llvm-project/llvm/lib/IR/IRBuilder.cpp

1183 lines
45 KiB
C++

//===- IRBuilder.cpp - Builder for LLVM Instrs ----------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the IRBuilder class, which is used as a convenient way
// to create LLVM instructions with a consistent and simplified interface.
//
//===----------------------------------------------------------------------===//
#include "llvm/IR/IRBuilder.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/None.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/NoFolder.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/Statepoint.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/MathExtras.h"
#include <cassert>
#include <cstdint>
#include <vector>
using namespace llvm;
/// CreateGlobalString - Make a new global variable with an initializer that
/// has array of i8 type filled in with the nul terminated string value
/// specified. If Name is specified, it is the name of the global variable
/// created.
GlobalVariable *IRBuilderBase::CreateGlobalString(StringRef Str,
const Twine &Name,
unsigned AddressSpace,
Module *M) {
Constant *StrConstant = ConstantDataArray::getString(Context, Str);
if (!M)
M = BB->getParent()->getParent();
auto *GV = new GlobalVariable(
*M, StrConstant->getType(), true, GlobalValue::PrivateLinkage,
StrConstant, Name, nullptr, GlobalVariable::NotThreadLocal, AddressSpace);
GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
GV->setAlignment(Align(1));
return GV;
}
Type *IRBuilderBase::getCurrentFunctionReturnType() const {
assert(BB && BB->getParent() && "No current function!");
return BB->getParent()->getReturnType();
}
Value *IRBuilderBase::getCastedInt8PtrValue(Value *Ptr) {
auto *PT = cast<PointerType>(Ptr->getType());
if (PT->getElementType()->isIntegerTy(8))
return Ptr;
// Otherwise, we need to insert a bitcast.
return CreateBitCast(Ptr, getInt8PtrTy(PT->getAddressSpace()));
}
static CallInst *createCallHelper(Function *Callee, ArrayRef<Value *> Ops,
IRBuilderBase *Builder,
const Twine &Name = "",
Instruction *FMFSource = nullptr,
ArrayRef<OperandBundleDef> OpBundles = {}) {
CallInst *CI = Builder->CreateCall(Callee, Ops, OpBundles, Name);
if (FMFSource)
CI->copyFastMathFlags(FMFSource);
return CI;
}
Value *IRBuilderBase::CreateVScale(Constant *Scaling, const Twine &Name) {
Module *M = GetInsertBlock()->getParent()->getParent();
assert(isa<ConstantInt>(Scaling) && "Expected constant integer");
Function *TheFn =
Intrinsic::getDeclaration(M, Intrinsic::vscale, {Scaling->getType()});
CallInst *CI = createCallHelper(TheFn, {}, this, Name);
return cast<ConstantInt>(Scaling)->getSExtValue() == 1
? CI
: CreateMul(CI, Scaling);
}
Value *IRBuilderBase::CreateStepVector(Type *DstType, const Twine &Name) {
if (isa<ScalableVectorType>(DstType))
return CreateIntrinsic(Intrinsic::experimental_stepvector, {DstType}, {},
nullptr, Name);
Type *STy = DstType->getScalarType();
unsigned NumEls = cast<FixedVectorType>(DstType)->getNumElements();
// Create a vector of consecutive numbers from zero to VF.
SmallVector<Constant *, 8> Indices;
for (unsigned i = 0; i < NumEls; ++i)
Indices.push_back(ConstantInt::get(STy, i));
// Add the consecutive indices to the vector value.
return ConstantVector::get(Indices);
}
CallInst *IRBuilderBase::CreateMemSet(Value *Ptr, Value *Val, Value *Size,
MaybeAlign Align, bool isVolatile,
MDNode *TBAATag, MDNode *ScopeTag,
MDNode *NoAliasTag) {
Ptr = getCastedInt8PtrValue(Ptr);
Value *Ops[] = {Ptr, Val, Size, getInt1(isVolatile)};
Type *Tys[] = { Ptr->getType(), Size->getType() };
Module *M = BB->getParent()->getParent();
Function *TheFn = Intrinsic::getDeclaration(M, Intrinsic::memset, Tys);
CallInst *CI = createCallHelper(TheFn, Ops, this);
if (Align)
cast<MemSetInst>(CI)->setDestAlignment(Align->value());
// Set the TBAA info if present.
if (TBAATag)
CI->setMetadata(LLVMContext::MD_tbaa, TBAATag);
if (ScopeTag)
CI->setMetadata(LLVMContext::MD_alias_scope, ScopeTag);
if (NoAliasTag)
CI->setMetadata(LLVMContext::MD_noalias, NoAliasTag);
return CI;
}
CallInst *IRBuilderBase::CreateElementUnorderedAtomicMemSet(
Value *Ptr, Value *Val, Value *Size, Align Alignment, uint32_t ElementSize,
MDNode *TBAATag, MDNode *ScopeTag, MDNode *NoAliasTag) {
Ptr = getCastedInt8PtrValue(Ptr);
Value *Ops[] = {Ptr, Val, Size, getInt32(ElementSize)};
Type *Tys[] = {Ptr->getType(), Size->getType()};
Module *M = BB->getParent()->getParent();
Function *TheFn = Intrinsic::getDeclaration(
M, Intrinsic::memset_element_unordered_atomic, Tys);
CallInst *CI = createCallHelper(TheFn, Ops, this);
cast<AtomicMemSetInst>(CI)->setDestAlignment(Alignment);
// Set the TBAA info if present.
if (TBAATag)
CI->setMetadata(LLVMContext::MD_tbaa, TBAATag);
if (ScopeTag)
CI->setMetadata(LLVMContext::MD_alias_scope, ScopeTag);
if (NoAliasTag)
CI->setMetadata(LLVMContext::MD_noalias, NoAliasTag);
return CI;
}
CallInst *IRBuilderBase::CreateMemTransferInst(
Intrinsic::ID IntrID, Value *Dst, MaybeAlign DstAlign, Value *Src,
MaybeAlign SrcAlign, Value *Size, bool isVolatile, MDNode *TBAATag,
MDNode *TBAAStructTag, MDNode *ScopeTag, MDNode *NoAliasTag) {
Dst = getCastedInt8PtrValue(Dst);
Src = getCastedInt8PtrValue(Src);
Value *Ops[] = {Dst, Src, Size, getInt1(isVolatile)};
Type *Tys[] = { Dst->getType(), Src->getType(), Size->getType() };
Module *M = BB->getParent()->getParent();
Function *TheFn = Intrinsic::getDeclaration(M, IntrID, Tys);
CallInst *CI = createCallHelper(TheFn, Ops, this);
auto* MCI = cast<MemTransferInst>(CI);
if (DstAlign)
MCI->setDestAlignment(*DstAlign);
if (SrcAlign)
MCI->setSourceAlignment(*SrcAlign);
// Set the TBAA info if present.
if (TBAATag)
CI->setMetadata(LLVMContext::MD_tbaa, TBAATag);
// Set the TBAA Struct info if present.
if (TBAAStructTag)
CI->setMetadata(LLVMContext::MD_tbaa_struct, TBAAStructTag);
if (ScopeTag)
CI->setMetadata(LLVMContext::MD_alias_scope, ScopeTag);
if (NoAliasTag)
CI->setMetadata(LLVMContext::MD_noalias, NoAliasTag);
return CI;
}
CallInst *IRBuilderBase::CreateMemCpyInline(Value *Dst, MaybeAlign DstAlign,
Value *Src, MaybeAlign SrcAlign,
Value *Size) {
Dst = getCastedInt8PtrValue(Dst);
Src = getCastedInt8PtrValue(Src);
Value *IsVolatile = getInt1(false);
Value *Ops[] = {Dst, Src, Size, IsVolatile};
Type *Tys[] = {Dst->getType(), Src->getType(), Size->getType()};
Function *F = BB->getParent();
Module *M = F->getParent();
Function *TheFn = Intrinsic::getDeclaration(M, Intrinsic::memcpy_inline, Tys);
CallInst *CI = createCallHelper(TheFn, Ops, this);
auto *MCI = cast<MemCpyInlineInst>(CI);
if (DstAlign)
MCI->setDestAlignment(*DstAlign);
if (SrcAlign)
MCI->setSourceAlignment(*SrcAlign);
return CI;
}
CallInst *IRBuilderBase::CreateElementUnorderedAtomicMemCpy(
Value *Dst, Align DstAlign, Value *Src, Align SrcAlign, Value *Size,
uint32_t ElementSize, MDNode *TBAATag, MDNode *TBAAStructTag,
MDNode *ScopeTag, MDNode *NoAliasTag) {
assert(DstAlign >= ElementSize &&
"Pointer alignment must be at least element size");
assert(SrcAlign >= ElementSize &&
"Pointer alignment must be at least element size");
Dst = getCastedInt8PtrValue(Dst);
Src = getCastedInt8PtrValue(Src);
Value *Ops[] = {Dst, Src, Size, getInt32(ElementSize)};
Type *Tys[] = {Dst->getType(), Src->getType(), Size->getType()};
Module *M = BB->getParent()->getParent();
Function *TheFn = Intrinsic::getDeclaration(
M, Intrinsic::memcpy_element_unordered_atomic, Tys);
CallInst *CI = createCallHelper(TheFn, Ops, this);
// Set the alignment of the pointer args.
auto *AMCI = cast<AtomicMemCpyInst>(CI);
AMCI->setDestAlignment(DstAlign);
AMCI->setSourceAlignment(SrcAlign);
// Set the TBAA info if present.
if (TBAATag)
CI->setMetadata(LLVMContext::MD_tbaa, TBAATag);
// Set the TBAA Struct info if present.
if (TBAAStructTag)
CI->setMetadata(LLVMContext::MD_tbaa_struct, TBAAStructTag);
if (ScopeTag)
CI->setMetadata(LLVMContext::MD_alias_scope, ScopeTag);
if (NoAliasTag)
CI->setMetadata(LLVMContext::MD_noalias, NoAliasTag);
return CI;
}
CallInst *IRBuilderBase::CreateMemMove(Value *Dst, MaybeAlign DstAlign,
Value *Src, MaybeAlign SrcAlign,
Value *Size, bool isVolatile,
MDNode *TBAATag, MDNode *ScopeTag,
MDNode *NoAliasTag) {
Dst = getCastedInt8PtrValue(Dst);
Src = getCastedInt8PtrValue(Src);
Value *Ops[] = {Dst, Src, Size, getInt1(isVolatile)};
Type *Tys[] = { Dst->getType(), Src->getType(), Size->getType() };
Module *M = BB->getParent()->getParent();
Function *TheFn = Intrinsic::getDeclaration(M, Intrinsic::memmove, Tys);
CallInst *CI = createCallHelper(TheFn, Ops, this);
auto *MMI = cast<MemMoveInst>(CI);
if (DstAlign)
MMI->setDestAlignment(*DstAlign);
if (SrcAlign)
MMI->setSourceAlignment(*SrcAlign);
// Set the TBAA info if present.
if (TBAATag)
CI->setMetadata(LLVMContext::MD_tbaa, TBAATag);
if (ScopeTag)
CI->setMetadata(LLVMContext::MD_alias_scope, ScopeTag);
if (NoAliasTag)
CI->setMetadata(LLVMContext::MD_noalias, NoAliasTag);
return CI;
}
CallInst *IRBuilderBase::CreateElementUnorderedAtomicMemMove(
Value *Dst, Align DstAlign, Value *Src, Align SrcAlign, Value *Size,
uint32_t ElementSize, MDNode *TBAATag, MDNode *TBAAStructTag,
MDNode *ScopeTag, MDNode *NoAliasTag) {
assert(DstAlign >= ElementSize &&
"Pointer alignment must be at least element size");
assert(SrcAlign >= ElementSize &&
"Pointer alignment must be at least element size");
Dst = getCastedInt8PtrValue(Dst);
Src = getCastedInt8PtrValue(Src);
Value *Ops[] = {Dst, Src, Size, getInt32(ElementSize)};
Type *Tys[] = {Dst->getType(), Src->getType(), Size->getType()};
Module *M = BB->getParent()->getParent();
Function *TheFn = Intrinsic::getDeclaration(
M, Intrinsic::memmove_element_unordered_atomic, Tys);
CallInst *CI = createCallHelper(TheFn, Ops, this);
// Set the alignment of the pointer args.
CI->addParamAttr(0, Attribute::getWithAlignment(CI->getContext(), DstAlign));
CI->addParamAttr(1, Attribute::getWithAlignment(CI->getContext(), SrcAlign));
// Set the TBAA info if present.
if (TBAATag)
CI->setMetadata(LLVMContext::MD_tbaa, TBAATag);
// Set the TBAA Struct info if present.
if (TBAAStructTag)
CI->setMetadata(LLVMContext::MD_tbaa_struct, TBAAStructTag);
if (ScopeTag)
CI->setMetadata(LLVMContext::MD_alias_scope, ScopeTag);
if (NoAliasTag)
CI->setMetadata(LLVMContext::MD_noalias, NoAliasTag);
return CI;
}
static CallInst *getReductionIntrinsic(IRBuilderBase *Builder, Intrinsic::ID ID,
Value *Src) {
Module *M = Builder->GetInsertBlock()->getParent()->getParent();
Value *Ops[] = {Src};
Type *Tys[] = { Src->getType() };
auto Decl = Intrinsic::getDeclaration(M, ID, Tys);
return createCallHelper(Decl, Ops, Builder);
}
CallInst *IRBuilderBase::CreateFAddReduce(Value *Acc, Value *Src) {
Module *M = GetInsertBlock()->getParent()->getParent();
Value *Ops[] = {Acc, Src};
auto Decl = Intrinsic::getDeclaration(M, Intrinsic::vector_reduce_fadd,
{Src->getType()});
return createCallHelper(Decl, Ops, this);
}
CallInst *IRBuilderBase::CreateFMulReduce(Value *Acc, Value *Src) {
Module *M = GetInsertBlock()->getParent()->getParent();
Value *Ops[] = {Acc, Src};
auto Decl = Intrinsic::getDeclaration(M, Intrinsic::vector_reduce_fmul,
{Src->getType()});
return createCallHelper(Decl, Ops, this);
}
CallInst *IRBuilderBase::CreateAddReduce(Value *Src) {
return getReductionIntrinsic(this, Intrinsic::vector_reduce_add, Src);
}
CallInst *IRBuilderBase::CreateMulReduce(Value *Src) {
return getReductionIntrinsic(this, Intrinsic::vector_reduce_mul, Src);
}
CallInst *IRBuilderBase::CreateAndReduce(Value *Src) {
return getReductionIntrinsic(this, Intrinsic::vector_reduce_and, Src);
}
CallInst *IRBuilderBase::CreateOrReduce(Value *Src) {
return getReductionIntrinsic(this, Intrinsic::vector_reduce_or, Src);
}
CallInst *IRBuilderBase::CreateXorReduce(Value *Src) {
return getReductionIntrinsic(this, Intrinsic::vector_reduce_xor, Src);
}
CallInst *IRBuilderBase::CreateIntMaxReduce(Value *Src, bool IsSigned) {
auto ID =
IsSigned ? Intrinsic::vector_reduce_smax : Intrinsic::vector_reduce_umax;
return getReductionIntrinsic(this, ID, Src);
}
CallInst *IRBuilderBase::CreateIntMinReduce(Value *Src, bool IsSigned) {
auto ID =
IsSigned ? Intrinsic::vector_reduce_smin : Intrinsic::vector_reduce_umin;
return getReductionIntrinsic(this, ID, Src);
}
CallInst *IRBuilderBase::CreateFPMaxReduce(Value *Src) {
return getReductionIntrinsic(this, Intrinsic::vector_reduce_fmax, Src);
}
CallInst *IRBuilderBase::CreateFPMinReduce(Value *Src) {
return getReductionIntrinsic(this, Intrinsic::vector_reduce_fmin, Src);
}
CallInst *IRBuilderBase::CreateLifetimeStart(Value *Ptr, ConstantInt *Size) {
assert(isa<PointerType>(Ptr->getType()) &&
"lifetime.start only applies to pointers.");
Ptr = getCastedInt8PtrValue(Ptr);
if (!Size)
Size = getInt64(-1);
else
assert(Size->getType() == getInt64Ty() &&
"lifetime.start requires the size to be an i64");
Value *Ops[] = { Size, Ptr };
Module *M = BB->getParent()->getParent();
Function *TheFn =
Intrinsic::getDeclaration(M, Intrinsic::lifetime_start, {Ptr->getType()});
return createCallHelper(TheFn, Ops, this);
}
CallInst *IRBuilderBase::CreateLifetimeEnd(Value *Ptr, ConstantInt *Size) {
assert(isa<PointerType>(Ptr->getType()) &&
"lifetime.end only applies to pointers.");
Ptr = getCastedInt8PtrValue(Ptr);
if (!Size)
Size = getInt64(-1);
else
assert(Size->getType() == getInt64Ty() &&
"lifetime.end requires the size to be an i64");
Value *Ops[] = { Size, Ptr };
Module *M = BB->getParent()->getParent();
Function *TheFn =
Intrinsic::getDeclaration(M, Intrinsic::lifetime_end, {Ptr->getType()});
return createCallHelper(TheFn, Ops, this);
}
CallInst *IRBuilderBase::CreateInvariantStart(Value *Ptr, ConstantInt *Size) {
assert(isa<PointerType>(Ptr->getType()) &&
"invariant.start only applies to pointers.");
Ptr = getCastedInt8PtrValue(Ptr);
if (!Size)
Size = getInt64(-1);
else
assert(Size->getType() == getInt64Ty() &&
"invariant.start requires the size to be an i64");
Value *Ops[] = {Size, Ptr};
// Fill in the single overloaded type: memory object type.
Type *ObjectPtr[1] = {Ptr->getType()};
Module *M = BB->getParent()->getParent();
Function *TheFn =
Intrinsic::getDeclaration(M, Intrinsic::invariant_start, ObjectPtr);
return createCallHelper(TheFn, Ops, this);
}
CallInst *
IRBuilderBase::CreateAssumption(Value *Cond,
ArrayRef<OperandBundleDef> OpBundles) {
assert(Cond->getType() == getInt1Ty() &&
"an assumption condition must be of type i1");
Value *Ops[] = { Cond };
Module *M = BB->getParent()->getParent();
Function *FnAssume = Intrinsic::getDeclaration(M, Intrinsic::assume);
return createCallHelper(FnAssume, Ops, this, "", nullptr, OpBundles);
}
Instruction *IRBuilderBase::CreateNoAliasScopeDeclaration(Value *Scope) {
Module *M = BB->getModule();
auto *FnIntrinsic = Intrinsic::getDeclaration(
M, Intrinsic::experimental_noalias_scope_decl, {});
return createCallHelper(FnIntrinsic, {Scope}, this);
}
/// Create a call to a Masked Load intrinsic.
/// \p Ptr - base pointer for the load
/// \p Alignment - alignment of the source location
/// \p Mask - vector of booleans which indicates what vector lanes should
/// be accessed in memory
/// \p PassThru - pass-through value that is used to fill the masked-off lanes
/// of the result
/// \p Name - name of the result variable
CallInst *IRBuilderBase::CreateMaskedLoad(Value *Ptr, Align Alignment,
Value *Mask, Value *PassThru,
const Twine &Name) {
auto *PtrTy = cast<PointerType>(Ptr->getType());
Type *DataTy = PtrTy->getElementType();
assert(DataTy->isVectorTy() && "Ptr should point to a vector");
assert(Mask && "Mask should not be all-ones (null)");
if (!PassThru)
PassThru = UndefValue::get(DataTy);
Type *OverloadedTypes[] = { DataTy, PtrTy };
Value *Ops[] = {Ptr, getInt32(Alignment.value()), Mask, PassThru};
return CreateMaskedIntrinsic(Intrinsic::masked_load, Ops,
OverloadedTypes, Name);
}
/// Create a call to a Masked Store intrinsic.
/// \p Val - data to be stored,
/// \p Ptr - base pointer for the store
/// \p Alignment - alignment of the destination location
/// \p Mask - vector of booleans which indicates what vector lanes should
/// be accessed in memory
CallInst *IRBuilderBase::CreateMaskedStore(Value *Val, Value *Ptr,
Align Alignment, Value *Mask) {
auto *PtrTy = cast<PointerType>(Ptr->getType());
Type *DataTy = PtrTy->getElementType();
assert(DataTy->isVectorTy() && "Ptr should point to a vector");
assert(Mask && "Mask should not be all-ones (null)");
Type *OverloadedTypes[] = { DataTy, PtrTy };
Value *Ops[] = {Val, Ptr, getInt32(Alignment.value()), Mask};
return CreateMaskedIntrinsic(Intrinsic::masked_store, Ops, OverloadedTypes);
}
/// Create a call to a Masked intrinsic, with given intrinsic Id,
/// an array of operands - Ops, and an array of overloaded types -
/// OverloadedTypes.
CallInst *IRBuilderBase::CreateMaskedIntrinsic(Intrinsic::ID Id,
ArrayRef<Value *> Ops,
ArrayRef<Type *> OverloadedTypes,
const Twine &Name) {
Module *M = BB->getParent()->getParent();
Function *TheFn = Intrinsic::getDeclaration(M, Id, OverloadedTypes);
return createCallHelper(TheFn, Ops, this, Name);
}
/// Create a call to a Masked Gather intrinsic.
/// \p Ptrs - vector of pointers for loading
/// \p Align - alignment for one element
/// \p Mask - vector of booleans which indicates what vector lanes should
/// be accessed in memory
/// \p PassThru - pass-through value that is used to fill the masked-off lanes
/// of the result
/// \p Name - name of the result variable
CallInst *IRBuilderBase::CreateMaskedGather(Value *Ptrs, Align Alignment,
Value *Mask, Value *PassThru,
const Twine &Name) {
auto *PtrsTy = cast<VectorType>(Ptrs->getType());
auto *PtrTy = cast<PointerType>(PtrsTy->getElementType());
ElementCount NumElts = PtrsTy->getElementCount();
auto *DataTy = VectorType::get(PtrTy->getElementType(), NumElts);
if (!Mask)
Mask = Constant::getAllOnesValue(
VectorType::get(Type::getInt1Ty(Context), NumElts));
if (!PassThru)
PassThru = UndefValue::get(DataTy);
Type *OverloadedTypes[] = {DataTy, PtrsTy};
Value *Ops[] = {Ptrs, getInt32(Alignment.value()), Mask, PassThru};
// We specify only one type when we create this intrinsic. Types of other
// arguments are derived from this type.
return CreateMaskedIntrinsic(Intrinsic::masked_gather, Ops, OverloadedTypes,
Name);
}
/// Create a call to a Masked Scatter intrinsic.
/// \p Data - data to be stored,
/// \p Ptrs - the vector of pointers, where the \p Data elements should be
/// stored
/// \p Align - alignment for one element
/// \p Mask - vector of booleans which indicates what vector lanes should
/// be accessed in memory
CallInst *IRBuilderBase::CreateMaskedScatter(Value *Data, Value *Ptrs,
Align Alignment, Value *Mask) {
auto *PtrsTy = cast<VectorType>(Ptrs->getType());
auto *DataTy = cast<VectorType>(Data->getType());
ElementCount NumElts = PtrsTy->getElementCount();
#ifndef NDEBUG
auto PtrTy = cast<PointerType>(PtrsTy->getElementType());
assert(NumElts == DataTy->getElementCount() &&
PtrTy->getElementType() == DataTy->getElementType() &&
"Incompatible pointer and data types");
#endif
if (!Mask)
Mask = Constant::getAllOnesValue(
VectorType::get(Type::getInt1Ty(Context), NumElts));
Type *OverloadedTypes[] = {DataTy, PtrsTy};
Value *Ops[] = {Data, Ptrs, getInt32(Alignment.value()), Mask};
// We specify only one type when we create this intrinsic. Types of other
// arguments are derived from this type.
return CreateMaskedIntrinsic(Intrinsic::masked_scatter, Ops, OverloadedTypes);
}
template <typename T0>
static std::vector<Value *>
getStatepointArgs(IRBuilderBase &B, uint64_t ID, uint32_t NumPatchBytes,
Value *ActualCallee, uint32_t Flags, ArrayRef<T0> CallArgs) {
std::vector<Value *> Args;
Args.push_back(B.getInt64(ID));
Args.push_back(B.getInt32(NumPatchBytes));
Args.push_back(ActualCallee);
Args.push_back(B.getInt32(CallArgs.size()));
Args.push_back(B.getInt32(Flags));
llvm::append_range(Args, CallArgs);
// GC Transition and Deopt args are now always handled via operand bundle.
// They will be removed from the signature of gc.statepoint shortly.
Args.push_back(B.getInt32(0));
Args.push_back(B.getInt32(0));
// GC args are now encoded in the gc-live operand bundle
return Args;
}
template<typename T1, typename T2, typename T3>
static std::vector<OperandBundleDef>
getStatepointBundles(Optional<ArrayRef<T1>> TransitionArgs,
Optional<ArrayRef<T2>> DeoptArgs,
ArrayRef<T3> GCArgs) {
std::vector<OperandBundleDef> Rval;
if (DeoptArgs) {
SmallVector<Value*, 16> DeoptValues;
llvm::append_range(DeoptValues, *DeoptArgs);
Rval.emplace_back("deopt", DeoptValues);
}
if (TransitionArgs) {
SmallVector<Value*, 16> TransitionValues;
llvm::append_range(TransitionValues, *TransitionArgs);
Rval.emplace_back("gc-transition", TransitionValues);
}
if (GCArgs.size()) {
SmallVector<Value*, 16> LiveValues;
llvm::append_range(LiveValues, GCArgs);
Rval.emplace_back("gc-live", LiveValues);
}
return Rval;
}
template <typename T0, typename T1, typename T2, typename T3>
static CallInst *CreateGCStatepointCallCommon(
IRBuilderBase *Builder, uint64_t ID, uint32_t NumPatchBytes,
Value *ActualCallee, uint32_t Flags, ArrayRef<T0> CallArgs,
Optional<ArrayRef<T1>> TransitionArgs,
Optional<ArrayRef<T2>> DeoptArgs, ArrayRef<T3> GCArgs,
const Twine &Name) {
// Extract out the type of the callee.
auto *FuncPtrType = cast<PointerType>(ActualCallee->getType());
assert(isa<FunctionType>(FuncPtrType->getElementType()) &&
"actual callee must be a callable value");
Module *M = Builder->GetInsertBlock()->getParent()->getParent();
// Fill in the one generic type'd argument (the function is also vararg)
Type *ArgTypes[] = { FuncPtrType };
Function *FnStatepoint =
Intrinsic::getDeclaration(M, Intrinsic::experimental_gc_statepoint,
ArgTypes);
std::vector<Value *> Args =
getStatepointArgs(*Builder, ID, NumPatchBytes, ActualCallee, Flags,
CallArgs);
return Builder->CreateCall(FnStatepoint, Args,
getStatepointBundles(TransitionArgs, DeoptArgs,
GCArgs),
Name);
}
CallInst *IRBuilderBase::CreateGCStatepointCall(
uint64_t ID, uint32_t NumPatchBytes, Value *ActualCallee,
ArrayRef<Value *> CallArgs, Optional<ArrayRef<Value *>> DeoptArgs,
ArrayRef<Value *> GCArgs, const Twine &Name) {
return CreateGCStatepointCallCommon<Value *, Value *, Value *, Value *>(
this, ID, NumPatchBytes, ActualCallee, uint32_t(StatepointFlags::None),
CallArgs, None /* No Transition Args */, DeoptArgs, GCArgs, Name);
}
CallInst *IRBuilderBase::CreateGCStatepointCall(
uint64_t ID, uint32_t NumPatchBytes, Value *ActualCallee, uint32_t Flags,
ArrayRef<Value *> CallArgs, Optional<ArrayRef<Use>> TransitionArgs,
Optional<ArrayRef<Use>> DeoptArgs, ArrayRef<Value *> GCArgs,
const Twine &Name) {
return CreateGCStatepointCallCommon<Value *, Use, Use, Value *>(
this, ID, NumPatchBytes, ActualCallee, Flags, CallArgs, TransitionArgs,
DeoptArgs, GCArgs, Name);
}
CallInst *IRBuilderBase::CreateGCStatepointCall(
uint64_t ID, uint32_t NumPatchBytes, Value *ActualCallee,
ArrayRef<Use> CallArgs, Optional<ArrayRef<Value *>> DeoptArgs,
ArrayRef<Value *> GCArgs, const Twine &Name) {
return CreateGCStatepointCallCommon<Use, Value *, Value *, Value *>(
this, ID, NumPatchBytes, ActualCallee, uint32_t(StatepointFlags::None),
CallArgs, None, DeoptArgs, GCArgs, Name);
}
template <typename T0, typename T1, typename T2, typename T3>
static InvokeInst *CreateGCStatepointInvokeCommon(
IRBuilderBase *Builder, uint64_t ID, uint32_t NumPatchBytes,
Value *ActualInvokee, BasicBlock *NormalDest, BasicBlock *UnwindDest,
uint32_t Flags, ArrayRef<T0> InvokeArgs,
Optional<ArrayRef<T1>> TransitionArgs, Optional<ArrayRef<T2>> DeoptArgs,
ArrayRef<T3> GCArgs, const Twine &Name) {
// Extract out the type of the callee.
auto *FuncPtrType = cast<PointerType>(ActualInvokee->getType());
assert(isa<FunctionType>(FuncPtrType->getElementType()) &&
"actual callee must be a callable value");
Module *M = Builder->GetInsertBlock()->getParent()->getParent();
// Fill in the one generic type'd argument (the function is also vararg)
Function *FnStatepoint = Intrinsic::getDeclaration(
M, Intrinsic::experimental_gc_statepoint, {FuncPtrType});
std::vector<Value *> Args =
getStatepointArgs(*Builder, ID, NumPatchBytes, ActualInvokee, Flags,
InvokeArgs);
return Builder->CreateInvoke(FnStatepoint, NormalDest, UnwindDest, Args,
getStatepointBundles(TransitionArgs, DeoptArgs,
GCArgs),
Name);
}
InvokeInst *IRBuilderBase::CreateGCStatepointInvoke(
uint64_t ID, uint32_t NumPatchBytes, Value *ActualInvokee,
BasicBlock *NormalDest, BasicBlock *UnwindDest,
ArrayRef<Value *> InvokeArgs, Optional<ArrayRef<Value *>> DeoptArgs,
ArrayRef<Value *> GCArgs, const Twine &Name) {
return CreateGCStatepointInvokeCommon<Value *, Value *, Value *, Value *>(
this, ID, NumPatchBytes, ActualInvokee, NormalDest, UnwindDest,
uint32_t(StatepointFlags::None), InvokeArgs, None /* No Transition Args*/,
DeoptArgs, GCArgs, Name);
}
InvokeInst *IRBuilderBase::CreateGCStatepointInvoke(
uint64_t ID, uint32_t NumPatchBytes, Value *ActualInvokee,
BasicBlock *NormalDest, BasicBlock *UnwindDest, uint32_t Flags,
ArrayRef<Value *> InvokeArgs, Optional<ArrayRef<Use>> TransitionArgs,
Optional<ArrayRef<Use>> DeoptArgs, ArrayRef<Value *> GCArgs, const Twine &Name) {
return CreateGCStatepointInvokeCommon<Value *, Use, Use, Value *>(
this, ID, NumPatchBytes, ActualInvokee, NormalDest, UnwindDest, Flags,
InvokeArgs, TransitionArgs, DeoptArgs, GCArgs, Name);
}
InvokeInst *IRBuilderBase::CreateGCStatepointInvoke(
uint64_t ID, uint32_t NumPatchBytes, Value *ActualInvokee,
BasicBlock *NormalDest, BasicBlock *UnwindDest, ArrayRef<Use> InvokeArgs,
Optional<ArrayRef<Value *>> DeoptArgs, ArrayRef<Value *> GCArgs, const Twine &Name) {
return CreateGCStatepointInvokeCommon<Use, Value *, Value *, Value *>(
this, ID, NumPatchBytes, ActualInvokee, NormalDest, UnwindDest,
uint32_t(StatepointFlags::None), InvokeArgs, None, DeoptArgs, GCArgs,
Name);
}
CallInst *IRBuilderBase::CreateGCResult(Instruction *Statepoint,
Type *ResultType,
const Twine &Name) {
Intrinsic::ID ID = Intrinsic::experimental_gc_result;
Module *M = BB->getParent()->getParent();
Type *Types[] = {ResultType};
Function *FnGCResult = Intrinsic::getDeclaration(M, ID, Types);
Value *Args[] = {Statepoint};
return createCallHelper(FnGCResult, Args, this, Name);
}
CallInst *IRBuilderBase::CreateGCRelocate(Instruction *Statepoint,
int BaseOffset,
int DerivedOffset,
Type *ResultType,
const Twine &Name) {
Module *M = BB->getParent()->getParent();
Type *Types[] = {ResultType};
Function *FnGCRelocate =
Intrinsic::getDeclaration(M, Intrinsic::experimental_gc_relocate, Types);
Value *Args[] = {Statepoint,
getInt32(BaseOffset),
getInt32(DerivedOffset)};
return createCallHelper(FnGCRelocate, Args, this, Name);
}
CallInst *IRBuilderBase::CreateUnaryIntrinsic(Intrinsic::ID ID, Value *V,
Instruction *FMFSource,
const Twine &Name) {
Module *M = BB->getModule();
Function *Fn = Intrinsic::getDeclaration(M, ID, {V->getType()});
return createCallHelper(Fn, {V}, this, Name, FMFSource);
}
CallInst *IRBuilderBase::CreateBinaryIntrinsic(Intrinsic::ID ID, Value *LHS,
Value *RHS,
Instruction *FMFSource,
const Twine &Name) {
Module *M = BB->getModule();
Function *Fn = Intrinsic::getDeclaration(M, ID, { LHS->getType() });
return createCallHelper(Fn, {LHS, RHS}, this, Name, FMFSource);
}
CallInst *IRBuilderBase::CreateIntrinsic(Intrinsic::ID ID,
ArrayRef<Type *> Types,
ArrayRef<Value *> Args,
Instruction *FMFSource,
const Twine &Name) {
Module *M = BB->getModule();
Function *Fn = Intrinsic::getDeclaration(M, ID, Types);
return createCallHelper(Fn, Args, this, Name, FMFSource);
}
CallInst *IRBuilderBase::CreateConstrainedFPBinOp(
Intrinsic::ID ID, Value *L, Value *R, Instruction *FMFSource,
const Twine &Name, MDNode *FPMathTag,
Optional<RoundingMode> Rounding,
Optional<fp::ExceptionBehavior> Except) {
Value *RoundingV = getConstrainedFPRounding(Rounding);
Value *ExceptV = getConstrainedFPExcept(Except);
FastMathFlags UseFMF = FMF;
if (FMFSource)
UseFMF = FMFSource->getFastMathFlags();
CallInst *C = CreateIntrinsic(ID, {L->getType()},
{L, R, RoundingV, ExceptV}, nullptr, Name);
setConstrainedFPCallAttr(C);
setFPAttrs(C, FPMathTag, UseFMF);
return C;
}
Value *IRBuilderBase::CreateNAryOp(unsigned Opc, ArrayRef<Value *> Ops,
const Twine &Name, MDNode *FPMathTag) {
if (Instruction::isBinaryOp(Opc)) {
assert(Ops.size() == 2 && "Invalid number of operands!");
return CreateBinOp(static_cast<Instruction::BinaryOps>(Opc),
Ops[0], Ops[1], Name, FPMathTag);
}
if (Instruction::isUnaryOp(Opc)) {
assert(Ops.size() == 1 && "Invalid number of operands!");
return CreateUnOp(static_cast<Instruction::UnaryOps>(Opc),
Ops[0], Name, FPMathTag);
}
llvm_unreachable("Unexpected opcode!");
}
CallInst *IRBuilderBase::CreateConstrainedFPCast(
Intrinsic::ID ID, Value *V, Type *DestTy,
Instruction *FMFSource, const Twine &Name, MDNode *FPMathTag,
Optional<RoundingMode> Rounding,
Optional<fp::ExceptionBehavior> Except) {
Value *ExceptV = getConstrainedFPExcept(Except);
FastMathFlags UseFMF = FMF;
if (FMFSource)
UseFMF = FMFSource->getFastMathFlags();
CallInst *C;
bool HasRoundingMD = false;
switch (ID) {
default:
break;
#define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \
case Intrinsic::INTRINSIC: \
HasRoundingMD = ROUND_MODE; \
break;
#include "llvm/IR/ConstrainedOps.def"
}
if (HasRoundingMD) {
Value *RoundingV = getConstrainedFPRounding(Rounding);
C = CreateIntrinsic(ID, {DestTy, V->getType()}, {V, RoundingV, ExceptV},
nullptr, Name);
} else
C = CreateIntrinsic(ID, {DestTy, V->getType()}, {V, ExceptV}, nullptr,
Name);
setConstrainedFPCallAttr(C);
if (isa<FPMathOperator>(C))
setFPAttrs(C, FPMathTag, UseFMF);
return C;
}
Value *IRBuilderBase::CreateFCmpHelper(
CmpInst::Predicate P, Value *LHS, Value *RHS, const Twine &Name,
MDNode *FPMathTag, bool IsSignaling) {
if (IsFPConstrained) {
auto ID = IsSignaling ? Intrinsic::experimental_constrained_fcmps
: Intrinsic::experimental_constrained_fcmp;
return CreateConstrainedFPCmp(ID, P, LHS, RHS, Name);
}
if (auto *LC = dyn_cast<Constant>(LHS))
if (auto *RC = dyn_cast<Constant>(RHS))
return Insert(Folder.CreateFCmp(P, LC, RC), Name);
return Insert(setFPAttrs(new FCmpInst(P, LHS, RHS), FPMathTag, FMF), Name);
}
CallInst *IRBuilderBase::CreateConstrainedFPCmp(
Intrinsic::ID ID, CmpInst::Predicate P, Value *L, Value *R,
const Twine &Name, Optional<fp::ExceptionBehavior> Except) {
Value *PredicateV = getConstrainedFPPredicate(P);
Value *ExceptV = getConstrainedFPExcept(Except);
CallInst *C = CreateIntrinsic(ID, {L->getType()},
{L, R, PredicateV, ExceptV}, nullptr, Name);
setConstrainedFPCallAttr(C);
return C;
}
CallInst *IRBuilderBase::CreateConstrainedFPCall(
Function *Callee, ArrayRef<Value *> Args, const Twine &Name,
Optional<RoundingMode> Rounding,
Optional<fp::ExceptionBehavior> Except) {
llvm::SmallVector<Value *, 6> UseArgs;
append_range(UseArgs, Args);
bool HasRoundingMD = false;
switch (Callee->getIntrinsicID()) {
default:
break;
#define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \
case Intrinsic::INTRINSIC: \
HasRoundingMD = ROUND_MODE; \
break;
#include "llvm/IR/ConstrainedOps.def"
}
if (HasRoundingMD)
UseArgs.push_back(getConstrainedFPRounding(Rounding));
UseArgs.push_back(getConstrainedFPExcept(Except));
CallInst *C = CreateCall(Callee, UseArgs, Name);
setConstrainedFPCallAttr(C);
return C;
}
Value *IRBuilderBase::CreateSelect(Value *C, Value *True, Value *False,
const Twine &Name, Instruction *MDFrom) {
if (auto *CC = dyn_cast<Constant>(C))
if (auto *TC = dyn_cast<Constant>(True))
if (auto *FC = dyn_cast<Constant>(False))
return Insert(Folder.CreateSelect(CC, TC, FC), Name);
SelectInst *Sel = SelectInst::Create(C, True, False);
if (MDFrom) {
MDNode *Prof = MDFrom->getMetadata(LLVMContext::MD_prof);
MDNode *Unpred = MDFrom->getMetadata(LLVMContext::MD_unpredictable);
Sel = addBranchMetadata(Sel, Prof, Unpred);
}
if (isa<FPMathOperator>(Sel))
setFPAttrs(Sel, nullptr /* MDNode* */, FMF);
return Insert(Sel, Name);
}
Value *IRBuilderBase::CreatePtrDiff(Value *LHS, Value *RHS,
const Twine &Name) {
assert(LHS->getType() == RHS->getType() &&
"Pointer subtraction operand types must match!");
auto *ArgType = cast<PointerType>(LHS->getType());
Value *LHS_int = CreatePtrToInt(LHS, Type::getInt64Ty(Context));
Value *RHS_int = CreatePtrToInt(RHS, Type::getInt64Ty(Context));
Value *Difference = CreateSub(LHS_int, RHS_int);
return CreateExactSDiv(Difference,
ConstantExpr::getSizeOf(ArgType->getElementType()),
Name);
}
Value *IRBuilderBase::CreateLaunderInvariantGroup(Value *Ptr) {
assert(isa<PointerType>(Ptr->getType()) &&
"launder.invariant.group only applies to pointers.");
// FIXME: we could potentially avoid casts to/from i8*.
auto *PtrType = Ptr->getType();
auto *Int8PtrTy = getInt8PtrTy(PtrType->getPointerAddressSpace());
if (PtrType != Int8PtrTy)
Ptr = CreateBitCast(Ptr, Int8PtrTy);
Module *M = BB->getParent()->getParent();
Function *FnLaunderInvariantGroup = Intrinsic::getDeclaration(
M, Intrinsic::launder_invariant_group, {Int8PtrTy});
assert(FnLaunderInvariantGroup->getReturnType() == Int8PtrTy &&
FnLaunderInvariantGroup->getFunctionType()->getParamType(0) ==
Int8PtrTy &&
"LaunderInvariantGroup should take and return the same type");
CallInst *Fn = CreateCall(FnLaunderInvariantGroup, {Ptr});
if (PtrType != Int8PtrTy)
return CreateBitCast(Fn, PtrType);
return Fn;
}
Value *IRBuilderBase::CreateStripInvariantGroup(Value *Ptr) {
assert(isa<PointerType>(Ptr->getType()) &&
"strip.invariant.group only applies to pointers.");
// FIXME: we could potentially avoid casts to/from i8*.
auto *PtrType = Ptr->getType();
auto *Int8PtrTy = getInt8PtrTy(PtrType->getPointerAddressSpace());
if (PtrType != Int8PtrTy)
Ptr = CreateBitCast(Ptr, Int8PtrTy);
Module *M = BB->getParent()->getParent();
Function *FnStripInvariantGroup = Intrinsic::getDeclaration(
M, Intrinsic::strip_invariant_group, {Int8PtrTy});
assert(FnStripInvariantGroup->getReturnType() == Int8PtrTy &&
FnStripInvariantGroup->getFunctionType()->getParamType(0) ==
Int8PtrTy &&
"StripInvariantGroup should take and return the same type");
CallInst *Fn = CreateCall(FnStripInvariantGroup, {Ptr});
if (PtrType != Int8PtrTy)
return CreateBitCast(Fn, PtrType);
return Fn;
}
Value *IRBuilderBase::CreateVectorReverse(Value *V, const Twine &Name) {
auto *Ty = cast<VectorType>(V->getType());
if (isa<ScalableVectorType>(Ty)) {
Module *M = BB->getParent()->getParent();
Function *F = Intrinsic::getDeclaration(
M, Intrinsic::experimental_vector_reverse, Ty);
return Insert(CallInst::Create(F, V), Name);
}
// Keep the original behaviour for fixed vector
SmallVector<int, 8> ShuffleMask;
int NumElts = Ty->getElementCount().getKnownMinValue();
for (int i = 0; i < NumElts; ++i)
ShuffleMask.push_back(NumElts - i - 1);
return CreateShuffleVector(V, ShuffleMask, Name);
}
Value *IRBuilderBase::CreateVectorSplat(unsigned NumElts, Value *V,
const Twine &Name) {
auto EC = ElementCount::getFixed(NumElts);
return CreateVectorSplat(EC, V, Name);
}
Value *IRBuilderBase::CreateVectorSplat(ElementCount EC, Value *V,
const Twine &Name) {
assert(EC.isNonZero() && "Cannot splat to an empty vector!");
// First insert it into a poison vector so we can shuffle it.
Type *I32Ty = getInt32Ty();
Value *Poison = PoisonValue::get(VectorType::get(V->getType(), EC));
V = CreateInsertElement(Poison, V, ConstantInt::get(I32Ty, 0),
Name + ".splatinsert");
// Shuffle the value across the desired number of elements.
SmallVector<int, 16> Zeros;
Zeros.resize(EC.getKnownMinValue());
return CreateShuffleVector(V, Zeros, Name + ".splat");
}
Value *IRBuilderBase::CreateExtractInteger(
const DataLayout &DL, Value *From, IntegerType *ExtractedTy,
uint64_t Offset, const Twine &Name) {
auto *IntTy = cast<IntegerType>(From->getType());
assert(DL.getTypeStoreSize(ExtractedTy) + Offset <=
DL.getTypeStoreSize(IntTy) &&
"Element extends past full value");
uint64_t ShAmt = 8 * Offset;
Value *V = From;
if (DL.isBigEndian())
ShAmt = 8 * (DL.getTypeStoreSize(IntTy) -
DL.getTypeStoreSize(ExtractedTy) - Offset);
if (ShAmt) {
V = CreateLShr(V, ShAmt, Name + ".shift");
}
assert(ExtractedTy->getBitWidth() <= IntTy->getBitWidth() &&
"Cannot extract to a larger integer!");
if (ExtractedTy != IntTy) {
V = CreateTrunc(V, ExtractedTy, Name + ".trunc");
}
return V;
}
Value *IRBuilderBase::CreatePreserveArrayAccessIndex(
Type *ElTy, Value *Base, unsigned Dimension, unsigned LastIndex,
MDNode *DbgInfo) {
assert(isa<PointerType>(Base->getType()) &&
"Invalid Base ptr type for preserve.array.access.index.");
auto *BaseType = Base->getType();
Value *LastIndexV = getInt32(LastIndex);
Constant *Zero = ConstantInt::get(Type::getInt32Ty(Context), 0);
SmallVector<Value *, 4> IdxList(Dimension, Zero);
IdxList.push_back(LastIndexV);
Type *ResultType =
GetElementPtrInst::getGEPReturnType(ElTy, Base, IdxList);
Module *M = BB->getParent()->getParent();
Function *FnPreserveArrayAccessIndex = Intrinsic::getDeclaration(
M, Intrinsic::preserve_array_access_index, {ResultType, BaseType});
Value *DimV = getInt32(Dimension);
CallInst *Fn =
CreateCall(FnPreserveArrayAccessIndex, {Base, DimV, LastIndexV});
if (DbgInfo)
Fn->setMetadata(LLVMContext::MD_preserve_access_index, DbgInfo);
return Fn;
}
Value *IRBuilderBase::CreatePreserveUnionAccessIndex(
Value *Base, unsigned FieldIndex, MDNode *DbgInfo) {
assert(isa<PointerType>(Base->getType()) &&
"Invalid Base ptr type for preserve.union.access.index.");
auto *BaseType = Base->getType();
Module *M = BB->getParent()->getParent();
Function *FnPreserveUnionAccessIndex = Intrinsic::getDeclaration(
M, Intrinsic::preserve_union_access_index, {BaseType, BaseType});
Value *DIIndex = getInt32(FieldIndex);
CallInst *Fn =
CreateCall(FnPreserveUnionAccessIndex, {Base, DIIndex});
if (DbgInfo)
Fn->setMetadata(LLVMContext::MD_preserve_access_index, DbgInfo);
return Fn;
}
Value *IRBuilderBase::CreatePreserveStructAccessIndex(
Type *ElTy, Value *Base, unsigned Index, unsigned FieldIndex,
MDNode *DbgInfo) {
assert(isa<PointerType>(Base->getType()) &&
"Invalid Base ptr type for preserve.struct.access.index.");
auto *BaseType = Base->getType();
Value *GEPIndex = getInt32(Index);
Constant *Zero = ConstantInt::get(Type::getInt32Ty(Context), 0);
Type *ResultType =
GetElementPtrInst::getGEPReturnType(ElTy, Base, {Zero, GEPIndex});
Module *M = BB->getParent()->getParent();
Function *FnPreserveStructAccessIndex = Intrinsic::getDeclaration(
M, Intrinsic::preserve_struct_access_index, {ResultType, BaseType});
Value *DIIndex = getInt32(FieldIndex);
CallInst *Fn = CreateCall(FnPreserveStructAccessIndex,
{Base, GEPIndex, DIIndex});
if (DbgInfo)
Fn->setMetadata(LLVMContext::MD_preserve_access_index, DbgInfo);
return Fn;
}
CallInst *IRBuilderBase::CreateAlignmentAssumptionHelper(const DataLayout &DL,
Value *PtrValue,
Value *AlignValue,
Value *OffsetValue) {
SmallVector<Value *, 4> Vals({PtrValue, AlignValue});
if (OffsetValue)
Vals.push_back(OffsetValue);
OperandBundleDefT<Value *> AlignOpB("align", Vals);
return CreateAssumption(ConstantInt::getTrue(getContext()), {AlignOpB});
}
CallInst *IRBuilderBase::CreateAlignmentAssumption(const DataLayout &DL,
Value *PtrValue,
unsigned Alignment,
Value *OffsetValue) {
assert(isa<PointerType>(PtrValue->getType()) &&
"trying to create an alignment assumption on a non-pointer?");
assert(Alignment != 0 && "Invalid Alignment");
auto *PtrTy = cast<PointerType>(PtrValue->getType());
Type *IntPtrTy = getIntPtrTy(DL, PtrTy->getAddressSpace());
Value *AlignValue = ConstantInt::get(IntPtrTy, Alignment);
return CreateAlignmentAssumptionHelper(DL, PtrValue, AlignValue, OffsetValue);
}
CallInst *IRBuilderBase::CreateAlignmentAssumption(const DataLayout &DL,
Value *PtrValue,
Value *Alignment,
Value *OffsetValue) {
assert(isa<PointerType>(PtrValue->getType()) &&
"trying to create an alignment assumption on a non-pointer?");
return CreateAlignmentAssumptionHelper(DL, PtrValue, Alignment, OffsetValue);
}
IRBuilderDefaultInserter::~IRBuilderDefaultInserter() {}
IRBuilderCallbackInserter::~IRBuilderCallbackInserter() {}
IRBuilderFolder::~IRBuilderFolder() {}
void ConstantFolder::anchor() {}
void NoFolder::anchor() {}