llvm-project/llvm/lib/Transforms/Scalar/LoopInterchange.cpp

1776 lines
66 KiB
C++

//===- LoopInterchange.cpp - Loop interchange pass-------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This Pass handles loop interchange transform.
// This pass interchanges loops to provide a more cache-friendly memory access
// patterns.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Scalar/LoopInterchange.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Analysis/DependenceAnalysis.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/LoopNestAnalysis.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/LoopUtils.h"
#include <cassert>
#include <utility>
#include <vector>
using namespace llvm;
#define DEBUG_TYPE "loop-interchange"
STATISTIC(LoopsInterchanged, "Number of loops interchanged");
static cl::opt<int> LoopInterchangeCostThreshold(
"loop-interchange-threshold", cl::init(0), cl::Hidden,
cl::desc("Interchange if you gain more than this number"));
namespace {
using LoopVector = SmallVector<Loop *, 8>;
// TODO: Check if we can use a sparse matrix here.
using CharMatrix = std::vector<std::vector<char>>;
} // end anonymous namespace
// Maximum number of dependencies that can be handled in the dependency matrix.
static const unsigned MaxMemInstrCount = 100;
// Maximum loop depth supported.
static const unsigned MaxLoopNestDepth = 10;
#ifdef DUMP_DEP_MATRICIES
static void printDepMatrix(CharMatrix &DepMatrix) {
for (auto &Row : DepMatrix) {
for (auto D : Row)
LLVM_DEBUG(dbgs() << D << " ");
LLVM_DEBUG(dbgs() << "\n");
}
}
#endif
static bool populateDependencyMatrix(CharMatrix &DepMatrix, unsigned Level,
Loop *L, DependenceInfo *DI) {
using ValueVector = SmallVector<Value *, 16>;
ValueVector MemInstr;
// For each block.
for (BasicBlock *BB : L->blocks()) {
// Scan the BB and collect legal loads and stores.
for (Instruction &I : *BB) {
if (!isa<Instruction>(I))
return false;
if (auto *Ld = dyn_cast<LoadInst>(&I)) {
if (!Ld->isSimple())
return false;
MemInstr.push_back(&I);
} else if (auto *St = dyn_cast<StoreInst>(&I)) {
if (!St->isSimple())
return false;
MemInstr.push_back(&I);
}
}
}
LLVM_DEBUG(dbgs() << "Found " << MemInstr.size()
<< " Loads and Stores to analyze\n");
ValueVector::iterator I, IE, J, JE;
for (I = MemInstr.begin(), IE = MemInstr.end(); I != IE; ++I) {
for (J = I, JE = MemInstr.end(); J != JE; ++J) {
std::vector<char> Dep;
Instruction *Src = cast<Instruction>(*I);
Instruction *Dst = cast<Instruction>(*J);
if (Src == Dst)
continue;
// Ignore Input dependencies.
if (isa<LoadInst>(Src) && isa<LoadInst>(Dst))
continue;
// Track Output, Flow, and Anti dependencies.
if (auto D = DI->depends(Src, Dst, true)) {
assert(D->isOrdered() && "Expected an output, flow or anti dep.");
LLVM_DEBUG(StringRef DepType =
D->isFlow() ? "flow" : D->isAnti() ? "anti" : "output";
dbgs() << "Found " << DepType
<< " dependency between Src and Dst\n"
<< " Src:" << *Src << "\n Dst:" << *Dst << '\n');
unsigned Levels = D->getLevels();
char Direction;
for (unsigned II = 1; II <= Levels; ++II) {
const SCEV *Distance = D->getDistance(II);
const SCEVConstant *SCEVConst =
dyn_cast_or_null<SCEVConstant>(Distance);
if (SCEVConst) {
const ConstantInt *CI = SCEVConst->getValue();
if (CI->isNegative())
Direction = '<';
else if (CI->isZero())
Direction = '=';
else
Direction = '>';
Dep.push_back(Direction);
} else if (D->isScalar(II)) {
Direction = 'S';
Dep.push_back(Direction);
} else {
unsigned Dir = D->getDirection(II);
if (Dir == Dependence::DVEntry::LT ||
Dir == Dependence::DVEntry::LE)
Direction = '<';
else if (Dir == Dependence::DVEntry::GT ||
Dir == Dependence::DVEntry::GE)
Direction = '>';
else if (Dir == Dependence::DVEntry::EQ)
Direction = '=';
else
Direction = '*';
Dep.push_back(Direction);
}
}
while (Dep.size() != Level) {
Dep.push_back('I');
}
DepMatrix.push_back(Dep);
if (DepMatrix.size() > MaxMemInstrCount) {
LLVM_DEBUG(dbgs() << "Cannot handle more than " << MaxMemInstrCount
<< " dependencies inside loop\n");
return false;
}
}
}
}
return true;
}
// A loop is moved from index 'from' to an index 'to'. Update the Dependence
// matrix by exchanging the two columns.
static void interChangeDependencies(CharMatrix &DepMatrix, unsigned FromIndx,
unsigned ToIndx) {
for (unsigned I = 0, E = DepMatrix.size(); I < E; ++I)
std::swap(DepMatrix[I][ToIndx], DepMatrix[I][FromIndx]);
}
// Checks if outermost non '=','S'or'I' dependence in the dependence matrix is
// '>'
static bool isOuterMostDepPositive(CharMatrix &DepMatrix, unsigned Row,
unsigned Column) {
for (unsigned i = 0; i <= Column; ++i) {
if (DepMatrix[Row][i] == '<')
return false;
if (DepMatrix[Row][i] == '>')
return true;
}
// All dependencies were '=','S' or 'I'
return false;
}
// Checks if no dependence exist in the dependency matrix in Row before Column.
static bool containsNoDependence(CharMatrix &DepMatrix, unsigned Row,
unsigned Column) {
for (unsigned i = 0; i < Column; ++i) {
if (DepMatrix[Row][i] != '=' && DepMatrix[Row][i] != 'S' &&
DepMatrix[Row][i] != 'I')
return false;
}
return true;
}
static bool validDepInterchange(CharMatrix &DepMatrix, unsigned Row,
unsigned OuterLoopId, char InnerDep,
char OuterDep) {
if (isOuterMostDepPositive(DepMatrix, Row, OuterLoopId))
return false;
if (InnerDep == OuterDep)
return true;
// It is legal to interchange if and only if after interchange no row has a
// '>' direction as the leftmost non-'='.
if (InnerDep == '=' || InnerDep == 'S' || InnerDep == 'I')
return true;
if (InnerDep == '<')
return true;
if (InnerDep == '>') {
// If OuterLoopId represents outermost loop then interchanging will make the
// 1st dependency as '>'
if (OuterLoopId == 0)
return false;
// If all dependencies before OuterloopId are '=','S'or 'I'. Then
// interchanging will result in this row having an outermost non '='
// dependency of '>'
if (!containsNoDependence(DepMatrix, Row, OuterLoopId))
return true;
}
return false;
}
// Checks if it is legal to interchange 2 loops.
// [Theorem] A permutation of the loops in a perfect nest is legal if and only
// if the direction matrix, after the same permutation is applied to its
// columns, has no ">" direction as the leftmost non-"=" direction in any row.
static bool isLegalToInterChangeLoops(CharMatrix &DepMatrix,
unsigned InnerLoopId,
unsigned OuterLoopId) {
unsigned NumRows = DepMatrix.size();
// For each row check if it is valid to interchange.
for (unsigned Row = 0; Row < NumRows; ++Row) {
char InnerDep = DepMatrix[Row][InnerLoopId];
char OuterDep = DepMatrix[Row][OuterLoopId];
if (InnerDep == '*' || OuterDep == '*')
return false;
if (!validDepInterchange(DepMatrix, Row, OuterLoopId, InnerDep, OuterDep))
return false;
}
return true;
}
static LoopVector populateWorklist(Loop &L) {
LLVM_DEBUG(dbgs() << "Calling populateWorklist on Func: "
<< L.getHeader()->getParent()->getName() << " Loop: %"
<< L.getHeader()->getName() << '\n');
LoopVector LoopList;
Loop *CurrentLoop = &L;
const std::vector<Loop *> *Vec = &CurrentLoop->getSubLoops();
while (!Vec->empty()) {
// The current loop has multiple subloops in it hence it is not tightly
// nested.
// Discard all loops above it added into Worklist.
if (Vec->size() != 1)
return {};
LoopList.push_back(CurrentLoop);
CurrentLoop = Vec->front();
Vec = &CurrentLoop->getSubLoops();
}
LoopList.push_back(CurrentLoop);
return LoopList;
}
static PHINode *getInductionVariable(Loop *L, ScalarEvolution *SE) {
PHINode *InnerIndexVar = L->getCanonicalInductionVariable();
if (InnerIndexVar)
return InnerIndexVar;
if (L->getLoopLatch() == nullptr || L->getLoopPredecessor() == nullptr)
return nullptr;
for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
PHINode *PhiVar = cast<PHINode>(I);
Type *PhiTy = PhiVar->getType();
if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() &&
!PhiTy->isPointerTy())
return nullptr;
const SCEVAddRecExpr *AddRec =
dyn_cast<SCEVAddRecExpr>(SE->getSCEV(PhiVar));
if (!AddRec || !AddRec->isAffine())
continue;
const SCEV *Step = AddRec->getStepRecurrence(*SE);
if (!isa<SCEVConstant>(Step))
continue;
// Found the induction variable.
// FIXME: Handle loops with more than one induction variable. Note that,
// currently, legality makes sure we have only one induction variable.
return PhiVar;
}
return nullptr;
}
namespace {
/// LoopInterchangeLegality checks if it is legal to interchange the loop.
class LoopInterchangeLegality {
public:
LoopInterchangeLegality(Loop *Outer, Loop *Inner, ScalarEvolution *SE,
OptimizationRemarkEmitter *ORE)
: OuterLoop(Outer), InnerLoop(Inner), SE(SE), ORE(ORE) {}
/// Check if the loops can be interchanged.
bool canInterchangeLoops(unsigned InnerLoopId, unsigned OuterLoopId,
CharMatrix &DepMatrix);
/// Check if the loop structure is understood. We do not handle triangular
/// loops for now.
bool isLoopStructureUnderstood(PHINode *InnerInductionVar);
bool currentLimitations();
const SmallPtrSetImpl<PHINode *> &getOuterInnerReductions() const {
return OuterInnerReductions;
}
private:
bool tightlyNested(Loop *Outer, Loop *Inner);
bool containsUnsafeInstructions(BasicBlock *BB);
/// Discover induction and reduction PHIs in the header of \p L. Induction
/// PHIs are added to \p Inductions, reductions are added to
/// OuterInnerReductions. When the outer loop is passed, the inner loop needs
/// to be passed as \p InnerLoop.
bool findInductionAndReductions(Loop *L,
SmallVector<PHINode *, 8> &Inductions,
Loop *InnerLoop);
Loop *OuterLoop;
Loop *InnerLoop;
ScalarEvolution *SE;
/// Interface to emit optimization remarks.
OptimizationRemarkEmitter *ORE;
/// Set of reduction PHIs taking part of a reduction across the inner and
/// outer loop.
SmallPtrSet<PHINode *, 4> OuterInnerReductions;
};
/// LoopInterchangeProfitability checks if it is profitable to interchange the
/// loop.
class LoopInterchangeProfitability {
public:
LoopInterchangeProfitability(Loop *Outer, Loop *Inner, ScalarEvolution *SE,
OptimizationRemarkEmitter *ORE)
: OuterLoop(Outer), InnerLoop(Inner), SE(SE), ORE(ORE) {}
/// Check if the loop interchange is profitable.
bool isProfitable(unsigned InnerLoopId, unsigned OuterLoopId,
CharMatrix &DepMatrix);
private:
int getInstrOrderCost();
Loop *OuterLoop;
Loop *InnerLoop;
/// Scev analysis.
ScalarEvolution *SE;
/// Interface to emit optimization remarks.
OptimizationRemarkEmitter *ORE;
};
/// LoopInterchangeTransform interchanges the loop.
class LoopInterchangeTransform {
public:
LoopInterchangeTransform(Loop *Outer, Loop *Inner, ScalarEvolution *SE,
LoopInfo *LI, DominatorTree *DT,
const LoopInterchangeLegality &LIL)
: OuterLoop(Outer), InnerLoop(Inner), SE(SE), LI(LI), DT(DT), LIL(LIL) {}
/// Interchange OuterLoop and InnerLoop.
bool transform();
void restructureLoops(Loop *NewInner, Loop *NewOuter,
BasicBlock *OrigInnerPreHeader,
BasicBlock *OrigOuterPreHeader);
void removeChildLoop(Loop *OuterLoop, Loop *InnerLoop);
private:
bool adjustLoopLinks();
bool adjustLoopBranches();
Loop *OuterLoop;
Loop *InnerLoop;
/// Scev analysis.
ScalarEvolution *SE;
LoopInfo *LI;
DominatorTree *DT;
const LoopInterchangeLegality &LIL;
};
struct LoopInterchange {
ScalarEvolution *SE = nullptr;
LoopInfo *LI = nullptr;
DependenceInfo *DI = nullptr;
DominatorTree *DT = nullptr;
/// Interface to emit optimization remarks.
OptimizationRemarkEmitter *ORE;
LoopInterchange(ScalarEvolution *SE, LoopInfo *LI, DependenceInfo *DI,
DominatorTree *DT, OptimizationRemarkEmitter *ORE)
: SE(SE), LI(LI), DI(DI), DT(DT), ORE(ORE) {}
bool run(Loop *L) {
if (L->getParentLoop())
return false;
return processLoopList(populateWorklist(*L));
}
bool run(LoopNest &LN) {
const auto &LoopList = LN.getLoops();
for (unsigned I = 1; I < LoopList.size(); ++I)
if (LoopList[I]->getParentLoop() != LoopList[I - 1])
return false;
return processLoopList(LoopList);
}
bool isComputableLoopNest(ArrayRef<Loop *> LoopList) {
for (Loop *L : LoopList) {
const SCEV *ExitCountOuter = SE->getBackedgeTakenCount(L);
if (isa<SCEVCouldNotCompute>(ExitCountOuter)) {
LLVM_DEBUG(dbgs() << "Couldn't compute backedge count\n");
return false;
}
if (L->getNumBackEdges() != 1) {
LLVM_DEBUG(dbgs() << "NumBackEdges is not equal to 1\n");
return false;
}
if (!L->getExitingBlock()) {
LLVM_DEBUG(dbgs() << "Loop doesn't have unique exit block\n");
return false;
}
}
return true;
}
unsigned selectLoopForInterchange(ArrayRef<Loop *> LoopList) {
// TODO: Add a better heuristic to select the loop to be interchanged based
// on the dependence matrix. Currently we select the innermost loop.
return LoopList.size() - 1;
}
bool processLoopList(ArrayRef<Loop *> LoopList) {
bool Changed = false;
unsigned LoopNestDepth = LoopList.size();
if (LoopNestDepth < 2) {
LLVM_DEBUG(dbgs() << "Loop doesn't contain minimum nesting level.\n");
return false;
}
if (LoopNestDepth > MaxLoopNestDepth) {
LLVM_DEBUG(dbgs() << "Cannot handle loops of depth greater than "
<< MaxLoopNestDepth << "\n");
return false;
}
if (!isComputableLoopNest(LoopList)) {
LLVM_DEBUG(dbgs() << "Not valid loop candidate for interchange\n");
return false;
}
LLVM_DEBUG(dbgs() << "Processing LoopList of size = " << LoopNestDepth
<< "\n");
CharMatrix DependencyMatrix;
Loop *OuterMostLoop = *(LoopList.begin());
if (!populateDependencyMatrix(DependencyMatrix, LoopNestDepth,
OuterMostLoop, DI)) {
LLVM_DEBUG(dbgs() << "Populating dependency matrix failed\n");
return false;
}
#ifdef DUMP_DEP_MATRICIES
LLVM_DEBUG(dbgs() << "Dependence before interchange\n");
printDepMatrix(DependencyMatrix);
#endif
// Get the Outermost loop exit.
BasicBlock *LoopNestExit = OuterMostLoop->getExitBlock();
if (!LoopNestExit) {
LLVM_DEBUG(dbgs() << "OuterMostLoop needs an unique exit block");
return false;
}
unsigned SelecLoopId = selectLoopForInterchange(LoopList);
// Move the selected loop outwards to the best possible position.
Loop *LoopToBeInterchanged = LoopList[SelecLoopId];
for (unsigned i = SelecLoopId; i > 0; i--) {
bool Interchanged = processLoop(LoopToBeInterchanged, LoopList[i - 1], i,
i - 1, DependencyMatrix);
if (!Interchanged)
return Changed;
// Update the DependencyMatrix
interChangeDependencies(DependencyMatrix, i, i - 1);
#ifdef DUMP_DEP_MATRICIES
LLVM_DEBUG(dbgs() << "Dependence after interchange\n");
printDepMatrix(DependencyMatrix);
#endif
Changed |= Interchanged;
}
return Changed;
}
bool processLoop(Loop *InnerLoop, Loop *OuterLoop, unsigned InnerLoopId,
unsigned OuterLoopId,
std::vector<std::vector<char>> &DependencyMatrix) {
LLVM_DEBUG(dbgs() << "Processing InnerLoopId = " << InnerLoopId
<< " and OuterLoopId = " << OuterLoopId << "\n");
LoopInterchangeLegality LIL(OuterLoop, InnerLoop, SE, ORE);
if (!LIL.canInterchangeLoops(InnerLoopId, OuterLoopId, DependencyMatrix)) {
LLVM_DEBUG(dbgs() << "Not interchanging loops. Cannot prove legality.\n");
return false;
}
LLVM_DEBUG(dbgs() << "Loops are legal to interchange\n");
LoopInterchangeProfitability LIP(OuterLoop, InnerLoop, SE, ORE);
if (!LIP.isProfitable(InnerLoopId, OuterLoopId, DependencyMatrix)) {
LLVM_DEBUG(dbgs() << "Interchanging loops not profitable.\n");
return false;
}
ORE->emit([&]() {
return OptimizationRemark(DEBUG_TYPE, "Interchanged",
InnerLoop->getStartLoc(),
InnerLoop->getHeader())
<< "Loop interchanged with enclosing loop.";
});
LoopInterchangeTransform LIT(OuterLoop, InnerLoop, SE, LI, DT, LIL);
LIT.transform();
LLVM_DEBUG(dbgs() << "Loops interchanged.\n");
LoopsInterchanged++;
assert(InnerLoop->isLCSSAForm(*DT) &&
"Inner loop not left in LCSSA form after loop interchange!");
assert(OuterLoop->isLCSSAForm(*DT) &&
"Outer loop not left in LCSSA form after loop interchange!");
return true;
}
};
} // end anonymous namespace
bool LoopInterchangeLegality::containsUnsafeInstructions(BasicBlock *BB) {
return any_of(*BB, [](const Instruction &I) {
return I.mayHaveSideEffects() || I.mayReadFromMemory();
});
}
bool LoopInterchangeLegality::tightlyNested(Loop *OuterLoop, Loop *InnerLoop) {
BasicBlock *OuterLoopHeader = OuterLoop->getHeader();
BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch();
LLVM_DEBUG(dbgs() << "Checking if loops are tightly nested\n");
// A perfectly nested loop will not have any branch in between the outer and
// inner block i.e. outer header will branch to either inner preheader and
// outerloop latch.
BranchInst *OuterLoopHeaderBI =
dyn_cast<BranchInst>(OuterLoopHeader->getTerminator());
if (!OuterLoopHeaderBI)
return false;
for (BasicBlock *Succ : successors(OuterLoopHeaderBI))
if (Succ != InnerLoopPreHeader && Succ != InnerLoop->getHeader() &&
Succ != OuterLoopLatch)
return false;
LLVM_DEBUG(dbgs() << "Checking instructions in Loop header and Loop latch\n");
// We do not have any basic block in between now make sure the outer header
// and outer loop latch doesn't contain any unsafe instructions.
if (containsUnsafeInstructions(OuterLoopHeader) ||
containsUnsafeInstructions(OuterLoopLatch))
return false;
// Also make sure the inner loop preheader does not contain any unsafe
// instructions. Note that all instructions in the preheader will be moved to
// the outer loop header when interchanging.
if (InnerLoopPreHeader != OuterLoopHeader &&
containsUnsafeInstructions(InnerLoopPreHeader))
return false;
BasicBlock *InnerLoopExit = InnerLoop->getExitBlock();
// Ensure the inner loop exit block flows to the outer loop latch possibly
// through empty blocks.
const BasicBlock &SuccInner =
LoopNest::skipEmptyBlockUntil(InnerLoopExit, OuterLoopLatch);
if (&SuccInner != OuterLoopLatch) {
LLVM_DEBUG(dbgs() << "Inner loop exit block " << *InnerLoopExit
<< " does not lead to the outer loop latch.\n";);
return false;
}
// The inner loop exit block does flow to the outer loop latch and not some
// other BBs, now make sure it contains safe instructions, since it will be
// moved into the (new) inner loop after interchange.
if (containsUnsafeInstructions(InnerLoopExit))
return false;
LLVM_DEBUG(dbgs() << "Loops are perfectly nested\n");
// We have a perfect loop nest.
return true;
}
bool LoopInterchangeLegality::isLoopStructureUnderstood(
PHINode *InnerInduction) {
unsigned Num = InnerInduction->getNumOperands();
BasicBlock *InnerLoopPreheader = InnerLoop->getLoopPreheader();
for (unsigned i = 0; i < Num; ++i) {
Value *Val = InnerInduction->getOperand(i);
if (isa<Constant>(Val))
continue;
Instruction *I = dyn_cast<Instruction>(Val);
if (!I)
return false;
// TODO: Handle triangular loops.
// e.g. for(int i=0;i<N;i++)
// for(int j=i;j<N;j++)
unsigned IncomBlockIndx = PHINode::getIncomingValueNumForOperand(i);
if (InnerInduction->getIncomingBlock(IncomBlockIndx) ==
InnerLoopPreheader &&
!OuterLoop->isLoopInvariant(I)) {
return false;
}
}
// TODO: Handle triangular loops of another form.
// e.g. for(int i=0;i<N;i++)
// for(int j=0;j<i;j++)
// or,
// for(int i=0;i<N;i++)
// for(int j=0;j*i<N;j++)
BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
BranchInst *InnerLoopLatchBI =
dyn_cast<BranchInst>(InnerLoopLatch->getTerminator());
if (!InnerLoopLatchBI->isConditional())
return false;
if (CmpInst *InnerLoopCmp =
dyn_cast<CmpInst>(InnerLoopLatchBI->getCondition())) {
Value *Op0 = InnerLoopCmp->getOperand(0);
Value *Op1 = InnerLoopCmp->getOperand(1);
// LHS and RHS of the inner loop exit condition, e.g.,
// in "for(int j=0;j<i;j++)", LHS is j and RHS is i.
Value *Left = nullptr;
Value *Right = nullptr;
// Check if V only involves inner loop induction variable.
// Return true if V is InnerInduction, or a cast from
// InnerInduction, or a binary operator that involves
// InnerInduction and a constant.
std::function<bool(Value *)> IsPathToIndVar;
IsPathToIndVar = [&InnerInduction, &IsPathToIndVar](Value *V) -> bool {
if (V == InnerInduction)
return true;
if (isa<Constant>(V))
return true;
Instruction *I = dyn_cast<Instruction>(V);
if (!I)
return false;
if (isa<CastInst>(I))
return IsPathToIndVar(I->getOperand(0));
if (isa<BinaryOperator>(I))
return IsPathToIndVar(I->getOperand(0)) &&
IsPathToIndVar(I->getOperand(1));
return false;
};
if (IsPathToIndVar(Op0) && !isa<Constant>(Op0)) {
Left = Op0;
Right = Op1;
} else if (IsPathToIndVar(Op1) && !isa<Constant>(Op1)) {
Left = Op1;
Right = Op0;
}
if (Left == nullptr)
return false;
const SCEV *S = SE->getSCEV(Right);
if (!SE->isLoopInvariant(S, OuterLoop))
return false;
}
return true;
}
// If SV is a LCSSA PHI node with a single incoming value, return the incoming
// value.
static Value *followLCSSA(Value *SV) {
PHINode *PHI = dyn_cast<PHINode>(SV);
if (!PHI)
return SV;
if (PHI->getNumIncomingValues() != 1)
return SV;
return followLCSSA(PHI->getIncomingValue(0));
}
// Check V's users to see if it is involved in a reduction in L.
static PHINode *findInnerReductionPhi(Loop *L, Value *V) {
// Reduction variables cannot be constants.
if (isa<Constant>(V))
return nullptr;
for (Value *User : V->users()) {
if (PHINode *PHI = dyn_cast<PHINode>(User)) {
if (PHI->getNumIncomingValues() == 1)
continue;
RecurrenceDescriptor RD;
if (RecurrenceDescriptor::isReductionPHI(PHI, L, RD))
return PHI;
return nullptr;
}
}
return nullptr;
}
bool LoopInterchangeLegality::findInductionAndReductions(
Loop *L, SmallVector<PHINode *, 8> &Inductions, Loop *InnerLoop) {
if (!L->getLoopLatch() || !L->getLoopPredecessor())
return false;
for (PHINode &PHI : L->getHeader()->phis()) {
RecurrenceDescriptor RD;
InductionDescriptor ID;
if (InductionDescriptor::isInductionPHI(&PHI, L, SE, ID))
Inductions.push_back(&PHI);
else {
// PHIs in inner loops need to be part of a reduction in the outer loop,
// discovered when checking the PHIs of the outer loop earlier.
if (!InnerLoop) {
if (!OuterInnerReductions.count(&PHI)) {
LLVM_DEBUG(dbgs() << "Inner loop PHI is not part of reductions "
"across the outer loop.\n");
return false;
}
} else {
assert(PHI.getNumIncomingValues() == 2 &&
"Phis in loop header should have exactly 2 incoming values");
// Check if we have a PHI node in the outer loop that has a reduction
// result from the inner loop as an incoming value.
Value *V = followLCSSA(PHI.getIncomingValueForBlock(L->getLoopLatch()));
PHINode *InnerRedPhi = findInnerReductionPhi(InnerLoop, V);
if (!InnerRedPhi ||
!llvm::is_contained(InnerRedPhi->incoming_values(), &PHI)) {
LLVM_DEBUG(
dbgs()
<< "Failed to recognize PHI as an induction or reduction.\n");
return false;
}
OuterInnerReductions.insert(&PHI);
OuterInnerReductions.insert(InnerRedPhi);
}
}
}
return true;
}
// This function indicates the current limitations in the transform as a result
// of which we do not proceed.
bool LoopInterchangeLegality::currentLimitations() {
BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
// transform currently expects the loop latches to also be the exiting
// blocks.
if (InnerLoop->getExitingBlock() != InnerLoopLatch ||
OuterLoop->getExitingBlock() != OuterLoop->getLoopLatch() ||
!isa<BranchInst>(InnerLoopLatch->getTerminator()) ||
!isa<BranchInst>(OuterLoop->getLoopLatch()->getTerminator())) {
LLVM_DEBUG(
dbgs() << "Loops where the latch is not the exiting block are not"
<< " supported currently.\n");
ORE->emit([&]() {
return OptimizationRemarkMissed(DEBUG_TYPE, "ExitingNotLatch",
OuterLoop->getStartLoc(),
OuterLoop->getHeader())
<< "Loops where the latch is not the exiting block cannot be"
" interchange currently.";
});
return true;
}
PHINode *InnerInductionVar;
SmallVector<PHINode *, 8> Inductions;
if (!findInductionAndReductions(OuterLoop, Inductions, InnerLoop)) {
LLVM_DEBUG(
dbgs() << "Only outer loops with induction or reduction PHI nodes "
<< "are supported currently.\n");
ORE->emit([&]() {
return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedPHIOuter",
OuterLoop->getStartLoc(),
OuterLoop->getHeader())
<< "Only outer loops with induction or reduction PHI nodes can be"
" interchanged currently.";
});
return true;
}
// TODO: Currently we handle only loops with 1 induction variable.
if (Inductions.size() != 1) {
LLVM_DEBUG(dbgs() << "Loops with more than 1 induction variables are not "
<< "supported currently.\n");
ORE->emit([&]() {
return OptimizationRemarkMissed(DEBUG_TYPE, "MultiIndutionOuter",
OuterLoop->getStartLoc(),
OuterLoop->getHeader())
<< "Only outer loops with 1 induction variable can be "
"interchanged currently.";
});
return true;
}
Inductions.clear();
if (!findInductionAndReductions(InnerLoop, Inductions, nullptr)) {
LLVM_DEBUG(
dbgs() << "Only inner loops with induction or reduction PHI nodes "
<< "are supported currently.\n");
ORE->emit([&]() {
return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedPHIInner",
InnerLoop->getStartLoc(),
InnerLoop->getHeader())
<< "Only inner loops with induction or reduction PHI nodes can be"
" interchange currently.";
});
return true;
}
// TODO: Currently we handle only loops with 1 induction variable.
if (Inductions.size() != 1) {
LLVM_DEBUG(
dbgs() << "We currently only support loops with 1 induction variable."
<< "Failed to interchange due to current limitation\n");
ORE->emit([&]() {
return OptimizationRemarkMissed(DEBUG_TYPE, "MultiInductionInner",
InnerLoop->getStartLoc(),
InnerLoop->getHeader())
<< "Only inner loops with 1 induction variable can be "
"interchanged currently.";
});
return true;
}
InnerInductionVar = Inductions.pop_back_val();
// TODO: Triangular loops are not handled for now.
if (!isLoopStructureUnderstood(InnerInductionVar)) {
LLVM_DEBUG(dbgs() << "Loop structure not understood by pass\n");
ORE->emit([&]() {
return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedStructureInner",
InnerLoop->getStartLoc(),
InnerLoop->getHeader())
<< "Inner loop structure not understood currently.";
});
return true;
}
// TODO: Current limitation: Since we split the inner loop latch at the point
// were induction variable is incremented (induction.next); We cannot have
// more than 1 user of induction.next since it would result in broken code
// after split.
// e.g.
// for(i=0;i<N;i++) {
// for(j = 0;j<M;j++) {
// A[j+1][i+2] = A[j][i]+k;
// }
// }
Instruction *InnerIndexVarInc = nullptr;
if (InnerInductionVar->getIncomingBlock(0) == InnerLoopPreHeader)
InnerIndexVarInc =
dyn_cast<Instruction>(InnerInductionVar->getIncomingValue(1));
else
InnerIndexVarInc =
dyn_cast<Instruction>(InnerInductionVar->getIncomingValue(0));
if (!InnerIndexVarInc) {
LLVM_DEBUG(
dbgs() << "Did not find an instruction to increment the induction "
<< "variable.\n");
ORE->emit([&]() {
return OptimizationRemarkMissed(DEBUG_TYPE, "NoIncrementInInner",
InnerLoop->getStartLoc(),
InnerLoop->getHeader())
<< "The inner loop does not increment the induction variable.";
});
return true;
}
// Since we split the inner loop latch on this induction variable. Make sure
// we do not have any instruction between the induction variable and branch
// instruction.
bool FoundInduction = false;
for (const Instruction &I :
llvm::reverse(InnerLoopLatch->instructionsWithoutDebug())) {
if (isa<BranchInst>(I) || isa<CmpInst>(I) || isa<TruncInst>(I) ||
isa<ZExtInst>(I))
continue;
// We found an instruction. If this is not induction variable then it is not
// safe to split this loop latch.
if (!I.isIdenticalTo(InnerIndexVarInc)) {
LLVM_DEBUG(dbgs() << "Found unsupported instructions between induction "
<< "variable increment and branch.\n");
ORE->emit([&]() {
return OptimizationRemarkMissed(
DEBUG_TYPE, "UnsupportedInsBetweenInduction",
InnerLoop->getStartLoc(), InnerLoop->getHeader())
<< "Found unsupported instruction between induction variable "
"increment and branch.";
});
return true;
}
FoundInduction = true;
break;
}
// The loop latch ended and we didn't find the induction variable return as
// current limitation.
if (!FoundInduction) {
LLVM_DEBUG(dbgs() << "Did not find the induction variable.\n");
ORE->emit([&]() {
return OptimizationRemarkMissed(DEBUG_TYPE, "NoIndutionVariable",
InnerLoop->getStartLoc(),
InnerLoop->getHeader())
<< "Did not find the induction variable.";
});
return true;
}
return false;
}
// We currently only support LCSSA PHI nodes in the inner loop exit, if their
// users are either reduction PHIs or PHIs outside the outer loop (which means
// the we are only interested in the final value after the loop).
static bool
areInnerLoopExitPHIsSupported(Loop *InnerL, Loop *OuterL,
SmallPtrSetImpl<PHINode *> &Reductions) {
BasicBlock *InnerExit = OuterL->getUniqueExitBlock();
for (PHINode &PHI : InnerExit->phis()) {
// Reduction lcssa phi will have only 1 incoming block that from loop latch.
if (PHI.getNumIncomingValues() > 1)
return false;
if (any_of(PHI.users(), [&Reductions, OuterL](User *U) {
PHINode *PN = dyn_cast<PHINode>(U);
return !PN ||
(!Reductions.count(PN) && OuterL->contains(PN->getParent()));
})) {
return false;
}
}
return true;
}
// We currently support LCSSA PHI nodes in the outer loop exit, if their
// incoming values do not come from the outer loop latch or if the
// outer loop latch has a single predecessor. In that case, the value will
// be available if both the inner and outer loop conditions are true, which
// will still be true after interchanging. If we have multiple predecessor,
// that may not be the case, e.g. because the outer loop latch may be executed
// if the inner loop is not executed.
static bool areOuterLoopExitPHIsSupported(Loop *OuterLoop, Loop *InnerLoop) {
BasicBlock *LoopNestExit = OuterLoop->getUniqueExitBlock();
for (PHINode &PHI : LoopNestExit->phis()) {
// FIXME: We currently are not able to detect floating point reductions
// and have to use floating point PHIs as a proxy to prevent
// interchanging in the presence of floating point reductions.
if (PHI.getType()->isFloatingPointTy())
return false;
for (unsigned i = 0; i < PHI.getNumIncomingValues(); i++) {
Instruction *IncomingI = dyn_cast<Instruction>(PHI.getIncomingValue(i));
if (!IncomingI || IncomingI->getParent() != OuterLoop->getLoopLatch())
continue;
// The incoming value is defined in the outer loop latch. Currently we
// only support that in case the outer loop latch has a single predecessor.
// This guarantees that the outer loop latch is executed if and only if
// the inner loop is executed (because tightlyNested() guarantees that the
// outer loop header only branches to the inner loop or the outer loop
// latch).
// FIXME: We could weaken this logic and allow multiple predecessors,
// if the values are produced outside the loop latch. We would need
// additional logic to update the PHI nodes in the exit block as
// well.
if (OuterLoop->getLoopLatch()->getUniquePredecessor() == nullptr)
return false;
}
}
return true;
}
bool LoopInterchangeLegality::canInterchangeLoops(unsigned InnerLoopId,
unsigned OuterLoopId,
CharMatrix &DepMatrix) {
if (!isLegalToInterChangeLoops(DepMatrix, InnerLoopId, OuterLoopId)) {
LLVM_DEBUG(dbgs() << "Failed interchange InnerLoopId = " << InnerLoopId
<< " and OuterLoopId = " << OuterLoopId
<< " due to dependence\n");
ORE->emit([&]() {
return OptimizationRemarkMissed(DEBUG_TYPE, "Dependence",
InnerLoop->getStartLoc(),
InnerLoop->getHeader())
<< "Cannot interchange loops due to dependences.";
});
return false;
}
// Check if outer and inner loop contain legal instructions only.
for (auto *BB : OuterLoop->blocks())
for (Instruction &I : BB->instructionsWithoutDebug())
if (CallInst *CI = dyn_cast<CallInst>(&I)) {
// readnone functions do not prevent interchanging.
if (CI->doesNotReadMemory())
continue;
LLVM_DEBUG(
dbgs() << "Loops with call instructions cannot be interchanged "
<< "safely.");
ORE->emit([&]() {
return OptimizationRemarkMissed(DEBUG_TYPE, "CallInst",
CI->getDebugLoc(),
CI->getParent())
<< "Cannot interchange loops due to call instruction.";
});
return false;
}
// TODO: The loops could not be interchanged due to current limitations in the
// transform module.
if (currentLimitations()) {
LLVM_DEBUG(dbgs() << "Not legal because of current transform limitation\n");
return false;
}
// Check if the loops are tightly nested.
if (!tightlyNested(OuterLoop, InnerLoop)) {
LLVM_DEBUG(dbgs() << "Loops not tightly nested\n");
ORE->emit([&]() {
return OptimizationRemarkMissed(DEBUG_TYPE, "NotTightlyNested",
InnerLoop->getStartLoc(),
InnerLoop->getHeader())
<< "Cannot interchange loops because they are not tightly "
"nested.";
});
return false;
}
if (!areInnerLoopExitPHIsSupported(OuterLoop, InnerLoop,
OuterInnerReductions)) {
LLVM_DEBUG(dbgs() << "Found unsupported PHI nodes in inner loop exit.\n");
ORE->emit([&]() {
return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedExitPHI",
InnerLoop->getStartLoc(),
InnerLoop->getHeader())
<< "Found unsupported PHI node in loop exit.";
});
return false;
}
if (!areOuterLoopExitPHIsSupported(OuterLoop, InnerLoop)) {
LLVM_DEBUG(dbgs() << "Found unsupported PHI nodes in outer loop exit.\n");
ORE->emit([&]() {
return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedExitPHI",
OuterLoop->getStartLoc(),
OuterLoop->getHeader())
<< "Found unsupported PHI node in loop exit.";
});
return false;
}
return true;
}
int LoopInterchangeProfitability::getInstrOrderCost() {
unsigned GoodOrder, BadOrder;
BadOrder = GoodOrder = 0;
for (BasicBlock *BB : InnerLoop->blocks()) {
for (Instruction &Ins : *BB) {
if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&Ins)) {
unsigned NumOp = GEP->getNumOperands();
bool FoundInnerInduction = false;
bool FoundOuterInduction = false;
for (unsigned i = 0; i < NumOp; ++i) {
// Skip operands that are not SCEV-able.
if (!SE->isSCEVable(GEP->getOperand(i)->getType()))
continue;
const SCEV *OperandVal = SE->getSCEV(GEP->getOperand(i));
const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(OperandVal);
if (!AR)
continue;
// If we find the inner induction after an outer induction e.g.
// for(int i=0;i<N;i++)
// for(int j=0;j<N;j++)
// A[i][j] = A[i-1][j-1]+k;
// then it is a good order.
if (AR->getLoop() == InnerLoop) {
// We found an InnerLoop induction after OuterLoop induction. It is
// a good order.
FoundInnerInduction = true;
if (FoundOuterInduction) {
GoodOrder++;
break;
}
}
// If we find the outer induction after an inner induction e.g.
// for(int i=0;i<N;i++)
// for(int j=0;j<N;j++)
// A[j][i] = A[j-1][i-1]+k;
// then it is a bad order.
if (AR->getLoop() == OuterLoop) {
// We found an OuterLoop induction after InnerLoop induction. It is
// a bad order.
FoundOuterInduction = true;
if (FoundInnerInduction) {
BadOrder++;
break;
}
}
}
}
}
}
return GoodOrder - BadOrder;
}
static bool isProfitableForVectorization(unsigned InnerLoopId,
unsigned OuterLoopId,
CharMatrix &DepMatrix) {
// TODO: Improve this heuristic to catch more cases.
// If the inner loop is loop independent or doesn't carry any dependency it is
// profitable to move this to outer position.
for (auto &Row : DepMatrix) {
if (Row[InnerLoopId] != 'S' && Row[InnerLoopId] != 'I')
return false;
// TODO: We need to improve this heuristic.
if (Row[OuterLoopId] != '=')
return false;
}
// If outer loop has dependence and inner loop is loop independent then it is
// profitable to interchange to enable parallelism.
// If there are no dependences, interchanging will not improve anything.
return !DepMatrix.empty();
}
bool LoopInterchangeProfitability::isProfitable(unsigned InnerLoopId,
unsigned OuterLoopId,
CharMatrix &DepMatrix) {
// TODO: Add better profitability checks.
// e.g
// 1) Construct dependency matrix and move the one with no loop carried dep
// inside to enable vectorization.
// This is rough cost estimation algorithm. It counts the good and bad order
// of induction variables in the instruction and allows reordering if number
// of bad orders is more than good.
int Cost = getInstrOrderCost();
LLVM_DEBUG(dbgs() << "Cost = " << Cost << "\n");
if (Cost < -LoopInterchangeCostThreshold)
return true;
// It is not profitable as per current cache profitability model. But check if
// we can move this loop outside to improve parallelism.
if (isProfitableForVectorization(InnerLoopId, OuterLoopId, DepMatrix))
return true;
ORE->emit([&]() {
return OptimizationRemarkMissed(DEBUG_TYPE, "InterchangeNotProfitable",
InnerLoop->getStartLoc(),
InnerLoop->getHeader())
<< "Interchanging loops is too costly (cost="
<< ore::NV("Cost", Cost) << ", threshold="
<< ore::NV("Threshold", LoopInterchangeCostThreshold)
<< ") and it does not improve parallelism.";
});
return false;
}
void LoopInterchangeTransform::removeChildLoop(Loop *OuterLoop,
Loop *InnerLoop) {
for (Loop *L : *OuterLoop)
if (L == InnerLoop) {
OuterLoop->removeChildLoop(L);
return;
}
llvm_unreachable("Couldn't find loop");
}
/// Update LoopInfo, after interchanging. NewInner and NewOuter refer to the
/// new inner and outer loop after interchanging: NewInner is the original
/// outer loop and NewOuter is the original inner loop.
///
/// Before interchanging, we have the following structure
/// Outer preheader
// Outer header
// Inner preheader
// Inner header
// Inner body
// Inner latch
// outer bbs
// Outer latch
//
// After interchanging:
// Inner preheader
// Inner header
// Outer preheader
// Outer header
// Inner body
// outer bbs
// Outer latch
// Inner latch
void LoopInterchangeTransform::restructureLoops(
Loop *NewInner, Loop *NewOuter, BasicBlock *OrigInnerPreHeader,
BasicBlock *OrigOuterPreHeader) {
Loop *OuterLoopParent = OuterLoop->getParentLoop();
// The original inner loop preheader moves from the new inner loop to
// the parent loop, if there is one.
NewInner->removeBlockFromLoop(OrigInnerPreHeader);
LI->changeLoopFor(OrigInnerPreHeader, OuterLoopParent);
// Switch the loop levels.
if (OuterLoopParent) {
// Remove the loop from its parent loop.
removeChildLoop(OuterLoopParent, NewInner);
removeChildLoop(NewInner, NewOuter);
OuterLoopParent->addChildLoop(NewOuter);
} else {
removeChildLoop(NewInner, NewOuter);
LI->changeTopLevelLoop(NewInner, NewOuter);
}
while (!NewOuter->isInnermost())
NewInner->addChildLoop(NewOuter->removeChildLoop(NewOuter->begin()));
NewOuter->addChildLoop(NewInner);
// BBs from the original inner loop.
SmallVector<BasicBlock *, 8> OrigInnerBBs(NewOuter->blocks());
// Add BBs from the original outer loop to the original inner loop (excluding
// BBs already in inner loop)
for (BasicBlock *BB : NewInner->blocks())
if (LI->getLoopFor(BB) == NewInner)
NewOuter->addBlockEntry(BB);
// Now remove inner loop header and latch from the new inner loop and move
// other BBs (the loop body) to the new inner loop.
BasicBlock *OuterHeader = NewOuter->getHeader();
BasicBlock *OuterLatch = NewOuter->getLoopLatch();
for (BasicBlock *BB : OrigInnerBBs) {
// Nothing will change for BBs in child loops.
if (LI->getLoopFor(BB) != NewOuter)
continue;
// Remove the new outer loop header and latch from the new inner loop.
if (BB == OuterHeader || BB == OuterLatch)
NewInner->removeBlockFromLoop(BB);
else
LI->changeLoopFor(BB, NewInner);
}
// The preheader of the original outer loop becomes part of the new
// outer loop.
NewOuter->addBlockEntry(OrigOuterPreHeader);
LI->changeLoopFor(OrigOuterPreHeader, NewOuter);
// Tell SE that we move the loops around.
SE->forgetLoop(NewOuter);
SE->forgetLoop(NewInner);
}
bool LoopInterchangeTransform::transform() {
bool Transformed = false;
Instruction *InnerIndexVar;
if (InnerLoop->getSubLoops().empty()) {
BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
LLVM_DEBUG(dbgs() << "Splitting the inner loop latch\n");
PHINode *InductionPHI = getInductionVariable(InnerLoop, SE);
if (!InductionPHI) {
LLVM_DEBUG(dbgs() << "Failed to find the point to split loop latch \n");
return false;
}
if (InductionPHI->getIncomingBlock(0) == InnerLoopPreHeader)
InnerIndexVar = dyn_cast<Instruction>(InductionPHI->getIncomingValue(1));
else
InnerIndexVar = dyn_cast<Instruction>(InductionPHI->getIncomingValue(0));
// Ensure that InductionPHI is the first Phi node.
if (&InductionPHI->getParent()->front() != InductionPHI)
InductionPHI->moveBefore(&InductionPHI->getParent()->front());
// Create a new latch block for the inner loop. We split at the
// current latch's terminator and then move the condition and all
// operands that are not either loop-invariant or the induction PHI into the
// new latch block.
BasicBlock *NewLatch =
SplitBlock(InnerLoop->getLoopLatch(),
InnerLoop->getLoopLatch()->getTerminator(), DT, LI);
SmallSetVector<Instruction *, 4> WorkList;
unsigned i = 0;
auto MoveInstructions = [&i, &WorkList, this, InductionPHI, NewLatch]() {
for (; i < WorkList.size(); i++) {
// Duplicate instruction and move it the new latch. Update uses that
// have been moved.
Instruction *NewI = WorkList[i]->clone();
NewI->insertBefore(NewLatch->getFirstNonPHI());
assert(!NewI->mayHaveSideEffects() &&
"Moving instructions with side-effects may change behavior of "
"the loop nest!");
for (Use &U : llvm::make_early_inc_range(WorkList[i]->uses())) {
Instruction *UserI = cast<Instruction>(U.getUser());
if (!InnerLoop->contains(UserI->getParent()) ||
UserI->getParent() == NewLatch || UserI == InductionPHI)
U.set(NewI);
}
// Add operands of moved instruction to the worklist, except if they are
// outside the inner loop or are the induction PHI.
for (Value *Op : WorkList[i]->operands()) {
Instruction *OpI = dyn_cast<Instruction>(Op);
if (!OpI ||
this->LI->getLoopFor(OpI->getParent()) != this->InnerLoop ||
OpI == InductionPHI)
continue;
WorkList.insert(OpI);
}
}
};
// FIXME: Should we interchange when we have a constant condition?
Instruction *CondI = dyn_cast<Instruction>(
cast<BranchInst>(InnerLoop->getLoopLatch()->getTerminator())
->getCondition());
if (CondI)
WorkList.insert(CondI);
MoveInstructions();
WorkList.insert(cast<Instruction>(InnerIndexVar));
MoveInstructions();
// Splits the inner loops phi nodes out into a separate basic block.
BasicBlock *InnerLoopHeader = InnerLoop->getHeader();
SplitBlock(InnerLoopHeader, InnerLoopHeader->getFirstNonPHI(), DT, LI);
LLVM_DEBUG(dbgs() << "splitting InnerLoopHeader done\n");
}
// Instructions in the original inner loop preheader may depend on values
// defined in the outer loop header. Move them there, because the original
// inner loop preheader will become the entry into the interchanged loop nest.
// Currently we move all instructions and rely on LICM to move invariant
// instructions outside the loop nest.
BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
BasicBlock *OuterLoopHeader = OuterLoop->getHeader();
if (InnerLoopPreHeader != OuterLoopHeader) {
SmallPtrSet<Instruction *, 4> NeedsMoving;
for (Instruction &I :
make_early_inc_range(make_range(InnerLoopPreHeader->begin(),
std::prev(InnerLoopPreHeader->end()))))
I.moveBefore(OuterLoopHeader->getTerminator());
}
Transformed |= adjustLoopLinks();
if (!Transformed) {
LLVM_DEBUG(dbgs() << "adjustLoopLinks failed\n");
return false;
}
return true;
}
/// \brief Move all instructions except the terminator from FromBB right before
/// InsertBefore
static void moveBBContents(BasicBlock *FromBB, Instruction *InsertBefore) {
auto &ToList = InsertBefore->getParent()->getInstList();
auto &FromList = FromBB->getInstList();
ToList.splice(InsertBefore->getIterator(), FromList, FromList.begin(),
FromBB->getTerminator()->getIterator());
}
/// Swap instructions between \p BB1 and \p BB2 but keep terminators intact.
static void swapBBContents(BasicBlock *BB1, BasicBlock *BB2) {
// Save all non-terminator instructions of BB1 into TempInstrs and unlink them
// from BB1 afterwards.
auto Iter = map_range(*BB1, [](Instruction &I) { return &I; });
SmallVector<Instruction *, 4> TempInstrs(Iter.begin(), std::prev(Iter.end()));
for (Instruction *I : TempInstrs)
I->removeFromParent();
// Move instructions from BB2 to BB1.
moveBBContents(BB2, BB1->getTerminator());
// Move instructions from TempInstrs to BB2.
for (Instruction *I : TempInstrs)
I->insertBefore(BB2->getTerminator());
}
// Update BI to jump to NewBB instead of OldBB. Records updates to the
// dominator tree in DTUpdates. If \p MustUpdateOnce is true, assert that
// \p OldBB is exactly once in BI's successor list.
static void updateSuccessor(BranchInst *BI, BasicBlock *OldBB,
BasicBlock *NewBB,
std::vector<DominatorTree::UpdateType> &DTUpdates,
bool MustUpdateOnce = true) {
assert((!MustUpdateOnce ||
llvm::count_if(successors(BI),
[OldBB](BasicBlock *BB) {
return BB == OldBB;
}) == 1) && "BI must jump to OldBB exactly once.");
bool Changed = false;
for (Use &Op : BI->operands())
if (Op == OldBB) {
Op.set(NewBB);
Changed = true;
}
if (Changed) {
DTUpdates.push_back(
{DominatorTree::UpdateKind::Insert, BI->getParent(), NewBB});
DTUpdates.push_back(
{DominatorTree::UpdateKind::Delete, BI->getParent(), OldBB});
}
assert(Changed && "Expected a successor to be updated");
}
// Move Lcssa PHIs to the right place.
static void moveLCSSAPhis(BasicBlock *InnerExit, BasicBlock *InnerHeader,
BasicBlock *InnerLatch, BasicBlock *OuterHeader,
BasicBlock *OuterLatch, BasicBlock *OuterExit,
Loop *InnerLoop, LoopInfo *LI) {
// Deal with LCSSA PHI nodes in the exit block of the inner loop, that are
// defined either in the header or latch. Those blocks will become header and
// latch of the new outer loop, and the only possible users can PHI nodes
// in the exit block of the loop nest or the outer loop header (reduction
// PHIs, in that case, the incoming value must be defined in the inner loop
// header). We can just substitute the user with the incoming value and remove
// the PHI.
for (PHINode &P : make_early_inc_range(InnerExit->phis())) {
assert(P.getNumIncomingValues() == 1 &&
"Only loops with a single exit are supported!");
// Incoming values are guaranteed be instructions currently.
auto IncI = cast<Instruction>(P.getIncomingValueForBlock(InnerLatch));
// Skip phis with incoming values from the inner loop body, excluding the
// header and latch.
if (IncI->getParent() != InnerLatch && IncI->getParent() != InnerHeader)
continue;
assert(all_of(P.users(),
[OuterHeader, OuterExit, IncI, InnerHeader](User *U) {
return (cast<PHINode>(U)->getParent() == OuterHeader &&
IncI->getParent() == InnerHeader) ||
cast<PHINode>(U)->getParent() == OuterExit;
}) &&
"Can only replace phis iff the uses are in the loop nest exit or "
"the incoming value is defined in the inner header (it will "
"dominate all loop blocks after interchanging)");
P.replaceAllUsesWith(IncI);
P.eraseFromParent();
}
SmallVector<PHINode *, 8> LcssaInnerExit;
for (PHINode &P : InnerExit->phis())
LcssaInnerExit.push_back(&P);
SmallVector<PHINode *, 8> LcssaInnerLatch;
for (PHINode &P : InnerLatch->phis())
LcssaInnerLatch.push_back(&P);
// Lcssa PHIs for values used outside the inner loop are in InnerExit.
// If a PHI node has users outside of InnerExit, it has a use outside the
// interchanged loop and we have to preserve it. We move these to
// InnerLatch, which will become the new exit block for the innermost
// loop after interchanging.
for (PHINode *P : LcssaInnerExit)
P->moveBefore(InnerLatch->getFirstNonPHI());
// If the inner loop latch contains LCSSA PHIs, those come from a child loop
// and we have to move them to the new inner latch.
for (PHINode *P : LcssaInnerLatch)
P->moveBefore(InnerExit->getFirstNonPHI());
// Deal with LCSSA PHI nodes in the loop nest exit block. For PHIs that have
// incoming values defined in the outer loop, we have to add a new PHI
// in the inner loop latch, which became the exit block of the outer loop,
// after interchanging.
if (OuterExit) {
for (PHINode &P : OuterExit->phis()) {
if (P.getNumIncomingValues() != 1)
continue;
// Skip Phis with incoming values defined in the inner loop. Those should
// already have been updated.
auto I = dyn_cast<Instruction>(P.getIncomingValue(0));
if (!I || LI->getLoopFor(I->getParent()) == InnerLoop)
continue;
PHINode *NewPhi = dyn_cast<PHINode>(P.clone());
NewPhi->setIncomingValue(0, P.getIncomingValue(0));
NewPhi->setIncomingBlock(0, OuterLatch);
// We might have incoming edges from other BBs, i.e., the original outer
// header.
for (auto *Pred : predecessors(InnerLatch)) {
if (Pred == OuterLatch)
continue;
NewPhi->addIncoming(P.getIncomingValue(0), Pred);
}
NewPhi->insertBefore(InnerLatch->getFirstNonPHI());
P.setIncomingValue(0, NewPhi);
}
}
// Now adjust the incoming blocks for the LCSSA PHIs.
// For PHIs moved from Inner's exit block, we need to replace Inner's latch
// with the new latch.
InnerLatch->replacePhiUsesWith(InnerLatch, OuterLatch);
}
bool LoopInterchangeTransform::adjustLoopBranches() {
LLVM_DEBUG(dbgs() << "adjustLoopBranches called\n");
std::vector<DominatorTree::UpdateType> DTUpdates;
BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader();
BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
assert(OuterLoopPreHeader != OuterLoop->getHeader() &&
InnerLoopPreHeader != InnerLoop->getHeader() && OuterLoopPreHeader &&
InnerLoopPreHeader && "Guaranteed by loop-simplify form");
// Ensure that both preheaders do not contain PHI nodes and have single
// predecessors. This allows us to move them easily. We use
// InsertPreHeaderForLoop to create an 'extra' preheader, if the existing
// preheaders do not satisfy those conditions.
if (isa<PHINode>(OuterLoopPreHeader->begin()) ||
!OuterLoopPreHeader->getUniquePredecessor())
OuterLoopPreHeader =
InsertPreheaderForLoop(OuterLoop, DT, LI, nullptr, true);
if (InnerLoopPreHeader == OuterLoop->getHeader())
InnerLoopPreHeader =
InsertPreheaderForLoop(InnerLoop, DT, LI, nullptr, true);
// Adjust the loop preheader
BasicBlock *InnerLoopHeader = InnerLoop->getHeader();
BasicBlock *OuterLoopHeader = OuterLoop->getHeader();
BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch();
BasicBlock *OuterLoopPredecessor = OuterLoopPreHeader->getUniquePredecessor();
BasicBlock *InnerLoopLatchPredecessor =
InnerLoopLatch->getUniquePredecessor();
BasicBlock *InnerLoopLatchSuccessor;
BasicBlock *OuterLoopLatchSuccessor;
BranchInst *OuterLoopLatchBI =
dyn_cast<BranchInst>(OuterLoopLatch->getTerminator());
BranchInst *InnerLoopLatchBI =
dyn_cast<BranchInst>(InnerLoopLatch->getTerminator());
BranchInst *OuterLoopHeaderBI =
dyn_cast<BranchInst>(OuterLoopHeader->getTerminator());
BranchInst *InnerLoopHeaderBI =
dyn_cast<BranchInst>(InnerLoopHeader->getTerminator());
if (!OuterLoopPredecessor || !InnerLoopLatchPredecessor ||
!OuterLoopLatchBI || !InnerLoopLatchBI || !OuterLoopHeaderBI ||
!InnerLoopHeaderBI)
return false;
BranchInst *InnerLoopLatchPredecessorBI =
dyn_cast<BranchInst>(InnerLoopLatchPredecessor->getTerminator());
BranchInst *OuterLoopPredecessorBI =
dyn_cast<BranchInst>(OuterLoopPredecessor->getTerminator());
if (!OuterLoopPredecessorBI || !InnerLoopLatchPredecessorBI)
return false;
BasicBlock *InnerLoopHeaderSuccessor = InnerLoopHeader->getUniqueSuccessor();
if (!InnerLoopHeaderSuccessor)
return false;
// Adjust Loop Preheader and headers.
// The branches in the outer loop predecessor and the outer loop header can
// be unconditional branches or conditional branches with duplicates. Consider
// this when updating the successors.
updateSuccessor(OuterLoopPredecessorBI, OuterLoopPreHeader,
InnerLoopPreHeader, DTUpdates, /*MustUpdateOnce=*/false);
// The outer loop header might or might not branch to the outer latch.
// We are guaranteed to branch to the inner loop preheader.
if (llvm::is_contained(OuterLoopHeaderBI->successors(), OuterLoopLatch)) {
// In this case the outerLoopHeader should branch to the InnerLoopLatch.
updateSuccessor(OuterLoopHeaderBI, OuterLoopLatch, InnerLoopLatch,
DTUpdates,
/*MustUpdateOnce=*/false);
}
updateSuccessor(OuterLoopHeaderBI, InnerLoopPreHeader,
InnerLoopHeaderSuccessor, DTUpdates,
/*MustUpdateOnce=*/false);
// Adjust reduction PHI's now that the incoming block has changed.
InnerLoopHeaderSuccessor->replacePhiUsesWith(InnerLoopHeader,
OuterLoopHeader);
updateSuccessor(InnerLoopHeaderBI, InnerLoopHeaderSuccessor,
OuterLoopPreHeader, DTUpdates);
// -------------Adjust loop latches-----------
if (InnerLoopLatchBI->getSuccessor(0) == InnerLoopHeader)
InnerLoopLatchSuccessor = InnerLoopLatchBI->getSuccessor(1);
else
InnerLoopLatchSuccessor = InnerLoopLatchBI->getSuccessor(0);
updateSuccessor(InnerLoopLatchPredecessorBI, InnerLoopLatch,
InnerLoopLatchSuccessor, DTUpdates);
if (OuterLoopLatchBI->getSuccessor(0) == OuterLoopHeader)
OuterLoopLatchSuccessor = OuterLoopLatchBI->getSuccessor(1);
else
OuterLoopLatchSuccessor = OuterLoopLatchBI->getSuccessor(0);
updateSuccessor(InnerLoopLatchBI, InnerLoopLatchSuccessor,
OuterLoopLatchSuccessor, DTUpdates);
updateSuccessor(OuterLoopLatchBI, OuterLoopLatchSuccessor, InnerLoopLatch,
DTUpdates);
DT->applyUpdates(DTUpdates);
restructureLoops(OuterLoop, InnerLoop, InnerLoopPreHeader,
OuterLoopPreHeader);
moveLCSSAPhis(InnerLoopLatchSuccessor, InnerLoopHeader, InnerLoopLatch,
OuterLoopHeader, OuterLoopLatch, InnerLoop->getExitBlock(),
InnerLoop, LI);
// For PHIs in the exit block of the outer loop, outer's latch has been
// replaced by Inners'.
OuterLoopLatchSuccessor->replacePhiUsesWith(OuterLoopLatch, InnerLoopLatch);
// Now update the reduction PHIs in the inner and outer loop headers.
SmallVector<PHINode *, 4> InnerLoopPHIs, OuterLoopPHIs;
for (PHINode &PHI : drop_begin(InnerLoopHeader->phis()))
InnerLoopPHIs.push_back(cast<PHINode>(&PHI));
for (PHINode &PHI : drop_begin(OuterLoopHeader->phis()))
OuterLoopPHIs.push_back(cast<PHINode>(&PHI));
auto &OuterInnerReductions = LIL.getOuterInnerReductions();
(void)OuterInnerReductions;
// Now move the remaining reduction PHIs from outer to inner loop header and
// vice versa. The PHI nodes must be part of a reduction across the inner and
// outer loop and all the remains to do is and updating the incoming blocks.
for (PHINode *PHI : OuterLoopPHIs) {
PHI->moveBefore(InnerLoopHeader->getFirstNonPHI());
assert(OuterInnerReductions.count(PHI) && "Expected a reduction PHI node");
}
for (PHINode *PHI : InnerLoopPHIs) {
PHI->moveBefore(OuterLoopHeader->getFirstNonPHI());
assert(OuterInnerReductions.count(PHI) && "Expected a reduction PHI node");
}
// Update the incoming blocks for moved PHI nodes.
OuterLoopHeader->replacePhiUsesWith(InnerLoopPreHeader, OuterLoopPreHeader);
OuterLoopHeader->replacePhiUsesWith(InnerLoopLatch, OuterLoopLatch);
InnerLoopHeader->replacePhiUsesWith(OuterLoopPreHeader, InnerLoopPreHeader);
InnerLoopHeader->replacePhiUsesWith(OuterLoopLatch, InnerLoopLatch);
// Values defined in the outer loop header could be used in the inner loop
// latch. In that case, we need to create LCSSA phis for them, because after
// interchanging they will be defined in the new inner loop and used in the
// new outer loop.
IRBuilder<> Builder(OuterLoopHeader->getContext());
SmallVector<Instruction *, 4> MayNeedLCSSAPhis;
for (Instruction &I :
make_range(OuterLoopHeader->begin(), std::prev(OuterLoopHeader->end())))
MayNeedLCSSAPhis.push_back(&I);
formLCSSAForInstructions(MayNeedLCSSAPhis, *DT, *LI, SE, Builder);
return true;
}
bool LoopInterchangeTransform::adjustLoopLinks() {
// Adjust all branches in the inner and outer loop.
bool Changed = adjustLoopBranches();
if (Changed) {
// We have interchanged the preheaders so we need to interchange the data in
// the preheaders as well. This is because the content of the inner
// preheader was previously executed inside the outer loop.
BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader();
BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
swapBBContents(OuterLoopPreHeader, InnerLoopPreHeader);
}
return Changed;
}
/// Main LoopInterchange Pass.
struct LoopInterchangeLegacyPass : public LoopPass {
static char ID;
LoopInterchangeLegacyPass() : LoopPass(ID) {
initializeLoopInterchangeLegacyPassPass(*PassRegistry::getPassRegistry());
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<DependenceAnalysisWrapperPass>();
AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
getLoopAnalysisUsage(AU);
}
bool runOnLoop(Loop *L, LPPassManager &LPM) override {
if (skipLoop(L))
return false;
auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
auto *DI = &getAnalysis<DependenceAnalysisWrapperPass>().getDI();
auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
return LoopInterchange(SE, LI, DI, DT, ORE).run(L);
}
};
char LoopInterchangeLegacyPass::ID = 0;
INITIALIZE_PASS_BEGIN(LoopInterchangeLegacyPass, "loop-interchange",
"Interchanges loops for cache reuse", false, false)
INITIALIZE_PASS_DEPENDENCY(LoopPass)
INITIALIZE_PASS_DEPENDENCY(DependenceAnalysisWrapperPass)
INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
INITIALIZE_PASS_END(LoopInterchangeLegacyPass, "loop-interchange",
"Interchanges loops for cache reuse", false, false)
Pass *llvm::createLoopInterchangePass() {
return new LoopInterchangeLegacyPass();
}
PreservedAnalyses LoopInterchangePass::run(LoopNest &LN,
LoopAnalysisManager &AM,
LoopStandardAnalysisResults &AR,
LPMUpdater &U) {
Function &F = *LN.getParent();
DependenceInfo DI(&F, &AR.AA, &AR.SE, &AR.LI);
OptimizationRemarkEmitter ORE(&F);
if (!LoopInterchange(&AR.SE, &AR.LI, &DI, &AR.DT, &ORE).run(LN))
return PreservedAnalyses::all();
return getLoopPassPreservedAnalyses();
}