llvm-project/lldb/source/Target/Process.cpp

6046 lines
220 KiB
C++

//===-- Process.cpp ---------------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "lldb/lldb-python.h"
#include "lldb/Target/Process.h"
#include "lldb/lldb-private-log.h"
#include "lldb/Breakpoint/StoppointCallbackContext.h"
#include "lldb/Breakpoint/BreakpointLocation.h"
#include "lldb/Core/Event.h"
#include "lldb/Core/ConnectionFileDescriptor.h"
#include "lldb/Core/Debugger.h"
#include "lldb/Core/Log.h"
#include "lldb/Core/Module.h"
#include "lldb/Symbol/Symbol.h"
#include "lldb/Core/PluginManager.h"
#include "lldb/Core/State.h"
#include "lldb/Core/StreamFile.h"
#include "lldb/Expression/ClangUserExpression.h"
#include "lldb/Interpreter/CommandInterpreter.h"
#include "lldb/Host/Host.h"
#include "lldb/Host/HostInfo.h"
#include "lldb/Host/Pipe.h"
#include "lldb/Host/Terminal.h"
#include "lldb/Host/ThreadLauncher.h"
#include "lldb/Target/ABI.h"
#include "lldb/Target/DynamicLoader.h"
#include "lldb/Target/JITLoader.h"
#include "lldb/Target/MemoryHistory.h"
#include "lldb/Target/OperatingSystem.h"
#include "lldb/Target/LanguageRuntime.h"
#include "lldb/Target/CPPLanguageRuntime.h"
#include "lldb/Target/ObjCLanguageRuntime.h"
#include "lldb/Target/Platform.h"
#include "lldb/Target/RegisterContext.h"
#include "lldb/Target/StopInfo.h"
#include "lldb/Target/SystemRuntime.h"
#include "lldb/Target/Target.h"
#include "lldb/Target/TargetList.h"
#include "lldb/Target/Thread.h"
#include "lldb/Target/ThreadPlan.h"
#include "lldb/Target/ThreadPlanBase.h"
#include "Plugins/Process/Utility/InferiorCallPOSIX.h"
using namespace lldb;
using namespace lldb_private;
// Comment out line below to disable memory caching, overriding the process setting
// target.process.disable-memory-cache
#define ENABLE_MEMORY_CACHING
#ifdef ENABLE_MEMORY_CACHING
#define DISABLE_MEM_CACHE_DEFAULT false
#else
#define DISABLE_MEM_CACHE_DEFAULT true
#endif
class ProcessOptionValueProperties : public OptionValueProperties
{
public:
ProcessOptionValueProperties (const ConstString &name) :
OptionValueProperties (name)
{
}
// This constructor is used when creating ProcessOptionValueProperties when it
// is part of a new lldb_private::Process instance. It will copy all current
// global property values as needed
ProcessOptionValueProperties (ProcessProperties *global_properties) :
OptionValueProperties(*global_properties->GetValueProperties())
{
}
virtual const Property *
GetPropertyAtIndex (const ExecutionContext *exe_ctx, bool will_modify, uint32_t idx) const
{
// When getting the value for a key from the process options, we will always
// try and grab the setting from the current process if there is one. Else we just
// use the one from this instance.
if (exe_ctx)
{
Process *process = exe_ctx->GetProcessPtr();
if (process)
{
ProcessOptionValueProperties *instance_properties = static_cast<ProcessOptionValueProperties *>(process->GetValueProperties().get());
if (this != instance_properties)
return instance_properties->ProtectedGetPropertyAtIndex (idx);
}
}
return ProtectedGetPropertyAtIndex (idx);
}
};
static PropertyDefinition
g_properties[] =
{
{ "disable-memory-cache" , OptionValue::eTypeBoolean, false, DISABLE_MEM_CACHE_DEFAULT, NULL, NULL, "Disable reading and caching of memory in fixed-size units." },
{ "extra-startup-command", OptionValue::eTypeArray , false, OptionValue::eTypeString, NULL, NULL, "A list containing extra commands understood by the particular process plugin used. "
"For instance, to turn on debugserver logging set this to \"QSetLogging:bitmask=LOG_DEFAULT;\"" },
{ "ignore-breakpoints-in-expressions", OptionValue::eTypeBoolean, true, true, NULL, NULL, "If true, breakpoints will be ignored during expression evaluation." },
{ "unwind-on-error-in-expressions", OptionValue::eTypeBoolean, true, true, NULL, NULL, "If true, errors in expression evaluation will unwind the stack back to the state before the call." },
{ "python-os-plugin-path", OptionValue::eTypeFileSpec, false, true, NULL, NULL, "A path to a python OS plug-in module file that contains a OperatingSystemPlugIn class." },
{ "stop-on-sharedlibrary-events" , OptionValue::eTypeBoolean, true, false, NULL, NULL, "If true, stop when a shared library is loaded or unloaded." },
{ "detach-keeps-stopped" , OptionValue::eTypeBoolean, true, false, NULL, NULL, "If true, detach will attempt to keep the process stopped." },
{ "memory-cache-line-size" , OptionValue::eTypeUInt64, false, 512, NULL, NULL, "The memory cache line size" },
{ NULL , OptionValue::eTypeInvalid, false, 0, NULL, NULL, NULL }
};
enum {
ePropertyDisableMemCache,
ePropertyExtraStartCommand,
ePropertyIgnoreBreakpointsInExpressions,
ePropertyUnwindOnErrorInExpressions,
ePropertyPythonOSPluginPath,
ePropertyStopOnSharedLibraryEvents,
ePropertyDetachKeepsStopped,
ePropertyMemCacheLineSize
};
ProcessProperties::ProcessProperties (bool is_global) :
Properties ()
{
if (is_global)
{
m_collection_sp.reset (new ProcessOptionValueProperties(ConstString("process")));
m_collection_sp->Initialize(g_properties);
m_collection_sp->AppendProperty(ConstString("thread"),
ConstString("Settings specific to threads."),
true,
Thread::GetGlobalProperties()->GetValueProperties());
}
else
m_collection_sp.reset (new ProcessOptionValueProperties(Process::GetGlobalProperties().get()));
}
ProcessProperties::~ProcessProperties()
{
}
bool
ProcessProperties::GetDisableMemoryCache() const
{
const uint32_t idx = ePropertyDisableMemCache;
return m_collection_sp->GetPropertyAtIndexAsBoolean (NULL, idx, g_properties[idx].default_uint_value != 0);
}
uint64_t
ProcessProperties::GetMemoryCacheLineSize() const
{
const uint32_t idx = ePropertyMemCacheLineSize;
return m_collection_sp->GetPropertyAtIndexAsUInt64 (NULL, idx, g_properties[idx].default_uint_value);
}
Args
ProcessProperties::GetExtraStartupCommands () const
{
Args args;
const uint32_t idx = ePropertyExtraStartCommand;
m_collection_sp->GetPropertyAtIndexAsArgs(NULL, idx, args);
return args;
}
void
ProcessProperties::SetExtraStartupCommands (const Args &args)
{
const uint32_t idx = ePropertyExtraStartCommand;
m_collection_sp->SetPropertyAtIndexFromArgs(NULL, idx, args);
}
FileSpec
ProcessProperties::GetPythonOSPluginPath () const
{
const uint32_t idx = ePropertyPythonOSPluginPath;
return m_collection_sp->GetPropertyAtIndexAsFileSpec(NULL, idx);
}
void
ProcessProperties::SetPythonOSPluginPath (const FileSpec &file)
{
const uint32_t idx = ePropertyPythonOSPluginPath;
m_collection_sp->SetPropertyAtIndexAsFileSpec(NULL, idx, file);
}
bool
ProcessProperties::GetIgnoreBreakpointsInExpressions () const
{
const uint32_t idx = ePropertyIgnoreBreakpointsInExpressions;
return m_collection_sp->GetPropertyAtIndexAsBoolean(NULL, idx, g_properties[idx].default_uint_value != 0);
}
void
ProcessProperties::SetIgnoreBreakpointsInExpressions (bool ignore)
{
const uint32_t idx = ePropertyIgnoreBreakpointsInExpressions;
m_collection_sp->SetPropertyAtIndexAsBoolean(NULL, idx, ignore);
}
bool
ProcessProperties::GetUnwindOnErrorInExpressions () const
{
const uint32_t idx = ePropertyUnwindOnErrorInExpressions;
return m_collection_sp->GetPropertyAtIndexAsBoolean(NULL, idx, g_properties[idx].default_uint_value != 0);
}
void
ProcessProperties::SetUnwindOnErrorInExpressions (bool ignore)
{
const uint32_t idx = ePropertyUnwindOnErrorInExpressions;
m_collection_sp->SetPropertyAtIndexAsBoolean(NULL, idx, ignore);
}
bool
ProcessProperties::GetStopOnSharedLibraryEvents () const
{
const uint32_t idx = ePropertyStopOnSharedLibraryEvents;
return m_collection_sp->GetPropertyAtIndexAsBoolean(NULL, idx, g_properties[idx].default_uint_value != 0);
}
void
ProcessProperties::SetStopOnSharedLibraryEvents (bool stop)
{
const uint32_t idx = ePropertyStopOnSharedLibraryEvents;
m_collection_sp->SetPropertyAtIndexAsBoolean(NULL, idx, stop);
}
bool
ProcessProperties::GetDetachKeepsStopped () const
{
const uint32_t idx = ePropertyDetachKeepsStopped;
return m_collection_sp->GetPropertyAtIndexAsBoolean(NULL, idx, g_properties[idx].default_uint_value != 0);
}
void
ProcessProperties::SetDetachKeepsStopped (bool stop)
{
const uint32_t idx = ePropertyDetachKeepsStopped;
m_collection_sp->SetPropertyAtIndexAsBoolean(NULL, idx, stop);
}
void
ProcessInstanceInfo::Dump (Stream &s, Platform *platform) const
{
const char *cstr;
if (m_pid != LLDB_INVALID_PROCESS_ID)
s.Printf (" pid = %" PRIu64 "\n", m_pid);
if (m_parent_pid != LLDB_INVALID_PROCESS_ID)
s.Printf (" parent = %" PRIu64 "\n", m_parent_pid);
if (m_executable)
{
s.Printf (" name = %s\n", m_executable.GetFilename().GetCString());
s.PutCString (" file = ");
m_executable.Dump(&s);
s.EOL();
}
const uint32_t argc = m_arguments.GetArgumentCount();
if (argc > 0)
{
for (uint32_t i=0; i<argc; i++)
{
const char *arg = m_arguments.GetArgumentAtIndex(i);
if (i < 10)
s.Printf (" arg[%u] = %s\n", i, arg);
else
s.Printf ("arg[%u] = %s\n", i, arg);
}
}
const uint32_t envc = m_environment.GetArgumentCount();
if (envc > 0)
{
for (uint32_t i=0; i<envc; i++)
{
const char *env = m_environment.GetArgumentAtIndex(i);
if (i < 10)
s.Printf (" env[%u] = %s\n", i, env);
else
s.Printf ("env[%u] = %s\n", i, env);
}
}
if (m_arch.IsValid())
s.Printf (" arch = %s\n", m_arch.GetTriple().str().c_str());
if (m_uid != UINT32_MAX)
{
cstr = platform->GetUserName (m_uid);
s.Printf (" uid = %-5u (%s)\n", m_uid, cstr ? cstr : "");
}
if (m_gid != UINT32_MAX)
{
cstr = platform->GetGroupName (m_gid);
s.Printf (" gid = %-5u (%s)\n", m_gid, cstr ? cstr : "");
}
if (m_euid != UINT32_MAX)
{
cstr = platform->GetUserName (m_euid);
s.Printf (" euid = %-5u (%s)\n", m_euid, cstr ? cstr : "");
}
if (m_egid != UINT32_MAX)
{
cstr = platform->GetGroupName (m_egid);
s.Printf (" egid = %-5u (%s)\n", m_egid, cstr ? cstr : "");
}
}
void
ProcessInstanceInfo::DumpTableHeader (Stream &s, Platform *platform, bool show_args, bool verbose)
{
const char *label;
if (show_args || verbose)
label = "ARGUMENTS";
else
label = "NAME";
if (verbose)
{
s.Printf ("PID PARENT USER GROUP EFF USER EFF GROUP TRIPLE %s\n", label);
s.PutCString ("====== ====== ========== ========== ========== ========== ======================== ============================\n");
}
else
{
s.Printf ("PID PARENT USER TRIPLE %s\n", label);
s.PutCString ("====== ====== ========== ======================== ============================\n");
}
}
void
ProcessInstanceInfo::DumpAsTableRow (Stream &s, Platform *platform, bool show_args, bool verbose) const
{
if (m_pid != LLDB_INVALID_PROCESS_ID)
{
const char *cstr;
s.Printf ("%-6" PRIu64 " %-6" PRIu64 " ", m_pid, m_parent_pid);
if (verbose)
{
cstr = platform->GetUserName (m_uid);
if (cstr && cstr[0]) // Watch for empty string that indicates lookup failed
s.Printf ("%-10s ", cstr);
else
s.Printf ("%-10u ", m_uid);
cstr = platform->GetGroupName (m_gid);
if (cstr && cstr[0]) // Watch for empty string that indicates lookup failed
s.Printf ("%-10s ", cstr);
else
s.Printf ("%-10u ", m_gid);
cstr = platform->GetUserName (m_euid);
if (cstr && cstr[0]) // Watch for empty string that indicates lookup failed
s.Printf ("%-10s ", cstr);
else
s.Printf ("%-10u ", m_euid);
cstr = platform->GetGroupName (m_egid);
if (cstr && cstr[0]) // Watch for empty string that indicates lookup failed
s.Printf ("%-10s ", cstr);
else
s.Printf ("%-10u ", m_egid);
s.Printf ("%-24s ", m_arch.IsValid() ? m_arch.GetTriple().str().c_str() : "");
}
else
{
s.Printf ("%-10s %-24s ",
platform->GetUserName (m_euid),
m_arch.IsValid() ? m_arch.GetTriple().str().c_str() : "");
}
if (verbose || show_args)
{
const uint32_t argc = m_arguments.GetArgumentCount();
if (argc > 0)
{
for (uint32_t i=0; i<argc; i++)
{
if (i > 0)
s.PutChar (' ');
s.PutCString (m_arguments.GetArgumentAtIndex(i));
}
}
}
else
{
s.PutCString (GetName());
}
s.EOL();
}
}
Error
ProcessLaunchCommandOptions::SetOptionValue (uint32_t option_idx, const char *option_arg)
{
Error error;
const int short_option = m_getopt_table[option_idx].val;
switch (short_option)
{
case 's': // Stop at program entry point
launch_info.GetFlags().Set (eLaunchFlagStopAtEntry);
break;
case 'i': // STDIN for read only
{
FileAction action;
if (action.Open (STDIN_FILENO, option_arg, true, false))
launch_info.AppendFileAction (action);
break;
}
case 'o': // Open STDOUT for write only
{
FileAction action;
if (action.Open (STDOUT_FILENO, option_arg, false, true))
launch_info.AppendFileAction (action);
break;
}
case 'e': // STDERR for write only
{
FileAction action;
if (action.Open (STDERR_FILENO, option_arg, false, true))
launch_info.AppendFileAction (action);
break;
}
case 'p': // Process plug-in name
launch_info.SetProcessPluginName (option_arg);
break;
case 'n': // Disable STDIO
{
FileAction action;
if (action.Open (STDIN_FILENO, "/dev/null", true, false))
launch_info.AppendFileAction (action);
if (action.Open (STDOUT_FILENO, "/dev/null", false, true))
launch_info.AppendFileAction (action);
if (action.Open (STDERR_FILENO, "/dev/null", false, true))
launch_info.AppendFileAction (action);
break;
}
case 'w':
launch_info.SetWorkingDirectory (option_arg);
break;
case 't': // Open process in new terminal window
launch_info.GetFlags().Set (eLaunchFlagLaunchInTTY);
break;
case 'a':
if (!launch_info.GetArchitecture().SetTriple (option_arg, m_interpreter.GetPlatform(true).get()))
launch_info.GetArchitecture().SetTriple (option_arg);
break;
case 'A': // Disable ASLR.
{
bool success;
const bool disable_aslr_arg = Args::StringToBoolean (option_arg, true, &success);
if (success)
disable_aslr = disable_aslr_arg ? eLazyBoolYes : eLazyBoolNo;
else
error.SetErrorStringWithFormat ("Invalid boolean value for disable-aslr option: '%s'", option_arg ? option_arg : "<null>");
break;
}
case 'c':
if (option_arg && option_arg[0])
launch_info.SetShell (option_arg);
else
launch_info.SetShell (LLDB_DEFAULT_SHELL);
break;
case 'v':
launch_info.GetEnvironmentEntries().AppendArgument(option_arg);
break;
default:
error.SetErrorStringWithFormat("unrecognized short option character '%c'", short_option);
break;
}
return error;
}
OptionDefinition
ProcessLaunchCommandOptions::g_option_table[] =
{
{ LLDB_OPT_SET_ALL, false, "stop-at-entry", 's', OptionParser::eNoArgument, NULL, NULL, 0, eArgTypeNone, "Stop at the entry point of the program when launching a process."},
{ LLDB_OPT_SET_ALL, false, "disable-aslr", 'A', OptionParser::eRequiredArgument, NULL, NULL, 0, eArgTypeBoolean, "Set whether to disable address space layout randomization when launching a process."},
{ LLDB_OPT_SET_ALL, false, "plugin", 'p', OptionParser::eRequiredArgument, NULL, NULL, 0, eArgTypePlugin, "Name of the process plugin you want to use."},
{ LLDB_OPT_SET_ALL, false, "working-dir", 'w', OptionParser::eRequiredArgument, NULL, NULL, 0, eArgTypeDirectoryName, "Set the current working directory to <path> when running the inferior."},
{ LLDB_OPT_SET_ALL, false, "arch", 'a', OptionParser::eRequiredArgument, NULL, NULL, 0, eArgTypeArchitecture, "Set the architecture for the process to launch when ambiguous."},
{ LLDB_OPT_SET_ALL, false, "environment", 'v', OptionParser::eRequiredArgument, NULL, NULL, 0, eArgTypeNone, "Specify an environment variable name/value string (--environment NAME=VALUE). Can be specified multiple times for subsequent environment entries."},
{ LLDB_OPT_SET_ALL, false, "shell", 'c', OptionParser::eOptionalArgument, NULL, NULL, 0, eArgTypeFilename, "Run the process in a shell (not supported on all platforms)."},
{ LLDB_OPT_SET_1 , false, "stdin", 'i', OptionParser::eRequiredArgument, NULL, NULL, 0, eArgTypeFilename, "Redirect stdin for the process to <filename>."},
{ LLDB_OPT_SET_1 , false, "stdout", 'o', OptionParser::eRequiredArgument, NULL, NULL, 0, eArgTypeFilename, "Redirect stdout for the process to <filename>."},
{ LLDB_OPT_SET_1 , false, "stderr", 'e', OptionParser::eRequiredArgument, NULL, NULL, 0, eArgTypeFilename, "Redirect stderr for the process to <filename>."},
{ LLDB_OPT_SET_2 , false, "tty", 't', OptionParser::eNoArgument, NULL, NULL, 0, eArgTypeNone, "Start the process in a terminal (not supported on all platforms)."},
{ LLDB_OPT_SET_3 , false, "no-stdio", 'n', OptionParser::eNoArgument, NULL, NULL, 0, eArgTypeNone, "Do not set up for terminal I/O to go to running process."},
{ 0 , false, NULL, 0, 0, NULL, NULL, 0, eArgTypeNone, NULL }
};
bool
ProcessInstanceInfoMatch::NameMatches (const char *process_name) const
{
if (m_name_match_type == eNameMatchIgnore || process_name == NULL)
return true;
const char *match_name = m_match_info.GetName();
if (!match_name)
return true;
return lldb_private::NameMatches (process_name, m_name_match_type, match_name);
}
bool
ProcessInstanceInfoMatch::Matches (const ProcessInstanceInfo &proc_info) const
{
if (!NameMatches (proc_info.GetName()))
return false;
if (m_match_info.ProcessIDIsValid() &&
m_match_info.GetProcessID() != proc_info.GetProcessID())
return false;
if (m_match_info.ParentProcessIDIsValid() &&
m_match_info.GetParentProcessID() != proc_info.GetParentProcessID())
return false;
if (m_match_info.UserIDIsValid () &&
m_match_info.GetUserID() != proc_info.GetUserID())
return false;
if (m_match_info.GroupIDIsValid () &&
m_match_info.GetGroupID() != proc_info.GetGroupID())
return false;
if (m_match_info.EffectiveUserIDIsValid () &&
m_match_info.GetEffectiveUserID() != proc_info.GetEffectiveUserID())
return false;
if (m_match_info.EffectiveGroupIDIsValid () &&
m_match_info.GetEffectiveGroupID() != proc_info.GetEffectiveGroupID())
return false;
if (m_match_info.GetArchitecture().IsValid() &&
!m_match_info.GetArchitecture().IsCompatibleMatch(proc_info.GetArchitecture()))
return false;
return true;
}
bool
ProcessInstanceInfoMatch::MatchAllProcesses () const
{
if (m_name_match_type != eNameMatchIgnore)
return false;
if (m_match_info.ProcessIDIsValid())
return false;
if (m_match_info.ParentProcessIDIsValid())
return false;
if (m_match_info.UserIDIsValid ())
return false;
if (m_match_info.GroupIDIsValid ())
return false;
if (m_match_info.EffectiveUserIDIsValid ())
return false;
if (m_match_info.EffectiveGroupIDIsValid ())
return false;
if (m_match_info.GetArchitecture().IsValid())
return false;
if (m_match_all_users)
return false;
return true;
}
void
ProcessInstanceInfoMatch::Clear()
{
m_match_info.Clear();
m_name_match_type = eNameMatchIgnore;
m_match_all_users = false;
}
ProcessSP
Process::FindPlugin (Target &target, const char *plugin_name, Listener &listener, const FileSpec *crash_file_path)
{
static uint32_t g_process_unique_id = 0;
ProcessSP process_sp;
ProcessCreateInstance create_callback = NULL;
if (plugin_name)
{
ConstString const_plugin_name(plugin_name);
create_callback = PluginManager::GetProcessCreateCallbackForPluginName (const_plugin_name);
if (create_callback)
{
process_sp = create_callback(target, listener, crash_file_path);
if (process_sp)
{
if (process_sp->CanDebug(target, true))
{
process_sp->m_process_unique_id = ++g_process_unique_id;
}
else
process_sp.reset();
}
}
}
else
{
for (uint32_t idx = 0; (create_callback = PluginManager::GetProcessCreateCallbackAtIndex(idx)) != NULL; ++idx)
{
process_sp = create_callback(target, listener, crash_file_path);
if (process_sp)
{
if (process_sp->CanDebug(target, false))
{
process_sp->m_process_unique_id = ++g_process_unique_id;
break;
}
else
process_sp.reset();
}
}
}
return process_sp;
}
ConstString &
Process::GetStaticBroadcasterClass ()
{
static ConstString class_name ("lldb.process");
return class_name;
}
//----------------------------------------------------------------------
// Process constructor
//----------------------------------------------------------------------
Process::Process(Target &target, Listener &listener) :
Process(target, listener, Host::GetUnixSignals ())
{
// This constructor just delegates to the full Process constructor,
// defaulting to using the Host's UnixSignals.
}
Process::Process(Target &target, Listener &listener, const UnixSignalsSP &unix_signals_sp) :
ProcessProperties (false),
UserID (LLDB_INVALID_PROCESS_ID),
Broadcaster (&(target.GetDebugger()), "lldb.process"),
m_target (target),
m_public_state (eStateUnloaded),
m_private_state (eStateUnloaded),
m_private_state_broadcaster (NULL, "lldb.process.internal_state_broadcaster"),
m_private_state_control_broadcaster (NULL, "lldb.process.internal_state_control_broadcaster"),
m_private_state_listener ("lldb.process.internal_state_listener"),
m_private_state_control_wait(),
m_mod_id (),
m_process_unique_id(0),
m_thread_index_id (0),
m_thread_id_to_index_id_map (),
m_exit_status (-1),
m_exit_string (),
m_thread_mutex (Mutex::eMutexTypeRecursive),
m_thread_list_real (this),
m_thread_list (this),
m_extended_thread_list (this),
m_extended_thread_stop_id (0),
m_queue_list (this),
m_queue_list_stop_id (0),
m_notifications (),
m_image_tokens (),
m_listener (listener),
m_breakpoint_site_list (),
m_dynamic_checkers_ap (),
m_unix_signals_sp (unix_signals_sp),
m_abi_sp (),
m_process_input_reader (),
m_stdio_communication ("process.stdio"),
m_stdio_communication_mutex (Mutex::eMutexTypeRecursive),
m_stdout_data (),
m_stderr_data (),
m_profile_data_comm_mutex (Mutex::eMutexTypeRecursive),
m_profile_data (),
m_iohandler_sync (false),
m_memory_cache (*this),
m_allocated_memory_cache (*this),
m_should_detach (false),
m_next_event_action_ap(),
m_public_run_lock (),
m_private_run_lock (),
m_currently_handling_event(false),
m_finalize_called(false),
m_clear_thread_plans_on_stop (false),
m_force_next_event_delivery(false),
m_last_broadcast_state (eStateInvalid),
m_destroy_in_process (false),
m_can_jit(eCanJITDontKnow)
{
CheckInWithManager ();
Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_OBJECT));
if (log)
log->Printf ("%p Process::Process()", static_cast<void*>(this));
if (!m_unix_signals_sp)
m_unix_signals_sp.reset (new UnixSignals ());
SetEventName (eBroadcastBitStateChanged, "state-changed");
SetEventName (eBroadcastBitInterrupt, "interrupt");
SetEventName (eBroadcastBitSTDOUT, "stdout-available");
SetEventName (eBroadcastBitSTDERR, "stderr-available");
SetEventName (eBroadcastBitProfileData, "profile-data-available");
m_private_state_control_broadcaster.SetEventName (eBroadcastInternalStateControlStop , "control-stop" );
m_private_state_control_broadcaster.SetEventName (eBroadcastInternalStateControlPause , "control-pause" );
m_private_state_control_broadcaster.SetEventName (eBroadcastInternalStateControlResume, "control-resume");
listener.StartListeningForEvents (this,
eBroadcastBitStateChanged |
eBroadcastBitInterrupt |
eBroadcastBitSTDOUT |
eBroadcastBitSTDERR |
eBroadcastBitProfileData);
m_private_state_listener.StartListeningForEvents(&m_private_state_broadcaster,
eBroadcastBitStateChanged |
eBroadcastBitInterrupt);
m_private_state_listener.StartListeningForEvents(&m_private_state_control_broadcaster,
eBroadcastInternalStateControlStop |
eBroadcastInternalStateControlPause |
eBroadcastInternalStateControlResume);
// We need something valid here, even if just the default UnixSignalsSP.
assert (m_unix_signals_sp && "null m_unix_signals_sp after initialization");
}
//----------------------------------------------------------------------
// Destructor
//----------------------------------------------------------------------
Process::~Process()
{
Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_OBJECT));
if (log)
log->Printf ("%p Process::~Process()", static_cast<void*>(this));
StopPrivateStateThread();
// ThreadList::Clear() will try to acquire this process's mutex, so
// explicitly clear the thread list here to ensure that the mutex
// is not destroyed before the thread list.
m_thread_list.Clear();
}
const ProcessPropertiesSP &
Process::GetGlobalProperties()
{
static ProcessPropertiesSP g_settings_sp;
if (!g_settings_sp)
g_settings_sp.reset (new ProcessProperties (true));
return g_settings_sp;
}
void
Process::Finalize()
{
switch (GetPrivateState())
{
case eStateConnected:
case eStateAttaching:
case eStateLaunching:
case eStateStopped:
case eStateRunning:
case eStateStepping:
case eStateCrashed:
case eStateSuspended:
if (GetShouldDetach())
{
// FIXME: This will have to be a process setting:
bool keep_stopped = false;
Detach(keep_stopped);
}
else
Destroy();
break;
case eStateInvalid:
case eStateUnloaded:
case eStateDetached:
case eStateExited:
break;
}
// Clear our broadcaster before we proceed with destroying
Broadcaster::Clear();
// Do any cleanup needed prior to being destructed... Subclasses
// that override this method should call this superclass method as well.
// We need to destroy the loader before the derived Process class gets destroyed
// since it is very likely that undoing the loader will require access to the real process.
m_dynamic_checkers_ap.reset();
m_abi_sp.reset();
m_os_ap.reset();
m_system_runtime_ap.reset();
m_dyld_ap.reset();
m_jit_loaders_ap.reset();
m_thread_list_real.Destroy();
m_thread_list.Destroy();
m_extended_thread_list.Destroy();
m_queue_list.Clear();
m_queue_list_stop_id = 0;
std::vector<Notifications> empty_notifications;
m_notifications.swap(empty_notifications);
m_image_tokens.clear();
m_memory_cache.Clear();
m_allocated_memory_cache.Clear();
m_language_runtimes.clear();
m_next_event_action_ap.reset();
//#ifdef LLDB_CONFIGURATION_DEBUG
// StreamFile s(stdout, false);
// EventSP event_sp;
// while (m_private_state_listener.GetNextEvent(event_sp))
// {
// event_sp->Dump (&s);
// s.EOL();
// }
//#endif
// We have to be very careful here as the m_private_state_listener might
// contain events that have ProcessSP values in them which can keep this
// process around forever. These events need to be cleared out.
m_private_state_listener.Clear();
m_public_run_lock.TrySetRunning(); // This will do nothing if already locked
m_public_run_lock.SetStopped();
m_private_run_lock.TrySetRunning(); // This will do nothing if already locked
m_private_run_lock.SetStopped();
m_finalize_called = true;
}
void
Process::RegisterNotificationCallbacks (const Notifications& callbacks)
{
m_notifications.push_back(callbacks);
if (callbacks.initialize != NULL)
callbacks.initialize (callbacks.baton, this);
}
bool
Process::UnregisterNotificationCallbacks(const Notifications& callbacks)
{
std::vector<Notifications>::iterator pos, end = m_notifications.end();
for (pos = m_notifications.begin(); pos != end; ++pos)
{
if (pos->baton == callbacks.baton &&
pos->initialize == callbacks.initialize &&
pos->process_state_changed == callbacks.process_state_changed)
{
m_notifications.erase(pos);
return true;
}
}
return false;
}
void
Process::SynchronouslyNotifyStateChanged (StateType state)
{
std::vector<Notifications>::iterator notification_pos, notification_end = m_notifications.end();
for (notification_pos = m_notifications.begin(); notification_pos != notification_end; ++notification_pos)
{
if (notification_pos->process_state_changed)
notification_pos->process_state_changed (notification_pos->baton, this, state);
}
}
// FIXME: We need to do some work on events before the general Listener sees them.
// For instance if we are continuing from a breakpoint, we need to ensure that we do
// the little "insert real insn, step & stop" trick. But we can't do that when the
// event is delivered by the broadcaster - since that is done on the thread that is
// waiting for new events, so if we needed more than one event for our handling, we would
// stall. So instead we do it when we fetch the event off of the queue.
//
StateType
Process::GetNextEvent (EventSP &event_sp)
{
StateType state = eStateInvalid;
if (m_listener.GetNextEventForBroadcaster (this, event_sp) && event_sp)
state = Process::ProcessEventData::GetStateFromEvent (event_sp.get());
return state;
}
bool
Process::SyncIOHandler (uint64_t timeout_msec)
{
bool timed_out = false;
// don't sync (potentially context switch) in case where there is no process IO
if (m_process_input_reader)
{
TimeValue timeout = TimeValue::Now();
timeout.OffsetWithMicroSeconds(timeout_msec*1000);
m_iohandler_sync.WaitForValueEqualTo(true, &timeout, &timed_out);
Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
if(log)
{
if(timed_out)
log->Printf ("Process::%s pid %" PRIu64 " (timeout=%" PRIu64 "ms): FAIL", __FUNCTION__, GetID (), timeout_msec);
else
log->Printf ("Process::%s pid %" PRIu64 ": SUCCESS", __FUNCTION__, GetID ());
}
// reset sync one-shot so it will be ready for next time
m_iohandler_sync.SetValue(false, eBroadcastNever);
}
return !timed_out;
}
StateType
Process::WaitForProcessToStop (const TimeValue *timeout, lldb::EventSP *event_sp_ptr, bool wait_always, Listener *hijack_listener)
{
// We can't just wait for a "stopped" event, because the stopped event may have restarted the target.
// We have to actually check each event, and in the case of a stopped event check the restarted flag
// on the event.
if (event_sp_ptr)
event_sp_ptr->reset();
StateType state = GetState();
// If we are exited or detached, we won't ever get back to any
// other valid state...
if (state == eStateDetached || state == eStateExited)
return state;
Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
if (log)
log->Printf ("Process::%s (timeout = %p)", __FUNCTION__,
static_cast<const void*>(timeout));
if (!wait_always &&
StateIsStoppedState(state, true) &&
StateIsStoppedState(GetPrivateState(), true)) {
if (log)
log->Printf("Process::%s returning without waiting for events; process private and public states are already 'stopped'.",
__FUNCTION__);
return state;
}
while (state != eStateInvalid)
{
EventSP event_sp;
state = WaitForStateChangedEvents (timeout, event_sp, hijack_listener);
if (event_sp_ptr && event_sp)
*event_sp_ptr = event_sp;
switch (state)
{
case eStateCrashed:
case eStateDetached:
case eStateExited:
case eStateUnloaded:
// We need to toggle the run lock as this won't get done in
// SetPublicState() if the process is hijacked.
if (hijack_listener)
m_public_run_lock.SetStopped();
return state;
case eStateStopped:
if (Process::ProcessEventData::GetRestartedFromEvent(event_sp.get()))
continue;
else
{
// We need to toggle the run lock as this won't get done in
// SetPublicState() if the process is hijacked.
if (hijack_listener)
m_public_run_lock.SetStopped();
return state;
}
default:
continue;
}
}
return state;
}
StateType
Process::WaitForState
(
const TimeValue *timeout,
const StateType *match_states,
const uint32_t num_match_states
)
{
EventSP event_sp;
uint32_t i;
StateType state = GetState();
while (state != eStateInvalid)
{
// If we are exited or detached, we won't ever get back to any
// other valid state...
if (state == eStateDetached || state == eStateExited)
return state;
state = WaitForStateChangedEvents (timeout, event_sp, NULL);
for (i=0; i<num_match_states; ++i)
{
if (match_states[i] == state)
return state;
}
}
return state;
}
bool
Process::HijackProcessEvents (Listener *listener)
{
if (listener != NULL)
{
return HijackBroadcaster(listener, eBroadcastBitStateChanged | eBroadcastBitInterrupt);
}
else
return false;
}
void
Process::RestoreProcessEvents ()
{
RestoreBroadcaster();
}
bool
Process::HijackPrivateProcessEvents (Listener *listener)
{
if (listener != NULL)
{
return m_private_state_broadcaster.HijackBroadcaster(listener, eBroadcastBitStateChanged | eBroadcastBitInterrupt);
}
else
return false;
}
void
Process::RestorePrivateProcessEvents ()
{
m_private_state_broadcaster.RestoreBroadcaster();
}
StateType
Process::WaitForStateChangedEvents (const TimeValue *timeout, EventSP &event_sp, Listener *hijack_listener)
{
Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
if (log)
log->Printf ("Process::%s (timeout = %p, event_sp)...", __FUNCTION__,
static_cast<const void*>(timeout));
Listener *listener = hijack_listener;
if (listener == NULL)
listener = &m_listener;
StateType state = eStateInvalid;
if (listener->WaitForEventForBroadcasterWithType (timeout,
this,
eBroadcastBitStateChanged | eBroadcastBitInterrupt,
event_sp))
{
if (event_sp && event_sp->GetType() == eBroadcastBitStateChanged)
state = Process::ProcessEventData::GetStateFromEvent(event_sp.get());
else if (log)
log->Printf ("Process::%s got no event or was interrupted.", __FUNCTION__);
}
if (log)
log->Printf ("Process::%s (timeout = %p, event_sp) => %s",
__FUNCTION__, static_cast<const void*>(timeout),
StateAsCString(state));
return state;
}
Event *
Process::PeekAtStateChangedEvents ()
{
Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
if (log)
log->Printf ("Process::%s...", __FUNCTION__);
Event *event_ptr;
event_ptr = m_listener.PeekAtNextEventForBroadcasterWithType (this,
eBroadcastBitStateChanged);
if (log)
{
if (event_ptr)
{
log->Printf ("Process::%s (event_ptr) => %s",
__FUNCTION__,
StateAsCString(ProcessEventData::GetStateFromEvent (event_ptr)));
}
else
{
log->Printf ("Process::%s no events found",
__FUNCTION__);
}
}
return event_ptr;
}
StateType
Process::WaitForStateChangedEventsPrivate (const TimeValue *timeout, EventSP &event_sp)
{
Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
if (log)
log->Printf ("Process::%s (timeout = %p, event_sp)...", __FUNCTION__,
static_cast<const void*>(timeout));
StateType state = eStateInvalid;
if (m_private_state_listener.WaitForEventForBroadcasterWithType (timeout,
&m_private_state_broadcaster,
eBroadcastBitStateChanged | eBroadcastBitInterrupt,
event_sp))
if (event_sp && event_sp->GetType() == eBroadcastBitStateChanged)
state = Process::ProcessEventData::GetStateFromEvent(event_sp.get());
// This is a bit of a hack, but when we wait here we could very well return
// to the command-line, and that could disable the log, which would render the
// log we got above invalid.
if (log)
log->Printf ("Process::%s (timeout = %p, event_sp) => %s",
__FUNCTION__, static_cast<const void *>(timeout),
state == eStateInvalid ? "TIMEOUT" : StateAsCString(state));
return state;
}
bool
Process::WaitForEventsPrivate (const TimeValue *timeout, EventSP &event_sp, bool control_only)
{
Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
if (log)
log->Printf ("Process::%s (timeout = %p, event_sp)...", __FUNCTION__,
static_cast<const void*>(timeout));
if (control_only)
return m_private_state_listener.WaitForEventForBroadcaster(timeout, &m_private_state_control_broadcaster, event_sp);
else
return m_private_state_listener.WaitForEvent(timeout, event_sp);
}
bool
Process::IsRunning () const
{
return StateIsRunningState (m_public_state.GetValue());
}
int
Process::GetExitStatus ()
{
if (m_public_state.GetValue() == eStateExited)
return m_exit_status;
return -1;
}
const char *
Process::GetExitDescription ()
{
if (m_public_state.GetValue() == eStateExited && !m_exit_string.empty())
return m_exit_string.c_str();
return NULL;
}
bool
Process::SetExitStatus (int status, const char *cstr)
{
Log *log(lldb_private::GetLogIfAnyCategoriesSet (LIBLLDB_LOG_STATE | LIBLLDB_LOG_PROCESS));
if (log)
log->Printf("Process::SetExitStatus (status=%i (0x%8.8x), description=%s%s%s)",
status, status,
cstr ? "\"" : "",
cstr ? cstr : "NULL",
cstr ? "\"" : "");
// We were already in the exited state
if (m_private_state.GetValue() == eStateExited)
{
if (log)
log->Printf("Process::SetExitStatus () ignoring exit status because state was already set to eStateExited");
return false;
}
m_exit_status = status;
if (cstr)
m_exit_string = cstr;
else
m_exit_string.clear();
DidExit ();
SetPrivateState (eStateExited);
return true;
}
// This static callback can be used to watch for local child processes on
// the current host. The child process exits, the process will be
// found in the global target list (we want to be completely sure that the
// lldb_private::Process doesn't go away before we can deliver the signal.
bool
Process::SetProcessExitStatus (void *callback_baton,
lldb::pid_t pid,
bool exited,
int signo, // Zero for no signal
int exit_status // Exit value of process if signal is zero
)
{
Log *log(lldb_private::GetLogIfAnyCategoriesSet (LIBLLDB_LOG_PROCESS));
if (log)
log->Printf ("Process::SetProcessExitStatus (baton=%p, pid=%" PRIu64 ", exited=%i, signal=%i, exit_status=%i)\n",
callback_baton,
pid,
exited,
signo,
exit_status);
if (exited)
{
TargetSP target_sp(Debugger::FindTargetWithProcessID (pid));
if (target_sp)
{
ProcessSP process_sp (target_sp->GetProcessSP());
if (process_sp)
{
const char *signal_cstr = NULL;
if (signo)
signal_cstr = process_sp->GetUnixSignals().GetSignalAsCString (signo);
process_sp->SetExitStatus (exit_status, signal_cstr);
}
}
return true;
}
return false;
}
void
Process::UpdateThreadListIfNeeded ()
{
const uint32_t stop_id = GetStopID();
if (m_thread_list.GetSize(false) == 0 || stop_id != m_thread_list.GetStopID())
{
const StateType state = GetPrivateState();
if (StateIsStoppedState (state, true))
{
Mutex::Locker locker (m_thread_list.GetMutex ());
// m_thread_list does have its own mutex, but we need to
// hold onto the mutex between the call to UpdateThreadList(...)
// and the os->UpdateThreadList(...) so it doesn't change on us
ThreadList &old_thread_list = m_thread_list;
ThreadList real_thread_list(this);
ThreadList new_thread_list(this);
// Always update the thread list with the protocol specific
// thread list, but only update if "true" is returned
if (UpdateThreadList (m_thread_list_real, real_thread_list))
{
// Don't call into the OperatingSystem to update the thread list if we are shutting down, since
// that may call back into the SBAPI's, requiring the API lock which is already held by whoever is
// shutting us down, causing a deadlock.
if (!m_destroy_in_process)
{
OperatingSystem *os = GetOperatingSystem ();
if (os)
{
// Clear any old backing threads where memory threads might have been
// backed by actual threads from the lldb_private::Process subclass
size_t num_old_threads = old_thread_list.GetSize(false);
for (size_t i=0; i<num_old_threads; ++i)
old_thread_list.GetThreadAtIndex(i, false)->ClearBackingThread();
// Now let the OperatingSystem plug-in update the thread list
os->UpdateThreadList (old_thread_list, // Old list full of threads created by OS plug-in
real_thread_list, // The actual thread list full of threads created by each lldb_private::Process subclass
new_thread_list); // The new thread list that we will show to the user that gets filled in
}
else
{
// No OS plug-in, the new thread list is the same as the real thread list
new_thread_list = real_thread_list;
}
}
m_thread_list_real.Update(real_thread_list);
m_thread_list.Update (new_thread_list);
m_thread_list.SetStopID (stop_id);
if (GetLastNaturalStopID () != m_extended_thread_stop_id)
{
// Clear any extended threads that we may have accumulated previously
m_extended_thread_list.Clear();
m_extended_thread_stop_id = GetLastNaturalStopID ();
m_queue_list.Clear();
m_queue_list_stop_id = GetLastNaturalStopID ();
}
}
}
}
}
void
Process::UpdateQueueListIfNeeded ()
{
if (m_system_runtime_ap.get())
{
if (m_queue_list.GetSize() == 0 || m_queue_list_stop_id != GetLastNaturalStopID())
{
const StateType state = GetPrivateState();
if (StateIsStoppedState (state, true))
{
m_system_runtime_ap->PopulateQueueList (m_queue_list);
m_queue_list_stop_id = GetLastNaturalStopID();
}
}
}
}
ThreadSP
Process::CreateOSPluginThread (lldb::tid_t tid, lldb::addr_t context)
{
OperatingSystem *os = GetOperatingSystem ();
if (os)
return os->CreateThread(tid, context);
return ThreadSP();
}
uint32_t
Process::GetNextThreadIndexID (uint64_t thread_id)
{
return AssignIndexIDToThread(thread_id);
}
bool
Process::HasAssignedIndexIDToThread(uint64_t thread_id)
{
std::map<uint64_t, uint32_t>::iterator iterator = m_thread_id_to_index_id_map.find(thread_id);
if (iterator == m_thread_id_to_index_id_map.end())
{
return false;
}
else
{
return true;
}
}
uint32_t
Process::AssignIndexIDToThread(uint64_t thread_id)
{
uint32_t result = 0;
std::map<uint64_t, uint32_t>::iterator iterator = m_thread_id_to_index_id_map.find(thread_id);
if (iterator == m_thread_id_to_index_id_map.end())
{
result = ++m_thread_index_id;
m_thread_id_to_index_id_map[thread_id] = result;
}
else
{
result = iterator->second;
}
return result;
}
StateType
Process::GetState()
{
// If any other threads access this we will need a mutex for it
return m_public_state.GetValue ();
}
void
Process::SetPublicState (StateType new_state, bool restarted)
{
Log *log(lldb_private::GetLogIfAnyCategoriesSet (LIBLLDB_LOG_STATE | LIBLLDB_LOG_PROCESS));
if (log)
log->Printf("Process::SetPublicState (state = %s, restarted = %i)", StateAsCString(new_state), restarted);
const StateType old_state = m_public_state.GetValue();
m_public_state.SetValue (new_state);
// On the transition from Run to Stopped, we unlock the writer end of the
// run lock. The lock gets locked in Resume, which is the public API
// to tell the program to run.
if (!IsHijackedForEvent(eBroadcastBitStateChanged))
{
if (new_state == eStateDetached)
{
if (log)
log->Printf("Process::SetPublicState (%s) -- unlocking run lock for detach", StateAsCString(new_state));
m_public_run_lock.SetStopped();
}
else
{
const bool old_state_is_stopped = StateIsStoppedState(old_state, false);
const bool new_state_is_stopped = StateIsStoppedState(new_state, false);
if ((old_state_is_stopped != new_state_is_stopped))
{
if (new_state_is_stopped && !restarted)
{
if (log)
log->Printf("Process::SetPublicState (%s) -- unlocking run lock", StateAsCString(new_state));
m_public_run_lock.SetStopped();
}
}
}
}
}
Error
Process::Resume ()
{
Log *log(lldb_private::GetLogIfAnyCategoriesSet (LIBLLDB_LOG_STATE | LIBLLDB_LOG_PROCESS));
if (log)
log->Printf("Process::Resume -- locking run lock");
if (!m_public_run_lock.TrySetRunning())
{
Error error("Resume request failed - process still running.");
if (log)
log->Printf ("Process::Resume: -- TrySetRunning failed, not resuming.");
return error;
}
return PrivateResume();
}
StateType
Process::GetPrivateState ()
{
return m_private_state.GetValue();
}
void
Process::SetPrivateState (StateType new_state)
{
if (m_finalize_called)
return;
Log *log(lldb_private::GetLogIfAnyCategoriesSet (LIBLLDB_LOG_STATE | LIBLLDB_LOG_PROCESS));
bool state_changed = false;
if (log)
log->Printf("Process::SetPrivateState (%s)", StateAsCString(new_state));
Mutex::Locker thread_locker(m_thread_list.GetMutex());
Mutex::Locker locker(m_private_state.GetMutex());
const StateType old_state = m_private_state.GetValueNoLock ();
state_changed = old_state != new_state;
const bool old_state_is_stopped = StateIsStoppedState(old_state, false);
const bool new_state_is_stopped = StateIsStoppedState(new_state, false);
if (old_state_is_stopped != new_state_is_stopped)
{
if (new_state_is_stopped)
m_private_run_lock.SetStopped();
else
m_private_run_lock.SetRunning();
}
if (state_changed)
{
m_private_state.SetValueNoLock (new_state);
if (StateIsStoppedState(new_state, false))
{
// Note, this currently assumes that all threads in the list
// stop when the process stops. In the future we will want to
// support a debugging model where some threads continue to run
// while others are stopped. When that happens we will either need
// a way for the thread list to identify which threads are stopping
// or create a special thread list containing only threads which
// actually stopped.
//
// The process plugin is responsible for managing the actual
// behavior of the threads and should have stopped any threads
// that are going to stop before we get here.
m_thread_list.DidStop();
m_mod_id.BumpStopID();
m_memory_cache.Clear();
if (log)
log->Printf("Process::SetPrivateState (%s) stop_id = %u", StateAsCString(new_state), m_mod_id.GetStopID());
}
// Use our target to get a shared pointer to ourselves...
if (m_finalize_called && PrivateStateThreadIsValid() == false)
BroadcastEvent (eBroadcastBitStateChanged, new ProcessEventData (shared_from_this(), new_state));
else
m_private_state_broadcaster.BroadcastEvent (eBroadcastBitStateChanged, new ProcessEventData (shared_from_this(), new_state));
}
else
{
if (log)
log->Printf("Process::SetPrivateState (%s) state didn't change. Ignoring...", StateAsCString(new_state));
}
}
void
Process::SetRunningUserExpression (bool on)
{
m_mod_id.SetRunningUserExpression (on);
}
addr_t
Process::GetImageInfoAddress()
{
return LLDB_INVALID_ADDRESS;
}
//----------------------------------------------------------------------
// LoadImage
//
// This function provides a default implementation that works for most
// unix variants. Any Process subclasses that need to do shared library
// loading differently should override LoadImage and UnloadImage and
// do what is needed.
//----------------------------------------------------------------------
uint32_t
Process::LoadImage (const FileSpec &image_spec, Error &error)
{
char path[PATH_MAX];
image_spec.GetPath(path, sizeof(path));
DynamicLoader *loader = GetDynamicLoader();
if (loader)
{
error = loader->CanLoadImage();
if (error.Fail())
return LLDB_INVALID_IMAGE_TOKEN;
}
if (error.Success())
{
ThreadSP thread_sp(GetThreadList ().GetSelectedThread());
if (thread_sp)
{
StackFrameSP frame_sp (thread_sp->GetStackFrameAtIndex (0));
if (frame_sp)
{
ExecutionContext exe_ctx;
frame_sp->CalculateExecutionContext (exe_ctx);
EvaluateExpressionOptions expr_options;
expr_options.SetUnwindOnError(true);
expr_options.SetIgnoreBreakpoints(true);
expr_options.SetExecutionPolicy(eExecutionPolicyAlways);
expr_options.SetResultIsInternal(true);
StreamString expr;
expr.Printf(R"(
struct __lldb_dlopen_result { void *image_ptr; const char *error_str; } the_result;
the_result.image_ptr = dlopen ("%s", 2);
if (the_result.image_ptr == (void *) 0x0)
{
the_result.error_str = dlerror();
}
else
{
the_result.error_str = (const char *) 0x0;
}
the_result;
)",
path);
const char *prefix = R"(
extern "C" void* dlopen (const char *path, int mode);
extern "C" const char *dlerror (void);
)";
lldb::ValueObjectSP result_valobj_sp;
Error expr_error;
ClangUserExpression::Evaluate (exe_ctx,
expr_options,
expr.GetData(),
prefix,
result_valobj_sp,
expr_error);
if (expr_error.Success())
{
error = result_valobj_sp->GetError();
if (error.Success())
{
Scalar scalar;
ValueObjectSP image_ptr_sp = result_valobj_sp->GetChildAtIndex(0, true);
if (image_ptr_sp && image_ptr_sp->ResolveValue (scalar))
{
addr_t image_ptr = scalar.ULongLong(LLDB_INVALID_ADDRESS);
if (image_ptr != 0 && image_ptr != LLDB_INVALID_ADDRESS)
{
uint32_t image_token = m_image_tokens.size();
m_image_tokens.push_back (image_ptr);
return image_token;
}
else if (image_ptr == 0)
{
ValueObjectSP error_str_sp = result_valobj_sp->GetChildAtIndex(1, true);
if (error_str_sp)
{
if (error_str_sp->IsCStringContainer(true))
{
StreamString s;
size_t num_chars = error_str_sp->ReadPointedString (s, error);
if (error.Success() && num_chars > 0)
{
error.Clear();
error.SetErrorStringWithFormat("dlopen error: %s", s.GetData());
}
}
}
}
}
}
}
else
error = expr_error;
}
}
}
if (!error.AsCString())
error.SetErrorStringWithFormat("unable to load '%s'", path);
return LLDB_INVALID_IMAGE_TOKEN;
}
//----------------------------------------------------------------------
// UnloadImage
//
// This function provides a default implementation that works for most
// unix variants. Any Process subclasses that need to do shared library
// loading differently should override LoadImage and UnloadImage and
// do what is needed.
//----------------------------------------------------------------------
Error
Process::UnloadImage (uint32_t image_token)
{
Error error;
if (image_token < m_image_tokens.size())
{
const addr_t image_addr = m_image_tokens[image_token];
if (image_addr == LLDB_INVALID_ADDRESS)
{
error.SetErrorString("image already unloaded");
}
else
{
DynamicLoader *loader = GetDynamicLoader();
if (loader)
error = loader->CanLoadImage();
if (error.Success())
{
ThreadSP thread_sp(GetThreadList ().GetSelectedThread());
if (thread_sp)
{
StackFrameSP frame_sp (thread_sp->GetStackFrameAtIndex (0));
if (frame_sp)
{
ExecutionContext exe_ctx;
frame_sp->CalculateExecutionContext (exe_ctx);
EvaluateExpressionOptions expr_options;
expr_options.SetUnwindOnError(true);
expr_options.SetIgnoreBreakpoints(true);
expr_options.SetExecutionPolicy(eExecutionPolicyAlways);
StreamString expr;
expr.Printf("dlclose ((void *)0x%" PRIx64 ")", image_addr);
const char *prefix = "extern \"C\" int dlclose(void* handle);\n";
lldb::ValueObjectSP result_valobj_sp;
Error expr_error;
ClangUserExpression::Evaluate (exe_ctx,
expr_options,
expr.GetData(),
prefix,
result_valobj_sp,
expr_error);
if (result_valobj_sp->GetError().Success())
{
Scalar scalar;
if (result_valobj_sp->ResolveValue (scalar))
{
if (scalar.UInt(1))
{
error.SetErrorStringWithFormat("expression failed: \"%s\"", expr.GetData());
}
else
{
m_image_tokens[image_token] = LLDB_INVALID_ADDRESS;
}
}
}
else
{
error = result_valobj_sp->GetError();
}
}
}
}
}
}
else
{
error.SetErrorString("invalid image token");
}
return error;
}
const lldb::ABISP &
Process::GetABI()
{
if (!m_abi_sp)
m_abi_sp = ABI::FindPlugin(m_target.GetArchitecture());
return m_abi_sp;
}
LanguageRuntime *
Process::GetLanguageRuntime(lldb::LanguageType language, bool retry_if_null)
{
LanguageRuntimeCollection::iterator pos;
pos = m_language_runtimes.find (language);
if (pos == m_language_runtimes.end() || (retry_if_null && !(*pos).second))
{
lldb::LanguageRuntimeSP runtime_sp(LanguageRuntime::FindPlugin(this, language));
m_language_runtimes[language] = runtime_sp;
return runtime_sp.get();
}
else
return (*pos).second.get();
}
CPPLanguageRuntime *
Process::GetCPPLanguageRuntime (bool retry_if_null)
{
LanguageRuntime *runtime = GetLanguageRuntime(eLanguageTypeC_plus_plus, retry_if_null);
if (runtime != NULL && runtime->GetLanguageType() == eLanguageTypeC_plus_plus)
return static_cast<CPPLanguageRuntime *> (runtime);
return NULL;
}
ObjCLanguageRuntime *
Process::GetObjCLanguageRuntime (bool retry_if_null)
{
LanguageRuntime *runtime = GetLanguageRuntime(eLanguageTypeObjC, retry_if_null);
if (runtime != NULL && runtime->GetLanguageType() == eLanguageTypeObjC)
return static_cast<ObjCLanguageRuntime *> (runtime);
return NULL;
}
bool
Process::IsPossibleDynamicValue (ValueObject& in_value)
{
if (in_value.IsDynamic())
return false;
LanguageType known_type = in_value.GetObjectRuntimeLanguage();
if (known_type != eLanguageTypeUnknown && known_type != eLanguageTypeC)
{
LanguageRuntime *runtime = GetLanguageRuntime (known_type);
return runtime ? runtime->CouldHaveDynamicValue(in_value) : false;
}
LanguageRuntime *cpp_runtime = GetLanguageRuntime (eLanguageTypeC_plus_plus);
if (cpp_runtime && cpp_runtime->CouldHaveDynamicValue(in_value))
return true;
LanguageRuntime *objc_runtime = GetLanguageRuntime (eLanguageTypeObjC);
return objc_runtime ? objc_runtime->CouldHaveDynamicValue(in_value) : false;
}
BreakpointSiteList &
Process::GetBreakpointSiteList()
{
return m_breakpoint_site_list;
}
const BreakpointSiteList &
Process::GetBreakpointSiteList() const
{
return m_breakpoint_site_list;
}
void
Process::DisableAllBreakpointSites ()
{
m_breakpoint_site_list.ForEach([this](BreakpointSite *bp_site) -> void {
// bp_site->SetEnabled(true);
DisableBreakpointSite(bp_site);
});
}
Error
Process::ClearBreakpointSiteByID (lldb::user_id_t break_id)
{
Error error (DisableBreakpointSiteByID (break_id));
if (error.Success())
m_breakpoint_site_list.Remove(break_id);
return error;
}
Error
Process::DisableBreakpointSiteByID (lldb::user_id_t break_id)
{
Error error;
BreakpointSiteSP bp_site_sp = m_breakpoint_site_list.FindByID (break_id);
if (bp_site_sp)
{
if (bp_site_sp->IsEnabled())
error = DisableBreakpointSite (bp_site_sp.get());
}
else
{
error.SetErrorStringWithFormat("invalid breakpoint site ID: %" PRIu64, break_id);
}
return error;
}
Error
Process::EnableBreakpointSiteByID (lldb::user_id_t break_id)
{
Error error;
BreakpointSiteSP bp_site_sp = m_breakpoint_site_list.FindByID (break_id);
if (bp_site_sp)
{
if (!bp_site_sp->IsEnabled())
error = EnableBreakpointSite (bp_site_sp.get());
}
else
{
error.SetErrorStringWithFormat("invalid breakpoint site ID: %" PRIu64, break_id);
}
return error;
}
lldb::break_id_t
Process::CreateBreakpointSite (const BreakpointLocationSP &owner, bool use_hardware)
{
addr_t load_addr = LLDB_INVALID_ADDRESS;
bool show_error = true;
switch (GetState())
{
case eStateInvalid:
case eStateUnloaded:
case eStateConnected:
case eStateAttaching:
case eStateLaunching:
case eStateDetached:
case eStateExited:
show_error = false;
break;
case eStateStopped:
case eStateRunning:
case eStateStepping:
case eStateCrashed:
case eStateSuspended:
show_error = IsAlive();
break;
}
// Reset the IsIndirect flag here, in case the location changes from
// pointing to a indirect symbol to a regular symbol.
owner->SetIsIndirect (false);
if (owner->ShouldResolveIndirectFunctions())
{
Symbol *symbol = owner->GetAddress().CalculateSymbolContextSymbol();
if (symbol && symbol->IsIndirect())
{
Error error;
load_addr = ResolveIndirectFunction (&symbol->GetAddress(), error);
if (!error.Success() && show_error)
{
m_target.GetDebugger().GetErrorFile()->Printf ("warning: failed to resolve indirect function at 0x%" PRIx64 " for breakpoint %i.%i: %s\n",
symbol->GetAddress().GetLoadAddress(&m_target),
owner->GetBreakpoint().GetID(),
owner->GetID(),
error.AsCString() ? error.AsCString() : "unknown error");
return LLDB_INVALID_BREAK_ID;
}
Address resolved_address(load_addr);
load_addr = resolved_address.GetOpcodeLoadAddress (&m_target);
owner->SetIsIndirect(true);
}
else
load_addr = owner->GetAddress().GetOpcodeLoadAddress (&m_target);
}
else
load_addr = owner->GetAddress().GetOpcodeLoadAddress (&m_target);
if (load_addr != LLDB_INVALID_ADDRESS)
{
BreakpointSiteSP bp_site_sp;
// Look up this breakpoint site. If it exists, then add this new owner, otherwise
// create a new breakpoint site and add it.
bp_site_sp = m_breakpoint_site_list.FindByAddress (load_addr);
if (bp_site_sp)
{
bp_site_sp->AddOwner (owner);
owner->SetBreakpointSite (bp_site_sp);
return bp_site_sp->GetID();
}
else
{
bp_site_sp.reset (new BreakpointSite (&m_breakpoint_site_list, owner, load_addr, use_hardware));
if (bp_site_sp)
{
Error error = EnableBreakpointSite (bp_site_sp.get());
if (error.Success())
{
owner->SetBreakpointSite (bp_site_sp);
return m_breakpoint_site_list.Add (bp_site_sp);
}
else
{
if (show_error)
{
// Report error for setting breakpoint...
m_target.GetDebugger().GetErrorFile()->Printf ("warning: failed to set breakpoint site at 0x%" PRIx64 " for breakpoint %i.%i: %s\n",
load_addr,
owner->GetBreakpoint().GetID(),
owner->GetID(),
error.AsCString() ? error.AsCString() : "unknown error");
}
}
}
}
}
// We failed to enable the breakpoint
return LLDB_INVALID_BREAK_ID;
}
void
Process::RemoveOwnerFromBreakpointSite (lldb::user_id_t owner_id, lldb::user_id_t owner_loc_id, BreakpointSiteSP &bp_site_sp)
{
uint32_t num_owners = bp_site_sp->RemoveOwner (owner_id, owner_loc_id);
if (num_owners == 0)
{
// Don't try to disable the site if we don't have a live process anymore.
if (IsAlive())
DisableBreakpointSite (bp_site_sp.get());
m_breakpoint_site_list.RemoveByAddress(bp_site_sp->GetLoadAddress());
}
}
size_t
Process::RemoveBreakpointOpcodesFromBuffer (addr_t bp_addr, size_t size, uint8_t *buf) const
{
size_t bytes_removed = 0;
BreakpointSiteList bp_sites_in_range;
if (m_breakpoint_site_list.FindInRange (bp_addr, bp_addr + size, bp_sites_in_range))
{
bp_sites_in_range.ForEach([bp_addr, size, buf, &bytes_removed](BreakpointSite *bp_site) -> void {
if (bp_site->GetType() == BreakpointSite::eSoftware)
{
addr_t intersect_addr;
size_t intersect_size;
size_t opcode_offset;
if (bp_site->IntersectsRange(bp_addr, size, &intersect_addr, &intersect_size, &opcode_offset))
{
assert(bp_addr <= intersect_addr && intersect_addr < bp_addr + size);
assert(bp_addr < intersect_addr + intersect_size && intersect_addr + intersect_size <= bp_addr + size);
assert(opcode_offset + intersect_size <= bp_site->GetByteSize());
size_t buf_offset = intersect_addr - bp_addr;
::memcpy(buf + buf_offset, bp_site->GetSavedOpcodeBytes() + opcode_offset, intersect_size);
}
}
});
}
return bytes_removed;
}
size_t
Process::GetSoftwareBreakpointTrapOpcode (BreakpointSite* bp_site)
{
PlatformSP platform_sp (m_target.GetPlatform());
if (platform_sp)
return platform_sp->GetSoftwareBreakpointTrapOpcode (m_target, bp_site);
return 0;
}
Error
Process::EnableSoftwareBreakpoint (BreakpointSite *bp_site)
{
Error error;
assert (bp_site != NULL);
Log *log(lldb_private::GetLogIfAnyCategoriesSet (LIBLLDB_LOG_BREAKPOINTS));
const addr_t bp_addr = bp_site->GetLoadAddress();
if (log)
log->Printf ("Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64, bp_site->GetID(), (uint64_t)bp_addr);
if (bp_site->IsEnabled())
{
if (log)
log->Printf ("Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 " -- already enabled", bp_site->GetID(), (uint64_t)bp_addr);
return error;
}
if (bp_addr == LLDB_INVALID_ADDRESS)
{
error.SetErrorString("BreakpointSite contains an invalid load address.");
return error;
}
// Ask the lldb::Process subclass to fill in the correct software breakpoint
// trap for the breakpoint site
const size_t bp_opcode_size = GetSoftwareBreakpointTrapOpcode(bp_site);
if (bp_opcode_size == 0)
{
error.SetErrorStringWithFormat ("Process::GetSoftwareBreakpointTrapOpcode() returned zero, unable to get breakpoint trap for address 0x%" PRIx64, bp_addr);
}
else
{
const uint8_t * const bp_opcode_bytes = bp_site->GetTrapOpcodeBytes();
if (bp_opcode_bytes == NULL)
{
error.SetErrorString ("BreakpointSite doesn't contain a valid breakpoint trap opcode.");
return error;
}
// Save the original opcode by reading it
if (DoReadMemory(bp_addr, bp_site->GetSavedOpcodeBytes(), bp_opcode_size, error) == bp_opcode_size)
{
// Write a software breakpoint in place of the original opcode
if (DoWriteMemory(bp_addr, bp_opcode_bytes, bp_opcode_size, error) == bp_opcode_size)
{
uint8_t verify_bp_opcode_bytes[64];
if (DoReadMemory(bp_addr, verify_bp_opcode_bytes, bp_opcode_size, error) == bp_opcode_size)
{
if (::memcmp(bp_opcode_bytes, verify_bp_opcode_bytes, bp_opcode_size) == 0)
{
bp_site->SetEnabled(true);
bp_site->SetType (BreakpointSite::eSoftware);
if (log)
log->Printf ("Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 " -- SUCCESS",
bp_site->GetID(),
(uint64_t)bp_addr);
}
else
error.SetErrorString("failed to verify the breakpoint trap in memory.");
}
else
error.SetErrorString("Unable to read memory to verify breakpoint trap.");
}
else
error.SetErrorString("Unable to write breakpoint trap to memory.");
}
else
error.SetErrorString("Unable to read memory at breakpoint address.");
}
if (log && error.Fail())
log->Printf ("Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 " -- FAILED: %s",
bp_site->GetID(),
(uint64_t)bp_addr,
error.AsCString());
return error;
}
Error
Process::DisableSoftwareBreakpoint (BreakpointSite *bp_site)
{
Error error;
assert (bp_site != NULL);
Log *log(lldb_private::GetLogIfAnyCategoriesSet (LIBLLDB_LOG_BREAKPOINTS));
addr_t bp_addr = bp_site->GetLoadAddress();
lldb::user_id_t breakID = bp_site->GetID();
if (log)
log->Printf ("Process::DisableSoftwareBreakpoint (breakID = %" PRIu64 ") addr = 0x%" PRIx64, breakID, (uint64_t)bp_addr);
if (bp_site->IsHardware())
{
error.SetErrorString("Breakpoint site is a hardware breakpoint.");
}
else if (bp_site->IsEnabled())
{
const size_t break_op_size = bp_site->GetByteSize();
const uint8_t * const break_op = bp_site->GetTrapOpcodeBytes();
if (break_op_size > 0)
{
// Clear a software breakpoint instruction
uint8_t curr_break_op[8];
assert (break_op_size <= sizeof(curr_break_op));
bool break_op_found = false;
// Read the breakpoint opcode
if (DoReadMemory (bp_addr, curr_break_op, break_op_size, error) == break_op_size)
{
bool verify = false;
// Make sure we have the a breakpoint opcode exists at this address
if (::memcmp (curr_break_op, break_op, break_op_size) == 0)
{
break_op_found = true;
// We found a valid breakpoint opcode at this address, now restore
// the saved opcode.
if (DoWriteMemory (bp_addr, bp_site->GetSavedOpcodeBytes(), break_op_size, error) == break_op_size)
{
verify = true;
}
else
error.SetErrorString("Memory write failed when restoring original opcode.");
}
else
{
error.SetErrorString("Original breakpoint trap is no longer in memory.");
// Set verify to true and so we can check if the original opcode has already been restored
verify = true;
}
if (verify)
{
uint8_t verify_opcode[8];
assert (break_op_size < sizeof(verify_opcode));
// Verify that our original opcode made it back to the inferior
if (DoReadMemory (bp_addr, verify_opcode, break_op_size, error) == break_op_size)
{
// compare the memory we just read with the original opcode
if (::memcmp (bp_site->GetSavedOpcodeBytes(), verify_opcode, break_op_size) == 0)
{
// SUCCESS
bp_site->SetEnabled(false);
if (log)
log->Printf ("Process::DisableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 " -- SUCCESS", bp_site->GetID(), (uint64_t)bp_addr);
return error;
}
else
{
if (break_op_found)
error.SetErrorString("Failed to restore original opcode.");
}
}
else
error.SetErrorString("Failed to read memory to verify that breakpoint trap was restored.");
}
}
else
error.SetErrorString("Unable to read memory that should contain the breakpoint trap.");
}
}
else
{
if (log)
log->Printf ("Process::DisableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 " -- already disabled", bp_site->GetID(), (uint64_t)bp_addr);
return error;
}
if (log)
log->Printf ("Process::DisableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 " -- FAILED: %s",
bp_site->GetID(),
(uint64_t)bp_addr,
error.AsCString());
return error;
}
// Uncomment to verify memory caching works after making changes to caching code
//#define VERIFY_MEMORY_READS
size_t
Process::ReadMemory (addr_t addr, void *buf, size_t size, Error &error)
{
error.Clear();
if (!GetDisableMemoryCache())
{
#if defined (VERIFY_MEMORY_READS)
// Memory caching is enabled, with debug verification
if (buf && size)
{
// Uncomment the line below to make sure memory caching is working.
// I ran this through the test suite and got no assertions, so I am
// pretty confident this is working well. If any changes are made to
// memory caching, uncomment the line below and test your changes!
// Verify all memory reads by using the cache first, then redundantly
// reading the same memory from the inferior and comparing to make sure
// everything is exactly the same.
std::string verify_buf (size, '\0');
assert (verify_buf.size() == size);
const size_t cache_bytes_read = m_memory_cache.Read (this, addr, buf, size, error);
Error verify_error;
const size_t verify_bytes_read = ReadMemoryFromInferior (addr, const_cast<char *>(verify_buf.data()), verify_buf.size(), verify_error);
assert (cache_bytes_read == verify_bytes_read);
assert (memcmp(buf, verify_buf.data(), verify_buf.size()) == 0);
assert (verify_error.Success() == error.Success());
return cache_bytes_read;
}
return 0;
#else // !defined(VERIFY_MEMORY_READS)
// Memory caching is enabled, without debug verification
return m_memory_cache.Read (addr, buf, size, error);
#endif // defined (VERIFY_MEMORY_READS)
}
else
{
// Memory caching is disabled
return ReadMemoryFromInferior (addr, buf, size, error);
}
}
size_t
Process::ReadCStringFromMemory (addr_t addr, std::string &out_str, Error &error)
{
char buf[256];
out_str.clear();
addr_t curr_addr = addr;
while (1)
{
size_t length = ReadCStringFromMemory (curr_addr, buf, sizeof(buf), error);
if (length == 0)
break;
out_str.append(buf, length);
// If we got "length - 1" bytes, we didn't get the whole C string, we
// need to read some more characters
if (length == sizeof(buf) - 1)
curr_addr += length;
else
break;
}
return out_str.size();
}
size_t
Process::ReadStringFromMemory (addr_t addr, char *dst, size_t max_bytes, Error &error,
size_t type_width)
{
size_t total_bytes_read = 0;
if (dst && max_bytes && type_width && max_bytes >= type_width)
{
// Ensure a null terminator independent of the number of bytes that is read.
memset (dst, 0, max_bytes);
size_t bytes_left = max_bytes - type_width;
const char terminator[4] = {'\0', '\0', '\0', '\0'};
assert(sizeof(terminator) >= type_width &&
"Attempting to validate a string with more than 4 bytes per character!");
addr_t curr_addr = addr;
const size_t cache_line_size = m_memory_cache.GetMemoryCacheLineSize();
char *curr_dst = dst;
error.Clear();
while (bytes_left > 0 && error.Success())
{
addr_t cache_line_bytes_left = cache_line_size - (curr_addr % cache_line_size);
addr_t bytes_to_read = std::min<addr_t>(bytes_left, cache_line_bytes_left);
size_t bytes_read = ReadMemory (curr_addr, curr_dst, bytes_to_read, error);
if (bytes_read == 0)
break;
// Search for a null terminator of correct size and alignment in bytes_read
size_t aligned_start = total_bytes_read - total_bytes_read % type_width;
for (size_t i = aligned_start; i + type_width <= total_bytes_read + bytes_read; i += type_width)
if (::strncmp(&dst[i], terminator, type_width) == 0)
{
error.Clear();
return i;
}
total_bytes_read += bytes_read;
curr_dst += bytes_read;
curr_addr += bytes_read;
bytes_left -= bytes_read;
}
}
else
{
if (max_bytes)
error.SetErrorString("invalid arguments");
}
return total_bytes_read;
}
// Deprecated in favor of ReadStringFromMemory which has wchar support and correct code to find
// null terminators.
size_t
Process::ReadCStringFromMemory (addr_t addr, char *dst, size_t dst_max_len, Error &result_error)
{
size_t total_cstr_len = 0;
if (dst && dst_max_len)
{
result_error.Clear();
// NULL out everything just to be safe
memset (dst, 0, dst_max_len);
Error error;
addr_t curr_addr = addr;
const size_t cache_line_size = m_memory_cache.GetMemoryCacheLineSize();
size_t bytes_left = dst_max_len - 1;
char *curr_dst = dst;
while (bytes_left > 0)
{
addr_t cache_line_bytes_left = cache_line_size - (curr_addr % cache_line_size);
addr_t bytes_to_read = std::min<addr_t>(bytes_left, cache_line_bytes_left);
size_t bytes_read = ReadMemory (curr_addr, curr_dst, bytes_to_read, error);
if (bytes_read == 0)
{
result_error = error;
dst[total_cstr_len] = '\0';
break;
}
const size_t len = strlen(curr_dst);
total_cstr_len += len;
if (len < bytes_to_read)
break;
curr_dst += bytes_read;
curr_addr += bytes_read;
bytes_left -= bytes_read;
}
}
else
{
if (dst == NULL)
result_error.SetErrorString("invalid arguments");
else
result_error.Clear();
}
return total_cstr_len;
}
size_t
Process::ReadMemoryFromInferior (addr_t addr, void *buf, size_t size, Error &error)
{
if (buf == NULL || size == 0)
return 0;
size_t bytes_read = 0;
uint8_t *bytes = (uint8_t *)buf;
while (bytes_read < size)
{
const size_t curr_size = size - bytes_read;
const size_t curr_bytes_read = DoReadMemory (addr + bytes_read,
bytes + bytes_read,
curr_size,
error);
bytes_read += curr_bytes_read;
if (curr_bytes_read == curr_size || curr_bytes_read == 0)
break;
}
// Replace any software breakpoint opcodes that fall into this range back
// into "buf" before we return
if (bytes_read > 0)
RemoveBreakpointOpcodesFromBuffer (addr, bytes_read, (uint8_t *)buf);
return bytes_read;
}
uint64_t
Process::ReadUnsignedIntegerFromMemory (lldb::addr_t vm_addr, size_t integer_byte_size, uint64_t fail_value, Error &error)
{
Scalar scalar;
if (ReadScalarIntegerFromMemory(vm_addr, integer_byte_size, false, scalar, error))
return scalar.ULongLong(fail_value);
return fail_value;
}
addr_t
Process::ReadPointerFromMemory (lldb::addr_t vm_addr, Error &error)
{
Scalar scalar;
if (ReadScalarIntegerFromMemory(vm_addr, GetAddressByteSize(), false, scalar, error))
return scalar.ULongLong(LLDB_INVALID_ADDRESS);
return LLDB_INVALID_ADDRESS;
}
bool
Process::WritePointerToMemory (lldb::addr_t vm_addr,
lldb::addr_t ptr_value,
Error &error)
{
Scalar scalar;
const uint32_t addr_byte_size = GetAddressByteSize();
if (addr_byte_size <= 4)
scalar = (uint32_t)ptr_value;
else
scalar = ptr_value;
return WriteScalarToMemory(vm_addr, scalar, addr_byte_size, error) == addr_byte_size;
}
size_t
Process::WriteMemoryPrivate (addr_t addr, const void *buf, size_t size, Error &error)
{
size_t bytes_written = 0;
const uint8_t *bytes = (const uint8_t *)buf;
while (bytes_written < size)
{
const size_t curr_size = size - bytes_written;
const size_t curr_bytes_written = DoWriteMemory (addr + bytes_written,
bytes + bytes_written,
curr_size,
error);
bytes_written += curr_bytes_written;
if (curr_bytes_written == curr_size || curr_bytes_written == 0)
break;
}
return bytes_written;
}
size_t
Process::WriteMemory (addr_t addr, const void *buf, size_t size, Error &error)
{
#if defined (ENABLE_MEMORY_CACHING)
m_memory_cache.Flush (addr, size);
#endif
if (buf == NULL || size == 0)
return 0;
m_mod_id.BumpMemoryID();
// We need to write any data that would go where any current software traps
// (enabled software breakpoints) any software traps (breakpoints) that we
// may have placed in our tasks memory.
BreakpointSiteList bp_sites_in_range;
if (m_breakpoint_site_list.FindInRange (addr, addr + size, bp_sites_in_range))
{
// No breakpoint sites overlap
if (bp_sites_in_range.IsEmpty())
return WriteMemoryPrivate (addr, buf, size, error);
else
{
const uint8_t *ubuf = (const uint8_t *)buf;
uint64_t bytes_written = 0;
bp_sites_in_range.ForEach([this, addr, size, &bytes_written, &ubuf, &error](BreakpointSite *bp) -> void {
if (error.Success())
{
addr_t intersect_addr;
size_t intersect_size;
size_t opcode_offset;
const bool intersects = bp->IntersectsRange(addr, size, &intersect_addr, &intersect_size, &opcode_offset);
assert(intersects);
assert(addr <= intersect_addr && intersect_addr < addr + size);
assert(addr < intersect_addr + intersect_size && intersect_addr + intersect_size <= addr + size);
assert(opcode_offset + intersect_size <= bp->GetByteSize());
// Check for bytes before this breakpoint
const addr_t curr_addr = addr + bytes_written;
if (intersect_addr > curr_addr)
{
// There are some bytes before this breakpoint that we need to
// just write to memory
size_t curr_size = intersect_addr - curr_addr;
size_t curr_bytes_written = WriteMemoryPrivate (curr_addr,
ubuf + bytes_written,
curr_size,
error);
bytes_written += curr_bytes_written;
if (curr_bytes_written != curr_size)
{
// We weren't able to write all of the requested bytes, we
// are done looping and will return the number of bytes that
// we have written so far.
if (error.Success())
error.SetErrorToGenericError();
}
}
// Now write any bytes that would cover up any software breakpoints
// directly into the breakpoint opcode buffer
::memcpy(bp->GetSavedOpcodeBytes() + opcode_offset, ubuf + bytes_written, intersect_size);
bytes_written += intersect_size;
}
});
if (bytes_written < size)
bytes_written += WriteMemoryPrivate (addr + bytes_written,
ubuf + bytes_written,
size - bytes_written,
error);
}
}
else
{
return WriteMemoryPrivate (addr, buf, size, error);
}
// Write any remaining bytes after the last breakpoint if we have any left
return 0; //bytes_written;
}
size_t
Process::WriteScalarToMemory (addr_t addr, const Scalar &scalar, size_t byte_size, Error &error)
{
if (byte_size == UINT32_MAX)
byte_size = scalar.GetByteSize();
if (byte_size > 0)
{
uint8_t buf[32];
const size_t mem_size = scalar.GetAsMemoryData (buf, byte_size, GetByteOrder(), error);
if (mem_size > 0)
return WriteMemory(addr, buf, mem_size, error);
else
error.SetErrorString ("failed to get scalar as memory data");
}
else
{
error.SetErrorString ("invalid scalar value");
}
return 0;
}
size_t
Process::ReadScalarIntegerFromMemory (addr_t addr,
uint32_t byte_size,
bool is_signed,
Scalar &scalar,
Error &error)
{
uint64_t uval = 0;
if (byte_size == 0)
{
error.SetErrorString ("byte size is zero");
}
else if (byte_size & (byte_size - 1))
{
error.SetErrorStringWithFormat ("byte size %u is not a power of 2", byte_size);
}
else if (byte_size <= sizeof(uval))
{
const size_t bytes_read = ReadMemory (addr, &uval, byte_size, error);
if (bytes_read == byte_size)
{
DataExtractor data (&uval, sizeof(uval), GetByteOrder(), GetAddressByteSize());
lldb::offset_t offset = 0;
if (byte_size <= 4)
scalar = data.GetMaxU32 (&offset, byte_size);
else
scalar = data.GetMaxU64 (&offset, byte_size);
if (is_signed)
scalar.SignExtend(byte_size * 8);
return bytes_read;
}
}
else
{
error.SetErrorStringWithFormat ("byte size of %u is too large for integer scalar type", byte_size);
}
return 0;
}
#define USE_ALLOCATE_MEMORY_CACHE 1
addr_t
Process::AllocateMemory(size_t size, uint32_t permissions, Error &error)
{
if (GetPrivateState() != eStateStopped)
return LLDB_INVALID_ADDRESS;
#if defined (USE_ALLOCATE_MEMORY_CACHE)
return m_allocated_memory_cache.AllocateMemory(size, permissions, error);
#else
addr_t allocated_addr = DoAllocateMemory (size, permissions, error);
Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
if (log)
log->Printf("Process::AllocateMemory(size=%" PRIu64 ", permissions=%s) => 0x%16.16" PRIx64 " (m_stop_id = %u m_memory_id = %u)",
(uint64_t)size,
GetPermissionsAsCString (permissions),
(uint64_t)allocated_addr,
m_mod_id.GetStopID(),
m_mod_id.GetMemoryID());
return allocated_addr;
#endif
}
bool
Process::CanJIT ()
{
if (m_can_jit == eCanJITDontKnow)
{
Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
Error err;
uint64_t allocated_memory = AllocateMemory(8,
ePermissionsReadable | ePermissionsWritable | ePermissionsExecutable,
err);
if (err.Success())
{
m_can_jit = eCanJITYes;
if (log)
log->Printf ("Process::%s pid %" PRIu64 " allocation test passed, CanJIT () is true", __FUNCTION__, GetID ());
}
else
{
m_can_jit = eCanJITNo;
if (log)
log->Printf ("Process::%s pid %" PRIu64 " allocation test failed, CanJIT () is false: %s", __FUNCTION__, GetID (), err.AsCString ());
}
DeallocateMemory (allocated_memory);
}
return m_can_jit == eCanJITYes;
}
void
Process::SetCanJIT (bool can_jit)
{
m_can_jit = (can_jit ? eCanJITYes : eCanJITNo);
}
Error
Process::DeallocateMemory (addr_t ptr)
{
Error error;
#if defined (USE_ALLOCATE_MEMORY_CACHE)
if (!m_allocated_memory_cache.DeallocateMemory(ptr))
{
error.SetErrorStringWithFormat ("deallocation of memory at 0x%" PRIx64 " failed.", (uint64_t)ptr);
}
#else
error = DoDeallocateMemory (ptr);
Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
if (log)
log->Printf("Process::DeallocateMemory(addr=0x%16.16" PRIx64 ") => err = %s (m_stop_id = %u, m_memory_id = %u)",
ptr,
error.AsCString("SUCCESS"),
m_mod_id.GetStopID(),
m_mod_id.GetMemoryID());
#endif
return error;
}
ModuleSP
Process::ReadModuleFromMemory (const FileSpec& file_spec,
lldb::addr_t header_addr,
size_t size_to_read)
{
ModuleSP module_sp (new Module (file_spec, ArchSpec()));
if (module_sp)
{
Error error;
ObjectFile *objfile = module_sp->GetMemoryObjectFile (shared_from_this(), header_addr, error, size_to_read);
if (objfile)
return module_sp;
}
return ModuleSP();
}
Error
Process::EnableWatchpoint (Watchpoint *watchpoint, bool notify)
{
Error error;
error.SetErrorString("watchpoints are not supported");
return error;
}
Error
Process::DisableWatchpoint (Watchpoint *watchpoint, bool notify)
{
Error error;
error.SetErrorString("watchpoints are not supported");
return error;
}
StateType
Process::WaitForProcessStopPrivate (const TimeValue *timeout, EventSP &event_sp)
{
StateType state;
// Now wait for the process to launch and return control to us, and then
// call DidLaunch:
while (1)
{
event_sp.reset();
state = WaitForStateChangedEventsPrivate (timeout, event_sp);
if (StateIsStoppedState(state, false))
break;
// If state is invalid, then we timed out
if (state == eStateInvalid)
break;
if (event_sp)
HandlePrivateEvent (event_sp);
}
return state;
}
Error
Process::Launch (ProcessLaunchInfo &launch_info)
{
Error error;
m_abi_sp.reset();
m_dyld_ap.reset();
m_jit_loaders_ap.reset();
m_system_runtime_ap.reset();
m_os_ap.reset();
m_process_input_reader.reset();
Module *exe_module = m_target.GetExecutableModulePointer();
if (exe_module)
{
char local_exec_file_path[PATH_MAX];
char platform_exec_file_path[PATH_MAX];
exe_module->GetFileSpec().GetPath(local_exec_file_path, sizeof(local_exec_file_path));
exe_module->GetPlatformFileSpec().GetPath(platform_exec_file_path, sizeof(platform_exec_file_path));
if (exe_module->GetFileSpec().Exists())
{
// Install anything that might need to be installed prior to launching.
// For host systems, this will do nothing, but if we are connected to a
// remote platform it will install any needed binaries
error = GetTarget().Install(&launch_info);
if (error.Fail())
return error;
if (PrivateStateThreadIsValid ())
PausePrivateStateThread ();
error = WillLaunch (exe_module);
if (error.Success())
{
const bool restarted = false;
SetPublicState (eStateLaunching, restarted);
m_should_detach = false;
if (m_public_run_lock.TrySetRunning())
{
// Now launch using these arguments.
error = DoLaunch (exe_module, launch_info);
}
else
{
// This shouldn't happen
error.SetErrorString("failed to acquire process run lock");
}
if (error.Fail())
{
if (GetID() != LLDB_INVALID_PROCESS_ID)
{
SetID (LLDB_INVALID_PROCESS_ID);
const char *error_string = error.AsCString();
if (error_string == NULL)
error_string = "launch failed";
SetExitStatus (-1, error_string);
}
}
else
{
EventSP event_sp;
TimeValue timeout_time;
timeout_time = TimeValue::Now();
timeout_time.OffsetWithSeconds(10);
StateType state = WaitForProcessStopPrivate(&timeout_time, event_sp);
if (state == eStateInvalid || event_sp.get() == NULL)
{
// We were able to launch the process, but we failed to
// catch the initial stop.
SetExitStatus (0, "failed to catch stop after launch");
Destroy();
}
else if (state == eStateStopped || state == eStateCrashed)
{
DidLaunch ();
DynamicLoader *dyld = GetDynamicLoader ();
if (dyld)
dyld->DidLaunch();
GetJITLoaders().DidLaunch();
SystemRuntime *system_runtime = GetSystemRuntime ();
if (system_runtime)
system_runtime->DidLaunch();
m_os_ap.reset (OperatingSystem::FindPlugin (this, NULL));
// This delays passing the stopped event to listeners till DidLaunch gets
// a chance to complete...
HandlePrivateEvent (event_sp);
if (PrivateStateThreadIsValid ())
ResumePrivateStateThread ();
else
StartPrivateStateThread ();
}
else if (state == eStateExited)
{
// We exited while trying to launch somehow. Don't call DidLaunch as that's
// not likely to work, and return an invalid pid.
HandlePrivateEvent (event_sp);
}
}
}
}
else
{
error.SetErrorStringWithFormat("file doesn't exist: '%s'", local_exec_file_path);
}
}
return error;
}
Error
Process::LoadCore ()
{
Error error = DoLoadCore();
if (error.Success())
{
if (PrivateStateThreadIsValid ())
ResumePrivateStateThread ();
else
StartPrivateStateThread ();
DynamicLoader *dyld = GetDynamicLoader ();
if (dyld)
dyld->DidAttach();
GetJITLoaders().DidAttach();
SystemRuntime *system_runtime = GetSystemRuntime ();
if (system_runtime)
system_runtime->DidAttach();
m_os_ap.reset (OperatingSystem::FindPlugin (this, NULL));
// We successfully loaded a core file, now pretend we stopped so we can
// show all of the threads in the core file and explore the crashed
// state.
SetPrivateState (eStateStopped);
}
return error;
}
DynamicLoader *
Process::GetDynamicLoader ()
{
if (m_dyld_ap.get() == NULL)
m_dyld_ap.reset (DynamicLoader::FindPlugin(this, NULL));
return m_dyld_ap.get();
}
const lldb::DataBufferSP
Process::GetAuxvData()
{
return DataBufferSP ();
}
JITLoaderList &
Process::GetJITLoaders ()
{
if (!m_jit_loaders_ap)
{
m_jit_loaders_ap.reset(new JITLoaderList());
JITLoader::LoadPlugins(this, *m_jit_loaders_ap);
}
return *m_jit_loaders_ap;
}
SystemRuntime *
Process::GetSystemRuntime ()
{
if (m_system_runtime_ap.get() == NULL)
m_system_runtime_ap.reset (SystemRuntime::FindPlugin(this));
return m_system_runtime_ap.get();
}
Process::AttachCompletionHandler::AttachCompletionHandler (Process *process, uint32_t exec_count) :
NextEventAction (process),
m_exec_count (exec_count)
{
Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
if (log)
log->Printf ("Process::AttachCompletionHandler::%s process=%p, exec_count=%" PRIu32, __FUNCTION__, static_cast<void*>(process), exec_count);
}
Process::NextEventAction::EventActionResult
Process::AttachCompletionHandler::PerformAction (lldb::EventSP &event_sp)
{
Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
StateType state = ProcessEventData::GetStateFromEvent (event_sp.get());
if (log)
log->Printf ("Process::AttachCompletionHandler::%s called with state %s (%d)", __FUNCTION__, StateAsCString(state), static_cast<int> (state));
switch (state)
{
case eStateRunning:
case eStateConnected:
return eEventActionRetry;
case eStateStopped:
case eStateCrashed:
{
// During attach, prior to sending the eStateStopped event,
// lldb_private::Process subclasses must set the new process ID.
assert (m_process->GetID() != LLDB_INVALID_PROCESS_ID);
// We don't want these events to be reported, so go set the ShouldReportStop here:
m_process->GetThreadList().SetShouldReportStop (eVoteNo);
if (m_exec_count > 0)
{
--m_exec_count;
if (log)
log->Printf ("Process::AttachCompletionHandler::%s state %s: reduced remaining exec count to %" PRIu32 ", requesting resume", __FUNCTION__, StateAsCString(state), m_exec_count);
RequestResume();
return eEventActionRetry;
}
else
{
if (log)
log->Printf ("Process::AttachCompletionHandler::%s state %s: no more execs expected to start, continuing with attach", __FUNCTION__, StateAsCString(state));
m_process->CompleteAttach ();
return eEventActionSuccess;
}
}
break;
default:
case eStateExited:
case eStateInvalid:
break;
}
m_exit_string.assign ("No valid Process");
return eEventActionExit;
}
Process::NextEventAction::EventActionResult
Process::AttachCompletionHandler::HandleBeingInterrupted()
{
return eEventActionSuccess;
}
const char *
Process::AttachCompletionHandler::GetExitString ()
{
return m_exit_string.c_str();
}
Error
Process::Attach (ProcessAttachInfo &attach_info)
{
m_abi_sp.reset();
m_process_input_reader.reset();
m_dyld_ap.reset();
m_jit_loaders_ap.reset();
m_system_runtime_ap.reset();
m_os_ap.reset();
lldb::pid_t attach_pid = attach_info.GetProcessID();
Error error;
if (attach_pid == LLDB_INVALID_PROCESS_ID)
{
char process_name[PATH_MAX];
if (attach_info.GetExecutableFile().GetPath (process_name, sizeof(process_name)))
{
const bool wait_for_launch = attach_info.GetWaitForLaunch();
if (wait_for_launch)
{
error = WillAttachToProcessWithName(process_name, wait_for_launch);
if (error.Success())
{
if (m_public_run_lock.TrySetRunning())
{
m_should_detach = true;
const bool restarted = false;
SetPublicState (eStateAttaching, restarted);
// Now attach using these arguments.
error = DoAttachToProcessWithName (process_name, attach_info);
}
else
{
// This shouldn't happen
error.SetErrorString("failed to acquire process run lock");
}
if (error.Fail())
{
if (GetID() != LLDB_INVALID_PROCESS_ID)
{
SetID (LLDB_INVALID_PROCESS_ID);
if (error.AsCString() == NULL)
error.SetErrorString("attach failed");
SetExitStatus(-1, error.AsCString());
}
}
else
{
SetNextEventAction(new Process::AttachCompletionHandler(this, attach_info.GetResumeCount()));
StartPrivateStateThread();
}
return error;
}
}
else
{
ProcessInstanceInfoList process_infos;
PlatformSP platform_sp (m_target.GetPlatform ());
if (platform_sp)
{
ProcessInstanceInfoMatch match_info;
match_info.GetProcessInfo() = attach_info;
match_info.SetNameMatchType (eNameMatchEquals);
platform_sp->FindProcesses (match_info, process_infos);
const uint32_t num_matches = process_infos.GetSize();
if (num_matches == 1)
{
attach_pid = process_infos.GetProcessIDAtIndex(0);
// Fall through and attach using the above process ID
}
else
{
match_info.GetProcessInfo().GetExecutableFile().GetPath (process_name, sizeof(process_name));
if (num_matches > 1)
{
StreamString s;
ProcessInstanceInfo::DumpTableHeader (s, platform_sp.get(), true, false);
for (size_t i = 0; i < num_matches; i++)
{
process_infos.GetProcessInfoAtIndex(i).DumpAsTableRow(s, platform_sp.get(), true, false);
}
error.SetErrorStringWithFormat ("more than one process named %s:\n%s",
process_name,
s.GetData());
}
else
error.SetErrorStringWithFormat ("could not find a process named %s", process_name);
}
}
else
{
error.SetErrorString ("invalid platform, can't find processes by name");
return error;
}
}
}
else
{
error.SetErrorString ("invalid process name");
}
}
if (attach_pid != LLDB_INVALID_PROCESS_ID)
{
error = WillAttachToProcessWithID(attach_pid);
if (error.Success())
{
if (m_public_run_lock.TrySetRunning())
{
// Now attach using these arguments.
m_should_detach = true;
const bool restarted = false;
SetPublicState (eStateAttaching, restarted);
error = DoAttachToProcessWithID (attach_pid, attach_info);
}
else
{
// This shouldn't happen
error.SetErrorString("failed to acquire process run lock");
}
if (error.Success())
{
SetNextEventAction(new Process::AttachCompletionHandler(this, attach_info.GetResumeCount()));
StartPrivateStateThread();
}
else
{
if (GetID() != LLDB_INVALID_PROCESS_ID)
{
SetID (LLDB_INVALID_PROCESS_ID);
const char *error_string = error.AsCString();
if (error_string == NULL)
error_string = "attach failed";
SetExitStatus(-1, error_string);
}
}
}
}
return error;
}
void
Process::CompleteAttach ()
{
Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
if (log)
log->Printf ("Process::%s()", __FUNCTION__);
// Let the process subclass figure out at much as it can about the process
// before we go looking for a dynamic loader plug-in.
ArchSpec process_arch;
DidAttach(process_arch);
if (process_arch.IsValid())
{
m_target.SetArchitecture(process_arch);
if (log)
{
const char *triple_str = process_arch.GetTriple().getTriple().c_str ();
log->Printf ("Process::%s replacing process architecture with DidAttach() architecture: %s",
__FUNCTION__,
triple_str ? triple_str : "<null>");
}
}
// We just attached. If we have a platform, ask it for the process architecture, and if it isn't
// the same as the one we've already set, switch architectures.
PlatformSP platform_sp (m_target.GetPlatform ());
assert (platform_sp.get());
if (platform_sp)
{
const ArchSpec &target_arch = m_target.GetArchitecture();
if (target_arch.IsValid() && !platform_sp->IsCompatibleArchitecture (target_arch, false, NULL))
{
ArchSpec platform_arch;
platform_sp = platform_sp->GetPlatformForArchitecture (target_arch, &platform_arch);
if (platform_sp)
{
m_target.SetPlatform (platform_sp);
m_target.SetArchitecture(platform_arch);
if (log)
log->Printf ("Process::%s switching platform to %s and architecture to %s based on info from attach", __FUNCTION__, platform_sp->GetName().AsCString (""), platform_arch.GetTriple().getTriple().c_str ());
}
}
else if (!process_arch.IsValid())
{
ProcessInstanceInfo process_info;
platform_sp->GetProcessInfo (GetID(), process_info);
const ArchSpec &process_arch = process_info.GetArchitecture();
if (process_arch.IsValid() && !m_target.GetArchitecture().IsExactMatch(process_arch))
{
m_target.SetArchitecture (process_arch);
if (log)
log->Printf ("Process::%s switching architecture to %s based on info the platform retrieved for pid %" PRIu64, __FUNCTION__, process_arch.GetTriple().getTriple().c_str (), GetID ());
}
}
}
// We have completed the attach, now it is time to find the dynamic loader
// plug-in
DynamicLoader *dyld = GetDynamicLoader ();
if (dyld)
{
dyld->DidAttach();
if (log)
{
ModuleSP exe_module_sp = m_target.GetExecutableModule ();
log->Printf ("Process::%s after DynamicLoader::DidAttach(), target executable is %s (using %s plugin)",
__FUNCTION__,
exe_module_sp ? exe_module_sp->GetFileSpec().GetPath().c_str () : "<none>",
dyld->GetPluginName().AsCString ("<unnamed>"));
}
}
GetJITLoaders().DidAttach();
SystemRuntime *system_runtime = GetSystemRuntime ();
if (system_runtime)
{
system_runtime->DidAttach();
if (log)
{
ModuleSP exe_module_sp = m_target.GetExecutableModule ();
log->Printf ("Process::%s after SystemRuntime::DidAttach(), target executable is %s (using %s plugin)",
__FUNCTION__,
exe_module_sp ? exe_module_sp->GetFileSpec().GetPath().c_str () : "<none>",
system_runtime->GetPluginName().AsCString("<unnamed>"));
}
}
m_os_ap.reset (OperatingSystem::FindPlugin (this, NULL));
// Figure out which one is the executable, and set that in our target:
const ModuleList &target_modules = m_target.GetImages();
Mutex::Locker modules_locker(target_modules.GetMutex());
size_t num_modules = target_modules.GetSize();
ModuleSP new_executable_module_sp;
for (size_t i = 0; i < num_modules; i++)
{
ModuleSP module_sp (target_modules.GetModuleAtIndexUnlocked (i));
if (module_sp && module_sp->IsExecutable())
{
if (m_target.GetExecutableModulePointer() != module_sp.get())
new_executable_module_sp = module_sp;
break;
}
}
if (new_executable_module_sp)
{
m_target.SetExecutableModule (new_executable_module_sp, false);
if (log)
{
ModuleSP exe_module_sp = m_target.GetExecutableModule ();
log->Printf ("Process::%s after looping through modules, target executable is %s",
__FUNCTION__,
exe_module_sp ? exe_module_sp->GetFileSpec().GetPath().c_str () : "<none>");
}
}
}
Error
Process::ConnectRemote (Stream *strm, const char *remote_url)
{
m_abi_sp.reset();
m_process_input_reader.reset();
// Find the process and its architecture. Make sure it matches the architecture
// of the current Target, and if not adjust it.
Error error (DoConnectRemote (strm, remote_url));
if (error.Success())
{
if (GetID() != LLDB_INVALID_PROCESS_ID)
{
EventSP event_sp;
StateType state = WaitForProcessStopPrivate(NULL, event_sp);
if (state == eStateStopped || state == eStateCrashed)
{
// If we attached and actually have a process on the other end, then
// this ended up being the equivalent of an attach.
CompleteAttach ();
// This delays passing the stopped event to listeners till
// CompleteAttach gets a chance to complete...
HandlePrivateEvent (event_sp);
}
}
if (PrivateStateThreadIsValid ())
ResumePrivateStateThread ();
else
StartPrivateStateThread ();
}
return error;
}
Error
Process::PrivateResume ()
{
Log *log(lldb_private::GetLogIfAnyCategoriesSet (LIBLLDB_LOG_PROCESS|LIBLLDB_LOG_STEP));
if (log)
log->Printf("Process::PrivateResume() m_stop_id = %u, public state: %s private state: %s",
m_mod_id.GetStopID(),
StateAsCString(m_public_state.GetValue()),
StateAsCString(m_private_state.GetValue()));
Error error (WillResume());
// Tell the process it is about to resume before the thread list
if (error.Success())
{
// Now let the thread list know we are about to resume so it
// can let all of our threads know that they are about to be
// resumed. Threads will each be called with
// Thread::WillResume(StateType) where StateType contains the state
// that they are supposed to have when the process is resumed
// (suspended/running/stepping). Threads should also check
// their resume signal in lldb::Thread::GetResumeSignal()
// to see if they are supposed to start back up with a signal.
if (m_thread_list.WillResume())
{
// Last thing, do the PreResumeActions.
if (!RunPreResumeActions())
{
error.SetErrorStringWithFormat ("Process::PrivateResume PreResumeActions failed, not resuming.");
}
else
{
m_mod_id.BumpResumeID();
error = DoResume();
if (error.Success())
{
DidResume();
m_thread_list.DidResume();
if (log)
log->Printf ("Process thinks the process has resumed.");
}
}
}
else
{
// Somebody wanted to run without running. So generate a continue & a stopped event,
// and let the world handle them.
if (log)
log->Printf ("Process::PrivateResume() asked to simulate a start & stop.");
SetPrivateState(eStateRunning);
SetPrivateState(eStateStopped);
}
}
else if (log)
log->Printf ("Process::PrivateResume() got an error \"%s\".", error.AsCString("<unknown error>"));
return error;
}
Error
Process::Halt (bool clear_thread_plans)
{
// Don't clear the m_clear_thread_plans_on_stop, only set it to true if
// in case it was already set and some thread plan logic calls halt on its
// own.
m_clear_thread_plans_on_stop |= clear_thread_plans;
// First make sure we aren't in the middle of handling an event, or we might restart. This is pretty weak, since
// we could just straightaway get another event. It just narrows the window...
m_currently_handling_event.WaitForValueEqualTo(false);
// Pause our private state thread so we can ensure no one else eats
// the stop event out from under us.
Listener halt_listener ("lldb.process.halt_listener");
HijackPrivateProcessEvents(&halt_listener);
EventSP event_sp;
Error error (WillHalt());
bool restored_process_events = false;
if (error.Success())
{
bool caused_stop = false;
// Ask the process subclass to actually halt our process
error = DoHalt(caused_stop);
if (error.Success())
{
if (m_public_state.GetValue() == eStateAttaching)
{
// Don't hijack and eat the eStateExited as the code that was doing
// the attach will be waiting for this event...
RestorePrivateProcessEvents();
restored_process_events = true;
SetExitStatus(SIGKILL, "Cancelled async attach.");
Destroy ();
}
else
{
// If "caused_stop" is true, then DoHalt stopped the process. If
// "caused_stop" is false, the process was already stopped.
// If the DoHalt caused the process to stop, then we want to catch
// this event and set the interrupted bool to true before we pass
// this along so clients know that the process was interrupted by
// a halt command.
if (caused_stop)
{
// Wait for 1 second for the process to stop.
TimeValue timeout_time;
timeout_time = TimeValue::Now();
timeout_time.OffsetWithSeconds(10);
bool got_event = halt_listener.WaitForEvent (&timeout_time, event_sp);
StateType state = ProcessEventData::GetStateFromEvent(event_sp.get());
if (!got_event || state == eStateInvalid)
{
// We timeout out and didn't get a stop event...
error.SetErrorStringWithFormat ("Halt timed out. State = %s", StateAsCString(GetState()));
}
else
{
if (StateIsStoppedState (state, false))
{
// We caused the process to interrupt itself, so mark this
// as such in the stop event so clients can tell an interrupted
// process from a natural stop
ProcessEventData::SetInterruptedInEvent (event_sp.get(), true);
}
else
{
Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
if (log)
log->Printf("Process::Halt() failed to stop, state is: %s", StateAsCString(state));
error.SetErrorString ("Did not get stopped event after halt.");
}
}
}
DidHalt();
}
}
}
// Resume our private state thread before we post the event (if any)
if (!restored_process_events)
RestorePrivateProcessEvents();
// Post any event we might have consumed. If all goes well, we will have
// stopped the process, intercepted the event and set the interrupted
// bool in the event. Post it to the private event queue and that will end up
// correctly setting the state.
if (event_sp)
m_private_state_broadcaster.BroadcastEvent(event_sp);
return error;
}
Error
Process::HaltForDestroyOrDetach(lldb::EventSP &exit_event_sp)
{
Error error;
if (m_public_state.GetValue() == eStateRunning)
{
Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
if (log)
log->Printf("Process::Destroy() About to halt.");
error = Halt();
if (error.Success())
{
// Consume the halt event.
TimeValue timeout (TimeValue::Now());
timeout.OffsetWithSeconds(1);
StateType state = WaitForProcessToStop (&timeout, &exit_event_sp);
// If the process exited while we were waiting for it to stop, put the exited event into
// the shared pointer passed in and return. Our caller doesn't need to do anything else, since
// they don't have a process anymore...
if (state == eStateExited || m_private_state.GetValue() == eStateExited)
{
if (log)
log->Printf("Process::HaltForDestroyOrDetach() Process exited while waiting to Halt.");
return error;
}
else
exit_event_sp.reset(); // It is ok to consume any non-exit stop events
if (state != eStateStopped)
{
if (log)
log->Printf("Process::HaltForDestroyOrDetach() Halt failed to stop, state is: %s", StateAsCString(state));
// If we really couldn't stop the process then we should just error out here, but if the
// lower levels just bobbled sending the event and we really are stopped, then continue on.
StateType private_state = m_private_state.GetValue();
if (private_state != eStateStopped)
{
return error;
}
}
}
else
{
if (log)
log->Printf("Process::HaltForDestroyOrDetach() Halt got error: %s", error.AsCString());
}
}
return error;
}
Error
Process::Detach (bool keep_stopped)
{
EventSP exit_event_sp;
Error error;
m_destroy_in_process = true;
error = WillDetach();
if (error.Success())
{
if (DetachRequiresHalt())
{
error = HaltForDestroyOrDetach (exit_event_sp);
if (!error.Success())
{
m_destroy_in_process = false;
return error;
}
else if (exit_event_sp)
{
// We shouldn't need to do anything else here. There's no process left to detach from...
StopPrivateStateThread();
m_destroy_in_process = false;
return error;
}
}
m_thread_list.DiscardThreadPlans();
DisableAllBreakpointSites();
error = DoDetach(keep_stopped);
if (error.Success())
{
DidDetach();
StopPrivateStateThread();
}
else
{
return error;
}
}
m_destroy_in_process = false;
// If we exited when we were waiting for a process to stop, then
// forward the event here so we don't lose the event
if (exit_event_sp)
{
// Directly broadcast our exited event because we shut down our
// private state thread above
BroadcastEvent(exit_event_sp);
}
// If we have been interrupted (to kill us) in the middle of running, we may not end up propagating
// the last events through the event system, in which case we might strand the write lock. Unlock
// it here so when we do to tear down the process we don't get an error destroying the lock.
m_public_run_lock.SetStopped();
return error;
}
Error
Process::Destroy ()
{
// Tell ourselves we are in the process of destroying the process, so that we don't do any unnecessary work
// that might hinder the destruction. Remember to set this back to false when we are done. That way if the attempt
// failed and the process stays around for some reason it won't be in a confused state.
m_destroy_in_process = true;
Error error (WillDestroy());
if (error.Success())
{
EventSP exit_event_sp;
if (DestroyRequiresHalt())
{
error = HaltForDestroyOrDetach(exit_event_sp);
}
if (m_public_state.GetValue() != eStateRunning)
{
// Ditch all thread plans, and remove all our breakpoints: in case we have to restart the target to
// kill it, we don't want it hitting a breakpoint...
// Only do this if we've stopped, however, since if we didn't manage to halt it above, then
// we're not going to have much luck doing this now.
m_thread_list.DiscardThreadPlans();
DisableAllBreakpointSites();
}
error = DoDestroy();
if (error.Success())
{
DidDestroy();
StopPrivateStateThread();
}
m_stdio_communication.StopReadThread();
m_stdio_communication.Disconnect();
if (m_process_input_reader)
{
m_process_input_reader->SetIsDone(true);
m_process_input_reader->Cancel();
m_process_input_reader.reset();
}
// If we exited when we were waiting for a process to stop, then
// forward the event here so we don't lose the event
if (exit_event_sp)
{
// Directly broadcast our exited event because we shut down our
// private state thread above
BroadcastEvent(exit_event_sp);
}
// If we have been interrupted (to kill us) in the middle of running, we may not end up propagating
// the last events through the event system, in which case we might strand the write lock. Unlock
// it here so when we do to tear down the process we don't get an error destroying the lock.
m_public_run_lock.SetStopped();
}
m_destroy_in_process = false;
return error;
}
Error
Process::Signal (int signal)
{
Error error (WillSignal());
if (error.Success())
{
error = DoSignal(signal);
if (error.Success())
DidSignal();
}
return error;
}
lldb::ByteOrder
Process::GetByteOrder () const
{
return m_target.GetArchitecture().GetByteOrder();
}
uint32_t
Process::GetAddressByteSize () const
{
return m_target.GetArchitecture().GetAddressByteSize();
}
bool
Process::ShouldBroadcastEvent (Event *event_ptr)
{
const StateType state = Process::ProcessEventData::GetStateFromEvent (event_ptr);
bool return_value = true;
Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_EVENTS | LIBLLDB_LOG_PROCESS));
switch (state)
{
case eStateConnected:
case eStateAttaching:
case eStateLaunching:
case eStateDetached:
case eStateExited:
case eStateUnloaded:
// These events indicate changes in the state of the debugging session, always report them.
return_value = true;
break;
case eStateInvalid:
// We stopped for no apparent reason, don't report it.
return_value = false;
break;
case eStateRunning:
case eStateStepping:
// If we've started the target running, we handle the cases where we
// are already running and where there is a transition from stopped to
// running differently.
// running -> running: Automatically suppress extra running events
// stopped -> running: Report except when there is one or more no votes
// and no yes votes.
SynchronouslyNotifyStateChanged (state);
if (m_force_next_event_delivery)
return_value = true;
else
{
switch (m_last_broadcast_state)
{
case eStateRunning:
case eStateStepping:
// We always suppress multiple runnings with no PUBLIC stop in between.
return_value = false;
break;
default:
// TODO: make this work correctly. For now always report
// run if we aren't running so we don't miss any running
// events. If I run the lldb/test/thread/a.out file and
// break at main.cpp:58, run and hit the breakpoints on
// multiple threads, then somehow during the stepping over
// of all breakpoints no run gets reported.
// This is a transition from stop to run.
switch (m_thread_list.ShouldReportRun (event_ptr))
{
case eVoteYes:
case eVoteNoOpinion:
return_value = true;
break;
case eVoteNo:
return_value = false;
break;
}
break;
}
}
break;
case eStateStopped:
case eStateCrashed:
case eStateSuspended:
{
// We've stopped. First see if we're going to restart the target.
// If we are going to stop, then we always broadcast the event.
// If we aren't going to stop, let the thread plans decide if we're going to report this event.
// If no thread has an opinion, we don't report it.
RefreshStateAfterStop ();
if (ProcessEventData::GetInterruptedFromEvent (event_ptr))
{
if (log)
log->Printf ("Process::ShouldBroadcastEvent (%p) stopped due to an interrupt, state: %s",
static_cast<void*>(event_ptr),
StateAsCString(state));
// Even though we know we are going to stop, we should let the threads have a look at the stop,
// so they can properly set their state.
m_thread_list.ShouldStop (event_ptr);
return_value = true;
}
else
{
bool was_restarted = ProcessEventData::GetRestartedFromEvent (event_ptr);
bool should_resume = false;
// It makes no sense to ask "ShouldStop" if we've already been restarted...
// Asking the thread list is also not likely to go well, since we are running again.
// So in that case just report the event.
if (!was_restarted)
should_resume = m_thread_list.ShouldStop (event_ptr) == false;
if (was_restarted || should_resume || m_resume_requested)
{
Vote stop_vote = m_thread_list.ShouldReportStop (event_ptr);
if (log)
log->Printf ("Process::ShouldBroadcastEvent: should_stop: %i state: %s was_restarted: %i stop_vote: %d.",
should_resume, StateAsCString(state),
was_restarted, stop_vote);
switch (stop_vote)
{
case eVoteYes:
return_value = true;
break;
case eVoteNoOpinion:
case eVoteNo:
return_value = false;
break;
}
if (!was_restarted)
{
if (log)
log->Printf ("Process::ShouldBroadcastEvent (%p) Restarting process from state: %s",
static_cast<void*>(event_ptr),
StateAsCString(state));
ProcessEventData::SetRestartedInEvent(event_ptr, true);
PrivateResume ();
}
}
else
{
return_value = true;
SynchronouslyNotifyStateChanged (state);
}
}
}
break;
}
// Forcing the next event delivery is a one shot deal. So reset it here.
m_force_next_event_delivery = false;
// We do some coalescing of events (for instance two consecutive running events get coalesced.)
// But we only coalesce against events we actually broadcast. So we use m_last_broadcast_state
// to track that. NB - you can't use "m_public_state.GetValue()" for that purpose, as was originally done,
// because the PublicState reflects the last event pulled off the queue, and there may be several
// events stacked up on the queue unserviced. So the PublicState may not reflect the last broadcasted event
// yet. m_last_broadcast_state gets updated here.
if (return_value)
m_last_broadcast_state = state;
if (log)
log->Printf ("Process::ShouldBroadcastEvent (%p) => new state: %s, last broadcast state: %s - %s",
static_cast<void*>(event_ptr), StateAsCString(state),
StateAsCString(m_last_broadcast_state),
return_value ? "YES" : "NO");
return return_value;
}
bool
Process::StartPrivateStateThread (bool force)
{
Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EVENTS));
bool already_running = PrivateStateThreadIsValid ();
if (log)
log->Printf ("Process::%s()%s ", __FUNCTION__, already_running ? " already running" : " starting private state thread");
if (!force && already_running)
return true;
// Create a thread that watches our internal state and controls which
// events make it to clients (into the DCProcess event queue).
char thread_name[1024];
if (HostInfo::GetMaxThreadNameLength() <= 30)
{
// On platforms with abbreviated thread name lengths, choose thread names that fit within the limit.
if (already_running)
snprintf(thread_name, sizeof(thread_name), "intern-state-OV");
else
snprintf(thread_name, sizeof(thread_name), "intern-state");
}
else
{
if (already_running)
snprintf(thread_name, sizeof(thread_name), "<lldb.process.internal-state-override(pid=%" PRIu64 ")>", GetID());
else
snprintf(thread_name, sizeof(thread_name), "<lldb.process.internal-state(pid=%" PRIu64 ")>", GetID());
}
// Create the private state thread, and start it running.
m_private_state_thread = ThreadLauncher::LaunchThread(thread_name, Process::PrivateStateThread, this, NULL);
if (m_private_state_thread.GetState() == eThreadStateRunning)
{
ResumePrivateStateThread();
return true;
}
else
return false;
}
void
Process::PausePrivateStateThread ()
{
ControlPrivateStateThread (eBroadcastInternalStateControlPause);
}
void
Process::ResumePrivateStateThread ()
{
ControlPrivateStateThread (eBroadcastInternalStateControlResume);
}
void
Process::StopPrivateStateThread ()
{
if (PrivateStateThreadIsValid ())
ControlPrivateStateThread (eBroadcastInternalStateControlStop);
else
{
Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
if (log)
log->Printf ("Went to stop the private state thread, but it was already invalid.");
}
}
void
Process::ControlPrivateStateThread (uint32_t signal)
{
Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
assert (signal == eBroadcastInternalStateControlStop ||
signal == eBroadcastInternalStateControlPause ||
signal == eBroadcastInternalStateControlResume);
if (log)
log->Printf ("Process::%s (signal = %d)", __FUNCTION__, signal);
// Signal the private state thread. First we should copy this is case the
// thread starts exiting since the private state thread will NULL this out
// when it exits
HostThread private_state_thread(m_private_state_thread);
if (private_state_thread.GetState() == eThreadStateRunning)
{
TimeValue timeout_time;
bool timed_out;
m_private_state_control_broadcaster.BroadcastEvent (signal, NULL);
timeout_time = TimeValue::Now();
timeout_time.OffsetWithSeconds(2);
if (log)
log->Printf ("Sending control event of type: %d.", signal);
m_private_state_control_wait.WaitForValueEqualTo (true, &timeout_time, &timed_out);
m_private_state_control_wait.SetValue (false, eBroadcastNever);
if (signal == eBroadcastInternalStateControlStop)
{
if (timed_out)
{
Error error = private_state_thread.Cancel();
if (log)
log->Printf ("Timed out responding to the control event, cancel got error: \"%s\".", error.AsCString());
}
else
{
if (log)
log->Printf ("The control event killed the private state thread without having to cancel.");
}
thread_result_t result = NULL;
private_state_thread.Join(&result);
m_private_state_thread.Reset();
}
}
else
{
if (log)
log->Printf ("Private state thread already dead, no need to signal it to stop.");
}
}
void
Process::SendAsyncInterrupt ()
{
if (PrivateStateThreadIsValid())
m_private_state_broadcaster.BroadcastEvent (Process::eBroadcastBitInterrupt, NULL);
else
BroadcastEvent (Process::eBroadcastBitInterrupt, NULL);
}
void
Process::HandlePrivateEvent (EventSP &event_sp)
{
Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
m_resume_requested = false;
m_currently_handling_event.SetValue(true, eBroadcastNever);
const StateType new_state = Process::ProcessEventData::GetStateFromEvent(event_sp.get());
// First check to see if anybody wants a shot at this event:
if (m_next_event_action_ap.get() != NULL)
{
NextEventAction::EventActionResult action_result = m_next_event_action_ap->PerformAction(event_sp);
if (log)
log->Printf ("Ran next event action, result was %d.", action_result);
switch (action_result)
{
case NextEventAction::eEventActionSuccess:
SetNextEventAction(NULL);
break;
case NextEventAction::eEventActionRetry:
break;
case NextEventAction::eEventActionExit:
// Handle Exiting Here. If we already got an exited event,
// we should just propagate it. Otherwise, swallow this event,
// and set our state to exit so the next event will kill us.
if (new_state != eStateExited)
{
// FIXME: should cons up an exited event, and discard this one.
SetExitStatus(0, m_next_event_action_ap->GetExitString());
m_currently_handling_event.SetValue(false, eBroadcastAlways);
SetNextEventAction(NULL);
return;
}
SetNextEventAction(NULL);
break;
}
}
// See if we should broadcast this state to external clients?
const bool should_broadcast = ShouldBroadcastEvent (event_sp.get());
if (should_broadcast)
{
const bool is_hijacked = IsHijackedForEvent(eBroadcastBitStateChanged);
if (log)
{
log->Printf ("Process::%s (pid = %" PRIu64 ") broadcasting new state %s (old state %s) to %s",
__FUNCTION__,
GetID(),
StateAsCString(new_state),
StateAsCString (GetState ()),
is_hijacked ? "hijacked" : "public");
}
Process::ProcessEventData::SetUpdateStateOnRemoval(event_sp.get());
if (StateIsRunningState (new_state))
{
// Only push the input handler if we aren't fowarding events,
// as this means the curses GUI is in use...
if (!GetTarget().GetDebugger().IsForwardingEvents())
PushProcessIOHandler ();
m_iohandler_sync.SetValue(true, eBroadcastAlways);
}
else if (StateIsStoppedState(new_state, false))
{
m_iohandler_sync.SetValue(false, eBroadcastNever);
if (!Process::ProcessEventData::GetRestartedFromEvent(event_sp.get()))
{
// If the lldb_private::Debugger is handling the events, we don't
// want to pop the process IOHandler here, we want to do it when
// we receive the stopped event so we can carefully control when
// the process IOHandler is popped because when we stop we want to
// display some text stating how and why we stopped, then maybe some
// process/thread/frame info, and then we want the "(lldb) " prompt
// to show up. If we pop the process IOHandler here, then we will
// cause the command interpreter to become the top IOHandler after
// the process pops off and it will update its prompt right away...
// See the Debugger.cpp file where it calls the function as
// "process_sp->PopProcessIOHandler()" to see where I am talking about.
// Otherwise we end up getting overlapping "(lldb) " prompts and
// garbled output.
//
// If we aren't handling the events in the debugger (which is indicated
// by "m_target.GetDebugger().IsHandlingEvents()" returning false) or we
// are hijacked, then we always pop the process IO handler manually.
// Hijacking happens when the internal process state thread is running
// thread plans, or when commands want to run in synchronous mode
// and they call "process->WaitForProcessToStop()". An example of something
// that will hijack the events is a simple expression:
//
// (lldb) expr (int)puts("hello")
//
// This will cause the internal process state thread to resume and halt
// the process (and _it_ will hijack the eBroadcastBitStateChanged
// events) and we do need the IO handler to be pushed and popped
// correctly.
if (is_hijacked || m_target.GetDebugger().IsHandlingEvents() == false)
PopProcessIOHandler ();
}
}
BroadcastEvent (event_sp);
}
else
{
if (log)
{
log->Printf ("Process::%s (pid = %" PRIu64 ") suppressing state %s (old state %s): should_broadcast == false",
__FUNCTION__,
GetID(),
StateAsCString(new_state),
StateAsCString (GetState ()));
}
}
m_currently_handling_event.SetValue(false, eBroadcastAlways);
}
thread_result_t
Process::PrivateStateThread (void *arg)
{
Process *proc = static_cast<Process*> (arg);
thread_result_t result = proc->RunPrivateStateThread();
return result;
}
thread_result_t
Process::RunPrivateStateThread ()
{
bool control_only = true;
m_private_state_control_wait.SetValue (false, eBroadcastNever);
Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
if (log)
log->Printf ("Process::%s (arg = %p, pid = %" PRIu64 ") thread starting...",
__FUNCTION__, static_cast<void*>(this), GetID());
bool exit_now = false;
while (!exit_now)
{
EventSP event_sp;
WaitForEventsPrivate (NULL, event_sp, control_only);
if (event_sp->BroadcasterIs(&m_private_state_control_broadcaster))
{
if (log)
log->Printf ("Process::%s (arg = %p, pid = %" PRIu64 ") got a control event: %d",
__FUNCTION__, static_cast<void*>(this), GetID(),
event_sp->GetType());
switch (event_sp->GetType())
{
case eBroadcastInternalStateControlStop:
exit_now = true;
break; // doing any internal state management below
case eBroadcastInternalStateControlPause:
control_only = true;
break;
case eBroadcastInternalStateControlResume:
control_only = false;
break;
}
m_private_state_control_wait.SetValue (true, eBroadcastAlways);
continue;
}
else if (event_sp->GetType() == eBroadcastBitInterrupt)
{
if (m_public_state.GetValue() == eStateAttaching)
{
if (log)
log->Printf ("Process::%s (arg = %p, pid = %" PRIu64 ") woke up with an interrupt while attaching - forwarding interrupt.",
__FUNCTION__, static_cast<void*>(this),
GetID());
BroadcastEvent (eBroadcastBitInterrupt, NULL);
}
else
{
if (log)
log->Printf ("Process::%s (arg = %p, pid = %" PRIu64 ") woke up with an interrupt - Halting.",
__FUNCTION__, static_cast<void*>(this),
GetID());
Halt();
}
continue;
}
const StateType internal_state = Process::ProcessEventData::GetStateFromEvent(event_sp.get());
if (internal_state != eStateInvalid)
{
if (m_clear_thread_plans_on_stop &&
StateIsStoppedState(internal_state, true))
{
m_clear_thread_plans_on_stop = false;
m_thread_list.DiscardThreadPlans();
}
HandlePrivateEvent (event_sp);
}
if (internal_state == eStateInvalid ||
internal_state == eStateExited ||
internal_state == eStateDetached )
{
if (log)
log->Printf ("Process::%s (arg = %p, pid = %" PRIu64 ") about to exit with internal state %s...",
__FUNCTION__, static_cast<void*>(this), GetID(),
StateAsCString(internal_state));
break;
}
}
// Verify log is still enabled before attempting to write to it...
if (log)
log->Printf ("Process::%s (arg = %p, pid = %" PRIu64 ") thread exiting...",
__FUNCTION__, static_cast<void*>(this), GetID());
m_public_run_lock.SetStopped();
m_private_state_control_wait.SetValue (true, eBroadcastAlways);
m_private_state_thread.Reset();
return NULL;
}
//------------------------------------------------------------------
// Process Event Data
//------------------------------------------------------------------
Process::ProcessEventData::ProcessEventData () :
EventData (),
m_process_sp (),
m_state (eStateInvalid),
m_restarted (false),
m_update_state (0),
m_interrupted (false)
{
}
Process::ProcessEventData::ProcessEventData (const ProcessSP &process_sp, StateType state) :
EventData (),
m_process_sp (process_sp),
m_state (state),
m_restarted (false),
m_update_state (0),
m_interrupted (false)
{
}
Process::ProcessEventData::~ProcessEventData()
{
}
const ConstString &
Process::ProcessEventData::GetFlavorString ()
{
static ConstString g_flavor ("Process::ProcessEventData");
return g_flavor;
}
const ConstString &
Process::ProcessEventData::GetFlavor () const
{
return ProcessEventData::GetFlavorString ();
}
void
Process::ProcessEventData::DoOnRemoval (Event *event_ptr)
{
// This function gets called twice for each event, once when the event gets pulled
// off of the private process event queue, and then any number of times, first when it gets pulled off of
// the public event queue, then other times when we're pretending that this is where we stopped at the
// end of expression evaluation. m_update_state is used to distinguish these
// three cases; it is 0 when we're just pulling it off for private handling,
// and > 1 for expression evaluation, and we don't want to do the breakpoint command handling then.
if (m_update_state != 1)
return;
m_process_sp->SetPublicState (m_state, Process::ProcessEventData::GetRestartedFromEvent(event_ptr));
// If this is a halt event, even if the halt stopped with some reason other than a plain interrupt (e.g. we had
// already stopped for a breakpoint when the halt request came through) don't do the StopInfo actions, as they may
// end up restarting the process.
if (m_interrupted)
return;
// If we're stopped and haven't restarted, then do the StopInfo actions here:
if (m_state == eStateStopped && ! m_restarted)
{
ThreadList &curr_thread_list = m_process_sp->GetThreadList();
uint32_t num_threads = curr_thread_list.GetSize();
uint32_t idx;
// The actions might change one of the thread's stop_info's opinions about whether we should
// stop the process, so we need to query that as we go.
// One other complication here, is that we try to catch any case where the target has run (except for expressions)
// and immediately exit, but if we get that wrong (which is possible) then the thread list might have changed, and
// that would cause our iteration here to crash. We could make a copy of the thread list, but we'd really like
// to also know if it has changed at all, so we make up a vector of the thread ID's and check what we get back
// against this list & bag out if anything differs.
std::vector<uint32_t> thread_index_array(num_threads);
for (idx = 0; idx < num_threads; ++idx)
thread_index_array[idx] = curr_thread_list.GetThreadAtIndex(idx)->GetIndexID();
// Use this to track whether we should continue from here. We will only continue the target running if
// no thread says we should stop. Of course if some thread's PerformAction actually sets the target running,
// then it doesn't matter what the other threads say...
bool still_should_stop = false;
// Sometimes - for instance if we have a bug in the stub we are talking to, we stop but no thread has a
// valid stop reason. In that case we should just stop, because we have no way of telling what the right
// thing to do is, and it's better to let the user decide than continue behind their backs.
bool does_anybody_have_an_opinion = false;
for (idx = 0; idx < num_threads; ++idx)
{
curr_thread_list = m_process_sp->GetThreadList();
if (curr_thread_list.GetSize() != num_threads)
{
Log *log(lldb_private::GetLogIfAnyCategoriesSet (LIBLLDB_LOG_STEP | LIBLLDB_LOG_PROCESS));
if (log)
log->Printf("Number of threads changed from %u to %u while processing event.", num_threads, curr_thread_list.GetSize());
break;
}
lldb::ThreadSP thread_sp = curr_thread_list.GetThreadAtIndex(idx);
if (thread_sp->GetIndexID() != thread_index_array[idx])
{
Log *log(lldb_private::GetLogIfAnyCategoriesSet (LIBLLDB_LOG_STEP | LIBLLDB_LOG_PROCESS));
if (log)
log->Printf("The thread at position %u changed from %u to %u while processing event.",
idx,
thread_index_array[idx],
thread_sp->GetIndexID());
break;
}
StopInfoSP stop_info_sp = thread_sp->GetStopInfo ();
if (stop_info_sp && stop_info_sp->IsValid())
{
does_anybody_have_an_opinion = true;
bool this_thread_wants_to_stop;
if (stop_info_sp->GetOverrideShouldStop())
{
this_thread_wants_to_stop = stop_info_sp->GetOverriddenShouldStopValue();
}
else
{
stop_info_sp->PerformAction(event_ptr);
// The stop action might restart the target. If it does, then we want to mark that in the
// event so that whoever is receiving it will know to wait for the running event and reflect
// that state appropriately.
// We also need to stop processing actions, since they aren't expecting the target to be running.
// FIXME: we might have run.
if (stop_info_sp->HasTargetRunSinceMe())
{
SetRestarted (true);
break;
}
this_thread_wants_to_stop = stop_info_sp->ShouldStop(event_ptr);
}
if (still_should_stop == false)
still_should_stop = this_thread_wants_to_stop;
}
}
if (!GetRestarted())
{
if (!still_should_stop && does_anybody_have_an_opinion)
{
// We've been asked to continue, so do that here.
SetRestarted(true);
// Use the public resume method here, since this is just
// extending a public resume.
m_process_sp->PrivateResume();
}
else
{
// If we didn't restart, run the Stop Hooks here:
// They might also restart the target, so watch for that.
m_process_sp->GetTarget().RunStopHooks();
if (m_process_sp->GetPrivateState() == eStateRunning)
SetRestarted(true);
}
}
}
}
void
Process::ProcessEventData::Dump (Stream *s) const
{
if (m_process_sp)
s->Printf(" process = %p (pid = %" PRIu64 "), ",
static_cast<void*>(m_process_sp.get()), m_process_sp->GetID());
s->Printf("state = %s", StateAsCString(GetState()));
}
const Process::ProcessEventData *
Process::ProcessEventData::GetEventDataFromEvent (const Event *event_ptr)
{
if (event_ptr)
{
const EventData *event_data = event_ptr->GetData();
if (event_data && event_data->GetFlavor() == ProcessEventData::GetFlavorString())
return static_cast <const ProcessEventData *> (event_ptr->GetData());
}
return NULL;
}
ProcessSP
Process::ProcessEventData::GetProcessFromEvent (const Event *event_ptr)
{
ProcessSP process_sp;
const ProcessEventData *data = GetEventDataFromEvent (event_ptr);
if (data)
process_sp = data->GetProcessSP();
return process_sp;
}
StateType
Process::ProcessEventData::GetStateFromEvent (const Event *event_ptr)
{
const ProcessEventData *data = GetEventDataFromEvent (event_ptr);
if (data == NULL)
return eStateInvalid;
else
return data->GetState();
}
bool
Process::ProcessEventData::GetRestartedFromEvent (const Event *event_ptr)
{
const ProcessEventData *data = GetEventDataFromEvent (event_ptr);
if (data == NULL)
return false;
else
return data->GetRestarted();
}
void
Process::ProcessEventData::SetRestartedInEvent (Event *event_ptr, bool new_value)
{
ProcessEventData *data = const_cast<ProcessEventData *>(GetEventDataFromEvent (event_ptr));
if (data != NULL)
data->SetRestarted(new_value);
}
size_t
Process::ProcessEventData::GetNumRestartedReasons(const Event *event_ptr)
{
ProcessEventData *data = const_cast<ProcessEventData *>(GetEventDataFromEvent (event_ptr));
if (data != NULL)
return data->GetNumRestartedReasons();
else
return 0;
}
const char *
Process::ProcessEventData::GetRestartedReasonAtIndex(const Event *event_ptr, size_t idx)
{
ProcessEventData *data = const_cast<ProcessEventData *>(GetEventDataFromEvent (event_ptr));
if (data != NULL)
return data->GetRestartedReasonAtIndex(idx);
else
return NULL;
}
void
Process::ProcessEventData::AddRestartedReason (Event *event_ptr, const char *reason)
{
ProcessEventData *data = const_cast<ProcessEventData *>(GetEventDataFromEvent (event_ptr));
if (data != NULL)
data->AddRestartedReason(reason);
}
bool
Process::ProcessEventData::GetInterruptedFromEvent (const Event *event_ptr)
{
const ProcessEventData *data = GetEventDataFromEvent (event_ptr);
if (data == NULL)
return false;
else
return data->GetInterrupted ();
}
void
Process::ProcessEventData::SetInterruptedInEvent (Event *event_ptr, bool new_value)
{
ProcessEventData *data = const_cast<ProcessEventData *>(GetEventDataFromEvent (event_ptr));
if (data != NULL)
data->SetInterrupted(new_value);
}
bool
Process::ProcessEventData::SetUpdateStateOnRemoval (Event *event_ptr)
{
ProcessEventData *data = const_cast<ProcessEventData *>(GetEventDataFromEvent (event_ptr));
if (data)
{
data->SetUpdateStateOnRemoval();
return true;
}
return false;
}
lldb::TargetSP
Process::CalculateTarget ()
{
return m_target.shared_from_this();
}
void
Process::CalculateExecutionContext (ExecutionContext &exe_ctx)
{
exe_ctx.SetTargetPtr (&m_target);
exe_ctx.SetProcessPtr (this);
exe_ctx.SetThreadPtr(NULL);
exe_ctx.SetFramePtr (NULL);
}
//uint32_t
//Process::ListProcessesMatchingName (const char *name, StringList &matches, std::vector<lldb::pid_t> &pids)
//{
// return 0;
//}
//
//ArchSpec
//Process::GetArchSpecForExistingProcess (lldb::pid_t pid)
//{
// return Host::GetArchSpecForExistingProcess (pid);
//}
//
//ArchSpec
//Process::GetArchSpecForExistingProcess (const char *process_name)
//{
// return Host::GetArchSpecForExistingProcess (process_name);
//}
//
void
Process::AppendSTDOUT (const char * s, size_t len)
{
Mutex::Locker locker (m_stdio_communication_mutex);
m_stdout_data.append (s, len);
BroadcastEventIfUnique (eBroadcastBitSTDOUT, new ProcessEventData (shared_from_this(), GetState()));
}
void
Process::AppendSTDERR (const char * s, size_t len)
{
Mutex::Locker locker (m_stdio_communication_mutex);
m_stderr_data.append (s, len);
BroadcastEventIfUnique (eBroadcastBitSTDERR, new ProcessEventData (shared_from_this(), GetState()));
}
void
Process::BroadcastAsyncProfileData(const std::string &one_profile_data)
{
Mutex::Locker locker (m_profile_data_comm_mutex);
m_profile_data.push_back(one_profile_data);
BroadcastEventIfUnique (eBroadcastBitProfileData, new ProcessEventData (shared_from_this(), GetState()));
}
size_t
Process::GetAsyncProfileData (char *buf, size_t buf_size, Error &error)
{
Mutex::Locker locker(m_profile_data_comm_mutex);
if (m_profile_data.empty())
return 0;
std::string &one_profile_data = m_profile_data.front();
size_t bytes_available = one_profile_data.size();
if (bytes_available > 0)
{
Log *log (lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
if (log)
log->Printf ("Process::GetProfileData (buf = %p, size = %" PRIu64 ")",
static_cast<void*>(buf),
static_cast<uint64_t>(buf_size));
if (bytes_available > buf_size)
{
memcpy(buf, one_profile_data.c_str(), buf_size);
one_profile_data.erase(0, buf_size);
bytes_available = buf_size;
}
else
{
memcpy(buf, one_profile_data.c_str(), bytes_available);
m_profile_data.erase(m_profile_data.begin());
}
}
return bytes_available;
}
//------------------------------------------------------------------
// Process STDIO
//------------------------------------------------------------------
size_t
Process::GetSTDOUT (char *buf, size_t buf_size, Error &error)
{
Mutex::Locker locker(m_stdio_communication_mutex);
size_t bytes_available = m_stdout_data.size();
if (bytes_available > 0)
{
Log *log (lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
if (log)
log->Printf ("Process::GetSTDOUT (buf = %p, size = %" PRIu64 ")",
static_cast<void*>(buf),
static_cast<uint64_t>(buf_size));
if (bytes_available > buf_size)
{
memcpy(buf, m_stdout_data.c_str(), buf_size);
m_stdout_data.erase(0, buf_size);
bytes_available = buf_size;
}
else
{
memcpy(buf, m_stdout_data.c_str(), bytes_available);
m_stdout_data.clear();
}
}
return bytes_available;
}
size_t
Process::GetSTDERR (char *buf, size_t buf_size, Error &error)
{
Mutex::Locker locker(m_stdio_communication_mutex);
size_t bytes_available = m_stderr_data.size();
if (bytes_available > 0)
{
Log *log (lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
if (log)
log->Printf ("Process::GetSTDERR (buf = %p, size = %" PRIu64 ")",
static_cast<void*>(buf),
static_cast<uint64_t>(buf_size));
if (bytes_available > buf_size)
{
memcpy(buf, m_stderr_data.c_str(), buf_size);
m_stderr_data.erase(0, buf_size);
bytes_available = buf_size;
}
else
{
memcpy(buf, m_stderr_data.c_str(), bytes_available);
m_stderr_data.clear();
}
}
return bytes_available;
}
void
Process::STDIOReadThreadBytesReceived (void *baton, const void *src, size_t src_len)
{
Process *process = (Process *) baton;
process->AppendSTDOUT (static_cast<const char *>(src), src_len);
}
class IOHandlerProcessSTDIO :
public IOHandler
{
public:
IOHandlerProcessSTDIO (Process *process,
int write_fd) :
IOHandler(process->GetTarget().GetDebugger()),
m_process (process),
m_read_file (),
m_write_file (write_fd, false),
m_pipe ()
{
m_read_file.SetDescriptor(GetInputFD(), false);
}
virtual
~IOHandlerProcessSTDIO ()
{
}
bool
OpenPipes ()
{
if (m_pipe.IsValid())
return true;
return m_pipe.Open();
}
void
ClosePipes()
{
m_pipe.Close();
}
// Each IOHandler gets to run until it is done. It should read data
// from the "in" and place output into "out" and "err and return
// when done.
virtual void
Run ()
{
if (m_read_file.IsValid() && m_write_file.IsValid())
{
SetIsDone(false);
if (OpenPipes())
{
const int read_fd = m_read_file.GetDescriptor();
const int pipe_read_fd = m_pipe.GetReadFileDescriptor();
TerminalState terminal_state;
terminal_state.Save (read_fd, false);
Terminal terminal(read_fd);
terminal.SetCanonical(false);
terminal.SetEcho(false);
// FD_ZERO, FD_SET are not supported on windows
#ifndef _WIN32
while (!GetIsDone())
{
fd_set read_fdset;
FD_ZERO (&read_fdset);
FD_SET (read_fd, &read_fdset);
FD_SET (pipe_read_fd, &read_fdset);
const int nfds = std::max<int>(read_fd, pipe_read_fd) + 1;
int num_set_fds = select (nfds, &read_fdset, NULL, NULL, NULL);
if (num_set_fds < 0)
{
const int select_errno = errno;
if (select_errno != EINTR)
SetIsDone(true);
}
else if (num_set_fds > 0)
{
char ch = 0;
size_t n;
if (FD_ISSET (read_fd, &read_fdset))
{
n = 1;
if (m_read_file.Read(&ch, n).Success() && n == 1)
{
if (m_write_file.Write(&ch, n).Fail() || n != 1)
SetIsDone(true);
}
else
SetIsDone(true);
}
if (FD_ISSET (pipe_read_fd, &read_fdset))
{
// Consume the interrupt byte
if (m_pipe.Read (&ch, 1) == 1)
{
switch (ch)
{
case 'q':
SetIsDone(true);
break;
case 'i':
if (StateIsRunningState(m_process->GetState()))
m_process->Halt();
break;
}
}
}
}
}
#endif
terminal_state.Restore();
}
else
SetIsDone(true);
}
else
SetIsDone(true);
}
// Hide any characters that have been displayed so far so async
// output can be displayed. Refresh() will be called after the
// output has been displayed.
virtual void
Hide ()
{
}
// Called when the async output has been received in order to update
// the input reader (refresh the prompt and redisplay any current
// line(s) that are being edited
virtual void
Refresh ()
{
}
virtual void
Cancel ()
{
char ch = 'q'; // Send 'q' for quit
m_pipe.Write (&ch, 1);
}
virtual bool
Interrupt ()
{
// Do only things that are safe to do in an interrupt context (like in
// a SIGINT handler), like write 1 byte to a file descriptor. This will
// interrupt the IOHandlerProcessSTDIO::Run() and we can look at the byte
// that was written to the pipe and then call m_process->Halt() from a
// much safer location in code.
if (m_active)
{
char ch = 'i'; // Send 'i' for interrupt
return m_pipe.Write (&ch, 1) == 1;
}
else
{
// This IOHandler might be pushed on the stack, but not being run currently
// so do the right thing if we aren't actively watching for STDIN by sending
// the interrupt to the process. Otherwise the write to the pipe above would
// do nothing. This can happen when the command interpreter is running and
// gets a "expression ...". It will be on the IOHandler thread and sending
// the input is complete to the delegate which will cause the expression to
// run, which will push the process IO handler, but not run it.
if (StateIsRunningState(m_process->GetState()))
{
m_process->SendAsyncInterrupt();
return true;
}
}
return false;
}
virtual void
GotEOF()
{
}
protected:
Process *m_process;
File m_read_file; // Read from this file (usually actual STDIN for LLDB
File m_write_file; // Write to this file (usually the master pty for getting io to debuggee)
Pipe m_pipe;
};
void
Process::SetSTDIOFileDescriptor (int fd)
{
// First set up the Read Thread for reading/handling process I/O
std::unique_ptr<ConnectionFileDescriptor> conn_ap (new ConnectionFileDescriptor (fd, true));
if (conn_ap.get())
{
m_stdio_communication.SetConnection (conn_ap.release());
if (m_stdio_communication.IsConnected())
{
m_stdio_communication.SetReadThreadBytesReceivedCallback (STDIOReadThreadBytesReceived, this);
m_stdio_communication.StartReadThread();
// Now read thread is set up, set up input reader.
if (!m_process_input_reader.get())
m_process_input_reader.reset (new IOHandlerProcessSTDIO (this, fd));
}
}
}
bool
Process::ProcessIOHandlerIsActive ()
{
IOHandlerSP io_handler_sp (m_process_input_reader);
if (io_handler_sp)
return m_target.GetDebugger().IsTopIOHandler (io_handler_sp);
return false;
}
bool
Process::PushProcessIOHandler ()
{
IOHandlerSP io_handler_sp (m_process_input_reader);
if (io_handler_sp)
{
io_handler_sp->SetIsDone(false);
m_target.GetDebugger().PushIOHandler (io_handler_sp);
return true;
}
return false;
}
bool
Process::PopProcessIOHandler ()
{
IOHandlerSP io_handler_sp (m_process_input_reader);
if (io_handler_sp)
return m_target.GetDebugger().PopIOHandler (io_handler_sp);
return false;
}
// The process needs to know about installed plug-ins
void
Process::SettingsInitialize ()
{
Thread::SettingsInitialize ();
}
void
Process::SettingsTerminate ()
{
Thread::SettingsTerminate ();
}
ExpressionResults
Process::RunThreadPlan (ExecutionContext &exe_ctx,
lldb::ThreadPlanSP &thread_plan_sp,
const EvaluateExpressionOptions &options,
Stream &errors)
{
ExpressionResults return_value = eExpressionSetupError;
if (thread_plan_sp.get() == NULL)
{
errors.Printf("RunThreadPlan called with empty thread plan.");
return eExpressionSetupError;
}
if (!thread_plan_sp->ValidatePlan(NULL))
{
errors.Printf ("RunThreadPlan called with an invalid thread plan.");
return eExpressionSetupError;
}
if (exe_ctx.GetProcessPtr() != this)
{
errors.Printf("RunThreadPlan called on wrong process.");
return eExpressionSetupError;
}
Thread *thread = exe_ctx.GetThreadPtr();
if (thread == NULL)
{
errors.Printf("RunThreadPlan called with invalid thread.");
return eExpressionSetupError;
}
// We rely on the thread plan we are running returning "PlanCompleted" if when it successfully completes.
// For that to be true the plan can't be private - since private plans suppress themselves in the
// GetCompletedPlan call.
bool orig_plan_private = thread_plan_sp->GetPrivate();
thread_plan_sp->SetPrivate(false);
if (m_private_state.GetValue() != eStateStopped)
{
errors.Printf ("RunThreadPlan called while the private state was not stopped.");
return eExpressionSetupError;
}
// Save the thread & frame from the exe_ctx for restoration after we run
const uint32_t thread_idx_id = thread->GetIndexID();
StackFrameSP selected_frame_sp = thread->GetSelectedFrame();
if (!selected_frame_sp)
{
thread->SetSelectedFrame(0);
selected_frame_sp = thread->GetSelectedFrame();
if (!selected_frame_sp)
{
errors.Printf("RunThreadPlan called without a selected frame on thread %d", thread_idx_id);
return eExpressionSetupError;
}
}
StackID ctx_frame_id = selected_frame_sp->GetStackID();
// N.B. Running the target may unset the currently selected thread and frame. We don't want to do that either,
// so we should arrange to reset them as well.
lldb::ThreadSP selected_thread_sp = GetThreadList().GetSelectedThread();
uint32_t selected_tid;
StackID selected_stack_id;
if (selected_thread_sp)
{
selected_tid = selected_thread_sp->GetIndexID();
selected_stack_id = selected_thread_sp->GetSelectedFrame()->GetStackID();
}
else
{
selected_tid = LLDB_INVALID_THREAD_ID;
}
HostThread backup_private_state_thread;
lldb::StateType old_state;
lldb::ThreadPlanSP stopper_base_plan_sp;
Log *log(lldb_private::GetLogIfAnyCategoriesSet (LIBLLDB_LOG_STEP | LIBLLDB_LOG_PROCESS));
if (m_private_state_thread.EqualsThread(Host::GetCurrentThread()))
{
// Yikes, we are running on the private state thread! So we can't wait for public events on this thread, since
// we are the thread that is generating public events.
// The simplest thing to do is to spin up a temporary thread to handle private state thread events while
// we are fielding public events here.
if (log)
log->Printf ("Running thread plan on private state thread, spinning up another state thread to handle the events.");
backup_private_state_thread = m_private_state_thread;
// One other bit of business: we want to run just this thread plan and anything it pushes, and then stop,
// returning control here.
// But in the normal course of things, the plan above us on the stack would be given a shot at the stop
// event before deciding to stop, and we don't want that. So we insert a "stopper" base plan on the stack
// before the plan we want to run. Since base plans always stop and return control to the user, that will
// do just what we want.
stopper_base_plan_sp.reset(new ThreadPlanBase (*thread));
thread->QueueThreadPlan (stopper_base_plan_sp, false);
// Have to make sure our public state is stopped, since otherwise the reporting logic below doesn't work correctly.
old_state = m_public_state.GetValue();
m_public_state.SetValueNoLock(eStateStopped);
// Now spin up the private state thread:
StartPrivateStateThread(true);
}
thread->QueueThreadPlan(thread_plan_sp, false); // This used to pass "true" does that make sense?
if (options.GetDebug())
{
// In this case, we aren't actually going to run, we just want to stop right away.
// Flush this thread so we will refetch the stacks and show the correct backtrace.
// FIXME: To make this prettier we should invent some stop reason for this, but that
// is only cosmetic, and this functionality is only of use to lldb developers who can
// live with not pretty...
thread->Flush();
return eExpressionStoppedForDebug;
}
Listener listener("lldb.process.listener.run-thread-plan");
lldb::EventSP event_to_broadcast_sp;
{
// This process event hijacker Hijacks the Public events and its destructor makes sure that the process events get
// restored on exit to the function.
//
// If the event needs to propagate beyond the hijacker (e.g., the process exits during execution), then the event
// is put into event_to_broadcast_sp for rebroadcasting.
ProcessEventHijacker run_thread_plan_hijacker (*this, &listener);
if (log)
{
StreamString s;
thread_plan_sp->GetDescription(&s, lldb::eDescriptionLevelVerbose);
log->Printf ("Process::RunThreadPlan(): Resuming thread %u - 0x%4.4" PRIx64 " to run thread plan \"%s\".",
thread->GetIndexID(),
thread->GetID(),
s.GetData());
}
bool got_event;
lldb::EventSP event_sp;
lldb::StateType stop_state = lldb::eStateInvalid;
TimeValue* timeout_ptr = NULL;
TimeValue real_timeout;
bool before_first_timeout = true; // This is set to false the first time that we have to halt the target.
bool do_resume = true;
bool handle_running_event = true;
const uint64_t default_one_thread_timeout_usec = 250000;
// This is just for accounting:
uint32_t num_resumes = 0;
uint32_t timeout_usec = options.GetTimeoutUsec();
uint32_t one_thread_timeout_usec;
uint32_t all_threads_timeout_usec = 0;
// If we are going to run all threads the whole time, or if we are only going to run one thread,
// then we don't need the first timeout. So we set the final timeout, and pretend we are after the
// first timeout already.
if (!options.GetStopOthers() || !options.GetTryAllThreads())
{
before_first_timeout = false;
one_thread_timeout_usec = 0;
all_threads_timeout_usec = timeout_usec;
}
else
{
uint32_t option_one_thread_timeout = options.GetOneThreadTimeoutUsec();
// If the overall wait is forever, then we only need to set the one thread timeout:
if (timeout_usec == 0)
{
if (option_one_thread_timeout != 0)
one_thread_timeout_usec = option_one_thread_timeout;
else
one_thread_timeout_usec = default_one_thread_timeout_usec;
}
else
{
// Otherwise, if the one thread timeout is set, make sure it isn't longer than the overall timeout,
// and use it, otherwise use half the total timeout, bounded by the default_one_thread_timeout_usec.
uint64_t computed_one_thread_timeout;
if (option_one_thread_timeout != 0)
{
if (timeout_usec < option_one_thread_timeout)
{
errors.Printf("RunThreadPlan called without one thread timeout greater than total timeout");
return eExpressionSetupError;
}
computed_one_thread_timeout = option_one_thread_timeout;
}
else
{
computed_one_thread_timeout = timeout_usec / 2;
if (computed_one_thread_timeout > default_one_thread_timeout_usec)
computed_one_thread_timeout = default_one_thread_timeout_usec;
}
one_thread_timeout_usec = computed_one_thread_timeout;
all_threads_timeout_usec = timeout_usec - one_thread_timeout_usec;
}
}
if (log)
log->Printf ("Stop others: %u, try all: %u, before_first: %u, one thread: %" PRIu32 " - all threads: %" PRIu32 ".\n",
options.GetStopOthers(),
options.GetTryAllThreads(),
before_first_timeout,
one_thread_timeout_usec,
all_threads_timeout_usec);
// This isn't going to work if there are unfetched events on the queue.
// Are there cases where we might want to run the remaining events here, and then try to
// call the function? That's probably being too tricky for our own good.
Event *other_events = listener.PeekAtNextEvent();
if (other_events != NULL)
{
errors.Printf("Calling RunThreadPlan with pending events on the queue.");
return eExpressionSetupError;
}
// We also need to make sure that the next event is delivered. We might be calling a function as part of
// a thread plan, in which case the last delivered event could be the running event, and we don't want
// event coalescing to cause us to lose OUR running event...
ForceNextEventDelivery();
// This while loop must exit out the bottom, there's cleanup that we need to do when we are done.
// So don't call return anywhere within it.
#ifdef LLDB_RUN_THREAD_HALT_WITH_EVENT
// It's pretty much impossible to write test cases for things like:
// One thread timeout expires, I go to halt, but the process already stopped
// on the function call stop breakpoint. Turning on this define will make us not
// fetch the first event till after the halt. So if you run a quick function, it will have
// completed, and the completion event will be waiting, when you interrupt for halt.
// The expression evaluation should still succeed.
bool miss_first_event = true;
#endif
TimeValue one_thread_timeout;
TimeValue final_timeout;
while (1)
{
// We usually want to resume the process if we get to the top of the loop.
// The only exception is if we get two running events with no intervening
// stop, which can happen, we will just wait for then next stop event.
if (log)
log->Printf ("Top of while loop: do_resume: %i handle_running_event: %i before_first_timeout: %i.",
do_resume,
handle_running_event,
before_first_timeout);
if (do_resume || handle_running_event)
{
// Do the initial resume and wait for the running event before going further.
if (do_resume)
{
num_resumes++;
Error resume_error = PrivateResume ();
if (!resume_error.Success())
{
errors.Printf("Error resuming inferior the %d time: \"%s\".\n",
num_resumes,
resume_error.AsCString());
return_value = eExpressionSetupError;
break;
}
}
TimeValue resume_timeout = TimeValue::Now();
resume_timeout.OffsetWithMicroSeconds(500000);
got_event = listener.WaitForEvent(&resume_timeout, event_sp);
if (!got_event)
{
if (log)
log->Printf ("Process::RunThreadPlan(): didn't get any event after resume %d, exiting.",
num_resumes);
errors.Printf("Didn't get any event after resume %d, exiting.", num_resumes);
return_value = eExpressionSetupError;
break;
}
stop_state = Process::ProcessEventData::GetStateFromEvent(event_sp.get());
if (stop_state != eStateRunning)
{
bool restarted = false;
if (stop_state == eStateStopped)
{
restarted = Process::ProcessEventData::GetRestartedFromEvent(event_sp.get());
if (log)
log->Printf("Process::RunThreadPlan(): didn't get running event after "
"resume %d, got %s instead (restarted: %i, do_resume: %i, handle_running_event: %i).",
num_resumes,
StateAsCString(stop_state),
restarted,
do_resume,
handle_running_event);
}
if (restarted)
{
// This is probably an overabundance of caution, I don't think I should ever get a stopped & restarted
// event here. But if I do, the best thing is to Halt and then get out of here.
Halt();
}
errors.Printf("Didn't get running event after initial resume, got %s instead.",
StateAsCString(stop_state));
return_value = eExpressionSetupError;
break;
}
if (log)
log->PutCString ("Process::RunThreadPlan(): resuming succeeded.");
// We need to call the function synchronously, so spin waiting for it to return.
// If we get interrupted while executing, we're going to lose our context, and
// won't be able to gather the result at this point.
// We set the timeout AFTER the resume, since the resume takes some time and we
// don't want to charge that to the timeout.
}
else
{
if (log)
log->PutCString ("Process::RunThreadPlan(): waiting for next event.");
}
if (before_first_timeout)
{
if (options.GetTryAllThreads())
{
one_thread_timeout = TimeValue::Now();
one_thread_timeout.OffsetWithMicroSeconds(one_thread_timeout_usec);
timeout_ptr = &one_thread_timeout;
}
else
{
if (timeout_usec == 0)
timeout_ptr = NULL;
else
{
final_timeout = TimeValue::Now();
final_timeout.OffsetWithMicroSeconds (timeout_usec);
timeout_ptr = &final_timeout;
}
}
}
else
{
if (timeout_usec == 0)
timeout_ptr = NULL;
else
{
final_timeout = TimeValue::Now();
final_timeout.OffsetWithMicroSeconds (all_threads_timeout_usec);
timeout_ptr = &final_timeout;
}
}
do_resume = true;
handle_running_event = true;
// Now wait for the process to stop again:
event_sp.reset();
if (log)
{
if (timeout_ptr)
{
log->Printf ("Process::RunThreadPlan(): about to wait - now is %" PRIu64 " - endpoint is %" PRIu64,
TimeValue::Now().GetAsMicroSecondsSinceJan1_1970(),
timeout_ptr->GetAsMicroSecondsSinceJan1_1970());
}
else
{
log->Printf ("Process::RunThreadPlan(): about to wait forever.");
}
}
#ifdef LLDB_RUN_THREAD_HALT_WITH_EVENT
// See comment above...
if (miss_first_event)
{
usleep(1000);
miss_first_event = false;
got_event = false;
}
else
#endif
got_event = listener.WaitForEvent (timeout_ptr, event_sp);
if (got_event)
{
if (event_sp.get())
{
bool keep_going = false;
if (event_sp->GetType() == eBroadcastBitInterrupt)
{
Halt();
return_value = eExpressionInterrupted;
errors.Printf ("Execution halted by user interrupt.");
if (log)
log->Printf ("Process::RunThreadPlan(): Got interrupted by eBroadcastBitInterrupted, exiting.");
break;
}
else
{
stop_state = Process::ProcessEventData::GetStateFromEvent(event_sp.get());
if (log)
log->Printf("Process::RunThreadPlan(): in while loop, got event: %s.", StateAsCString(stop_state));
switch (stop_state)
{
case lldb::eStateStopped:
{
// We stopped, figure out what we are going to do now.
ThreadSP thread_sp = GetThreadList().FindThreadByIndexID (thread_idx_id);
if (!thread_sp)
{
// Ooh, our thread has vanished. Unlikely that this was successful execution...
if (log)
log->Printf ("Process::RunThreadPlan(): execution completed but our thread (index-id=%u) has vanished.", thread_idx_id);
return_value = eExpressionInterrupted;
}
else
{
// If we were restarted, we just need to go back up to fetch another event.
if (Process::ProcessEventData::GetRestartedFromEvent(event_sp.get()))
{
if (log)
{
log->Printf ("Process::RunThreadPlan(): Got a stop and restart, so we'll continue waiting.");
}
keep_going = true;
do_resume = false;
handle_running_event = true;
}
else
{
StopInfoSP stop_info_sp (thread_sp->GetStopInfo ());
StopReason stop_reason = eStopReasonInvalid;
if (stop_info_sp)
stop_reason = stop_info_sp->GetStopReason();
// FIXME: We only check if the stop reason is plan complete, should we make sure that
// it is OUR plan that is complete?
if (stop_reason == eStopReasonPlanComplete)
{
if (log)
log->PutCString ("Process::RunThreadPlan(): execution completed successfully.");
// Now mark this plan as private so it doesn't get reported as the stop reason
// after this point.
if (thread_plan_sp)
thread_plan_sp->SetPrivate (orig_plan_private);
return_value = eExpressionCompleted;
}
else
{
// Something restarted the target, so just wait for it to stop for real.
if (stop_reason == eStopReasonBreakpoint)
{
if (log)
log->Printf ("Process::RunThreadPlan() stopped for breakpoint: %s.", stop_info_sp->GetDescription());
return_value = eExpressionHitBreakpoint;
if (!options.DoesIgnoreBreakpoints())
{
event_to_broadcast_sp = event_sp;
}
}
else
{
if (log)
log->PutCString ("Process::RunThreadPlan(): thread plan didn't successfully complete.");
if (!options.DoesUnwindOnError())
event_to_broadcast_sp = event_sp;
return_value = eExpressionInterrupted;
}
}
}
}
}
break;
case lldb::eStateRunning:
// This shouldn't really happen, but sometimes we do get two running events without an
// intervening stop, and in that case we should just go back to waiting for the stop.
do_resume = false;
keep_going = true;
handle_running_event = false;
break;
default:
if (log)
log->Printf("Process::RunThreadPlan(): execution stopped with unexpected state: %s.", StateAsCString(stop_state));
if (stop_state == eStateExited)
event_to_broadcast_sp = event_sp;
errors.Printf ("Execution stopped with unexpected state.\n");
return_value = eExpressionInterrupted;
break;
}
}
if (keep_going)
continue;
else
break;
}
else
{
if (log)
log->PutCString ("Process::RunThreadPlan(): got_event was true, but the event pointer was null. How odd...");
return_value = eExpressionInterrupted;
break;
}
}
else
{
// If we didn't get an event that means we've timed out...
// We will interrupt the process here. Depending on what we were asked to do we will
// either exit, or try with all threads running for the same timeout.
if (log) {
if (options.GetTryAllThreads())
{
if (before_first_timeout)
{
if (timeout_usec != 0)
{
log->Printf ("Process::RunThreadPlan(): Running function with one thread timeout timed out, "
"running for %" PRIu32 " usec with all threads enabled.",
all_threads_timeout_usec);
}
else
{
log->Printf ("Process::RunThreadPlan(): Running function with one thread timeout timed out, "
"running forever with all threads enabled.");
}
}
else
log->Printf ("Process::RunThreadPlan(): Restarting function with all threads enabled "
"and timeout: %u timed out, abandoning execution.",
timeout_usec);
}
else
log->Printf ("Process::RunThreadPlan(): Running function with timeout: %u timed out, "
"abandoning execution.",
timeout_usec);
}
// It is possible that between the time we issued the Halt, and we get around to calling Halt the target
// could have stopped. That's fine, Halt will figure that out and send the appropriate Stopped event.
// BUT it is also possible that we stopped & restarted (e.g. hit a signal with "stop" set to false.) In
// that case, we'll get the stopped & restarted event, and we should go back to waiting for the Halt's
// stopped event. That's what this while loop does.
bool back_to_top = true;
uint32_t try_halt_again = 0;
bool do_halt = true;
const uint32_t num_retries = 5;
while (try_halt_again < num_retries)
{
Error halt_error;
if (do_halt)
{
if (log)
log->Printf ("Process::RunThreadPlan(): Running Halt.");
halt_error = Halt();
}
if (halt_error.Success())
{
if (log)
log->PutCString ("Process::RunThreadPlan(): Halt succeeded.");
real_timeout = TimeValue::Now();
real_timeout.OffsetWithMicroSeconds(500000);
got_event = listener.WaitForEvent(&real_timeout, event_sp);
if (got_event)
{
stop_state = Process::ProcessEventData::GetStateFromEvent(event_sp.get());
if (log)
{
log->Printf ("Process::RunThreadPlan(): Stopped with event: %s", StateAsCString(stop_state));
if (stop_state == lldb::eStateStopped
&& Process::ProcessEventData::GetInterruptedFromEvent(event_sp.get()))
log->PutCString (" Event was the Halt interruption event.");
}
if (stop_state == lldb::eStateStopped)
{
// Between the time we initiated the Halt and the time we delivered it, the process could have
// already finished its job. Check that here:
if (thread->IsThreadPlanDone (thread_plan_sp.get()))
{
if (log)
log->PutCString ("Process::RunThreadPlan(): Even though we timed out, the call plan was done. "
"Exiting wait loop.");
return_value = eExpressionCompleted;
back_to_top = false;
break;
}
if (Process::ProcessEventData::GetRestartedFromEvent(event_sp.get()))
{
if (log)
log->PutCString ("Process::RunThreadPlan(): Went to halt but got a restarted event, there must be an un-restarted stopped event so try again... "
"Exiting wait loop.");
try_halt_again++;
do_halt = false;
continue;
}
if (!options.GetTryAllThreads())
{
if (log)
log->PutCString ("Process::RunThreadPlan(): try_all_threads was false, we stopped so now we're quitting.");
return_value = eExpressionInterrupted;
back_to_top = false;
break;
}
if (before_first_timeout)
{
// Set all the other threads to run, and return to the top of the loop, which will continue;
before_first_timeout = false;
thread_plan_sp->SetStopOthers (false);
if (log)
log->PutCString ("Process::RunThreadPlan(): about to resume.");
back_to_top = true;
break;
}
else
{
// Running all threads failed, so return Interrupted.
if (log)
log->PutCString("Process::RunThreadPlan(): running all threads timed out.");
return_value = eExpressionInterrupted;
back_to_top = false;
break;
}
}
}
else
{ if (log)
log->PutCString("Process::RunThreadPlan(): halt said it succeeded, but I got no event. "
"I'm getting out of here passing Interrupted.");
return_value = eExpressionInterrupted;
back_to_top = false;
break;
}
}
else
{
try_halt_again++;
continue;
}
}
if (!back_to_top || try_halt_again > num_retries)
break;
else
continue;
}
} // END WAIT LOOP
// If we had to start up a temporary private state thread to run this thread plan, shut it down now.
if (backup_private_state_thread.GetState() != eThreadStateInvalid)
{
StopPrivateStateThread();
Error error;
m_private_state_thread = backup_private_state_thread;
if (stopper_base_plan_sp)
{
thread->DiscardThreadPlansUpToPlan(stopper_base_plan_sp);
}
m_public_state.SetValueNoLock(old_state);
}
// Restore the thread state if we are going to discard the plan execution. There are three cases where this
// could happen:
// 1) The execution successfully completed
// 2) We hit a breakpoint, and ignore_breakpoints was true
// 3) We got some other error, and discard_on_error was true
bool should_unwind = (return_value == eExpressionInterrupted && options.DoesUnwindOnError())
|| (return_value == eExpressionHitBreakpoint && options.DoesIgnoreBreakpoints());
if (return_value == eExpressionCompleted
|| should_unwind)
{
thread_plan_sp->RestoreThreadState();
}
// Now do some processing on the results of the run:
if (return_value == eExpressionInterrupted || return_value == eExpressionHitBreakpoint)
{
if (log)
{
StreamString s;
if (event_sp)
event_sp->Dump (&s);
else
{
log->PutCString ("Process::RunThreadPlan(): Stop event that interrupted us is NULL.");
}
StreamString ts;
const char *event_explanation = NULL;
do
{
if (!event_sp)
{
event_explanation = "<no event>";
break;
}
else if (event_sp->GetType() == eBroadcastBitInterrupt)
{
event_explanation = "<user interrupt>";
break;
}
else
{
const Process::ProcessEventData *event_data = Process::ProcessEventData::GetEventDataFromEvent (event_sp.get());
if (!event_data)
{
event_explanation = "<no event data>";
break;
}
Process *process = event_data->GetProcessSP().get();
if (!process)
{
event_explanation = "<no process>";
break;
}
ThreadList &thread_list = process->GetThreadList();
uint32_t num_threads = thread_list.GetSize();
uint32_t thread_index;
ts.Printf("<%u threads> ", num_threads);
for (thread_index = 0;
thread_index < num_threads;
++thread_index)
{
Thread *thread = thread_list.GetThreadAtIndex(thread_index).get();
if (!thread)
{
ts.Printf("<?> ");
continue;
}
ts.Printf("<0x%4.4" PRIx64 " ", thread->GetID());
RegisterContext *register_context = thread->GetRegisterContext().get();
if (register_context)
ts.Printf("[ip 0x%" PRIx64 "] ", register_context->GetPC());
else
ts.Printf("[ip unknown] ");
lldb::StopInfoSP stop_info_sp = thread->GetStopInfo();
if (stop_info_sp)
{
const char *stop_desc = stop_info_sp->GetDescription();
if (stop_desc)
ts.PutCString (stop_desc);
}
ts.Printf(">");
}
event_explanation = ts.GetData();
}
} while (0);
if (event_explanation)
log->Printf("Process::RunThreadPlan(): execution interrupted: %s %s", s.GetData(), event_explanation);
else
log->Printf("Process::RunThreadPlan(): execution interrupted: %s", s.GetData());
}
if (should_unwind)
{
if (log)
log->Printf ("Process::RunThreadPlan: ExecutionInterrupted - discarding thread plans up to %p.",
static_cast<void*>(thread_plan_sp.get()));
thread->DiscardThreadPlansUpToPlan (thread_plan_sp);
thread_plan_sp->SetPrivate (orig_plan_private);
}
else
{
if (log)
log->Printf ("Process::RunThreadPlan: ExecutionInterrupted - for plan: %p not discarding.",
static_cast<void*>(thread_plan_sp.get()));
}
}
else if (return_value == eExpressionSetupError)
{
if (log)
log->PutCString("Process::RunThreadPlan(): execution set up error.");
if (options.DoesUnwindOnError())
{
thread->DiscardThreadPlansUpToPlan (thread_plan_sp);
thread_plan_sp->SetPrivate (orig_plan_private);
}
}
else
{
if (thread->IsThreadPlanDone (thread_plan_sp.get()))
{
if (log)
log->PutCString("Process::RunThreadPlan(): thread plan is done");
return_value = eExpressionCompleted;
}
else if (thread->WasThreadPlanDiscarded (thread_plan_sp.get()))
{
if (log)
log->PutCString("Process::RunThreadPlan(): thread plan was discarded");
return_value = eExpressionDiscarded;
}
else
{
if (log)
log->PutCString("Process::RunThreadPlan(): thread plan stopped in mid course");
if (options.DoesUnwindOnError() && thread_plan_sp)
{
if (log)
log->PutCString("Process::RunThreadPlan(): discarding thread plan 'cause unwind_on_error is set.");
thread->DiscardThreadPlansUpToPlan (thread_plan_sp);
thread_plan_sp->SetPrivate (orig_plan_private);
}
}
}
// Thread we ran the function in may have gone away because we ran the target
// Check that it's still there, and if it is put it back in the context. Also restore the
// frame in the context if it is still present.
thread = GetThreadList().FindThreadByIndexID(thread_idx_id, true).get();
if (thread)
{
exe_ctx.SetFrameSP (thread->GetFrameWithStackID (ctx_frame_id));
}
// Also restore the current process'es selected frame & thread, since this function calling may
// be done behind the user's back.
if (selected_tid != LLDB_INVALID_THREAD_ID)
{
if (GetThreadList().SetSelectedThreadByIndexID (selected_tid) && selected_stack_id.IsValid())
{
// We were able to restore the selected thread, now restore the frame:
Mutex::Locker lock(GetThreadList().GetMutex());
StackFrameSP old_frame_sp = GetThreadList().GetSelectedThread()->GetFrameWithStackID(selected_stack_id);
if (old_frame_sp)
GetThreadList().GetSelectedThread()->SetSelectedFrame(old_frame_sp.get());
}
}
}
// If the process exited during the run of the thread plan, notify everyone.
if (event_to_broadcast_sp)
{
if (log)
log->PutCString("Process::RunThreadPlan(): rebroadcasting event.");
BroadcastEvent(event_to_broadcast_sp);
}
return return_value;
}
const char *
Process::ExecutionResultAsCString (ExpressionResults result)
{
const char *result_name;
switch (result)
{
case eExpressionCompleted:
result_name = "eExpressionCompleted";
break;
case eExpressionDiscarded:
result_name = "eExpressionDiscarded";
break;
case eExpressionInterrupted:
result_name = "eExpressionInterrupted";
break;
case eExpressionHitBreakpoint:
result_name = "eExpressionHitBreakpoint";
break;
case eExpressionSetupError:
result_name = "eExpressionSetupError";
break;
case eExpressionParseError:
result_name = "eExpressionParseError";
break;
case eExpressionResultUnavailable:
result_name = "eExpressionResultUnavailable";
break;
case eExpressionTimedOut:
result_name = "eExpressionTimedOut";
break;
case eExpressionStoppedForDebug:
result_name = "eExpressionStoppedForDebug";
break;
}
return result_name;
}
void
Process::GetStatus (Stream &strm)
{
const StateType state = GetState();
if (StateIsStoppedState(state, false))
{
if (state == eStateExited)
{
int exit_status = GetExitStatus();
const char *exit_description = GetExitDescription();
strm.Printf ("Process %" PRIu64 " exited with status = %i (0x%8.8x) %s\n",
GetID(),
exit_status,
exit_status,
exit_description ? exit_description : "");
}
else
{
if (state == eStateConnected)
strm.Printf ("Connected to remote target.\n");
else
strm.Printf ("Process %" PRIu64 " %s\n", GetID(), StateAsCString (state));
}
}
else
{
strm.Printf ("Process %" PRIu64 " is running.\n", GetID());
}
}
size_t
Process::GetThreadStatus (Stream &strm,
bool only_threads_with_stop_reason,
uint32_t start_frame,
uint32_t num_frames,
uint32_t num_frames_with_source)
{
size_t num_thread_infos_dumped = 0;
// You can't hold the thread list lock while calling Thread::GetStatus. That very well might run code (e.g. if we need it
// to get return values or arguments.) For that to work the process has to be able to acquire it. So instead copy the thread
// ID's, and look them up one by one:
uint32_t num_threads;
std::vector<uint32_t> thread_index_array;
//Scope for thread list locker;
{
Mutex::Locker locker (GetThreadList().GetMutex());
ThreadList &curr_thread_list = GetThreadList();
num_threads = curr_thread_list.GetSize();
uint32_t idx;
thread_index_array.resize(num_threads);
for (idx = 0; idx < num_threads; ++idx)
thread_index_array[idx] = curr_thread_list.GetThreadAtIndex(idx)->GetID();
}
for (uint32_t i = 0; i < num_threads; i++)
{
ThreadSP thread_sp(GetThreadList().FindThreadByID(thread_index_array[i]));
if (thread_sp)
{
if (only_threads_with_stop_reason)
{
StopInfoSP stop_info_sp = thread_sp->GetStopInfo();
if (stop_info_sp.get() == NULL || !stop_info_sp->IsValid())
continue;
}
thread_sp->GetStatus (strm,
start_frame,
num_frames,
num_frames_with_source);
++num_thread_infos_dumped;
}
else
{
Log *log(lldb_private::GetLogIfAnyCategoriesSet (LIBLLDB_LOG_PROCESS));
if (log)
log->Printf("Process::GetThreadStatus - thread 0x" PRIu64 " vanished while running Thread::GetStatus.");
}
}
return num_thread_infos_dumped;
}
void
Process::AddInvalidMemoryRegion (const LoadRange &region)
{
m_memory_cache.AddInvalidRange(region.GetRangeBase(), region.GetByteSize());
}
bool
Process::RemoveInvalidMemoryRange (const LoadRange &region)
{
return m_memory_cache.RemoveInvalidRange(region.GetRangeBase(), region.GetByteSize());
}
void
Process::AddPreResumeAction (PreResumeActionCallback callback, void *baton)
{
m_pre_resume_actions.push_back(PreResumeCallbackAndBaton (callback, baton));
}
bool
Process::RunPreResumeActions ()
{
bool result = true;
while (!m_pre_resume_actions.empty())
{
struct PreResumeCallbackAndBaton action = m_pre_resume_actions.back();
m_pre_resume_actions.pop_back();
bool this_result = action.callback (action.baton);
if (result == true) result = this_result;
}
return result;
}
void
Process::ClearPreResumeActions ()
{
m_pre_resume_actions.clear();
}
void
Process::Flush ()
{
m_thread_list.Flush();
m_extended_thread_list.Flush();
m_extended_thread_stop_id = 0;
m_queue_list.Clear();
m_queue_list_stop_id = 0;
}
void
Process::DidExec ()
{
Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
if (log)
log->Printf ("Process::%s()", __FUNCTION__);
Target &target = GetTarget();
target.CleanupProcess ();
target.ClearModules(false);
m_dynamic_checkers_ap.reset();
m_abi_sp.reset();
m_system_runtime_ap.reset();
m_os_ap.reset();
m_dyld_ap.reset();
m_jit_loaders_ap.reset();
m_image_tokens.clear();
m_allocated_memory_cache.Clear();
m_language_runtimes.clear();
m_thread_list.DiscardThreadPlans();
m_memory_cache.Clear(true);
DoDidExec();
CompleteAttach ();
// Flush the process (threads and all stack frames) after running CompleteAttach()
// in case the dynamic loader loaded things in new locations.
Flush();
// After we figure out what was loaded/unloaded in CompleteAttach,
// we need to let the target know so it can do any cleanup it needs to.
target.DidExec();
}
addr_t
Process::ResolveIndirectFunction(const Address *address, Error &error)
{
if (address == nullptr)
{
error.SetErrorString("Invalid address argument");
return LLDB_INVALID_ADDRESS;
}
addr_t function_addr = LLDB_INVALID_ADDRESS;
addr_t addr = address->GetLoadAddress(&GetTarget());
std::map<addr_t,addr_t>::const_iterator iter = m_resolved_indirect_addresses.find(addr);
if (iter != m_resolved_indirect_addresses.end())
{
function_addr = (*iter).second;
}
else
{
if (!InferiorCall(this, address, function_addr))
{
Symbol *symbol = address->CalculateSymbolContextSymbol();
error.SetErrorStringWithFormat ("Unable to call resolver for indirect function %s",
symbol ? symbol->GetName().AsCString() : "<UNKNOWN>");
function_addr = LLDB_INVALID_ADDRESS;
}
else
{
m_resolved_indirect_addresses.insert(std::pair<addr_t, addr_t>(addr, function_addr));
}
}
return function_addr;
}
void
Process::ModulesDidLoad (ModuleList &module_list)
{
SystemRuntime *sys_runtime = GetSystemRuntime();
if (sys_runtime)
{
sys_runtime->ModulesDidLoad (module_list);
}
GetJITLoaders().ModulesDidLoad (module_list);
}
ThreadCollectionSP
Process::GetHistoryThreads(lldb::addr_t addr)
{
ThreadCollectionSP threads;
const MemoryHistorySP &memory_history = MemoryHistory::FindPlugin(shared_from_this());
if (! memory_history.get()) {
return threads;
}
threads.reset(new ThreadCollection(memory_history->GetHistoryThreads(addr)));
return threads;
}