forked from OSchip/llvm-project
760 lines
24 KiB
C++
760 lines
24 KiB
C++
//===- PatternMatchTest.cpp -----------------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "GISelMITest.h"
|
|
#include "llvm/CodeGen/GlobalISel/MIPatternMatch.h"
|
|
#include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
|
|
#include "llvm/CodeGen/GlobalISel/Utils.h"
|
|
#include "llvm/CodeGen/MIRParser/MIRParser.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineModuleInfo.h"
|
|
#include "llvm/CodeGen/TargetFrameLowering.h"
|
|
#include "llvm/CodeGen/TargetInstrInfo.h"
|
|
#include "llvm/CodeGen/TargetLowering.h"
|
|
#include "llvm/CodeGen/TargetSubtargetInfo.h"
|
|
#include "llvm/MC/TargetRegistry.h"
|
|
#include "llvm/Support/SourceMgr.h"
|
|
#include "llvm/Support/TargetSelect.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/Target/TargetOptions.h"
|
|
#include "gtest/gtest.h"
|
|
|
|
using namespace llvm;
|
|
using namespace MIPatternMatch;
|
|
|
|
namespace {
|
|
|
|
TEST_F(AArch64GISelMITest, MatchIntConstant) {
|
|
setUp();
|
|
if (!TM)
|
|
return;
|
|
auto MIBCst = B.buildConstant(LLT::scalar(64), 42);
|
|
int64_t Cst;
|
|
bool match = mi_match(MIBCst.getReg(0), *MRI, m_ICst(Cst));
|
|
EXPECT_TRUE(match);
|
|
EXPECT_EQ(Cst, 42);
|
|
}
|
|
|
|
TEST_F(AArch64GISelMITest, MatchIntConstantRegister) {
|
|
setUp();
|
|
if (!TM)
|
|
return;
|
|
auto MIBCst = B.buildConstant(LLT::scalar(64), 42);
|
|
Optional<ValueAndVReg> Src0;
|
|
bool match = mi_match(MIBCst.getReg(0), *MRI, m_GCst(Src0));
|
|
EXPECT_TRUE(match);
|
|
EXPECT_EQ(Src0->VReg, MIBCst.getReg(0));
|
|
}
|
|
|
|
TEST_F(AArch64GISelMITest, MachineInstrPtrBind) {
|
|
setUp();
|
|
if (!TM)
|
|
return;
|
|
auto MIBAdd = B.buildAdd(LLT::scalar(64), Copies[0], Copies[1]);
|
|
// Test 'MachineInstr *' bind.
|
|
// Default mi_match.
|
|
MachineInstr *MIPtr = MIBAdd.getInstr();
|
|
bool match = mi_match(MIPtr, *MRI, m_GAdd(m_Reg(), m_Reg()));
|
|
EXPECT_TRUE(match);
|
|
// Specialized mi_match for MachineInstr &.
|
|
MachineInstr &MI = *MIBAdd.getInstr();
|
|
match = mi_match(MI, *MRI, m_GAdd(m_Reg(), m_Reg()));
|
|
EXPECT_TRUE(match);
|
|
// MachineInstrBuilder has automatic conversion to MachineInstr *.
|
|
match = mi_match(MIBAdd, *MRI, m_GAdd(m_Reg(), m_Reg()));
|
|
EXPECT_TRUE(match);
|
|
// Match instruction without def.
|
|
auto MIBBrcond = B.buildBrCond(Copies[0], B.getMBB());
|
|
MachineInstr *MatchedMI;
|
|
match = mi_match(MIBBrcond, *MRI, m_MInstr(MatchedMI));
|
|
EXPECT_TRUE(match);
|
|
EXPECT_TRUE(MIBBrcond.getInstr() == MatchedMI);
|
|
// Match instruction with two defs.
|
|
auto MIBUAddO =
|
|
B.buildUAddo(LLT::scalar(64), LLT::scalar(1), Copies[0], Copies[1]);
|
|
match = mi_match(MIBUAddO, *MRI, m_MInstr(MatchedMI));
|
|
EXPECT_TRUE(match);
|
|
EXPECT_TRUE(MIBUAddO.getInstr() == MatchedMI);
|
|
}
|
|
|
|
TEST_F(AArch64GISelMITest, MatchBinaryOp) {
|
|
setUp();
|
|
if (!TM)
|
|
return;
|
|
LLT s32 = LLT::scalar(32);
|
|
LLT s64 = LLT::scalar(64);
|
|
LLT p0 = LLT::pointer(0, 64);
|
|
auto MIBAdd = B.buildAdd(s64, Copies[0], Copies[1]);
|
|
// Test case for no bind.
|
|
bool match =
|
|
mi_match(MIBAdd.getReg(0), *MRI, m_GAdd(m_Reg(), m_Reg()));
|
|
EXPECT_TRUE(match);
|
|
Register Src0, Src1, Src2;
|
|
match = mi_match(MIBAdd.getReg(0), *MRI,
|
|
m_GAdd(m_Reg(Src0), m_Reg(Src1)));
|
|
EXPECT_TRUE(match);
|
|
EXPECT_EQ(Src0, Copies[0]);
|
|
EXPECT_EQ(Src1, Copies[1]);
|
|
|
|
// Build MUL(ADD %0, %1), %2
|
|
auto MIBMul = B.buildMul(s64, MIBAdd, Copies[2]);
|
|
|
|
// Try to match MUL.
|
|
match = mi_match(MIBMul.getReg(0), *MRI,
|
|
m_GMul(m_Reg(Src0), m_Reg(Src1)));
|
|
EXPECT_TRUE(match);
|
|
EXPECT_EQ(Src0, MIBAdd.getReg(0));
|
|
EXPECT_EQ(Src1, Copies[2]);
|
|
|
|
// Try to match MUL(ADD)
|
|
match = mi_match(MIBMul.getReg(0), *MRI,
|
|
m_GMul(m_GAdd(m_Reg(Src0), m_Reg(Src1)), m_Reg(Src2)));
|
|
EXPECT_TRUE(match);
|
|
EXPECT_EQ(Src0, Copies[0]);
|
|
EXPECT_EQ(Src1, Copies[1]);
|
|
EXPECT_EQ(Src2, Copies[2]);
|
|
|
|
// Test Commutativity.
|
|
auto MIBMul2 = B.buildMul(s64, Copies[0], B.buildConstant(s64, 42));
|
|
// Try to match MUL(Cst, Reg) on src of MUL(Reg, Cst) to validate
|
|
// commutativity.
|
|
int64_t Cst;
|
|
match = mi_match(MIBMul2.getReg(0), *MRI,
|
|
m_GMul(m_ICst(Cst), m_Reg(Src0)));
|
|
EXPECT_TRUE(match);
|
|
EXPECT_EQ(Cst, 42);
|
|
EXPECT_EQ(Src0, Copies[0]);
|
|
|
|
// Make sure commutative doesn't work with something like SUB.
|
|
auto MIBSub = B.buildSub(s64, Copies[0], B.buildConstant(s64, 42));
|
|
match = mi_match(MIBSub.getReg(0), *MRI,
|
|
m_GSub(m_ICst(Cst), m_Reg(Src0)));
|
|
EXPECT_FALSE(match);
|
|
|
|
auto MIBFMul = B.buildInstr(TargetOpcode::G_FMUL, {s64},
|
|
{Copies[0], B.buildConstant(s64, 42)});
|
|
// Match and test commutativity for FMUL.
|
|
match = mi_match(MIBFMul.getReg(0), *MRI,
|
|
m_GFMul(m_ICst(Cst), m_Reg(Src0)));
|
|
EXPECT_TRUE(match);
|
|
EXPECT_EQ(Cst, 42);
|
|
EXPECT_EQ(Src0, Copies[0]);
|
|
|
|
// FSUB
|
|
auto MIBFSub = B.buildInstr(TargetOpcode::G_FSUB, {s64},
|
|
{Copies[0], B.buildConstant(s64, 42)});
|
|
match = mi_match(MIBFSub.getReg(0), *MRI,
|
|
m_GFSub(m_Reg(Src0), m_Reg()));
|
|
EXPECT_TRUE(match);
|
|
EXPECT_EQ(Src0, Copies[0]);
|
|
|
|
// Build AND %0, %1
|
|
auto MIBAnd = B.buildAnd(s64, Copies[0], Copies[1]);
|
|
// Try to match AND.
|
|
match = mi_match(MIBAnd.getReg(0), *MRI,
|
|
m_GAnd(m_Reg(Src0), m_Reg(Src1)));
|
|
EXPECT_TRUE(match);
|
|
EXPECT_EQ(Src0, Copies[0]);
|
|
EXPECT_EQ(Src1, Copies[1]);
|
|
|
|
// Build OR %0, %1
|
|
auto MIBOr = B.buildOr(s64, Copies[0], Copies[1]);
|
|
// Try to match OR.
|
|
match = mi_match(MIBOr.getReg(0), *MRI,
|
|
m_GOr(m_Reg(Src0), m_Reg(Src1)));
|
|
EXPECT_TRUE(match);
|
|
EXPECT_EQ(Src0, Copies[0]);
|
|
EXPECT_EQ(Src1, Copies[1]);
|
|
|
|
// Match lshr, and make sure a different shift amount type works.
|
|
auto TruncCopy1 = B.buildTrunc(s32, Copies[1]);
|
|
auto LShr = B.buildLShr(s64, Copies[0], TruncCopy1);
|
|
match = mi_match(LShr.getReg(0), *MRI,
|
|
m_GLShr(m_Reg(Src0), m_Reg(Src1)));
|
|
EXPECT_TRUE(match);
|
|
EXPECT_EQ(Src0, Copies[0]);
|
|
EXPECT_EQ(Src1, TruncCopy1.getReg(0));
|
|
|
|
// Match shl, and make sure a different shift amount type works.
|
|
auto Shl = B.buildShl(s64, Copies[0], TruncCopy1);
|
|
match = mi_match(Shl.getReg(0), *MRI,
|
|
m_GShl(m_Reg(Src0), m_Reg(Src1)));
|
|
EXPECT_TRUE(match);
|
|
EXPECT_EQ(Src0, Copies[0]);
|
|
EXPECT_EQ(Src1, TruncCopy1.getReg(0));
|
|
|
|
// Build a G_PTR_ADD and check that we can match it.
|
|
auto PtrAdd = B.buildPtrAdd(p0, {B.buildUndef(p0)}, Copies[0]);
|
|
match = mi_match(PtrAdd.getReg(0), *MRI, m_GPtrAdd(m_Reg(Src0), m_Reg(Src1)));
|
|
EXPECT_TRUE(match);
|
|
EXPECT_EQ(Src0, PtrAdd->getOperand(1).getReg());
|
|
EXPECT_EQ(Src1, Copies[0]);
|
|
|
|
auto MIBCst = B.buildConstant(s64, 42);
|
|
auto MIBAddCst = B.buildAdd(s64, MIBCst, Copies[0]);
|
|
auto MIBUnmerge = B.buildUnmerge({s32, s32}, B.buildConstant(s64, 42));
|
|
|
|
// m_BinOp with opcode.
|
|
// Match binary instruction, opcode and its non-commutative operands.
|
|
match = mi_match(MIBAddCst, *MRI,
|
|
m_BinOp(TargetOpcode::G_ADD, m_ICst(Cst), m_Reg(Src0)));
|
|
EXPECT_TRUE(match);
|
|
EXPECT_EQ(Src0, Copies[0]);
|
|
EXPECT_EQ(Cst, 42);
|
|
|
|
// Opcode doesn't match.
|
|
match = mi_match(MIBAddCst, *MRI,
|
|
m_BinOp(TargetOpcode::G_MUL, m_ICst(Cst), m_Reg(Src0)));
|
|
EXPECT_FALSE(match);
|
|
|
|
match = mi_match(MIBAddCst, *MRI,
|
|
m_BinOp(TargetOpcode::G_ADD, m_Reg(Src0), m_ICst(Cst)));
|
|
EXPECT_FALSE(match);
|
|
|
|
// Instruction is not binary.
|
|
match = mi_match(MIBCst, *MRI,
|
|
m_BinOp(TargetOpcode::G_MUL, m_Reg(Src0), m_Reg(Src1)));
|
|
EXPECT_FALSE(match);
|
|
match = mi_match(MIBUnmerge, *MRI,
|
|
m_BinOp(TargetOpcode::G_MUL, m_Reg(Src0), m_Reg(Src1)));
|
|
EXPECT_FALSE(match);
|
|
|
|
// m_CommutativeBinOp with opcode.
|
|
match = mi_match(
|
|
MIBAddCst, *MRI,
|
|
m_CommutativeBinOp(TargetOpcode::G_ADD, m_ICst(Cst), m_Reg(Src0)));
|
|
EXPECT_TRUE(match);
|
|
EXPECT_EQ(Src0, Copies[0]);
|
|
EXPECT_EQ(Cst, 42);
|
|
|
|
match = mi_match(
|
|
MIBAddCst, *MRI,
|
|
m_CommutativeBinOp(TargetOpcode::G_MUL, m_ICst(Cst), m_Reg(Src0)));
|
|
EXPECT_FALSE(match);
|
|
|
|
match = mi_match(
|
|
MIBAddCst, *MRI,
|
|
m_CommutativeBinOp(TargetOpcode::G_ADD, m_Reg(Src0), m_ICst(Cst)));
|
|
EXPECT_TRUE(match);
|
|
EXPECT_EQ(Src0, Copies[0]);
|
|
EXPECT_EQ(Cst, 42);
|
|
|
|
match = mi_match(
|
|
MIBCst, *MRI,
|
|
m_CommutativeBinOp(TargetOpcode::G_MUL, m_Reg(Src0), m_Reg(Src1)));
|
|
EXPECT_FALSE(match);
|
|
match = mi_match(
|
|
MIBUnmerge, *MRI,
|
|
m_CommutativeBinOp(TargetOpcode::G_MUL, m_Reg(Src0), m_Reg(Src1)));
|
|
EXPECT_FALSE(match);
|
|
}
|
|
|
|
TEST_F(AArch64GISelMITest, MatchICmp) {
|
|
setUp();
|
|
if (!TM)
|
|
return;
|
|
|
|
const LLT s1 = LLT::scalar(1);
|
|
auto CmpEq = B.buildICmp(CmpInst::ICMP_EQ, s1, Copies[0], Copies[1]);
|
|
|
|
// Check match any predicate.
|
|
bool match =
|
|
mi_match(CmpEq.getReg(0), *MRI, m_GICmp(m_Pred(), m_Reg(), m_Reg()));
|
|
EXPECT_TRUE(match);
|
|
|
|
// Check we get the predicate and registers.
|
|
CmpInst::Predicate Pred;
|
|
Register Reg0;
|
|
Register Reg1;
|
|
match = mi_match(CmpEq.getReg(0), *MRI,
|
|
m_GICmp(m_Pred(Pred), m_Reg(Reg0), m_Reg(Reg1)));
|
|
EXPECT_TRUE(match);
|
|
EXPECT_EQ(CmpInst::ICMP_EQ, Pred);
|
|
EXPECT_EQ(Copies[0], Reg0);
|
|
EXPECT_EQ(Copies[1], Reg1);
|
|
}
|
|
|
|
TEST_F(AArch64GISelMITest, MatchFCmp) {
|
|
setUp();
|
|
if (!TM)
|
|
return;
|
|
|
|
const LLT s1 = LLT::scalar(1);
|
|
auto CmpEq = B.buildFCmp(CmpInst::FCMP_OEQ, s1, Copies[0], Copies[1]);
|
|
|
|
// Check match any predicate.
|
|
bool match =
|
|
mi_match(CmpEq.getReg(0), *MRI, m_GFCmp(m_Pred(), m_Reg(), m_Reg()));
|
|
EXPECT_TRUE(match);
|
|
|
|
// Check we get the predicate and registers.
|
|
CmpInst::Predicate Pred;
|
|
Register Reg0;
|
|
Register Reg1;
|
|
match = mi_match(CmpEq.getReg(0), *MRI,
|
|
m_GFCmp(m_Pred(Pred), m_Reg(Reg0), m_Reg(Reg1)));
|
|
EXPECT_TRUE(match);
|
|
EXPECT_EQ(CmpInst::FCMP_OEQ, Pred);
|
|
EXPECT_EQ(Copies[0], Reg0);
|
|
EXPECT_EQ(Copies[1], Reg1);
|
|
}
|
|
|
|
TEST_F(AArch64GISelMITest, MatchFPUnaryOp) {
|
|
setUp();
|
|
if (!TM)
|
|
return;
|
|
|
|
// Truncate s64 to s32.
|
|
LLT s32 = LLT::scalar(32);
|
|
auto Copy0s32 = B.buildFPTrunc(s32, Copies[0]);
|
|
|
|
// Match G_FABS.
|
|
auto MIBFabs = B.buildInstr(TargetOpcode::G_FABS, {s32}, {Copy0s32});
|
|
bool match =
|
|
mi_match(MIBFabs.getReg(0), *MRI, m_GFabs(m_Reg()));
|
|
EXPECT_TRUE(match);
|
|
|
|
Register Src;
|
|
auto MIBFNeg = B.buildInstr(TargetOpcode::G_FNEG, {s32}, {Copy0s32});
|
|
match = mi_match(MIBFNeg.getReg(0), *MRI, m_GFNeg(m_Reg(Src)));
|
|
EXPECT_TRUE(match);
|
|
EXPECT_EQ(Src, Copy0s32.getReg(0));
|
|
|
|
match = mi_match(MIBFabs.getReg(0), *MRI, m_GFabs(m_Reg(Src)));
|
|
EXPECT_TRUE(match);
|
|
EXPECT_EQ(Src, Copy0s32.getReg(0));
|
|
|
|
// Build and match FConstant.
|
|
auto MIBFCst = B.buildFConstant(s32, .5);
|
|
const ConstantFP *TmpFP{};
|
|
match = mi_match(MIBFCst.getReg(0), *MRI, m_GFCst(TmpFP));
|
|
EXPECT_TRUE(match);
|
|
EXPECT_TRUE(TmpFP);
|
|
APFloat APF((float).5);
|
|
auto *CFP = ConstantFP::get(Context, APF);
|
|
EXPECT_EQ(CFP, TmpFP);
|
|
|
|
// Build double float.
|
|
LLT s64 = LLT::scalar(64);
|
|
auto MIBFCst64 = B.buildFConstant(s64, .5);
|
|
const ConstantFP *TmpFP64{};
|
|
match = mi_match(MIBFCst64.getReg(0), *MRI, m_GFCst(TmpFP64));
|
|
EXPECT_TRUE(match);
|
|
EXPECT_TRUE(TmpFP64);
|
|
APFloat APF64(.5);
|
|
auto CFP64 = ConstantFP::get(Context, APF64);
|
|
EXPECT_EQ(CFP64, TmpFP64);
|
|
EXPECT_NE(TmpFP64, TmpFP);
|
|
|
|
// Build half float.
|
|
LLT s16 = LLT::scalar(16);
|
|
auto MIBFCst16 = B.buildFConstant(s16, .5);
|
|
const ConstantFP *TmpFP16{};
|
|
match = mi_match(MIBFCst16.getReg(0), *MRI, m_GFCst(TmpFP16));
|
|
EXPECT_TRUE(match);
|
|
EXPECT_TRUE(TmpFP16);
|
|
bool Ignored;
|
|
APFloat APF16(.5);
|
|
APF16.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &Ignored);
|
|
auto CFP16 = ConstantFP::get(Context, APF16);
|
|
EXPECT_EQ(TmpFP16, CFP16);
|
|
EXPECT_NE(TmpFP16, TmpFP);
|
|
}
|
|
|
|
TEST_F(AArch64GISelMITest, MatchExtendsTrunc) {
|
|
setUp();
|
|
if (!TM)
|
|
return;
|
|
|
|
LLT s64 = LLT::scalar(64);
|
|
LLT s32 = LLT::scalar(32);
|
|
|
|
auto MIBTrunc = B.buildTrunc(s32, Copies[0]);
|
|
auto MIBAExt = B.buildAnyExt(s64, MIBTrunc);
|
|
auto MIBZExt = B.buildZExt(s64, MIBTrunc);
|
|
auto MIBSExt = B.buildSExt(s64, MIBTrunc);
|
|
Register Src0;
|
|
bool match =
|
|
mi_match(MIBTrunc.getReg(0), *MRI, m_GTrunc(m_Reg(Src0)));
|
|
EXPECT_TRUE(match);
|
|
EXPECT_EQ(Src0, Copies[0]);
|
|
match =
|
|
mi_match(MIBAExt.getReg(0), *MRI, m_GAnyExt(m_Reg(Src0)));
|
|
EXPECT_TRUE(match);
|
|
EXPECT_EQ(Src0, MIBTrunc.getReg(0));
|
|
|
|
match = mi_match(MIBSExt.getReg(0), *MRI, m_GSExt(m_Reg(Src0)));
|
|
EXPECT_TRUE(match);
|
|
EXPECT_EQ(Src0, MIBTrunc.getReg(0));
|
|
|
|
match = mi_match(MIBZExt.getReg(0), *MRI, m_GZExt(m_Reg(Src0)));
|
|
EXPECT_TRUE(match);
|
|
EXPECT_EQ(Src0, MIBTrunc.getReg(0));
|
|
|
|
// Match ext(trunc src)
|
|
match = mi_match(MIBAExt.getReg(0), *MRI,
|
|
m_GAnyExt(m_GTrunc(m_Reg(Src0))));
|
|
EXPECT_TRUE(match);
|
|
EXPECT_EQ(Src0, Copies[0]);
|
|
|
|
match = mi_match(MIBSExt.getReg(0), *MRI,
|
|
m_GSExt(m_GTrunc(m_Reg(Src0))));
|
|
EXPECT_TRUE(match);
|
|
EXPECT_EQ(Src0, Copies[0]);
|
|
|
|
match = mi_match(MIBZExt.getReg(0), *MRI,
|
|
m_GZExt(m_GTrunc(m_Reg(Src0))));
|
|
EXPECT_TRUE(match);
|
|
EXPECT_EQ(Src0, Copies[0]);
|
|
}
|
|
|
|
TEST_F(AArch64GISelMITest, MatchSpecificType) {
|
|
setUp();
|
|
if (!TM)
|
|
return;
|
|
|
|
// Try to match a 64bit add.
|
|
LLT s64 = LLT::scalar(64);
|
|
LLT s32 = LLT::scalar(32);
|
|
auto MIBAdd = B.buildAdd(s64, Copies[0], Copies[1]);
|
|
EXPECT_FALSE(mi_match(MIBAdd.getReg(0), *MRI,
|
|
m_GAdd(m_SpecificType(s32), m_Reg())));
|
|
EXPECT_TRUE(mi_match(MIBAdd.getReg(0), *MRI,
|
|
m_GAdd(m_SpecificType(s64), m_Reg())));
|
|
|
|
// Try to match the destination type of a bitcast.
|
|
LLT v2s32 = LLT::fixed_vector(2, 32);
|
|
auto MIBCast = B.buildCast(v2s32, Copies[0]);
|
|
EXPECT_TRUE(
|
|
mi_match(MIBCast.getReg(0), *MRI, m_GBitcast(m_Reg())));
|
|
EXPECT_TRUE(
|
|
mi_match(MIBCast.getReg(0), *MRI, m_SpecificType(v2s32)));
|
|
EXPECT_TRUE(
|
|
mi_match(MIBCast.getReg(1), *MRI, m_SpecificType(s64)));
|
|
|
|
// Build a PTRToInt and INTTOPTR and match and test them.
|
|
LLT PtrTy = LLT::pointer(0, 64);
|
|
auto MIBIntToPtr = B.buildCast(PtrTy, Copies[0]);
|
|
auto MIBPtrToInt = B.buildCast(s64, MIBIntToPtr);
|
|
Register Src0;
|
|
|
|
// match the ptrtoint(inttoptr reg)
|
|
bool match = mi_match(MIBPtrToInt.getReg(0), *MRI,
|
|
m_GPtrToInt(m_GIntToPtr(m_Reg(Src0))));
|
|
EXPECT_TRUE(match);
|
|
EXPECT_EQ(Src0, Copies[0]);
|
|
}
|
|
|
|
TEST_F(AArch64GISelMITest, MatchCombinators) {
|
|
setUp();
|
|
if (!TM)
|
|
return;
|
|
|
|
LLT s64 = LLT::scalar(64);
|
|
LLT s32 = LLT::scalar(32);
|
|
auto MIBAdd = B.buildAdd(s64, Copies[0], Copies[1]);
|
|
Register Src0, Src1;
|
|
bool match =
|
|
mi_match(MIBAdd.getReg(0), *MRI,
|
|
m_all_of(m_SpecificType(s64), m_GAdd(m_Reg(Src0), m_Reg(Src1))));
|
|
EXPECT_TRUE(match);
|
|
EXPECT_EQ(Src0, Copies[0]);
|
|
EXPECT_EQ(Src1, Copies[1]);
|
|
// Check for s32 (which should fail).
|
|
match =
|
|
mi_match(MIBAdd.getReg(0), *MRI,
|
|
m_all_of(m_SpecificType(s32), m_GAdd(m_Reg(Src0), m_Reg(Src1))));
|
|
EXPECT_FALSE(match);
|
|
match =
|
|
mi_match(MIBAdd.getReg(0), *MRI,
|
|
m_any_of(m_SpecificType(s32), m_GAdd(m_Reg(Src0), m_Reg(Src1))));
|
|
EXPECT_TRUE(match);
|
|
EXPECT_EQ(Src0, Copies[0]);
|
|
EXPECT_EQ(Src1, Copies[1]);
|
|
|
|
// Match a case where none of the predicates hold true.
|
|
match = mi_match(
|
|
MIBAdd.getReg(0), *MRI,
|
|
m_any_of(m_SpecificType(LLT::scalar(16)), m_GSub(m_Reg(), m_Reg())));
|
|
EXPECT_FALSE(match);
|
|
}
|
|
|
|
TEST_F(AArch64GISelMITest, MatchMiscellaneous) {
|
|
setUp();
|
|
if (!TM)
|
|
return;
|
|
|
|
LLT s64 = LLT::scalar(64);
|
|
auto MIBAdd = B.buildAdd(s64, Copies[0], Copies[1]);
|
|
Register Reg = MIBAdd.getReg(0);
|
|
|
|
// Only one use of Reg.
|
|
B.buildCast(LLT::pointer(0, 32), MIBAdd);
|
|
EXPECT_TRUE(mi_match(Reg, *MRI, m_OneUse(m_GAdd(m_Reg(), m_Reg()))));
|
|
EXPECT_TRUE(mi_match(Reg, *MRI, m_OneNonDBGUse(m_GAdd(m_Reg(), m_Reg()))));
|
|
|
|
// Add multiple debug uses of Reg.
|
|
B.buildInstr(TargetOpcode::DBG_VALUE, {}, {Reg});
|
|
B.buildInstr(TargetOpcode::DBG_VALUE, {}, {Reg});
|
|
|
|
EXPECT_FALSE(mi_match(Reg, *MRI, m_OneUse(m_GAdd(m_Reg(), m_Reg()))));
|
|
EXPECT_TRUE(mi_match(Reg, *MRI, m_OneNonDBGUse(m_GAdd(m_Reg(), m_Reg()))));
|
|
|
|
// Multiple non-debug uses of Reg.
|
|
B.buildCast(LLT::pointer(1, 32), MIBAdd);
|
|
EXPECT_FALSE(mi_match(Reg, *MRI, m_OneUse(m_GAdd(m_Reg(), m_Reg()))));
|
|
EXPECT_FALSE(mi_match(Reg, *MRI, m_OneNonDBGUse(m_GAdd(m_Reg(), m_Reg()))));
|
|
}
|
|
|
|
TEST_F(AArch64GISelMITest, MatchSpecificConstant) {
|
|
setUp();
|
|
if (!TM)
|
|
return;
|
|
|
|
// Basic case: Can we match a G_CONSTANT with a specific value?
|
|
auto FortyTwo = B.buildConstant(LLT::scalar(64), 42);
|
|
EXPECT_TRUE(mi_match(FortyTwo.getReg(0), *MRI, m_SpecificICst(42)));
|
|
EXPECT_FALSE(mi_match(FortyTwo.getReg(0), *MRI, m_SpecificICst(123)));
|
|
|
|
// Test that this works inside of a more complex pattern.
|
|
LLT s64 = LLT::scalar(64);
|
|
auto MIBAdd = B.buildAdd(s64, Copies[0], FortyTwo);
|
|
EXPECT_TRUE(mi_match(MIBAdd.getReg(2), *MRI, m_SpecificICst(42)));
|
|
|
|
// Wrong constant.
|
|
EXPECT_FALSE(mi_match(MIBAdd.getReg(2), *MRI, m_SpecificICst(123)));
|
|
|
|
// No constant on the LHS.
|
|
EXPECT_FALSE(mi_match(MIBAdd.getReg(1), *MRI, m_SpecificICst(42)));
|
|
}
|
|
|
|
TEST_F(AArch64GISelMITest, MatchSpecificConstantSplat) {
|
|
setUp();
|
|
if (!TM)
|
|
return;
|
|
|
|
LLT s64 = LLT::scalar(64);
|
|
LLT v4s64 = LLT::fixed_vector(4, s64);
|
|
|
|
MachineInstrBuilder FortyTwoSplat =
|
|
B.buildSplatVector(v4s64, B.buildConstant(s64, 42));
|
|
MachineInstrBuilder FortyTwo = B.buildConstant(s64, 42);
|
|
|
|
EXPECT_TRUE(mi_match(FortyTwoSplat.getReg(0), *MRI, m_SpecificICstSplat(42)));
|
|
EXPECT_FALSE(
|
|
mi_match(FortyTwoSplat.getReg(0), *MRI, m_SpecificICstSplat(43)));
|
|
EXPECT_FALSE(mi_match(FortyTwo.getReg(0), *MRI, m_SpecificICstSplat(42)));
|
|
|
|
MachineInstrBuilder NonConstantSplat =
|
|
B.buildBuildVector(v4s64, {Copies[0], Copies[0], Copies[0], Copies[0]});
|
|
|
|
MachineInstrBuilder AddSplat =
|
|
B.buildAdd(v4s64, NonConstantSplat, FortyTwoSplat);
|
|
EXPECT_TRUE(mi_match(AddSplat.getReg(2), *MRI, m_SpecificICstSplat(42)));
|
|
EXPECT_FALSE(mi_match(AddSplat.getReg(2), *MRI, m_SpecificICstSplat(43)));
|
|
EXPECT_FALSE(mi_match(AddSplat.getReg(1), *MRI, m_SpecificICstSplat(42)));
|
|
|
|
MachineInstrBuilder Add = B.buildAdd(s64, Copies[0], FortyTwo);
|
|
EXPECT_FALSE(mi_match(Add.getReg(2), *MRI, m_SpecificICstSplat(42)));
|
|
}
|
|
|
|
TEST_F(AArch64GISelMITest, MatchSpecificConstantOrSplat) {
|
|
setUp();
|
|
if (!TM)
|
|
return;
|
|
|
|
LLT s64 = LLT::scalar(64);
|
|
LLT v4s64 = LLT::fixed_vector(4, s64);
|
|
|
|
MachineInstrBuilder FortyTwoSplat =
|
|
B.buildSplatVector(v4s64, B.buildConstant(s64, 42));
|
|
MachineInstrBuilder FortyTwo = B.buildConstant(s64, 42);
|
|
|
|
EXPECT_TRUE(
|
|
mi_match(FortyTwoSplat.getReg(0), *MRI, m_SpecificICstOrSplat(42)));
|
|
EXPECT_FALSE(
|
|
mi_match(FortyTwoSplat.getReg(0), *MRI, m_SpecificICstOrSplat(43)));
|
|
EXPECT_TRUE(mi_match(FortyTwo.getReg(0), *MRI, m_SpecificICstOrSplat(42)));
|
|
|
|
MachineInstrBuilder NonConstantSplat =
|
|
B.buildBuildVector(v4s64, {Copies[0], Copies[0], Copies[0], Copies[0]});
|
|
|
|
MachineInstrBuilder AddSplat =
|
|
B.buildAdd(v4s64, NonConstantSplat, FortyTwoSplat);
|
|
EXPECT_TRUE(mi_match(AddSplat.getReg(2), *MRI, m_SpecificICstOrSplat(42)));
|
|
EXPECT_FALSE(mi_match(AddSplat.getReg(2), *MRI, m_SpecificICstOrSplat(43)));
|
|
EXPECT_FALSE(mi_match(AddSplat.getReg(1), *MRI, m_SpecificICstOrSplat(42)));
|
|
|
|
MachineInstrBuilder Add = B.buildAdd(s64, Copies[0], FortyTwo);
|
|
EXPECT_TRUE(mi_match(Add.getReg(2), *MRI, m_SpecificICstOrSplat(42)));
|
|
}
|
|
|
|
TEST_F(AArch64GISelMITest, MatchZeroInt) {
|
|
setUp();
|
|
if (!TM)
|
|
return;
|
|
auto Zero = B.buildConstant(LLT::scalar(64), 0);
|
|
EXPECT_TRUE(mi_match(Zero.getReg(0), *MRI, m_ZeroInt()));
|
|
|
|
auto FortyTwo = B.buildConstant(LLT::scalar(64), 42);
|
|
EXPECT_FALSE(mi_match(FortyTwo.getReg(0), *MRI, m_ZeroInt()));
|
|
}
|
|
|
|
TEST_F(AArch64GISelMITest, MatchAllOnesInt) {
|
|
setUp();
|
|
if (!TM)
|
|
return;
|
|
auto AllOnes = B.buildConstant(LLT::scalar(64), -1);
|
|
EXPECT_TRUE(mi_match(AllOnes.getReg(0), *MRI, m_AllOnesInt()));
|
|
|
|
auto FortyTwo = B.buildConstant(LLT::scalar(64), 42);
|
|
EXPECT_FALSE(mi_match(FortyTwo.getReg(0), *MRI, m_AllOnesInt()));
|
|
}
|
|
|
|
TEST_F(AArch64GISelMITest, MatchFPOrIntConst) {
|
|
setUp();
|
|
if (!TM)
|
|
return;
|
|
|
|
Register IntOne = B.buildConstant(LLT::scalar(64), 1).getReg(0);
|
|
Register FPOne = B.buildFConstant(LLT::scalar(64), 1.0).getReg(0);
|
|
Optional<ValueAndVReg> ValReg;
|
|
Optional<FPValueAndVReg> FValReg;
|
|
|
|
EXPECT_TRUE(mi_match(IntOne, *MRI, m_GCst(ValReg)));
|
|
EXPECT_EQ(IntOne, ValReg->VReg);
|
|
EXPECT_FALSE(mi_match(IntOne, *MRI, m_GFCst(FValReg)));
|
|
|
|
EXPECT_FALSE(mi_match(FPOne, *MRI, m_GCst(ValReg)));
|
|
EXPECT_TRUE(mi_match(FPOne, *MRI, m_GFCst(FValReg)));
|
|
EXPECT_EQ(FPOne, FValReg->VReg);
|
|
}
|
|
|
|
TEST_F(AArch64GISelMITest, MatchConstantSplat) {
|
|
setUp();
|
|
if (!TM)
|
|
return;
|
|
|
|
LLT s64 = LLT::scalar(64);
|
|
LLT v4s64 = LLT::fixed_vector(4, 64);
|
|
|
|
Register FPOne = B.buildFConstant(s64, 1.0).getReg(0);
|
|
Register FPZero = B.buildFConstant(s64, 0.0).getReg(0);
|
|
Register Undef = B.buildUndef(s64).getReg(0);
|
|
Optional<FPValueAndVReg> FValReg;
|
|
|
|
// GFCstOrSplatGFCstMatch allows undef as part of splat. Undef often comes
|
|
// from padding to legalize into available operation and then ignore added
|
|
// elements e.g. v3s64 to v4s64.
|
|
|
|
EXPECT_TRUE(mi_match(FPZero, *MRI, GFCstOrSplatGFCstMatch(FValReg)));
|
|
EXPECT_EQ(FPZero, FValReg->VReg);
|
|
|
|
EXPECT_FALSE(mi_match(Undef, *MRI, GFCstOrSplatGFCstMatch(FValReg)));
|
|
|
|
auto ZeroSplat = B.buildBuildVector(v4s64, {FPZero, FPZero, FPZero, FPZero});
|
|
EXPECT_TRUE(
|
|
mi_match(ZeroSplat.getReg(0), *MRI, GFCstOrSplatGFCstMatch(FValReg)));
|
|
EXPECT_EQ(FPZero, FValReg->VReg);
|
|
|
|
auto ZeroUndef = B.buildBuildVector(v4s64, {FPZero, FPZero, FPZero, Undef});
|
|
EXPECT_TRUE(
|
|
mi_match(ZeroUndef.getReg(0), *MRI, GFCstOrSplatGFCstMatch(FValReg)));
|
|
EXPECT_EQ(FPZero, FValReg->VReg);
|
|
|
|
// All undefs are not constant splat.
|
|
auto UndefSplat = B.buildBuildVector(v4s64, {Undef, Undef, Undef, Undef});
|
|
EXPECT_FALSE(
|
|
mi_match(UndefSplat.getReg(0), *MRI, GFCstOrSplatGFCstMatch(FValReg)));
|
|
|
|
auto ZeroOne = B.buildBuildVector(v4s64, {FPZero, FPZero, FPZero, FPOne});
|
|
EXPECT_FALSE(
|
|
mi_match(ZeroOne.getReg(0), *MRI, GFCstOrSplatGFCstMatch(FValReg)));
|
|
|
|
auto NonConstantSplat =
|
|
B.buildBuildVector(v4s64, {Copies[0], Copies[0], Copies[0], Copies[0]});
|
|
EXPECT_FALSE(mi_match(NonConstantSplat.getReg(0), *MRI,
|
|
GFCstOrSplatGFCstMatch(FValReg)));
|
|
|
|
auto Mixed = B.buildBuildVector(v4s64, {FPZero, FPZero, FPZero, Copies[0]});
|
|
EXPECT_FALSE(
|
|
mi_match(Mixed.getReg(0), *MRI, GFCstOrSplatGFCstMatch(FValReg)));
|
|
}
|
|
|
|
TEST_F(AArch64GISelMITest, MatchNeg) {
|
|
setUp();
|
|
if (!TM)
|
|
return;
|
|
|
|
LLT s64 = LLT::scalar(64);
|
|
auto Zero = B.buildConstant(LLT::scalar(64), 0);
|
|
auto NegInst = B.buildSub(s64, Zero, Copies[0]);
|
|
Register NegatedReg;
|
|
|
|
// Match: G_SUB = 0, %Reg
|
|
EXPECT_TRUE(mi_match(NegInst.getReg(0), *MRI, m_Neg(m_Reg(NegatedReg))));
|
|
EXPECT_EQ(NegatedReg, Copies[0]);
|
|
|
|
// Don't match: G_SUB = %Reg, 0
|
|
auto NotNegInst1 = B.buildSub(s64, Copies[0], Zero);
|
|
EXPECT_FALSE(mi_match(NotNegInst1.getReg(0), *MRI, m_Neg(m_Reg(NegatedReg))));
|
|
|
|
// Don't match: G_SUB = 42, %Reg
|
|
auto FortyTwo = B.buildConstant(LLT::scalar(64), 42);
|
|
auto NotNegInst2 = B.buildSub(s64, FortyTwo, Copies[0]);
|
|
EXPECT_FALSE(mi_match(NotNegInst2.getReg(0), *MRI, m_Neg(m_Reg(NegatedReg))));
|
|
|
|
// Complex testcase.
|
|
// %sub = G_SUB = 0, %negated_reg
|
|
// %add = G_ADD = %x, %sub
|
|
auto AddInst = B.buildAdd(s64, Copies[1], NegInst);
|
|
NegatedReg = Register();
|
|
EXPECT_TRUE(mi_match(AddInst.getReg(2), *MRI, m_Neg(m_Reg(NegatedReg))));
|
|
EXPECT_EQ(NegatedReg, Copies[0]);
|
|
}
|
|
|
|
TEST_F(AArch64GISelMITest, MatchNot) {
|
|
setUp();
|
|
if (!TM)
|
|
return;
|
|
|
|
LLT s64 = LLT::scalar(64);
|
|
auto AllOnes = B.buildConstant(LLT::scalar(64), -1);
|
|
auto NotInst1 = B.buildXor(s64, Copies[0], AllOnes);
|
|
Register NotReg;
|
|
|
|
// Match: G_XOR %NotReg, -1
|
|
EXPECT_TRUE(mi_match(NotInst1.getReg(0), *MRI, m_Not(m_Reg(NotReg))));
|
|
EXPECT_EQ(NotReg, Copies[0]);
|
|
|
|
// Match: G_XOR -1, %NotReg
|
|
auto NotInst2 = B.buildXor(s64, AllOnes, Copies[1]);
|
|
EXPECT_TRUE(mi_match(NotInst2.getReg(0), *MRI, m_Not(m_Reg(NotReg))));
|
|
EXPECT_EQ(NotReg, Copies[1]);
|
|
|
|
// Don't match: G_XOR %NotReg, 42
|
|
auto FortyTwo = B.buildConstant(LLT::scalar(64), 42);
|
|
auto WrongCst = B.buildXor(s64, Copies[0], FortyTwo);
|
|
EXPECT_FALSE(mi_match(WrongCst.getReg(0), *MRI, m_Not(m_Reg(NotReg))));
|
|
|
|
// Complex testcase.
|
|
// %xor = G_XOR %NotReg, -1
|
|
// %add = G_ADD %x, %xor
|
|
auto AddInst = B.buildAdd(s64, Copies[1], NotInst1);
|
|
NotReg = Register();
|
|
EXPECT_TRUE(mi_match(AddInst.getReg(2), *MRI, m_Not(m_Reg(NotReg))));
|
|
EXPECT_EQ(NotReg, Copies[0]);
|
|
}
|
|
} // namespace
|
|
|
|
int main(int argc, char **argv) {
|
|
::testing::InitGoogleTest(&argc, argv);
|
|
initLLVM();
|
|
return RUN_ALL_TESTS();
|
|
}
|