_type,
|
|
Op->getSourceRange(), SourceRange(),
|
|
ResType))
|
|
return QualType();
|
|
// Diagnose bad cases where we step over interface counts.
|
|
else if (PointeeTy->isObjCInterfaceType() && LangOpts.ObjCNonFragileABI) {
|
|
Diag(OpLoc, diag::err_arithmetic_nonfragile_interface)
|
|
<< PointeeTy << Op->getSourceRange();
|
|
return QualType();
|
|
}
|
|
} else if (ResType->isComplexType()) {
|
|
// C99 does not support ++/-- on complex types, we allow as an extension.
|
|
Diag(OpLoc, diag::ext_integer_increment_complex)
|
|
<< ResType << Op->getSourceRange();
|
|
} else {
|
|
Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement)
|
|
<< ResType << Op->getSourceRange();
|
|
return QualType();
|
|
}
|
|
// At this point, we know we have a real, complex or pointer type.
|
|
// Now make sure the operand is a modifiable lvalue.
|
|
if (CheckForModifiableLvalue(Op, OpLoc, *this))
|
|
return QualType();
|
|
return ResType;
|
|
}
|
|
|
|
/// getPrimaryDecl - Helper function for CheckAddressOfOperand().
|
|
/// This routine allows us to typecheck complex/recursive expressions
|
|
/// where the declaration is needed for type checking. We only need to
|
|
/// handle cases when the expression references a function designator
|
|
/// or is an lvalue. Here are some examples:
|
|
/// - &(x) => x
|
|
/// - &*****f => f for f a function designator.
|
|
/// - &s.xx => s
|
|
/// - &s.zz[1].yy -> s, if zz is an array
|
|
/// - *(x + 1) -> x, if x is an array
|
|
/// - &"123"[2] -> 0
|
|
/// - & __real__ x -> x
|
|
static NamedDecl *getPrimaryDecl(Expr *E) {
|
|
switch (E->getStmtClass()) {
|
|
case Stmt::DeclRefExprClass:
|
|
case Stmt::QualifiedDeclRefExprClass:
|
|
return cast<DeclRefExpr>(E)->getDecl();
|
|
case Stmt::MemberExprClass:
|
|
// If this is an arrow operator, the address is an offset from
|
|
// the base's value, so the object the base refers to is
|
|
// irrelevant.
|
|
if (cast<MemberExpr>(E)->isArrow())
|
|
return 0;
|
|
// Otherwise, the expression refers to a part of the base
|
|
return getPrimaryDecl(cast<MemberExpr>(E)->getBase());
|
|
case Stmt::ArraySubscriptExprClass: {
|
|
// FIXME: This code shouldn't be necessary! We should catch the implicit
|
|
// promotion of register arrays earlier.
|
|
Expr* Base = cast<ArraySubscriptExpr>(E)->getBase();
|
|
if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Base)) {
|
|
if (ICE->getSubExpr()->getType()->isArrayType())
|
|
return getPrimaryDecl(ICE->getSubExpr());
|
|
}
|
|
return 0;
|
|
}
|
|
case Stmt::UnaryOperatorClass: {
|
|
UnaryOperator *UO = cast<UnaryOperator>(E);
|
|
|
|
switch(UO->getOpcode()) {
|
|
case UnaryOperator::Real:
|
|
case UnaryOperator::Imag:
|
|
case UnaryOperator::Extension:
|
|
return getPrimaryDecl(UO->getSubExpr());
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
case Stmt::ParenExprClass:
|
|
return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr());
|
|
case Stmt::ImplicitCastExprClass:
|
|
// If the result of an implicit cast is an l-value, we care about
|
|
// the sub-expression; otherwise, the result here doesn't matter.
|
|
return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr());
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/// CheckAddressOfOperand - The operand of & must be either a function
|
|
/// designator or an lvalue designating an object. If it is an lvalue, the
|
|
/// object cannot be declared with storage class register or be a bit field.
|
|
/// Note: The usual conversions are *not* applied to the operand of the &
|
|
/// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
|
|
/// In C++, the operand might be an overloaded function name, in which case
|
|
/// we allow the '&' but retain the overloaded-function type.
|
|
QualType Sema::CheckAddressOfOperand(Expr *op, SourceLocation OpLoc) {
|
|
// Make sure to ignore parentheses in subsequent checks
|
|
op = op->IgnoreParens();
|
|
|
|
if (op->isTypeDependent())
|
|
return Context.DependentTy;
|
|
|
|
if (getLangOptions().C99) {
|
|
// Implement C99-only parts of addressof rules.
|
|
if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) {
|
|
if (uOp->getOpcode() == UnaryOperator::Deref)
|
|
// Per C99 6.5.3.2, the address of a deref always returns a valid result
|
|
// (assuming the deref expression is valid).
|
|
return uOp->getSubExpr()->getType();
|
|
}
|
|
// Technically, there should be a check for array subscript
|
|
// expressions here, but the result of one is always an lvalue anyway.
|
|
}
|
|
NamedDecl *dcl = getPrimaryDecl(op);
|
|
Expr::isLvalueResult lval = op->isLvalue(Context);
|
|
|
|
if (lval != Expr::LV_Valid && lval != Expr::LV_IncompleteVoidType) {
|
|
// C99 6.5.3.2p1
|
|
// The operand must be either an l-value or a function designator
|
|
if (!op->getType()->isFunctionType()) {
|
|
// FIXME: emit more specific diag...
|
|
Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof)
|
|
<< op->getSourceRange();
|
|
return QualType();
|
|
}
|
|
} else if (op->getBitField()) { // C99 6.5.3.2p1
|
|
// The operand cannot be a bit-field
|
|
Diag(OpLoc, diag::err_typecheck_address_of)
|
|
<< "bit-field" << op->getSourceRange();
|
|
return QualType();
|
|
} else if (isa<ExtVectorElementExpr>(op) || (isa<ArraySubscriptExpr>(op) &&
|
|
cast<ArraySubscriptExpr>(op)->getBase()->getType()->isVectorType())){
|
|
// The operand cannot be an element of a vector
|
|
Diag(OpLoc, diag::err_typecheck_address_of)
|
|
<< "vector element" << op->getSourceRange();
|
|
return QualType();
|
|
} else if (isa<ObjCPropertyRefExpr>(op)) {
|
|
// cannot take address of a property expression.
|
|
Diag(OpLoc, diag::err_typecheck_address_of)
|
|
<< "property expression" << op->getSourceRange();
|
|
return QualType();
|
|
} else if (dcl) { // C99 6.5.3.2p1
|
|
// We have an lvalue with a decl. Make sure the decl is not declared
|
|
// with the register storage-class specifier.
|
|
if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
|
|
if (vd->getStorageClass() == VarDecl::Register) {
|
|
Diag(OpLoc, diag::err_typecheck_address_of)
|
|
<< "register variable" << op->getSourceRange();
|
|
return QualType();
|
|
}
|
|
} else if (isa<OverloadedFunctionDecl>(dcl) ||
|
|
isa<FunctionTemplateDecl>(dcl)) {
|
|
return Context.OverloadTy;
|
|
} else if (FieldDecl *FD = dyn_cast<FieldDecl>(dcl)) {
|
|
// Okay: we can take the address of a field.
|
|
// Could be a pointer to member, though, if there is an explicit
|
|
// scope qualifier for the class.
|
|
if (isa<QualifiedDeclRefExpr>(op)) {
|
|
DeclContext *Ctx = dcl->getDeclContext();
|
|
if (Ctx && Ctx->isRecord()) {
|
|
if (FD->getType()->isReferenceType()) {
|
|
Diag(OpLoc,
|
|
diag::err_cannot_form_pointer_to_member_of_reference_type)
|
|
<< FD->getDeclName() << FD->getType();
|
|
return QualType();
|
|
}
|
|
|
|
return Context.getMemberPointerType(op->getType(),
|
|
Context.getTypeDeclType(cast<RecordDecl>(Ctx)).getTypePtr());
|
|
}
|
|
}
|
|
} else if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(dcl)) {
|
|
// Okay: we can take the address of a function.
|
|
// As above.
|
|
if (isa<QualifiedDeclRefExpr>(op) && MD->isInstance())
|
|
return Context.getMemberPointerType(op->getType(),
|
|
Context.getTypeDeclType(MD->getParent()).getTypePtr());
|
|
} else if (!isa<FunctionDecl>(dcl))
|
|
assert(0 && "Unknown/unexpected decl type");
|
|
}
|
|
|
|
if (lval == Expr::LV_IncompleteVoidType) {
|
|
// Taking the address of a void variable is technically illegal, but we
|
|
// allow it in cases which are otherwise valid.
|
|
// Example: "extern void x; void* y = &x;".
|
|
Diag(OpLoc, diag::ext_typecheck_addrof_void) << op->getSourceRange();
|
|
}
|
|
|
|
// If the operand has type "type", the result has type "pointer to type".
|
|
return Context.getPointerType(op->getType());
|
|
}
|
|
|
|
QualType Sema::CheckIndirectionOperand(Expr *Op, SourceLocation OpLoc) {
|
|
if (Op->isTypeDependent())
|
|
return Context.DependentTy;
|
|
|
|
UsualUnaryConversions(Op);
|
|
QualType Ty = Op->getType();
|
|
|
|
// Note that per both C89 and C99, this is always legal, even if ptype is an
|
|
// incomplete type or void. It would be possible to warn about dereferencing
|
|
// a void pointer, but it's completely well-defined, and such a warning is
|
|
// unlikely to catch any mistakes.
|
|
if (const PointerType *PT = Ty->getAsPointerType())
|
|
return PT->getPointeeType();
|
|
|
|
if (const ObjCObjectPointerType *OPT = Ty->getAsObjCObjectPointerType())
|
|
return OPT->getPointeeType();
|
|
|
|
Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer)
|
|
<< Ty << Op->getSourceRange();
|
|
return QualType();
|
|
}
|
|
|
|
static inline BinaryOperator::Opcode ConvertTokenKindToBinaryOpcode(
|
|
tok::TokenKind Kind) {
|
|
BinaryOperator::Opcode Opc;
|
|
switch (Kind) {
|
|
default: assert(0 && "Unknown binop!");
|
|
case tok::periodstar: Opc = BinaryOperator::PtrMemD; break;
|
|
case tok::arrowstar: Opc = BinaryOperator::PtrMemI; break;
|
|
case tok::star: Opc = BinaryOperator::Mul; break;
|
|
case tok::slash: Opc = BinaryOperator::Div; break;
|
|
case tok::percent: Opc = BinaryOperator::Rem; break;
|
|
case tok::plus: Opc = BinaryOperator::Add; break;
|
|
case tok::minus: Opc = BinaryOperator::Sub; break;
|
|
case tok::lessless: Opc = BinaryOperator::Shl; break;
|
|
case tok::greatergreater: Opc = BinaryOperator::Shr; break;
|
|
case tok::lessequal: Opc = BinaryOperator::LE; break;
|
|
case tok::less: Opc = BinaryOperator::LT; break;
|
|
case tok::greaterequal: Opc = BinaryOperator::GE; break;
|
|
case tok::greater: Opc = BinaryOperator::GT; break;
|
|
case tok::exclaimequal: Opc = BinaryOperator::NE; break;
|
|
case tok::equalequal: Opc = BinaryOperator::EQ; break;
|
|
case tok::amp: Opc = BinaryOperator::And; break;
|
|
case tok::caret: Opc = BinaryOperator::Xor; break;
|
|
case tok::pipe: Opc = BinaryOperator::Or; break;
|
|
case tok::ampamp: Opc = BinaryOperator::LAnd; break;
|
|
case tok::pipepipe: Opc = BinaryOperator::LOr; break;
|
|
case tok::equal: Opc = BinaryOperator::Assign; break;
|
|
case tok::starequal: Opc = BinaryOperator::MulAssign; break;
|
|
case tok::slashequal: Opc = BinaryOperator::DivAssign; break;
|
|
case tok::percentequal: Opc = BinaryOperator::RemAssign; break;
|
|
case tok::plusequal: Opc = BinaryOperator::AddAssign; break;
|
|
case tok::minusequal: Opc = BinaryOperator::SubAssign; break;
|
|
case tok::lesslessequal: Opc = BinaryOperator::ShlAssign; break;
|
|
case tok::greatergreaterequal: Opc = BinaryOperator::ShrAssign; break;
|
|
case tok::ampequal: Opc = BinaryOperator::AndAssign; break;
|
|
case tok::caretequal: Opc = BinaryOperator::XorAssign; break;
|
|
case tok::pipeequal: Opc = BinaryOperator::OrAssign; break;
|
|
case tok::comma: Opc = BinaryOperator::Comma; break;
|
|
}
|
|
return Opc;
|
|
}
|
|
|
|
static inline UnaryOperator::Opcode ConvertTokenKindToUnaryOpcode(
|
|
tok::TokenKind Kind) {
|
|
UnaryOperator::Opcode Opc;
|
|
switch (Kind) {
|
|
default: assert(0 && "Unknown unary op!");
|
|
case tok::plusplus: Opc = UnaryOperator::PreInc; break;
|
|
case tok::minusminus: Opc = UnaryOperator::PreDec; break;
|
|
case tok::amp: Opc = UnaryOperator::AddrOf; break;
|
|
case tok::star: Opc = UnaryOperator::Deref; break;
|
|
case tok::plus: Opc = UnaryOperator::Plus; break;
|
|
case tok::minus: Opc = UnaryOperator::Minus; break;
|
|
case tok::tilde: Opc = UnaryOperator::Not; break;
|
|
case tok::exclaim: Opc = UnaryOperator::LNot; break;
|
|
case tok::kw___real: Opc = UnaryOperator::Real; break;
|
|
case tok::kw___imag: Opc = UnaryOperator::Imag; break;
|
|
case tok::kw___extension__: Opc = UnaryOperator::Extension; break;
|
|
}
|
|
return Opc;
|
|
}
|
|
|
|
/// CreateBuiltinBinOp - Creates a new built-in binary operation with
|
|
/// operator @p Opc at location @c TokLoc. This routine only supports
|
|
/// built-in operations; ActOnBinOp handles overloaded operators.
|
|
Action::OwningExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc,
|
|
unsigned Op,
|
|
Expr *lhs, Expr *rhs) {
|
|
QualType ResultTy; // Result type of the binary operator.
|
|
BinaryOperator::Opcode Opc = (BinaryOperator::Opcode)Op;
|
|
// The following two variables are used for compound assignment operators
|
|
QualType CompLHSTy; // Type of LHS after promotions for computation
|
|
QualType CompResultTy; // Type of computation result
|
|
|
|
switch (Opc) {
|
|
case BinaryOperator::Assign:
|
|
ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, QualType());
|
|
break;
|
|
case BinaryOperator::PtrMemD:
|
|
case BinaryOperator::PtrMemI:
|
|
ResultTy = CheckPointerToMemberOperands(lhs, rhs, OpLoc,
|
|
Opc == BinaryOperator::PtrMemI);
|
|
break;
|
|
case BinaryOperator::Mul:
|
|
case BinaryOperator::Div:
|
|
ResultTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc);
|
|
break;
|
|
case BinaryOperator::Rem:
|
|
ResultTy = CheckRemainderOperands(lhs, rhs, OpLoc);
|
|
break;
|
|
case BinaryOperator::Add:
|
|
ResultTy = CheckAdditionOperands(lhs, rhs, OpLoc);
|
|
break;
|
|
case BinaryOperator::Sub:
|
|
ResultTy = CheckSubtractionOperands(lhs, rhs, OpLoc);
|
|
break;
|
|
case BinaryOperator::Shl:
|
|
case BinaryOperator::Shr:
|
|
ResultTy = CheckShiftOperands(lhs, rhs, OpLoc);
|
|
break;
|
|
case BinaryOperator::LE:
|
|
case BinaryOperator::LT:
|
|
case BinaryOperator::GE:
|
|
case BinaryOperator::GT:
|
|
ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, Opc, true);
|
|
break;
|
|
case BinaryOperator::EQ:
|
|
case BinaryOperator::NE:
|
|
ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, Opc, false);
|
|
break;
|
|
case BinaryOperator::And:
|
|
case BinaryOperator::Xor:
|
|
case BinaryOperator::Or:
|
|
ResultTy = CheckBitwiseOperands(lhs, rhs, OpLoc);
|
|
break;
|
|
case BinaryOperator::LAnd:
|
|
case BinaryOperator::LOr:
|
|
ResultTy = CheckLogicalOperands(lhs, rhs, OpLoc);
|
|
break;
|
|
case BinaryOperator::MulAssign:
|
|
case BinaryOperator::DivAssign:
|
|
CompResultTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc, true);
|
|
CompLHSTy = CompResultTy;
|
|
if (!CompResultTy.isNull())
|
|
ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
|
|
break;
|
|
case BinaryOperator::RemAssign:
|
|
CompResultTy = CheckRemainderOperands(lhs, rhs, OpLoc, true);
|
|
CompLHSTy = CompResultTy;
|
|
if (!CompResultTy.isNull())
|
|
ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
|
|
break;
|
|
case BinaryOperator::AddAssign:
|
|
CompResultTy = CheckAdditionOperands(lhs, rhs, OpLoc, &CompLHSTy);
|
|
if (!CompResultTy.isNull())
|
|
ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
|
|
break;
|
|
case BinaryOperator::SubAssign:
|
|
CompResultTy = CheckSubtractionOperands(lhs, rhs, OpLoc, &CompLHSTy);
|
|
if (!CompResultTy.isNull())
|
|
ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
|
|
break;
|
|
case BinaryOperator::ShlAssign:
|
|
case BinaryOperator::ShrAssign:
|
|
CompResultTy = CheckShiftOperands(lhs, rhs, OpLoc, true);
|
|
CompLHSTy = CompResultTy;
|
|
if (!CompResultTy.isNull())
|
|
ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
|
|
break;
|
|
case BinaryOperator::AndAssign:
|
|
case BinaryOperator::XorAssign:
|
|
case BinaryOperator::OrAssign:
|
|
CompResultTy = CheckBitwiseOperands(lhs, rhs, OpLoc, true);
|
|
CompLHSTy = CompResultTy;
|
|
if (!CompResultTy.isNull())
|
|
ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
|
|
break;
|
|
case BinaryOperator::Comma:
|
|
ResultTy = CheckCommaOperands(lhs, rhs, OpLoc);
|
|
break;
|
|
}
|
|
if (ResultTy.isNull())
|
|
return ExprError();
|
|
if (CompResultTy.isNull())
|
|
return Owned(new (Context) BinaryOperator(lhs, rhs, Opc, ResultTy, OpLoc));
|
|
else
|
|
return Owned(new (Context) CompoundAssignOperator(lhs, rhs, Opc, ResultTy,
|
|
CompLHSTy, CompResultTy,
|
|
OpLoc));
|
|
}
|
|
|
|
// Binary Operators. 'Tok' is the token for the operator.
|
|
Action::OwningExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc,
|
|
tok::TokenKind Kind,
|
|
ExprArg LHS, ExprArg RHS) {
|
|
BinaryOperator::Opcode Opc = ConvertTokenKindToBinaryOpcode(Kind);
|
|
Expr *lhs = LHS.takeAs<Expr>(), *rhs = RHS.takeAs<Expr>();
|
|
|
|
assert((lhs != 0) && "ActOnBinOp(): missing left expression");
|
|
assert((rhs != 0) && "ActOnBinOp(): missing right expression");
|
|
|
|
if (getLangOptions().CPlusPlus &&
|
|
(lhs->getType()->isOverloadableType() ||
|
|
rhs->getType()->isOverloadableType())) {
|
|
// Find all of the overloaded operators visible from this
|
|
// point. We perform both an operator-name lookup from the local
|
|
// scope and an argument-dependent lookup based on the types of
|
|
// the arguments.
|
|
FunctionSet Functions;
|
|
OverloadedOperatorKind OverOp = BinaryOperator::getOverloadedOperator(Opc);
|
|
if (OverOp != OO_None) {
|
|
LookupOverloadedOperatorName(OverOp, S, lhs->getType(), rhs->getType(),
|
|
Functions);
|
|
Expr *Args[2] = { lhs, rhs };
|
|
DeclarationName OpName
|
|
= Context.DeclarationNames.getCXXOperatorName(OverOp);
|
|
ArgumentDependentLookup(OpName, Args, 2, Functions);
|
|
}
|
|
|
|
// Build the (potentially-overloaded, potentially-dependent)
|
|
// binary operation.
|
|
return CreateOverloadedBinOp(TokLoc, Opc, Functions, lhs, rhs);
|
|
}
|
|
|
|
// Build a built-in binary operation.
|
|
return CreateBuiltinBinOp(TokLoc, Opc, lhs, rhs);
|
|
}
|
|
|
|
Action::OwningExprResult Sema::CreateBuiltinUnaryOp(SourceLocation OpLoc,
|
|
unsigned OpcIn,
|
|
ExprArg InputArg) {
|
|
UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn);
|
|
|
|
// FIXME: Input is modified below, but InputArg is not updated appropriately.
|
|
Expr *Input = (Expr *)InputArg.get();
|
|
QualType resultType;
|
|
switch (Opc) {
|
|
case UnaryOperator::OffsetOf:
|
|
assert(false && "Invalid unary operator");
|
|
break;
|
|
|
|
case UnaryOperator::PreInc:
|
|
case UnaryOperator::PreDec:
|
|
case UnaryOperator::PostInc:
|
|
case UnaryOperator::PostDec:
|
|
resultType = CheckIncrementDecrementOperand(Input, OpLoc,
|
|
Opc == UnaryOperator::PreInc ||
|
|
Opc == UnaryOperator::PostInc);
|
|
break;
|
|
case UnaryOperator::AddrOf:
|
|
resultType = CheckAddressOfOperand(Input, OpLoc);
|
|
break;
|
|
case UnaryOperator::Deref:
|
|
DefaultFunctionArrayConversion(Input);
|
|
resultType = CheckIndirectionOperand(Input, OpLoc);
|
|
break;
|
|
case UnaryOperator::Plus:
|
|
case UnaryOperator::Minus:
|
|
UsualUnaryConversions(Input);
|
|
resultType = Input->getType();
|
|
if (resultType->isDependentType())
|
|
break;
|
|
if (resultType->isArithmeticType()) // C99 6.5.3.3p1
|
|
break;
|
|
else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6-7
|
|
resultType->isEnumeralType())
|
|
break;
|
|
else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6
|
|
Opc == UnaryOperator::Plus &&
|
|
resultType->isPointerType())
|
|
break;
|
|
|
|
return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
|
|
<< resultType << Input->getSourceRange());
|
|
case UnaryOperator::Not: // bitwise complement
|
|
UsualUnaryConversions(Input);
|
|
resultType = Input->getType();
|
|
if (resultType->isDependentType())
|
|
break;
|
|
// C99 6.5.3.3p1. We allow complex int and float as a GCC extension.
|
|
if (resultType->isComplexType() || resultType->isComplexIntegerType())
|
|
// C99 does not support '~' for complex conjugation.
|
|
Diag(OpLoc, diag::ext_integer_complement_complex)
|
|
<< resultType << Input->getSourceRange();
|
|
else if (!resultType->isIntegerType())
|
|
return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
|
|
<< resultType << Input->getSourceRange());
|
|
break;
|
|
case UnaryOperator::LNot: // logical negation
|
|
// Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
|
|
DefaultFunctionArrayConversion(Input);
|
|
resultType = Input->getType();
|
|
if (resultType->isDependentType())
|
|
break;
|
|
if (!resultType->isScalarType()) // C99 6.5.3.3p1
|
|
return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
|
|
<< resultType << Input->getSourceRange());
|
|
// LNot always has type int. C99 6.5.3.3p5.
|
|
// In C++, it's bool. C++ 5.3.1p8
|
|
resultType = getLangOptions().CPlusPlus ? Context.BoolTy : Context.IntTy;
|
|
break;
|
|
case UnaryOperator::Real:
|
|
case UnaryOperator::Imag:
|
|
resultType = CheckRealImagOperand(Input, OpLoc, Opc == UnaryOperator::Real);
|
|
break;
|
|
case UnaryOperator::Extension:
|
|
resultType = Input->getType();
|
|
break;
|
|
}
|
|
if (resultType.isNull())
|
|
return ExprError();
|
|
|
|
InputArg.release();
|
|
return Owned(new (Context) UnaryOperator(Input, Opc, resultType, OpLoc));
|
|
}
|
|
|
|
// Unary Operators. 'Tok' is the token for the operator.
|
|
Action::OwningExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc,
|
|
tok::TokenKind Op, ExprArg input) {
|
|
Expr *Input = (Expr*)input.get();
|
|
UnaryOperator::Opcode Opc = ConvertTokenKindToUnaryOpcode(Op);
|
|
|
|
if (getLangOptions().CPlusPlus && Input->getType()->isOverloadableType()) {
|
|
// Find all of the overloaded operators visible from this
|
|
// point. We perform both an operator-name lookup from the local
|
|
// scope and an argument-dependent lookup based on the types of
|
|
// the arguments.
|
|
FunctionSet Functions;
|
|
OverloadedOperatorKind OverOp = UnaryOperator::getOverloadedOperator(Opc);
|
|
if (OverOp != OO_None) {
|
|
LookupOverloadedOperatorName(OverOp, S, Input->getType(), QualType(),
|
|
Functions);
|
|
DeclarationName OpName
|
|
= Context.DeclarationNames.getCXXOperatorName(OverOp);
|
|
ArgumentDependentLookup(OpName, &Input, 1, Functions);
|
|
}
|
|
|
|
return CreateOverloadedUnaryOp(OpLoc, Opc, Functions, move(input));
|
|
}
|
|
|
|
return CreateBuiltinUnaryOp(OpLoc, Opc, move(input));
|
|
}
|
|
|
|
/// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
|
|
Sema::OwningExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc,
|
|
SourceLocation LabLoc,
|
|
IdentifierInfo *LabelII) {
|
|
// Look up the record for this label identifier.
|
|
LabelStmt *&LabelDecl = getLabelMap()[LabelII];
|
|
|
|
// If we haven't seen this label yet, create a forward reference. It
|
|
// will be validated and/or cleaned up in ActOnFinishFunctionBody.
|
|
if (LabelDecl == 0)
|
|
LabelDecl = new (Context) LabelStmt(LabLoc, LabelII, 0);
|
|
|
|
// Create the AST node. The address of a label always has type 'void*'.
|
|
return Owned(new (Context) AddrLabelExpr(OpLoc, LabLoc, LabelDecl,
|
|
Context.getPointerType(Context.VoidTy)));
|
|
}
|
|
|
|
Sema::OwningExprResult
|
|
Sema::ActOnStmtExpr(SourceLocation LPLoc, StmtArg substmt,
|
|
SourceLocation RPLoc) { // "({..})"
|
|
Stmt *SubStmt = static_cast<Stmt*>(substmt.get());
|
|
assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
|
|
CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);
|
|
|
|
bool isFileScope = getCurFunctionOrMethodDecl() == 0;
|
|
if (isFileScope)
|
|
return ExprError(Diag(LPLoc, diag::err_stmtexpr_file_scope));
|
|
|
|
// FIXME: there are a variety of strange constraints to enforce here, for
|
|
// example, it is not possible to goto into a stmt expression apparently.
|
|
// More semantic analysis is needed.
|
|
|
|
// If there are sub stmts in the compound stmt, take the type of the last one
|
|
// as the type of the stmtexpr.
|
|
QualType Ty = Context.VoidTy;
|
|
|
|
if (!Compound->body_empty()) {
|
|
Stmt *LastStmt = Compound->body_back();
|
|
// If LastStmt is a label, skip down through into the body.
|
|
while (LabelStmt *Label = dyn_cast<LabelStmt>(LastStmt))
|
|
LastStmt = Label->getSubStmt();
|
|
|
|
if (Expr *LastExpr = dyn_cast<Expr>(LastStmt))
|
|
Ty = LastExpr->getType();
|
|
}
|
|
|
|
// FIXME: Check that expression type is complete/non-abstract; statement
|
|
// expressions are not lvalues.
|
|
|
|
substmt.release();
|
|
return Owned(new (Context) StmtExpr(Compound, Ty, LPLoc, RPLoc));
|
|
}
|
|
|
|
Sema::OwningExprResult Sema::ActOnBuiltinOffsetOf(Scope *S,
|
|
SourceLocation BuiltinLoc,
|
|
SourceLocation TypeLoc,
|
|
TypeTy *argty,
|
|
OffsetOfComponent *CompPtr,
|
|
unsigned NumComponents,
|
|
SourceLocation RPLoc) {
|
|
// FIXME: This function leaks all expressions in the offset components on
|
|
// error.
|
|
QualType ArgTy = QualType::getFromOpaquePtr(argty);
|
|
assert(!ArgTy.isNull() && "Missing type argument!");
|
|
|
|
bool Dependent = ArgTy->isDependentType();
|
|
|
|
// We must have at least one component that refers to the type, and the first
|
|
// one is known to be a field designator. Verify that the ArgTy represents
|
|
// a struct/union/class.
|
|
if (!Dependent && !ArgTy->isRecordType())
|
|
return ExprError(Diag(TypeLoc, diag::err_offsetof_record_type) << ArgTy);
|
|
|
|
// FIXME: Type must be complete per C99 7.17p3 because a declaring a variable
|
|
// with an incomplete type would be illegal.
|
|
|
|
// Otherwise, create a null pointer as the base, and iteratively process
|
|
// the offsetof designators.
|
|
QualType ArgTyPtr = Context.getPointerType(ArgTy);
|
|
Expr* Res = new (Context) ImplicitValueInitExpr(ArgTyPtr);
|
|
Res = new (Context) UnaryOperator(Res, UnaryOperator::Deref,
|
|
ArgTy, SourceLocation());
|
|
|
|
// offsetof with non-identifier designators (e.g. "offsetof(x, a.b[c])") are a
|
|
// GCC extension, diagnose them.
|
|
// FIXME: This diagnostic isn't actually visible because the location is in
|
|
// a system header!
|
|
if (NumComponents != 1)
|
|
Diag(BuiltinLoc, diag::ext_offsetof_extended_field_designator)
|
|
<< SourceRange(CompPtr[1].LocStart, CompPtr[NumComponents-1].LocEnd);
|
|
|
|
if (!Dependent) {
|
|
bool DidWarnAboutNonPOD = false;
|
|
|
|
// FIXME: Dependent case loses a lot of information here. And probably
|
|
// leaks like a sieve.
|
|
for (unsigned i = 0; i != NumComponents; ++i) {
|
|
const OffsetOfComponent &OC = CompPtr[i];
|
|
if (OC.isBrackets) {
|
|
// Offset of an array sub-field. TODO: Should we allow vector elements?
|
|
const ArrayType *AT = Context.getAsArrayType(Res->getType());
|
|
if (!AT) {
|
|
Res->Destroy(Context);
|
|
return ExprError(Diag(OC.LocEnd, diag::err_offsetof_array_type)
|
|
<< Res->getType());
|
|
}
|
|
|
|
// FIXME: C++: Verify that operator[] isn't overloaded.
|
|
|
|
// Promote the array so it looks more like a normal array subscript
|
|
// expression.
|
|
DefaultFunctionArrayConversion(Res);
|
|
|
|
// C99 6.5.2.1p1
|
|
Expr *Idx = static_cast<Expr*>(OC.U.E);
|
|
// FIXME: Leaks Res
|
|
if (!Idx->isTypeDependent() && !Idx->getType()->isIntegerType())
|
|
return ExprError(Diag(Idx->getLocStart(),
|
|
diag::err_typecheck_subscript_not_integer)
|
|
<< Idx->getSourceRange());
|
|
|
|
Res = new (Context) ArraySubscriptExpr(Res, Idx, AT->getElementType(),
|
|
OC.LocEnd);
|
|
continue;
|
|
}
|
|
|
|
const RecordType *RC = Res->getType()->getAsRecordType();
|
|
if (!RC) {
|
|
Res->Destroy(Context);
|
|
return ExprError(Diag(OC.LocEnd, diag::err_offsetof_record_type)
|
|
<< Res->getType());
|
|
}
|
|
|
|
// Get the decl corresponding to this.
|
|
RecordDecl *RD = RC->getDecl();
|
|
if (CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
|
|
if (!CRD->isPOD() && !DidWarnAboutNonPOD) {
|
|
ExprError(Diag(BuiltinLoc, diag::warn_offsetof_non_pod_type)
|
|
<< SourceRange(CompPtr[0].LocStart, OC.LocEnd)
|
|
<< Res->getType());
|
|
DidWarnAboutNonPOD = true;
|
|
}
|
|
}
|
|
|
|
FieldDecl *MemberDecl
|
|
= dyn_cast_or_null<FieldDecl>(LookupQualifiedName(RD, OC.U.IdentInfo,
|
|
LookupMemberName)
|
|
.getAsDecl());
|
|
// FIXME: Leaks Res
|
|
if (!MemberDecl)
|
|
return ExprError(Diag(BuiltinLoc, diag::err_typecheck_no_member)
|
|
<< OC.U.IdentInfo << SourceRange(OC.LocStart, OC.LocEnd));
|
|
|
|
// FIXME: C++: Verify that MemberDecl isn't a static field.
|
|
// FIXME: Verify that MemberDecl isn't a bitfield.
|
|
if (cast<RecordDecl>(MemberDecl->getDeclContext())->isAnonymousStructOrUnion()) {
|
|
Res = BuildAnonymousStructUnionMemberReference(
|
|
SourceLocation(), MemberDecl, Res, SourceLocation()).takeAs<Expr>();
|
|
} else {
|
|
// MemberDecl->getType() doesn't get the right qualifiers, but it
|
|
// doesn't matter here.
|
|
Res = new (Context) MemberExpr(Res, false, MemberDecl, OC.LocEnd,
|
|
MemberDecl->getType().getNonReferenceType());
|
|
}
|
|
}
|
|
}
|
|
|
|
return Owned(new (Context) UnaryOperator(Res, UnaryOperator::OffsetOf,
|
|
Context.getSizeType(), BuiltinLoc));
|
|
}
|
|
|
|
|
|
Sema::OwningExprResult Sema::ActOnTypesCompatibleExpr(SourceLocation BuiltinLoc,
|
|
TypeTy *arg1,TypeTy *arg2,
|
|
SourceLocation RPLoc) {
|
|
QualType argT1 = QualType::getFromOpaquePtr(arg1);
|
|
QualType argT2 = QualType::getFromOpaquePtr(arg2);
|
|
|
|
assert((!argT1.isNull() && !argT2.isNull()) && "Missing type argument(s)");
|
|
|
|
if (getLangOptions().CPlusPlus) {
|
|
Diag(BuiltinLoc, diag::err_types_compatible_p_in_cplusplus)
|
|
<< SourceRange(BuiltinLoc, RPLoc);
|
|
return ExprError();
|
|
}
|
|
|
|
return Owned(new (Context) TypesCompatibleExpr(Context.IntTy, BuiltinLoc,
|
|
argT1, argT2, RPLoc));
|
|
}
|
|
|
|
Sema::OwningExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc,
|
|
ExprArg cond,
|
|
ExprArg expr1, ExprArg expr2,
|
|
SourceLocation RPLoc) {
|
|
Expr *CondExpr = static_cast<Expr*>(cond.get());
|
|
Expr *LHSExpr = static_cast<Expr*>(expr1.get());
|
|
Expr *RHSExpr = static_cast<Expr*>(expr2.get());
|
|
|
|
assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");
|
|
|
|
QualType resType;
|
|
if (CondExpr->isTypeDependent() || CondExpr->isValueDependent()) {
|
|
resType = Context.DependentTy;
|
|
} else {
|
|
// The conditional expression is required to be a constant expression.
|
|
llvm::APSInt condEval(32);
|
|
SourceLocation ExpLoc;
|
|
if (!CondExpr->isIntegerConstantExpr(condEval, Context, &ExpLoc))
|
|
return ExprError(Diag(ExpLoc,
|
|
diag::err_typecheck_choose_expr_requires_constant)
|
|
<< CondExpr->getSourceRange());
|
|
|
|
// If the condition is > zero, then the AST type is the same as the LSHExpr.
|
|
resType = condEval.getZExtValue() ? LHSExpr->getType() : RHSExpr->getType();
|
|
}
|
|
|
|
cond.release(); expr1.release(); expr2.release();
|
|
return Owned(new (Context) ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr,
|
|
resType, RPLoc));
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Clang Extensions.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// ActOnBlockStart - This callback is invoked when a block literal is started.
|
|
void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *BlockScope) {
|
|
// Analyze block parameters.
|
|
BlockSemaInfo *BSI = new BlockSemaInfo();
|
|
|
|
// Add BSI to CurBlock.
|
|
BSI->PrevBlockInfo = CurBlock;
|
|
CurBlock = BSI;
|
|
|
|
BSI->ReturnType = QualType();
|
|
BSI->TheScope = BlockScope;
|
|
BSI->hasBlockDeclRefExprs = false;
|
|
BSI->SavedFunctionNeedsScopeChecking = CurFunctionNeedsScopeChecking;
|
|
CurFunctionNeedsScopeChecking = false;
|
|
|
|
BSI->TheDecl = BlockDecl::Create(Context, CurContext, CaretLoc);
|
|
PushDeclContext(BlockScope, BSI->TheDecl);
|
|
}
|
|
|
|
void Sema::ActOnBlockArguments(Declarator &ParamInfo, Scope *CurScope) {
|
|
assert(ParamInfo.getIdentifier()==0 && "block-id should have no identifier!");
|
|
|
|
if (ParamInfo.getNumTypeObjects() == 0
|
|
|| ParamInfo.getTypeObject(0).Kind != DeclaratorChunk::Function) {
|
|
ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo);
|
|
QualType T = GetTypeForDeclarator(ParamInfo, CurScope);
|
|
|
|
if (T->isArrayType()) {
|
|
Diag(ParamInfo.getSourceRange().getBegin(),
|
|
diag::err_block_returns_array);
|
|
return;
|
|
}
|
|
|
|
// The parameter list is optional, if there was none, assume ().
|
|
if (!T->isFunctionType())
|
|
T = Context.getFunctionType(T, NULL, 0, 0, 0);
|
|
|
|
CurBlock->hasPrototype = true;
|
|
CurBlock->isVariadic = false;
|
|
// Check for a valid sentinel attribute on this block.
|
|
if (CurBlock->TheDecl->getAttr<SentinelAttr>()) {
|
|
Diag(ParamInfo.getAttributes()->getLoc(),
|
|
diag::warn_attribute_sentinel_not_variadic) << 1;
|
|
// FIXME: remove the attribute.
|
|
}
|
|
QualType RetTy = T.getTypePtr()->getAsFunctionType()->getResultType();
|
|
|
|
// Do not allow returning a objc interface by-value.
|
|
if (RetTy->isObjCInterfaceType()) {
|
|
Diag(ParamInfo.getSourceRange().getBegin(),
|
|
diag::err_object_cannot_be_passed_returned_by_value) << 0 << RetTy;
|
|
return;
|
|
}
|
|
return;
|
|
}
|
|
|
|
// Analyze arguments to block.
|
|
assert(ParamInfo.getTypeObject(0).Kind == DeclaratorChunk::Function &&
|
|
"Not a function declarator!");
|
|
DeclaratorChunk::FunctionTypeInfo &FTI = ParamInfo.getTypeObject(0).Fun;
|
|
|
|
CurBlock->hasPrototype = FTI.hasPrototype;
|
|
CurBlock->isVariadic = true;
|
|
|
|
// Check for C99 6.7.5.3p10 - foo(void) is a non-varargs function that takes
|
|
// no arguments, not a function that takes a single void argument.
|
|
if (FTI.hasPrototype &&
|
|
FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
|
|
(!FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType().getCVRQualifiers()&&
|
|
FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType())) {
|
|
// empty arg list, don't push any params.
|
|
CurBlock->isVariadic = false;
|
|
} else if (FTI.hasPrototype) {
|
|
for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
|
|
CurBlock->Params.push_back(FTI.ArgInfo[i].Param.getAs<ParmVarDecl>());
|
|
CurBlock->isVariadic = FTI.isVariadic;
|
|
}
|
|
CurBlock->TheDecl->setParams(Context, CurBlock->Params.data(),
|
|
CurBlock->Params.size());
|
|
CurBlock->TheDecl->setIsVariadic(CurBlock->isVariadic);
|
|
ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo);
|
|
for (BlockDecl::param_iterator AI = CurBlock->TheDecl->param_begin(),
|
|
E = CurBlock->TheDecl->param_end(); AI != E; ++AI)
|
|
// If this has an identifier, add it to the scope stack.
|
|
if ((*AI)->getIdentifier())
|
|
PushOnScopeChains(*AI, CurBlock->TheScope);
|
|
|
|
// Check for a valid sentinel attribute on this block.
|
|
if (!CurBlock->isVariadic &&
|
|
CurBlock->TheDecl->getAttr<SentinelAttr>()) {
|
|
Diag(ParamInfo.getAttributes()->getLoc(),
|
|
diag::warn_attribute_sentinel_not_variadic) << 1;
|
|
// FIXME: remove the attribute.
|
|
}
|
|
|
|
// Analyze the return type.
|
|
QualType T = GetTypeForDeclarator(ParamInfo, CurScope);
|
|
QualType RetTy = T->getAsFunctionType()->getResultType();
|
|
|
|
// Do not allow returning a objc interface by-value.
|
|
if (RetTy->isObjCInterfaceType()) {
|
|
Diag(ParamInfo.getSourceRange().getBegin(),
|
|
diag::err_object_cannot_be_passed_returned_by_value) << 0 << RetTy;
|
|
} else if (!RetTy->isDependentType())
|
|
CurBlock->ReturnType = RetTy;
|
|
}
|
|
|
|
/// ActOnBlockError - If there is an error parsing a block, this callback
|
|
/// is invoked to pop the information about the block from the action impl.
|
|
void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) {
|
|
// Ensure that CurBlock is deleted.
|
|
llvm::OwningPtr<BlockSemaInfo> CC(CurBlock);
|
|
|
|
CurFunctionNeedsScopeChecking = CurBlock->SavedFunctionNeedsScopeChecking;
|
|
|
|
// Pop off CurBlock, handle nested blocks.
|
|
PopDeclContext();
|
|
CurBlock = CurBlock->PrevBlockInfo;
|
|
// FIXME: Delete the ParmVarDecl objects as well???
|
|
}
|
|
|
|
/// ActOnBlockStmtExpr - This is called when the body of a block statement
|
|
/// literal was successfully completed. ^(int x){...}
|
|
Sema::OwningExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc,
|
|
StmtArg body, Scope *CurScope) {
|
|
// If blocks are disabled, emit an error.
|
|
if (!LangOpts.Blocks)
|
|
Diag(CaretLoc, diag::err_blocks_disable);
|
|
|
|
// Ensure that CurBlock is deleted.
|
|
llvm::OwningPtr<BlockSemaInfo> BSI(CurBlock);
|
|
|
|
PopDeclContext();
|
|
|
|
// Pop off CurBlock, handle nested blocks.
|
|
CurBlock = CurBlock->PrevBlockInfo;
|
|
|
|
QualType RetTy = Context.VoidTy;
|
|
if (!BSI->ReturnType.isNull())
|
|
RetTy = BSI->ReturnType;
|
|
|
|
llvm::SmallVector<QualType, 8> ArgTypes;
|
|
for (unsigned i = 0, e = BSI->Params.size(); i != e; ++i)
|
|
ArgTypes.push_back(BSI->Params[i]->getType());
|
|
|
|
QualType BlockTy;
|
|
if (!BSI->hasPrototype)
|
|
BlockTy = Context.getFunctionType(RetTy, 0, 0, false, 0);
|
|
else
|
|
BlockTy = Context.getFunctionType(RetTy, ArgTypes.data(), ArgTypes.size(),
|
|
BSI->isVariadic, 0);
|
|
|
|
// FIXME: Check that return/parameter types are complete/non-abstract
|
|
DiagnoseUnusedParameters(BSI->Params.begin(), BSI->Params.end());
|
|
BlockTy = Context.getBlockPointerType(BlockTy);
|
|
|
|
// If needed, diagnose invalid gotos and switches in the block.
|
|
if (CurFunctionNeedsScopeChecking)
|
|
DiagnoseInvalidJumps(static_cast<CompoundStmt*>(body.get()));
|
|
CurFunctionNeedsScopeChecking = BSI->SavedFunctionNeedsScopeChecking;
|
|
|
|
BSI->TheDecl->setBody(body.takeAs<CompoundStmt>());
|
|
return Owned(new (Context) BlockExpr(BSI->TheDecl, BlockTy,
|
|
BSI->hasBlockDeclRefExprs));
|
|
}
|
|
|
|
Sema::OwningExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc,
|
|
ExprArg expr, TypeTy *type,
|
|
SourceLocation RPLoc) {
|
|
QualType T = QualType::getFromOpaquePtr(type);
|
|
Expr *E = static_cast<Expr*>(expr.get());
|
|
Expr *OrigExpr = E;
|
|
|
|
InitBuiltinVaListType();
|
|
|
|
// Get the va_list type
|
|
QualType VaListType = Context.getBuiltinVaListType();
|
|
if (VaListType->isArrayType()) {
|
|
// Deal with implicit array decay; for example, on x86-64,
|
|
// va_list is an array, but it's supposed to decay to
|
|
// a pointer for va_arg.
|
|
VaListType = Context.getArrayDecayedType(VaListType);
|
|
// Make sure the input expression also decays appropriately.
|
|
UsualUnaryConversions(E);
|
|
} else {
|
|
// Otherwise, the va_list argument must be an l-value because
|
|
// it is modified by va_arg.
|
|
if (!E->isTypeDependent() &&
|
|
CheckForModifiableLvalue(E, BuiltinLoc, *this))
|
|
return ExprError();
|
|
}
|
|
|
|
if (!E->isTypeDependent() &&
|
|
!Context.hasSameType(VaListType, E->getType())) {
|
|
return ExprError(Diag(E->getLocStart(),
|
|
diag::err_first_argument_to_va_arg_not_of_type_va_list)
|
|
<< OrigExpr->getType() << E->getSourceRange());
|
|
}
|
|
|
|
// FIXME: Check that type is complete/non-abstract
|
|
// FIXME: Warn if a non-POD type is passed in.
|
|
|
|
expr.release();
|
|
return Owned(new (Context) VAArgExpr(BuiltinLoc, E, T.getNonReferenceType(),
|
|
RPLoc));
|
|
}
|
|
|
|
Sema::OwningExprResult Sema::ActOnGNUNullExpr(SourceLocation TokenLoc) {
|
|
// The type of __null will be int or long, depending on the size of
|
|
// pointers on the target.
|
|
QualType Ty;
|
|
if (Context.Target.getPointerWidth(0) == Context.Target.getIntWidth())
|
|
Ty = Context.IntTy;
|
|
else
|
|
Ty = Context.LongTy;
|
|
|
|
return Owned(new (Context) GNUNullExpr(Ty, TokenLoc));
|
|
}
|
|
|
|
bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
|
|
SourceLocation Loc,
|
|
QualType DstType, QualType SrcType,
|
|
Expr *SrcExpr, const char *Flavor) {
|
|
// Decode the result (notice that AST's are still created for extensions).
|
|
bool isInvalid = false;
|
|
unsigned DiagKind;
|
|
switch (ConvTy) {
|
|
default: assert(0 && "Unknown conversion type");
|
|
case Compatible: return false;
|
|
case PointerToInt:
|
|
DiagKind = diag::ext_typecheck_convert_pointer_int;
|
|
break;
|
|
case IntToPointer:
|
|
DiagKind = diag::ext_typecheck_convert_int_pointer;
|
|
break;
|
|
case IncompatiblePointer:
|
|
DiagKind = diag::ext_typecheck_convert_incompatible_pointer;
|
|
break;
|
|
case IncompatiblePointerSign:
|
|
DiagKind = diag::ext_typecheck_convert_incompatible_pointer_sign;
|
|
break;
|
|
case FunctionVoidPointer:
|
|
DiagKind = diag::ext_typecheck_convert_pointer_void_func;
|
|
break;
|
|
case CompatiblePointerDiscardsQualifiers:
|
|
// If the qualifiers lost were because we were applying the
|
|
// (deprecated) C++ conversion from a string literal to a char*
|
|
// (or wchar_t*), then there was no error (C++ 4.2p2). FIXME:
|
|
// Ideally, this check would be performed in
|
|
// CheckPointerTypesForAssignment. However, that would require a
|
|
// bit of refactoring (so that the second argument is an
|
|
// expression, rather than a type), which should be done as part
|
|
// of a larger effort to fix CheckPointerTypesForAssignment for
|
|
// C++ semantics.
|
|
if (getLangOptions().CPlusPlus &&
|
|
IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType))
|
|
return false;
|
|
DiagKind = diag::ext_typecheck_convert_discards_qualifiers;
|
|
break;
|
|
case IntToBlockPointer:
|
|
DiagKind = diag::err_int_to_block_pointer;
|
|
break;
|
|
case IncompatibleBlockPointer:
|
|
DiagKind = diag::err_typecheck_convert_incompatible_block_pointer;
|
|
break;
|
|
case IncompatibleObjCQualifiedId:
|
|
// FIXME: Diagnose the problem in ObjCQualifiedIdTypesAreCompatible, since
|
|
// it can give a more specific diagnostic.
|
|
DiagKind = diag::warn_incompatible_qualified_id;
|
|
break;
|
|
case IncompatibleVectors:
|
|
DiagKind = diag::warn_incompatible_vectors;
|
|
break;
|
|
case Incompatible:
|
|
DiagKind = diag::err_typecheck_convert_incompatible;
|
|
isInvalid = true;
|
|
break;
|
|
}
|
|
|
|
Diag(Loc, DiagKind) << DstType << SrcType << Flavor
|
|
<< SrcExpr->getSourceRange();
|
|
return isInvalid;
|
|
}
|
|
|
|
bool Sema::VerifyIntegerConstantExpression(const Expr *E, llvm::APSInt *Result){
|
|
llvm::APSInt ICEResult;
|
|
if (E->isIntegerConstantExpr(ICEResult, Context)) {
|
|
if (Result)
|
|
*Result = ICEResult;
|
|
return false;
|
|
}
|
|
|
|
Expr::EvalResult EvalResult;
|
|
|
|
if (!E->Evaluate(EvalResult, Context) || !EvalResult.Val.isInt() ||
|
|
EvalResult.HasSideEffects) {
|
|
Diag(E->getExprLoc(), diag::err_expr_not_ice) << E->getSourceRange();
|
|
|
|
if (EvalResult.Diag) {
|
|
// We only show the note if it's not the usual "invalid subexpression"
|
|
// or if it's actually in a subexpression.
|
|
if (EvalResult.Diag != diag::note_invalid_subexpr_in_ice ||
|
|
E->IgnoreParens() != EvalResult.DiagExpr->IgnoreParens())
|
|
Diag(EvalResult.DiagLoc, EvalResult.Diag);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
Diag(E->getExprLoc(), diag::ext_expr_not_ice) <<
|
|
E->getSourceRange();
|
|
|
|
if (EvalResult.Diag &&
|
|
Diags.getDiagnosticLevel(diag::ext_expr_not_ice) != Diagnostic::Ignored)
|
|
Diag(EvalResult.DiagLoc, EvalResult.Diag);
|
|
|
|
if (Result)
|
|
*Result = EvalResult.Val.getInt();
|
|
return false;
|
|
}
|
|
|
|
Sema::ExpressionEvaluationContext
|
|
Sema::PushExpressionEvaluationContext(ExpressionEvaluationContext NewContext) {
|
|
// Introduce a new set of potentially referenced declarations to the stack.
|
|
if (NewContext == PotentiallyPotentiallyEvaluated)
|
|
PotentiallyReferencedDeclStack.push_back(PotentiallyReferencedDecls());
|
|
|
|
std::swap(ExprEvalContext, NewContext);
|
|
return NewContext;
|
|
}
|
|
|
|
void
|
|
Sema::PopExpressionEvaluationContext(ExpressionEvaluationContext OldContext,
|
|
ExpressionEvaluationContext NewContext) {
|
|
ExprEvalContext = NewContext;
|
|
|
|
if (OldContext == PotentiallyPotentiallyEvaluated) {
|
|
// Mark any remaining declarations in the current position of the stack
|
|
// as "referenced". If they were not meant to be referenced, semantic
|
|
// analysis would have eliminated them (e.g., in ActOnCXXTypeId).
|
|
PotentiallyReferencedDecls RemainingDecls;
|
|
RemainingDecls.swap(PotentiallyReferencedDeclStack.back());
|
|
PotentiallyReferencedDeclStack.pop_back();
|
|
|
|
for (PotentiallyReferencedDecls::iterator I = RemainingDecls.begin(),
|
|
IEnd = RemainingDecls.end();
|
|
I != IEnd; ++I)
|
|
MarkDeclarationReferenced(I->first, I->second);
|
|
}
|
|
}
|
|
|
|
/// \brief Note that the given declaration was referenced in the source code.
|
|
///
|
|
/// This routine should be invoke whenever a given declaration is referenced
|
|
/// in the source code, and where that reference occurred. If this declaration
|
|
/// reference means that the the declaration is used (C++ [basic.def.odr]p2,
|
|
/// C99 6.9p3), then the declaration will be marked as used.
|
|
///
|
|
/// \param Loc the location where the declaration was referenced.
|
|
///
|
|
/// \param D the declaration that has been referenced by the source code.
|
|
void Sema::MarkDeclarationReferenced(SourceLocation Loc, Decl *D) {
|
|
assert(D && "No declaration?");
|
|
|
|
if (D->isUsed())
|
|
return;
|
|
|
|
// Mark a parameter declaration "used", regardless of whether we're in a
|
|
// template or not.
|
|
if (isa<ParmVarDecl>(D))
|
|
D->setUsed(true);
|
|
|
|
// Do not mark anything as "used" within a dependent context; wait for
|
|
// an instantiation.
|
|
if (CurContext->isDependentContext())
|
|
return;
|
|
|
|
switch (ExprEvalContext) {
|
|
case Unevaluated:
|
|
// We are in an expression that is not potentially evaluated; do nothing.
|
|
return;
|
|
|
|
case PotentiallyEvaluated:
|
|
// We are in a potentially-evaluated expression, so this declaration is
|
|
// "used"; handle this below.
|
|
break;
|
|
|
|
case PotentiallyPotentiallyEvaluated:
|
|
// We are in an expression that may be potentially evaluated; queue this
|
|
// declaration reference until we know whether the expression is
|
|
// potentially evaluated.
|
|
PotentiallyReferencedDeclStack.back().push_back(std::make_pair(Loc, D));
|
|
return;
|
|
}
|
|
|
|
// Note that this declaration has been used.
|
|
if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(D)) {
|
|
unsigned TypeQuals;
|
|
if (Constructor->isImplicit() && Constructor->isDefaultConstructor()) {
|
|
if (!Constructor->isUsed())
|
|
DefineImplicitDefaultConstructor(Loc, Constructor);
|
|
}
|
|
else if (Constructor->isImplicit() &&
|
|
Constructor->isCopyConstructor(Context, TypeQuals)) {
|
|
if (!Constructor->isUsed())
|
|
DefineImplicitCopyConstructor(Loc, Constructor, TypeQuals);
|
|
}
|
|
} else if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(D)) {
|
|
if (Destructor->isImplicit() && !Destructor->isUsed())
|
|
DefineImplicitDestructor(Loc, Destructor);
|
|
|
|
} else if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(D)) {
|
|
if (MethodDecl->isImplicit() && MethodDecl->isOverloadedOperator() &&
|
|
MethodDecl->getOverloadedOperator() == OO_Equal) {
|
|
if (!MethodDecl->isUsed())
|
|
DefineImplicitOverloadedAssign(Loc, MethodDecl);
|
|
}
|
|
}
|
|
if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
|
|
// Implicit instantiation of function templates and member functions of
|
|
// class templates.
|
|
if (!Function->getBody()) {
|
|
// FIXME: distinguish between implicit instantiations of function
|
|
// templates and explicit specializations (the latter don't get
|
|
// instantiated, naturally).
|
|
if (Function->getInstantiatedFromMemberFunction() ||
|
|
Function->getPrimaryTemplate())
|
|
PendingImplicitInstantiations.push_back(std::make_pair(Function, Loc));
|
|
}
|
|
|
|
|
|
// FIXME: keep track of references to static functions
|
|
Function->setUsed(true);
|
|
return;
|
|
}
|
|
|
|
if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
|
|
(void)Var;
|
|
// FIXME: implicit template instantiation
|
|
// FIXME: keep track of references to static data?
|
|
D->setUsed(true);
|
|
}
|
|
}
|
|
|