llvm-project/llvm/unittests/CodeGen/GlobalISel/LegalizerInfoTest.cpp

492 lines
18 KiB
C++

//===- llvm/unittest/CodeGen/GlobalISel/LegalizerInfoTest.cpp -------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
#include "llvm/CodeGen/TargetOpcodes.h"
#include "GISelMITest.h"
#include "gtest/gtest.h"
using namespace llvm;
using namespace LegalizeActions;
using namespace LegalityPredicates;
using namespace LegalizeMutations;
// Define a couple of pretty printers to help debugging when things go wrong.
namespace llvm {
std::ostream &
operator<<(std::ostream &OS, const LegalizeAction Act) {
switch (Act) {
case Lower: OS << "Lower"; break;
case Legal: OS << "Legal"; break;
case NarrowScalar: OS << "NarrowScalar"; break;
case WidenScalar: OS << "WidenScalar"; break;
case FewerElements: OS << "FewerElements"; break;
case MoreElements: OS << "MoreElements"; break;
case Libcall: OS << "Libcall"; break;
case Custom: OS << "Custom"; break;
case Bitcast: OS << "Bitcast"; break;
case Unsupported: OS << "Unsupported"; break;
case NotFound: OS << "NotFound"; break;
case UseLegacyRules: OS << "UseLegacyRules"; break;
}
return OS;
}
std::ostream &operator<<(std::ostream &OS, const llvm::LegalizeActionStep Ty) {
OS << "LegalizeActionStep(" << Ty.Action << ", " << Ty.TypeIdx << ", "
<< Ty.NewType << ')';
return OS;
}
}
namespace {
TEST(LegalizerInfoTest, ScalarRISC) {
using namespace TargetOpcode;
LegalizerInfo L;
auto &LegacyInfo = L.getLegacyLegalizerInfo();
// Typical RISCy set of operations based on AArch64.
for (unsigned Op : {G_ADD, G_SUB}) {
for (unsigned Size : {32, 64})
LegacyInfo.setAction({Op, 0, LLT::scalar(Size)},
LegacyLegalizeActions::Legal);
LegacyInfo.setLegalizeScalarToDifferentSizeStrategy(
Op, 0, LegacyLegalizerInfo::widenToLargerTypesAndNarrowToLargest);
}
LegacyInfo.computeTables();
for (unsigned opcode : {G_ADD, G_SUB}) {
// Check we infer the correct types and actually do what we're told.
EXPECT_EQ(L.getAction({opcode, {LLT::scalar(8)}}),
LegalizeActionStep(WidenScalar, 0, LLT::scalar(32)));
EXPECT_EQ(L.getAction({opcode, {LLT::scalar(16)}}),
LegalizeActionStep(WidenScalar, 0, LLT::scalar(32)));
EXPECT_EQ(L.getAction({opcode, {LLT::scalar(32)}}),
LegalizeActionStep(Legal, 0, LLT{}));
EXPECT_EQ(L.getAction({opcode, {LLT::scalar(64)}}),
LegalizeActionStep(Legal, 0, LLT{}));
// Make sure the default for over-sized types applies.
EXPECT_EQ(L.getAction({opcode, {LLT::scalar(128)}}),
LegalizeActionStep(NarrowScalar, 0, LLT::scalar(64)));
// Make sure we also handle unusual sizes
EXPECT_EQ(L.getAction({opcode, {LLT::scalar(1)}}),
LegalizeActionStep(WidenScalar, 0, LLT::scalar(32)));
EXPECT_EQ(L.getAction({opcode, {LLT::scalar(31)}}),
LegalizeActionStep(WidenScalar, 0, LLT::scalar(32)));
EXPECT_EQ(L.getAction({opcode, {LLT::scalar(33)}}),
LegalizeActionStep(WidenScalar, 0, LLT::scalar(64)));
EXPECT_EQ(L.getAction({opcode, {LLT::scalar(63)}}),
LegalizeActionStep(WidenScalar, 0, LLT::scalar(64)));
EXPECT_EQ(L.getAction({opcode, {LLT::scalar(65)}}),
LegalizeActionStep(NarrowScalar, 0, LLT::scalar(64)));
}
}
TEST(LegalizerInfoTest, VectorRISC) {
using namespace TargetOpcode;
LegalizerInfo L;
auto &LegacyInfo = L.getLegacyLegalizerInfo();
// Typical RISCy set of operations based on ARM.
LegacyInfo.setAction({G_ADD, LLT::fixed_vector(8, 8)},
LegacyLegalizeActions::Legal);
LegacyInfo.setAction({G_ADD, LLT::fixed_vector(16, 8)},
LegacyLegalizeActions::Legal);
LegacyInfo.setAction({G_ADD, LLT::fixed_vector(4, 16)},
LegacyLegalizeActions::Legal);
LegacyInfo.setAction({G_ADD, LLT::fixed_vector(8, 16)},
LegacyLegalizeActions::Legal);
LegacyInfo.setAction({G_ADD, LLT::fixed_vector(2, 32)},
LegacyLegalizeActions::Legal);
LegacyInfo.setAction({G_ADD, LLT::fixed_vector(4, 32)},
LegacyLegalizeActions::Legal);
LegacyInfo.setLegalizeVectorElementToDifferentSizeStrategy(
G_ADD, 0, LegacyLegalizerInfo::widenToLargerTypesUnsupportedOtherwise);
LegacyInfo.setAction({G_ADD, 0, LLT::scalar(32)},
LegacyLegalizeActions::Legal);
LegacyInfo.computeTables();
// Check we infer the correct types and actually do what we're told for some
// simple cases.
EXPECT_EQ(L.getAction({G_ADD, {LLT::fixed_vector(8, 8)}}),
LegalizeActionStep(Legal, 0, LLT{}));
EXPECT_EQ(L.getAction({G_ADD, {LLT::fixed_vector(8, 7)}}),
LegalizeActionStep(WidenScalar, 0, LLT::fixed_vector(8, 8)));
EXPECT_EQ(L.getAction({G_ADD, {LLT::fixed_vector(2, 8)}}),
LegalizeActionStep(MoreElements, 0, LLT::fixed_vector(8, 8)));
EXPECT_EQ(L.getAction({G_ADD, {LLT::fixed_vector(8, 32)}}),
LegalizeActionStep(FewerElements, 0, LLT::fixed_vector(4, 32)));
// Check a few non-power-of-2 sizes:
EXPECT_EQ(L.getAction({G_ADD, {LLT::fixed_vector(3, 3)}}),
LegalizeActionStep(WidenScalar, 0, LLT::fixed_vector(3, 8)));
EXPECT_EQ(L.getAction({G_ADD, {LLT::fixed_vector(3, 8)}}),
LegalizeActionStep(MoreElements, 0, LLT::fixed_vector(8, 8)));
}
TEST(LegalizerInfoTest, MultipleTypes) {
using namespace TargetOpcode;
LegalizerInfo L;
auto &LegacyInfo = L.getLegacyLegalizerInfo();
LLT p0 = LLT::pointer(0, 64);
LLT s64 = LLT::scalar(64);
// Typical RISCy set of operations based on AArch64.
LegacyInfo.setAction({G_PTRTOINT, 0, s64}, LegacyLegalizeActions::Legal);
LegacyInfo.setAction({G_PTRTOINT, 1, p0}, LegacyLegalizeActions::Legal);
LegacyInfo.setLegalizeScalarToDifferentSizeStrategy(
G_PTRTOINT, 0, LegacyLegalizerInfo::widenToLargerTypesAndNarrowToLargest);
LegacyInfo.computeTables();
// Check we infer the correct types and actually do what we're told.
EXPECT_EQ(L.getAction({G_PTRTOINT, {s64, p0}}),
LegalizeActionStep(Legal, 0, LLT{}));
// Make sure we also handle unusual sizes
EXPECT_EQ(
L.getAction({G_PTRTOINT, {LLT::scalar(65), s64}}),
LegalizeActionStep(NarrowScalar, 0, s64));
EXPECT_EQ(
L.getAction({G_PTRTOINT, {s64, LLT::pointer(0, 32)}}),
LegalizeActionStep(Unsupported, 1, LLT::pointer(0, 32)));
}
TEST(LegalizerInfoTest, MultipleSteps) {
using namespace TargetOpcode;
LegalizerInfo L;
auto &LegacyInfo = L.getLegacyLegalizerInfo();
LLT s32 = LLT::scalar(32);
LLT s64 = LLT::scalar(64);
LegacyInfo.setLegalizeScalarToDifferentSizeStrategy(
G_UREM, 0, LegacyLegalizerInfo::widenToLargerTypesUnsupportedOtherwise);
LegacyInfo.setAction({G_UREM, 0, s32}, LegacyLegalizeActions::Lower);
LegacyInfo.setAction({G_UREM, 0, s64}, LegacyLegalizeActions::Lower);
LegacyInfo.computeTables();
EXPECT_EQ(L.getAction({G_UREM, {LLT::scalar(16)}}),
LegalizeActionStep(WidenScalar, 0, LLT::scalar(32)));
EXPECT_EQ(L.getAction({G_UREM, {LLT::scalar(32)}}),
LegalizeActionStep(Lower, 0, LLT::scalar(32)));
}
TEST(LegalizerInfoTest, SizeChangeStrategy) {
using namespace TargetOpcode;
LegalizerInfo L;
auto &LegacyInfo = L.getLegacyLegalizerInfo();
for (unsigned Size : {1, 8, 16, 32})
LegacyInfo.setAction({G_UREM, 0, LLT::scalar(Size)},
LegacyLegalizeActions::Legal);
LegacyInfo.setLegalizeScalarToDifferentSizeStrategy(
G_UREM, 0, LegacyLegalizerInfo::widenToLargerTypesUnsupportedOtherwise);
LegacyInfo.computeTables();
// Check we infer the correct types and actually do what we're told.
for (unsigned Size : {1, 8, 16, 32}) {
EXPECT_EQ(L.getAction({G_UREM, {LLT::scalar(Size)}}),
LegalizeActionStep(Legal, 0, LLT{}));
}
EXPECT_EQ(L.getAction({G_UREM, {LLT::scalar(2)}}),
LegalizeActionStep(WidenScalar, 0, LLT::scalar(8)));
EXPECT_EQ(L.getAction({G_UREM, {LLT::scalar(7)}}),
LegalizeActionStep(WidenScalar, 0, LLT::scalar(8)));
EXPECT_EQ(L.getAction({G_UREM, {LLT::scalar(9)}}),
LegalizeActionStep(WidenScalar, 0, LLT::scalar(16)));
EXPECT_EQ(L.getAction({G_UREM, {LLT::scalar(17)}}),
LegalizeActionStep(WidenScalar, 0, LLT::scalar(32)));
EXPECT_EQ(L.getAction({G_UREM, {LLT::scalar(31)}}),
LegalizeActionStep(WidenScalar, 0, LLT::scalar(32)));
EXPECT_EQ(L.getAction({G_UREM, {LLT::scalar(33)}}),
LegalizeActionStep(Unsupported, 0, LLT::scalar(33)));
}
}
#define EXPECT_ACTION(Action, Index, Type, Query) \
do { \
auto A = LI.getAction(Query); \
EXPECT_EQ(LegalizeActionStep(Action, Index, Type), A) << A; \
} while (0)
TEST(LegalizerInfoTest, RuleSets) {
using namespace TargetOpcode;
const LLT s5 = LLT::scalar(5);
const LLT s8 = LLT::scalar(8);
const LLT s16 = LLT::scalar(16);
const LLT s32 = LLT::scalar(32);
const LLT s33 = LLT::scalar(33);
const LLT s64 = LLT::scalar(64);
const LLT v2s5 = LLT::fixed_vector(2, 5);
const LLT v2s8 = LLT::fixed_vector(2, 8);
const LLT v2s16 = LLT::fixed_vector(2, 16);
const LLT v2s32 = LLT::fixed_vector(2, 32);
const LLT v3s32 = LLT::fixed_vector(3, 32);
const LLT v4s32 = LLT::fixed_vector(4, 32);
const LLT v8s32 = LLT::fixed_vector(8, 32);
const LLT v2s33 = LLT::fixed_vector(2, 33);
const LLT v2s64 = LLT::fixed_vector(2, 64);
const LLT p0 = LLT::pointer(0, 32);
const LLT v3p0 = LLT::fixed_vector(3, p0);
const LLT v4p0 = LLT::fixed_vector(4, p0);
const LLT s1 = LLT::scalar(1);
const LLT v2s1 = LLT::fixed_vector(2, 1);
const LLT v4s1 = LLT::fixed_vector(4, 1);
{
LegalizerInfo LI;
auto &LegacyInfo = LI.getLegacyLegalizerInfo();
LI.getActionDefinitionsBuilder(G_IMPLICIT_DEF)
.legalFor({v4s32, v4p0})
.moreElementsToNextPow2(0);
LegacyInfo.computeTables();
EXPECT_ACTION(Unsupported, 0, LLT(), LegalityQuery(G_IMPLICIT_DEF, {s32}));
EXPECT_ACTION(Unsupported, 0, LLT(), LegalityQuery(G_IMPLICIT_DEF, {v2s32}));
EXPECT_ACTION(MoreElements, 0, v4p0, LegalityQuery(G_IMPLICIT_DEF, {v3p0}));
EXPECT_ACTION(MoreElements, 0, v4s32, LegalityQuery(G_IMPLICIT_DEF, {v3s32}));
}
// Test minScalarOrElt
{
LegalizerInfo LI;
auto &LegacyInfo = LI.getLegacyLegalizerInfo();
LI.getActionDefinitionsBuilder(G_OR)
.legalFor({s32})
.minScalarOrElt(0, s32);
LegacyInfo.computeTables();
EXPECT_ACTION(WidenScalar, 0, s32, LegalityQuery(G_OR, {s16}));
EXPECT_ACTION(WidenScalar, 0, v2s32, LegalityQuery(G_OR, {v2s16}));
}
// Test maxScalarOrELt
{
LegalizerInfo LI;
auto &LegacyInfo = LI.getLegacyLegalizerInfo();
LI.getActionDefinitionsBuilder(G_AND)
.legalFor({s16})
.maxScalarOrElt(0, s16);
LegacyInfo.computeTables();
EXPECT_ACTION(NarrowScalar, 0, s16, LegalityQuery(G_AND, {s32}));
EXPECT_ACTION(NarrowScalar, 0, v2s16, LegalityQuery(G_AND, {v2s32}));
}
// Test clampScalarOrElt
{
LegalizerInfo LI;
auto &LegacyInfo = LI.getLegacyLegalizerInfo();
LI.getActionDefinitionsBuilder(G_XOR)
.legalFor({s16})
.clampScalarOrElt(0, s16, s32);
LegacyInfo.computeTables();
EXPECT_ACTION(NarrowScalar, 0, s32, LegalityQuery(G_XOR, {s64}));
EXPECT_ACTION(WidenScalar, 0, s16, LegalityQuery(G_XOR, {s8}));
// Make sure the number of elements is preserved.
EXPECT_ACTION(NarrowScalar, 0, v2s32, LegalityQuery(G_XOR, {v2s64}));
EXPECT_ACTION(WidenScalar, 0, v2s16, LegalityQuery(G_XOR, {v2s8}));
}
// Test minScalar
{
LegalizerInfo LI;
auto &LegacyInfo = LI.getLegacyLegalizerInfo();
LI.getActionDefinitionsBuilder(G_OR)
.legalFor({s32})
.minScalar(0, s32);
LegacyInfo.computeTables();
// Only handle scalars, ignore vectors.
EXPECT_ACTION(WidenScalar, 0, s32, LegalityQuery(G_OR, {s16}));
EXPECT_ACTION(Unsupported, 0, LLT(), LegalityQuery(G_OR, {v2s16}));
}
// Test maxScalar
{
LegalizerInfo LI;
auto &LegacyInfo = LI.getLegacyLegalizerInfo();
LI.getActionDefinitionsBuilder(G_AND)
.legalFor({s16})
.maxScalar(0, s16);
LegacyInfo.computeTables();
// Only handle scalars, ignore vectors.
EXPECT_ACTION(NarrowScalar, 0, s16, LegalityQuery(G_AND, {s32}));
EXPECT_ACTION(Unsupported, 0, LLT(), LegalityQuery(G_AND, {v2s32}));
}
// Test clampScalar
{
LegalizerInfo LI;
auto &LegacyInfo = LI.getLegacyLegalizerInfo();
LI.getActionDefinitionsBuilder(G_XOR)
.legalFor({s16})
.clampScalar(0, s16, s32);
LegacyInfo.computeTables();
EXPECT_ACTION(NarrowScalar, 0, s32, LegalityQuery(G_XOR, {s64}));
EXPECT_ACTION(WidenScalar, 0, s16, LegalityQuery(G_XOR, {s8}));
// Only handle scalars, ignore vectors.
EXPECT_ACTION(Unsupported, 0, LLT(), LegalityQuery(G_XOR, {v2s64}));
EXPECT_ACTION(Unsupported, 0, LLT(), LegalityQuery(G_XOR, {v2s8}));
}
// Test widenScalarOrEltToNextPow2
{
LegalizerInfo LI;
auto &LegacyInfo = LI.getLegacyLegalizerInfo();
LI.getActionDefinitionsBuilder(G_AND)
.legalFor({s32})
.widenScalarOrEltToNextPow2(0, 32);
LegacyInfo.computeTables();
// Handle scalars and vectors
EXPECT_ACTION(WidenScalar, 0, s32, LegalityQuery(G_AND, {s5}));
EXPECT_ACTION(WidenScalar, 0, v2s32, LegalityQuery(G_AND, {v2s5}));
EXPECT_ACTION(WidenScalar, 0, s64, LegalityQuery(G_AND, {s33}));
EXPECT_ACTION(WidenScalar, 0, v2s64, LegalityQuery(G_AND, {v2s33}));
}
// Test widenScalarToNextPow2
{
LegalizerInfo LI;
auto &LegacyInfo = LI.getLegacyLegalizerInfo();
LI.getActionDefinitionsBuilder(G_AND)
.legalFor({s32})
.widenScalarToNextPow2(0, 32);
LegacyInfo.computeTables();
EXPECT_ACTION(WidenScalar, 0, s32, LegalityQuery(G_AND, {s5}));
EXPECT_ACTION(WidenScalar, 0, s64, LegalityQuery(G_AND, {s33}));
// Do nothing for vectors.
EXPECT_ACTION(Unsupported, 0, LLT(), LegalityQuery(G_AND, {v2s5}));
EXPECT_ACTION(Unsupported, 0, LLT(), LegalityQuery(G_AND, {v2s33}));
}
// Test changeElementCountTo
{
LegalizerInfo LI;
auto &LegacyInfo = LI.getLegacyLegalizerInfo();
// Type index form
LI.getActionDefinitionsBuilder(G_SELECT)
.moreElementsIf(isScalar(1), changeElementCountTo(1, 0));
// Raw type form
LI.getActionDefinitionsBuilder(G_ADD)
.fewerElementsIf(typeIs(0, v4s32), changeElementCountTo(0, v2s32))
.fewerElementsIf(typeIs(0, v8s32), changeElementCountTo(0, s32))
.fewerElementsIf(typeIs(0, LLT::scalable_vector(4, 16)),
changeElementCountTo(0, LLT::scalable_vector(2, 16)))
.fewerElementsIf(typeIs(0, LLT::scalable_vector(8, 16)),
changeElementCountTo(0, s16));
LegacyInfo.computeTables();
EXPECT_ACTION(MoreElements, 1, v4s1, LegalityQuery(G_SELECT, {v4s32, s1}));
EXPECT_ACTION(MoreElements, 1, v2s1, LegalityQuery(G_SELECT, {v2s32, s1}));
EXPECT_ACTION(MoreElements, 1, v2s1, LegalityQuery(G_SELECT, {v2s32, s1}));
EXPECT_ACTION(MoreElements, 1, v4s1, LegalityQuery(G_SELECT, {v4p0, s1}));
EXPECT_ACTION(MoreElements, 1, LLT::scalable_vector(2, 1),
LegalityQuery(G_SELECT, {LLT::scalable_vector(2, 32), s1}));
EXPECT_ACTION(MoreElements, 1, LLT::scalable_vector(4, 1),
LegalityQuery(G_SELECT, {LLT::scalable_vector(4, 32), s1}));
EXPECT_ACTION(MoreElements, 1, LLT::scalable_vector(2, s1),
LegalityQuery(G_SELECT, {LLT::scalable_vector(2, p0), s1}));
EXPECT_ACTION(FewerElements, 0, v2s32, LegalityQuery(G_ADD, {v4s32}));
EXPECT_ACTION(FewerElements, 0, s32, LegalityQuery(G_ADD, {v8s32}));
EXPECT_ACTION(FewerElements, 0, LLT::scalable_vector(2, 16),
LegalityQuery(G_ADD, {LLT::scalable_vector(4, 16)}));
EXPECT_ACTION(FewerElements, 0, s16,
LegalityQuery(G_ADD, {LLT::scalable_vector(8, 16)}));
}
}
TEST(LegalizerInfoTest, MMOAlignment) {
using namespace TargetOpcode;
const LLT s32 = LLT::scalar(32);
const LLT p0 = LLT::pointer(0, 64);
{
LegalizerInfo LI;
auto &LegacyInfo = LI.getLegacyLegalizerInfo();
LI.getActionDefinitionsBuilder(G_LOAD)
.legalForTypesWithMemDesc({{s32, p0, s32, 32}});
LegacyInfo.computeTables();
EXPECT_ACTION(Legal, 0, LLT(),
LegalityQuery(G_LOAD, {s32, p0},
LegalityQuery::MemDesc{
s32, 32, AtomicOrdering::NotAtomic}));
EXPECT_ACTION(Unsupported, 0, LLT(),
LegalityQuery(G_LOAD, {s32, p0},
LegalityQuery::MemDesc{
s32, 16, AtomicOrdering::NotAtomic }));
EXPECT_ACTION(Unsupported, 0, LLT(),
LegalityQuery(G_LOAD, {s32, p0},
LegalityQuery::MemDesc{
s32, 8, AtomicOrdering::NotAtomic}));
}
// Test that the maximum supported alignment value isn't truncated
{
// Maximum IR defined alignment in bytes.
const uint64_t MaxAlignment = UINT64_C(1) << 29;
const uint64_t MaxAlignInBits = 8 * MaxAlignment;
LegalizerInfo LI;
auto &LegacyInfo = LI.getLegacyLegalizerInfo();
LI.getActionDefinitionsBuilder(G_LOAD)
.legalForTypesWithMemDesc({{s32, p0, s32, MaxAlignInBits}});
LegacyInfo.computeTables();
EXPECT_ACTION(Legal, 0, LLT(),
LegalityQuery(G_LOAD, {s32, p0},
LegalityQuery::MemDesc{s32,
MaxAlignInBits, AtomicOrdering::NotAtomic}));
EXPECT_ACTION(Unsupported, 0, LLT(),
LegalityQuery(G_LOAD, {s32, p0},
LegalityQuery::MemDesc{
s32, 8, AtomicOrdering::NotAtomic }));
}
}
// This code sequence doesn't do anything, but it covers a previously uncovered
// codepath that used to crash in MSVC x86_32 debug mode.
TEST(LegalizerInfoTest, MSVCDebugMiscompile) {
const LLT S1 = LLT::scalar(1);
const LLT P0 = LLT::pointer(0, 32);
LegalizerInfo LI;
auto Builder = LI.getActionDefinitionsBuilder(TargetOpcode::G_PTRTOINT);
(void)Builder.legalForCartesianProduct({S1}, {P0});
}