llvm-project/llvm/lib/IR/IntrinsicInst.cpp

447 lines
15 KiB
C++

//===-- InstrinsicInst.cpp - Intrinsic Instruction Wrappers ---------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements methods that make it really easy to deal with intrinsic
// functions.
//
// All intrinsic function calls are instances of the call instruction, so these
// are all subclasses of the CallInst class. Note that none of these classes
// has state or virtual methods, which is an important part of this gross/neat
// hack working.
//
// In some cases, arguments to intrinsics need to be generic and are defined as
// type pointer to empty struct { }*. To access the real item of interest the
// cast instruction needs to be stripped away.
//
//===----------------------------------------------------------------------===//
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/Statepoint.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
//===----------------------------------------------------------------------===//
/// DbgVariableIntrinsic - This is the common base class for debug info
/// intrinsics for variables.
///
iterator_range<DbgVariableIntrinsic::location_op_iterator>
DbgVariableIntrinsic::location_ops() const {
auto *MD = getRawLocation();
assert(MD && "First operand of DbgVariableIntrinsic should be non-null.");
// If operand is ValueAsMetadata, return a range over just that operand.
if (auto *VAM = dyn_cast<ValueAsMetadata>(MD)) {
return {location_op_iterator(VAM), location_op_iterator(VAM + 1)};
}
// If operand is DIArgList, return a range over its args.
if (auto *AL = dyn_cast<DIArgList>(MD))
return {location_op_iterator(AL->args_begin()),
location_op_iterator(AL->args_end())};
// Operand must be an empty metadata tuple, so return empty iterator.
return {location_op_iterator(static_cast<ValueAsMetadata *>(nullptr)),
location_op_iterator(static_cast<ValueAsMetadata *>(nullptr))};
}
Value *DbgVariableIntrinsic::getVariableLocationOp(unsigned OpIdx) const {
auto *MD = getRawLocation();
assert(MD && "First operand of DbgVariableIntrinsic should be non-null.");
if (auto *AL = dyn_cast<DIArgList>(MD))
return AL->getArgs()[OpIdx]->getValue();
if (isa<MDNode>(MD))
return nullptr;
assert(
isa<ValueAsMetadata>(MD) &&
"Attempted to get location operand from DbgVariableIntrinsic with none.");
auto *V = cast<ValueAsMetadata>(MD);
assert(OpIdx == 0 && "Operand Index must be 0 for a debug intrinsic with a "
"single location operand.");
return V->getValue();
}
static ValueAsMetadata *getAsMetadata(Value *V) {
return isa<MetadataAsValue>(V) ? dyn_cast<ValueAsMetadata>(
cast<MetadataAsValue>(V)->getMetadata())
: ValueAsMetadata::get(V);
}
void DbgVariableIntrinsic::replaceVariableLocationOp(Value *OldValue,
Value *NewValue) {
assert(NewValue && "Values must be non-null");
auto Locations = location_ops();
auto OldIt = find(Locations, OldValue);
assert(OldIt != Locations.end() && "OldValue must be a current location");
if (!hasArgList()) {
Value *NewOperand = isa<MetadataAsValue>(NewValue)
? NewValue
: MetadataAsValue::get(
getContext(), ValueAsMetadata::get(NewValue));
return setArgOperand(0, NewOperand);
}
SmallVector<ValueAsMetadata *, 4> MDs;
ValueAsMetadata *NewOperand = getAsMetadata(NewValue);
for (auto *VMD : Locations)
MDs.push_back(VMD == *OldIt ? NewOperand : getAsMetadata(VMD));
setArgOperand(
0, MetadataAsValue::get(getContext(), DIArgList::get(getContext(), MDs)));
}
void DbgVariableIntrinsic::replaceVariableLocationOp(unsigned OpIdx,
Value *NewValue) {
assert(OpIdx < getNumVariableLocationOps() && "Invalid Operand Index");
if (!hasArgList()) {
Value *NewOperand = isa<MetadataAsValue>(NewValue)
? NewValue
: MetadataAsValue::get(
getContext(), ValueAsMetadata::get(NewValue));
return setArgOperand(0, NewOperand);
}
SmallVector<ValueAsMetadata *, 4> MDs;
ValueAsMetadata *NewOperand = getAsMetadata(NewValue);
for (unsigned Idx = 0; Idx < getNumVariableLocationOps(); ++Idx)
MDs.push_back(Idx == OpIdx ? NewOperand
: getAsMetadata(getVariableLocationOp(Idx)));
setArgOperand(
0, MetadataAsValue::get(getContext(), DIArgList::get(getContext(), MDs)));
}
Optional<uint64_t> DbgVariableIntrinsic::getFragmentSizeInBits() const {
if (auto Fragment = getExpression()->getFragmentInfo())
return Fragment->SizeInBits;
return getVariable()->getSizeInBits();
}
int llvm::Intrinsic::lookupLLVMIntrinsicByName(ArrayRef<const char *> NameTable,
StringRef Name) {
assert(Name.startswith("llvm."));
// Do successive binary searches of the dotted name components. For
// "llvm.gc.experimental.statepoint.p1i8.p1i32", we will find the range of
// intrinsics starting with "llvm.gc", then "llvm.gc.experimental", then
// "llvm.gc.experimental.statepoint", and then we will stop as the range is
// size 1. During the search, we can skip the prefix that we already know is
// identical. By using strncmp we consider names with differing suffixes to
// be part of the equal range.
size_t CmpEnd = 4; // Skip the "llvm" component.
const char *const *Low = NameTable.begin();
const char *const *High = NameTable.end();
const char *const *LastLow = Low;
while (CmpEnd < Name.size() && High - Low > 0) {
size_t CmpStart = CmpEnd;
CmpEnd = Name.find('.', CmpStart + 1);
CmpEnd = CmpEnd == StringRef::npos ? Name.size() : CmpEnd;
auto Cmp = [CmpStart, CmpEnd](const char *LHS, const char *RHS) {
return strncmp(LHS + CmpStart, RHS + CmpStart, CmpEnd - CmpStart) < 0;
};
LastLow = Low;
std::tie(Low, High) = std::equal_range(Low, High, Name.data(), Cmp);
}
if (High - Low > 0)
LastLow = Low;
if (LastLow == NameTable.end())
return -1;
StringRef NameFound = *LastLow;
if (Name == NameFound ||
(Name.startswith(NameFound) && Name[NameFound.size()] == '.'))
return LastLow - NameTable.begin();
return -1;
}
Value *InstrProfIncrementInst::getStep() const {
if (InstrProfIncrementInstStep::classof(this)) {
return const_cast<Value *>(getArgOperand(4));
}
const Module *M = getModule();
LLVMContext &Context = M->getContext();
return ConstantInt::get(Type::getInt64Ty(Context), 1);
}
Optional<RoundingMode> ConstrainedFPIntrinsic::getRoundingMode() const {
unsigned NumOperands = getNumArgOperands();
Metadata *MD =
cast<MetadataAsValue>(getArgOperand(NumOperands - 2))->getMetadata();
if (!MD || !isa<MDString>(MD))
return None;
return StrToRoundingMode(cast<MDString>(MD)->getString());
}
Optional<fp::ExceptionBehavior>
ConstrainedFPIntrinsic::getExceptionBehavior() const {
unsigned NumOperands = getNumArgOperands();
Metadata *MD =
cast<MetadataAsValue>(getArgOperand(NumOperands - 1))->getMetadata();
if (!MD || !isa<MDString>(MD))
return None;
return StrToExceptionBehavior(cast<MDString>(MD)->getString());
}
FCmpInst::Predicate ConstrainedFPCmpIntrinsic::getPredicate() const {
Metadata *MD = cast<MetadataAsValue>(getArgOperand(2))->getMetadata();
if (!MD || !isa<MDString>(MD))
return FCmpInst::BAD_FCMP_PREDICATE;
return StringSwitch<FCmpInst::Predicate>(cast<MDString>(MD)->getString())
.Case("oeq", FCmpInst::FCMP_OEQ)
.Case("ogt", FCmpInst::FCMP_OGT)
.Case("oge", FCmpInst::FCMP_OGE)
.Case("olt", FCmpInst::FCMP_OLT)
.Case("ole", FCmpInst::FCMP_OLE)
.Case("one", FCmpInst::FCMP_ONE)
.Case("ord", FCmpInst::FCMP_ORD)
.Case("uno", FCmpInst::FCMP_UNO)
.Case("ueq", FCmpInst::FCMP_UEQ)
.Case("ugt", FCmpInst::FCMP_UGT)
.Case("uge", FCmpInst::FCMP_UGE)
.Case("ult", FCmpInst::FCMP_ULT)
.Case("ule", FCmpInst::FCMP_ULE)
.Case("une", FCmpInst::FCMP_UNE)
.Default(FCmpInst::BAD_FCMP_PREDICATE);
}
bool ConstrainedFPIntrinsic::isUnaryOp() const {
switch (getIntrinsicID()) {
default:
return false;
#define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \
case Intrinsic::INTRINSIC: \
return NARG == 1;
#include "llvm/IR/ConstrainedOps.def"
}
}
bool ConstrainedFPIntrinsic::isTernaryOp() const {
switch (getIntrinsicID()) {
default:
return false;
#define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \
case Intrinsic::INTRINSIC: \
return NARG == 3;
#include "llvm/IR/ConstrainedOps.def"
}
}
bool ConstrainedFPIntrinsic::classof(const IntrinsicInst *I) {
switch (I->getIntrinsicID()) {
#define INSTRUCTION(NAME, NARGS, ROUND_MODE, INTRINSIC) \
case Intrinsic::INTRINSIC:
#include "llvm/IR/ConstrainedOps.def"
return true;
default:
return false;
}
}
ElementCount VPIntrinsic::getStaticVectorLength() const {
auto GetVectorLengthOfType = [](const Type *T) -> ElementCount {
auto VT = cast<VectorType>(T);
auto ElemCount = VT->getElementCount();
return ElemCount;
};
auto VPMask = getMaskParam();
return GetVectorLengthOfType(VPMask->getType());
}
Value *VPIntrinsic::getMaskParam() const {
auto maskPos = GetMaskParamPos(getIntrinsicID());
if (maskPos)
return getArgOperand(maskPos.getValue());
return nullptr;
}
Value *VPIntrinsic::getVectorLengthParam() const {
auto vlenPos = GetVectorLengthParamPos(getIntrinsicID());
if (vlenPos)
return getArgOperand(vlenPos.getValue());
return nullptr;
}
Optional<int> VPIntrinsic::GetMaskParamPos(Intrinsic::ID IntrinsicID) {
switch (IntrinsicID) {
default:
return None;
#define BEGIN_REGISTER_VP_INTRINSIC(VPID, MASKPOS, VLENPOS) \
case Intrinsic::VPID: \
return MASKPOS;
#include "llvm/IR/VPIntrinsics.def"
}
}
Optional<int> VPIntrinsic::GetVectorLengthParamPos(Intrinsic::ID IntrinsicID) {
switch (IntrinsicID) {
default:
return None;
#define BEGIN_REGISTER_VP_INTRINSIC(VPID, MASKPOS, VLENPOS) \
case Intrinsic::VPID: \
return VLENPOS;
#include "llvm/IR/VPIntrinsics.def"
}
}
bool VPIntrinsic::IsVPIntrinsic(Intrinsic::ID ID) {
switch (ID) {
default:
return false;
#define BEGIN_REGISTER_VP_INTRINSIC(VPID, MASKPOS, VLENPOS) \
case Intrinsic::VPID: \
break;
#include "llvm/IR/VPIntrinsics.def"
}
return true;
}
// Equivalent non-predicated opcode
unsigned VPIntrinsic::GetFunctionalOpcodeForVP(Intrinsic::ID ID) {
unsigned FunctionalOC = Instruction::Call;
switch (ID) {
default:
break;
#define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID:
#define HANDLE_VP_TO_OPC(OPC) FunctionalOC = Instruction::OPC;
#define END_REGISTER_VP_INTRINSIC(...) break;
#include "llvm/IR/VPIntrinsics.def"
}
return FunctionalOC;
}
Intrinsic::ID VPIntrinsic::GetForOpcode(unsigned IROPC) {
switch (IROPC) {
default:
return Intrinsic::not_intrinsic;
#define HANDLE_VP_TO_OPC(OPC) case Instruction::OPC:
#define END_REGISTER_VP_INTRINSIC(VPID) return Intrinsic::VPID;
#include "llvm/IR/VPIntrinsics.def"
}
}
bool VPIntrinsic::canIgnoreVectorLengthParam() const {
using namespace PatternMatch;
ElementCount EC = getStaticVectorLength();
// No vlen param - no lanes masked-off by it.
auto *VLParam = getVectorLengthParam();
if (!VLParam)
return true;
// Note that the VP intrinsic causes undefined behavior if the Explicit Vector
// Length parameter is strictly greater-than the number of vector elements of
// the operation. This function returns true when this is detected statically
// in the IR.
// Check whether "W == vscale * EC.getKnownMinValue()"
if (EC.isScalable()) {
// Undig the DL
auto ParMod = this->getModule();
if (!ParMod)
return false;
const auto &DL = ParMod->getDataLayout();
// Compare vscale patterns
uint64_t VScaleFactor;
if (match(VLParam, m_c_Mul(m_ConstantInt(VScaleFactor), m_VScale(DL))))
return VScaleFactor >= EC.getKnownMinValue();
return (EC.getKnownMinValue() == 1) && match(VLParam, m_VScale(DL));
}
// standard SIMD operation
auto VLConst = dyn_cast<ConstantInt>(VLParam);
if (!VLConst)
return false;
uint64_t VLNum = VLConst->getZExtValue();
if (VLNum >= EC.getKnownMinValue())
return true;
return false;
}
Instruction::BinaryOps BinaryOpIntrinsic::getBinaryOp() const {
switch (getIntrinsicID()) {
case Intrinsic::uadd_with_overflow:
case Intrinsic::sadd_with_overflow:
case Intrinsic::uadd_sat:
case Intrinsic::sadd_sat:
return Instruction::Add;
case Intrinsic::usub_with_overflow:
case Intrinsic::ssub_with_overflow:
case Intrinsic::usub_sat:
case Intrinsic::ssub_sat:
return Instruction::Sub;
case Intrinsic::umul_with_overflow:
case Intrinsic::smul_with_overflow:
return Instruction::Mul;
default:
llvm_unreachable("Invalid intrinsic");
}
}
bool BinaryOpIntrinsic::isSigned() const {
switch (getIntrinsicID()) {
case Intrinsic::sadd_with_overflow:
case Intrinsic::ssub_with_overflow:
case Intrinsic::smul_with_overflow:
case Intrinsic::sadd_sat:
case Intrinsic::ssub_sat:
return true;
default:
return false;
}
}
unsigned BinaryOpIntrinsic::getNoWrapKind() const {
if (isSigned())
return OverflowingBinaryOperator::NoSignedWrap;
else
return OverflowingBinaryOperator::NoUnsignedWrap;
}
const GCStatepointInst *GCProjectionInst::getStatepoint() const {
const Value *Token = getArgOperand(0);
// This takes care both of relocates for call statepoints and relocates
// on normal path of invoke statepoint.
if (!isa<LandingPadInst>(Token))
return cast<GCStatepointInst>(Token);
// This relocate is on exceptional path of an invoke statepoint
const BasicBlock *InvokeBB =
cast<Instruction>(Token)->getParent()->getUniquePredecessor();
assert(InvokeBB && "safepoints should have unique landingpads");
assert(InvokeBB->getTerminator() &&
"safepoint block should be well formed");
return cast<GCStatepointInst>(InvokeBB->getTerminator());
}
Value *GCRelocateInst::getBasePtr() const {
if (auto Opt = getStatepoint()->getOperandBundle(LLVMContext::OB_gc_live))
return *(Opt->Inputs.begin() + getBasePtrIndex());
return *(getStatepoint()->arg_begin() + getBasePtrIndex());
}
Value *GCRelocateInst::getDerivedPtr() const {
if (auto Opt = getStatepoint()->getOperandBundle(LLVMContext::OB_gc_live))
return *(Opt->Inputs.begin() + getDerivedPtrIndex());
return *(getStatepoint()->arg_begin() + getDerivedPtrIndex());
}