llvm-project/llvm/lib/Target/PowerPC/PPCSubtarget.cpp

253 lines
7.9 KiB
C++

//===-- PowerPCSubtarget.cpp - PPC Subtarget Information ------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the PPC specific subclass of TargetSubtargetInfo.
//
//===----------------------------------------------------------------------===//
#include "PPCSubtarget.h"
#include "PPC.h"
#include "PPCRegisterInfo.h"
#include "PPCTargetMachine.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineScheduler.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Target/TargetMachine.h"
#include <cstdlib>
using namespace llvm;
#define DEBUG_TYPE "ppc-subtarget"
#define GET_SUBTARGETINFO_TARGET_DESC
#define GET_SUBTARGETINFO_CTOR
#include "PPCGenSubtargetInfo.inc"
static cl::opt<bool> UseSubRegLiveness("ppc-track-subreg-liveness",
cl::desc("Enable subregister liveness tracking for PPC"), cl::Hidden);
static cl::opt<bool> QPXStackUnaligned("qpx-stack-unaligned",
cl::desc("Even when QPX is enabled the stack is not 32-byte aligned"),
cl::Hidden);
PPCSubtarget &PPCSubtarget::initializeSubtargetDependencies(StringRef CPU,
StringRef FS) {
initializeEnvironment();
initSubtargetFeatures(CPU, FS);
return *this;
}
PPCSubtarget::PPCSubtarget(const Triple &TT, const std::string &CPU,
const std::string &FS, const PPCTargetMachine &TM)
: PPCGenSubtargetInfo(TT, CPU, FS), TargetTriple(TT),
IsPPC64(TargetTriple.getArch() == Triple::ppc64 ||
TargetTriple.getArch() == Triple::ppc64le),
TM(TM), FrameLowering(initializeSubtargetDependencies(CPU, FS)),
InstrInfo(*this), TLInfo(TM, *this) {}
void PPCSubtarget::initializeEnvironment() {
StackAlignment = 16;
DarwinDirective = PPC::DIR_NONE;
HasMFOCRF = false;
Has64BitSupport = false;
Use64BitRegs = false;
UseCRBits = false;
HasHardFloat = false;
HasAltivec = false;
HasSPE = false;
HasQPX = false;
HasVSX = false;
HasP8Vector = false;
HasP8Altivec = false;
HasP8Crypto = false;
HasP9Vector = false;
HasP9Altivec = false;
HasFCPSGN = false;
HasFSQRT = false;
HasFRE = false;
HasFRES = false;
HasFRSQRTE = false;
HasFRSQRTES = false;
HasRecipPrec = false;
HasSTFIWX = false;
HasLFIWAX = false;
HasFPRND = false;
HasFPCVT = false;
HasISEL = false;
HasBPERMD = false;
HasExtDiv = false;
HasCMPB = false;
HasLDBRX = false;
IsBookE = false;
HasOnlyMSYNC = false;
IsPPC4xx = false;
IsPPC6xx = false;
IsE500 = false;
FeatureMFTB = false;
DeprecatedDST = false;
HasLazyResolverStubs = false;
HasICBT = false;
HasInvariantFunctionDescriptors = false;
HasPartwordAtomics = false;
HasDirectMove = false;
IsQPXStackUnaligned = false;
HasHTM = false;
HasFusion = false;
HasFloat128 = false;
IsISA3_0 = false;
UseLongCalls = false;
HasPOPCNTD = POPCNTD_Unavailable;
}
void PPCSubtarget::initSubtargetFeatures(StringRef CPU, StringRef FS) {
// Determine default and user specified characteristics
std::string CPUName = CPU;
if (CPUName.empty() || CPU == "generic") {
// If cross-compiling with -march=ppc64le without -mcpu
if (TargetTriple.getArch() == Triple::ppc64le)
CPUName = "ppc64le";
else
CPUName = "generic";
}
// Initialize scheduling itinerary for the specified CPU.
InstrItins = getInstrItineraryForCPU(CPUName);
// Parse features string.
ParseSubtargetFeatures(CPUName, FS);
// If the user requested use of 64-bit regs, but the cpu selected doesn't
// support it, ignore.
if (IsPPC64 && has64BitSupport())
Use64BitRegs = true;
// Set up darwin-specific properties.
if (isDarwin())
HasLazyResolverStubs = true;
// QPX requires a 32-byte aligned stack. Note that we need to do this if
// we're compiling for a BG/Q system regardless of whether or not QPX
// is enabled because external functions will assume this alignment.
IsQPXStackUnaligned = QPXStackUnaligned;
StackAlignment = getPlatformStackAlignment();
// Determine endianness.
// FIXME: Part of the TargetMachine.
IsLittleEndian = (TargetTriple.getArch() == Triple::ppc64le);
}
/// Return true if accesses to the specified global have to go through a dyld
/// lazy resolution stub. This means that an extra load is required to get the
/// address of the global.
bool PPCSubtarget::hasLazyResolverStub(const GlobalValue *GV) const {
if (!HasLazyResolverStubs)
return false;
if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
return true;
// 32 bit macho has no relocation for a-b if a is undefined, even if b is in
// the section that is being relocated. This means we have to use o load even
// for GVs that are known to be local to the dso.
if (GV->isDeclarationForLinker() || GV->hasCommonLinkage())
return true;
return false;
}
// Embedded cores need aggressive scheduling (and some others also benefit).
static bool needsAggressiveScheduling(unsigned Directive) {
switch (Directive) {
default: return false;
case PPC::DIR_440:
case PPC::DIR_A2:
case PPC::DIR_E500mc:
case PPC::DIR_E5500:
case PPC::DIR_PWR7:
case PPC::DIR_PWR8:
// FIXME: Same as P8 until POWER9 scheduling info is available
case PPC::DIR_PWR9:
return true;
}
}
bool PPCSubtarget::enableMachineScheduler() const {
// Enable MI scheduling for the embedded cores.
// FIXME: Enable this for all cores (some additional modeling
// may be necessary).
return needsAggressiveScheduling(DarwinDirective);
}
// This overrides the PostRAScheduler bit in the SchedModel for each CPU.
bool PPCSubtarget::enablePostRAScheduler() const { return true; }
PPCGenSubtargetInfo::AntiDepBreakMode PPCSubtarget::getAntiDepBreakMode() const {
return TargetSubtargetInfo::ANTIDEP_ALL;
}
void PPCSubtarget::getCriticalPathRCs(RegClassVector &CriticalPathRCs) const {
CriticalPathRCs.clear();
CriticalPathRCs.push_back(isPPC64() ?
&PPC::G8RCRegClass : &PPC::GPRCRegClass);
}
void PPCSubtarget::overrideSchedPolicy(MachineSchedPolicy &Policy,
unsigned NumRegionInstrs) const {
if (needsAggressiveScheduling(DarwinDirective)) {
Policy.OnlyTopDown = false;
Policy.OnlyBottomUp = false;
}
// Spilling is generally expensive on all PPC cores, so always enable
// register-pressure tracking.
Policy.ShouldTrackPressure = true;
}
bool PPCSubtarget::useAA() const {
// Use AA during code generation for the embedded cores.
return needsAggressiveScheduling(DarwinDirective);
}
bool PPCSubtarget::enableSubRegLiveness() const {
return UseSubRegLiveness;
}
unsigned char PPCSubtarget::classifyGlobalReference(
const GlobalValue *GV) const {
// Note that currently we don't generate non-pic references.
// If a caller wants that, this will have to be updated.
// Large code model always uses the TOC even for local symbols.
if (TM.getCodeModel() == CodeModel::Large)
return PPCII::MO_PIC_FLAG | PPCII::MO_NLP_FLAG;
unsigned char flags = PPCII::MO_PIC_FLAG;
// Only if the relocation mode is PIC do we have to worry about
// interposition. In all other cases we can use a slightly looser standard to
// decide how to access the symbol.
if (TM.getRelocationModel() == Reloc::PIC_) {
// If it's local, or it's non-default, it can't be interposed.
if (!GV->hasLocalLinkage() &&
GV->hasDefaultVisibility()) {
flags |= PPCII::MO_NLP_FLAG;
}
return flags;
}
if (GV->isStrongDefinitionForLinker())
return flags;
return flags | PPCII::MO_NLP_FLAG;
}
bool PPCSubtarget::isELFv2ABI() const { return TM.isELFv2ABI(); }
bool PPCSubtarget::isPPC64() const { return TM.isPPC64(); }