forked from OSchip/llvm-project
1048 lines
42 KiB
C++
1048 lines
42 KiB
C++
//====- X86FlagsCopyLowering.cpp - Lowers COPY nodes of EFLAGS ------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
/// \file
|
|
///
|
|
/// Lowers COPY nodes of EFLAGS by directly extracting and preserving individual
|
|
/// flag bits.
|
|
///
|
|
/// We have to do this by carefully analyzing and rewriting the usage of the
|
|
/// copied EFLAGS register because there is no general way to rematerialize the
|
|
/// entire EFLAGS register safely and efficiently. Using `popf` both forces
|
|
/// dynamic stack adjustment and can create correctness issues due to IF, TF,
|
|
/// and other non-status flags being overwritten. Using sequences involving
|
|
/// SAHF don't work on all x86 processors and are often quite slow compared to
|
|
/// directly testing a single status preserved in its own GPR.
|
|
///
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "X86.h"
|
|
#include "X86InstrBuilder.h"
|
|
#include "X86InstrInfo.h"
|
|
#include "X86Subtarget.h"
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/PostOrderIterator.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/ScopeExit.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/SmallSet.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/SparseBitVector.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/CodeGen/MachineBasicBlock.h"
|
|
#include "llvm/CodeGen/MachineConstantPool.h"
|
|
#include "llvm/CodeGen/MachineDominators.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineFunctionPass.h"
|
|
#include "llvm/CodeGen/MachineInstr.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineModuleInfo.h"
|
|
#include "llvm/CodeGen/MachineOperand.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/MachineSSAUpdater.h"
|
|
#include "llvm/CodeGen/TargetInstrInfo.h"
|
|
#include "llvm/CodeGen/TargetRegisterInfo.h"
|
|
#include "llvm/CodeGen/TargetSchedule.h"
|
|
#include "llvm/CodeGen/TargetSubtargetInfo.h"
|
|
#include "llvm/IR/DebugLoc.h"
|
|
#include "llvm/MC/MCSchedule.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <iterator>
|
|
#include <utility>
|
|
|
|
using namespace llvm;
|
|
|
|
#define PASS_KEY "x86-flags-copy-lowering"
|
|
#define DEBUG_TYPE PASS_KEY
|
|
|
|
STATISTIC(NumCopiesEliminated, "Number of copies of EFLAGS eliminated");
|
|
STATISTIC(NumSetCCsInserted, "Number of setCC instructions inserted");
|
|
STATISTIC(NumTestsInserted, "Number of test instructions inserted");
|
|
STATISTIC(NumAddsInserted, "Number of adds instructions inserted");
|
|
|
|
namespace {
|
|
|
|
// Convenient array type for storing registers associated with each condition.
|
|
using CondRegArray = std::array<unsigned, X86::LAST_VALID_COND + 1>;
|
|
|
|
class X86FlagsCopyLoweringPass : public MachineFunctionPass {
|
|
public:
|
|
X86FlagsCopyLoweringPass() : MachineFunctionPass(ID) { }
|
|
|
|
StringRef getPassName() const override { return "X86 EFLAGS copy lowering"; }
|
|
bool runOnMachineFunction(MachineFunction &MF) override;
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override;
|
|
|
|
/// Pass identification, replacement for typeid.
|
|
static char ID;
|
|
|
|
private:
|
|
MachineRegisterInfo *MRI = nullptr;
|
|
const X86Subtarget *Subtarget = nullptr;
|
|
const X86InstrInfo *TII = nullptr;
|
|
const TargetRegisterInfo *TRI = nullptr;
|
|
const TargetRegisterClass *PromoteRC = nullptr;
|
|
MachineDominatorTree *MDT = nullptr;
|
|
|
|
CondRegArray collectCondsInRegs(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator CopyDefI);
|
|
|
|
unsigned promoteCondToReg(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator TestPos,
|
|
DebugLoc TestLoc, X86::CondCode Cond);
|
|
std::pair<unsigned, bool>
|
|
getCondOrInverseInReg(MachineBasicBlock &TestMBB,
|
|
MachineBasicBlock::iterator TestPos, DebugLoc TestLoc,
|
|
X86::CondCode Cond, CondRegArray &CondRegs);
|
|
void insertTest(MachineBasicBlock &MBB, MachineBasicBlock::iterator Pos,
|
|
DebugLoc Loc, unsigned Reg);
|
|
|
|
void rewriteArithmetic(MachineBasicBlock &TestMBB,
|
|
MachineBasicBlock::iterator TestPos, DebugLoc TestLoc,
|
|
MachineInstr &MI, MachineOperand &FlagUse,
|
|
CondRegArray &CondRegs);
|
|
void rewriteCMov(MachineBasicBlock &TestMBB,
|
|
MachineBasicBlock::iterator TestPos, DebugLoc TestLoc,
|
|
MachineInstr &CMovI, MachineOperand &FlagUse,
|
|
CondRegArray &CondRegs);
|
|
void rewriteCondJmp(MachineBasicBlock &TestMBB,
|
|
MachineBasicBlock::iterator TestPos, DebugLoc TestLoc,
|
|
MachineInstr &JmpI, CondRegArray &CondRegs);
|
|
void rewriteCopy(MachineInstr &MI, MachineOperand &FlagUse,
|
|
MachineInstr &CopyDefI);
|
|
void rewriteSetCarryExtended(MachineBasicBlock &TestMBB,
|
|
MachineBasicBlock::iterator TestPos,
|
|
DebugLoc TestLoc, MachineInstr &SetBI,
|
|
MachineOperand &FlagUse, CondRegArray &CondRegs);
|
|
void rewriteSetCC(MachineBasicBlock &TestMBB,
|
|
MachineBasicBlock::iterator TestPos, DebugLoc TestLoc,
|
|
MachineInstr &SetCCI, MachineOperand &FlagUse,
|
|
CondRegArray &CondRegs);
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
INITIALIZE_PASS_BEGIN(X86FlagsCopyLoweringPass, DEBUG_TYPE,
|
|
"X86 EFLAGS copy lowering", false, false)
|
|
INITIALIZE_PASS_END(X86FlagsCopyLoweringPass, DEBUG_TYPE,
|
|
"X86 EFLAGS copy lowering", false, false)
|
|
|
|
FunctionPass *llvm::createX86FlagsCopyLoweringPass() {
|
|
return new X86FlagsCopyLoweringPass();
|
|
}
|
|
|
|
char X86FlagsCopyLoweringPass::ID = 0;
|
|
|
|
void X86FlagsCopyLoweringPass::getAnalysisUsage(AnalysisUsage &AU) const {
|
|
AU.addRequired<MachineDominatorTree>();
|
|
MachineFunctionPass::getAnalysisUsage(AU);
|
|
}
|
|
|
|
namespace {
|
|
/// An enumeration of the arithmetic instruction mnemonics which have
|
|
/// interesting flag semantics.
|
|
///
|
|
/// We can map instruction opcodes into these mnemonics to make it easy to
|
|
/// dispatch with specific functionality.
|
|
enum class FlagArithMnemonic {
|
|
ADC,
|
|
ADCX,
|
|
ADOX,
|
|
RCL,
|
|
RCR,
|
|
SBB,
|
|
};
|
|
} // namespace
|
|
|
|
static FlagArithMnemonic getMnemonicFromOpcode(unsigned Opcode) {
|
|
switch (Opcode) {
|
|
default:
|
|
report_fatal_error("No support for lowering a copy into EFLAGS when used "
|
|
"by this instruction!");
|
|
|
|
#define LLVM_EXPAND_INSTR_SIZES(MNEMONIC, SUFFIX) \
|
|
case X86::MNEMONIC##8##SUFFIX: \
|
|
case X86::MNEMONIC##16##SUFFIX: \
|
|
case X86::MNEMONIC##32##SUFFIX: \
|
|
case X86::MNEMONIC##64##SUFFIX:
|
|
|
|
#define LLVM_EXPAND_ADC_SBB_INSTR(MNEMONIC) \
|
|
LLVM_EXPAND_INSTR_SIZES(MNEMONIC, rr) \
|
|
LLVM_EXPAND_INSTR_SIZES(MNEMONIC, rr_REV) \
|
|
LLVM_EXPAND_INSTR_SIZES(MNEMONIC, rm) \
|
|
LLVM_EXPAND_INSTR_SIZES(MNEMONIC, mr) \
|
|
case X86::MNEMONIC##8ri: \
|
|
case X86::MNEMONIC##16ri8: \
|
|
case X86::MNEMONIC##32ri8: \
|
|
case X86::MNEMONIC##64ri8: \
|
|
case X86::MNEMONIC##16ri: \
|
|
case X86::MNEMONIC##32ri: \
|
|
case X86::MNEMONIC##64ri32: \
|
|
case X86::MNEMONIC##8mi: \
|
|
case X86::MNEMONIC##16mi8: \
|
|
case X86::MNEMONIC##32mi8: \
|
|
case X86::MNEMONIC##64mi8: \
|
|
case X86::MNEMONIC##16mi: \
|
|
case X86::MNEMONIC##32mi: \
|
|
case X86::MNEMONIC##64mi32: \
|
|
case X86::MNEMONIC##8i8: \
|
|
case X86::MNEMONIC##16i16: \
|
|
case X86::MNEMONIC##32i32: \
|
|
case X86::MNEMONIC##64i32:
|
|
|
|
LLVM_EXPAND_ADC_SBB_INSTR(ADC)
|
|
return FlagArithMnemonic::ADC;
|
|
|
|
LLVM_EXPAND_ADC_SBB_INSTR(SBB)
|
|
return FlagArithMnemonic::SBB;
|
|
|
|
#undef LLVM_EXPAND_ADC_SBB_INSTR
|
|
|
|
LLVM_EXPAND_INSTR_SIZES(RCL, rCL)
|
|
LLVM_EXPAND_INSTR_SIZES(RCL, r1)
|
|
LLVM_EXPAND_INSTR_SIZES(RCL, ri)
|
|
return FlagArithMnemonic::RCL;
|
|
|
|
LLVM_EXPAND_INSTR_SIZES(RCR, rCL)
|
|
LLVM_EXPAND_INSTR_SIZES(RCR, r1)
|
|
LLVM_EXPAND_INSTR_SIZES(RCR, ri)
|
|
return FlagArithMnemonic::RCR;
|
|
|
|
#undef LLVM_EXPAND_INSTR_SIZES
|
|
|
|
case X86::ADCX32rr:
|
|
case X86::ADCX64rr:
|
|
case X86::ADCX32rm:
|
|
case X86::ADCX64rm:
|
|
return FlagArithMnemonic::ADCX;
|
|
|
|
case X86::ADOX32rr:
|
|
case X86::ADOX64rr:
|
|
case X86::ADOX32rm:
|
|
case X86::ADOX64rm:
|
|
return FlagArithMnemonic::ADOX;
|
|
}
|
|
}
|
|
|
|
static MachineBasicBlock &splitBlock(MachineBasicBlock &MBB,
|
|
MachineInstr &SplitI,
|
|
const X86InstrInfo &TII) {
|
|
MachineFunction &MF = *MBB.getParent();
|
|
|
|
assert(SplitI.getParent() == &MBB &&
|
|
"Split instruction must be in the split block!");
|
|
assert(SplitI.isBranch() &&
|
|
"Only designed to split a tail of branch instructions!");
|
|
assert(X86::getCondFromBranch(SplitI) != X86::COND_INVALID &&
|
|
"Must split on an actual jCC instruction!");
|
|
|
|
// Dig out the previous instruction to the split point.
|
|
MachineInstr &PrevI = *std::prev(SplitI.getIterator());
|
|
assert(PrevI.isBranch() && "Must split after a branch!");
|
|
assert(X86::getCondFromBranch(PrevI) != X86::COND_INVALID &&
|
|
"Must split after an actual jCC instruction!");
|
|
assert(!std::prev(PrevI.getIterator())->isTerminator() &&
|
|
"Must only have this one terminator prior to the split!");
|
|
|
|
// Grab the one successor edge that will stay in `MBB`.
|
|
MachineBasicBlock &UnsplitSucc = *PrevI.getOperand(0).getMBB();
|
|
|
|
// Analyze the original block to see if we are actually splitting an edge
|
|
// into two edges. This can happen when we have multiple conditional jumps to
|
|
// the same successor.
|
|
bool IsEdgeSplit =
|
|
std::any_of(SplitI.getIterator(), MBB.instr_end(),
|
|
[&](MachineInstr &MI) {
|
|
assert(MI.isTerminator() &&
|
|
"Should only have spliced terminators!");
|
|
return llvm::any_of(
|
|
MI.operands(), [&](MachineOperand &MOp) {
|
|
return MOp.isMBB() && MOp.getMBB() == &UnsplitSucc;
|
|
});
|
|
}) ||
|
|
MBB.getFallThrough() == &UnsplitSucc;
|
|
|
|
MachineBasicBlock &NewMBB = *MF.CreateMachineBasicBlock();
|
|
|
|
// Insert the new block immediately after the current one. Any existing
|
|
// fallthrough will be sunk into this new block anyways.
|
|
MF.insert(std::next(MachineFunction::iterator(&MBB)), &NewMBB);
|
|
|
|
// Splice the tail of instructions into the new block.
|
|
NewMBB.splice(NewMBB.end(), &MBB, SplitI.getIterator(), MBB.end());
|
|
|
|
// Copy the necessary succesors (and their probability info) into the new
|
|
// block.
|
|
for (auto SI = MBB.succ_begin(), SE = MBB.succ_end(); SI != SE; ++SI)
|
|
if (IsEdgeSplit || *SI != &UnsplitSucc)
|
|
NewMBB.copySuccessor(&MBB, SI);
|
|
// Normalize the probabilities if we didn't end up splitting the edge.
|
|
if (!IsEdgeSplit)
|
|
NewMBB.normalizeSuccProbs();
|
|
|
|
// Now replace all of the moved successors in the original block with the new
|
|
// block. This will merge their probabilities.
|
|
for (MachineBasicBlock *Succ : NewMBB.successors())
|
|
if (Succ != &UnsplitSucc)
|
|
MBB.replaceSuccessor(Succ, &NewMBB);
|
|
|
|
// We should always end up replacing at least one successor.
|
|
assert(MBB.isSuccessor(&NewMBB) &&
|
|
"Failed to make the new block a successor!");
|
|
|
|
// Now update all the PHIs.
|
|
for (MachineBasicBlock *Succ : NewMBB.successors()) {
|
|
for (MachineInstr &MI : *Succ) {
|
|
if (!MI.isPHI())
|
|
break;
|
|
|
|
for (int OpIdx = 1, NumOps = MI.getNumOperands(); OpIdx < NumOps;
|
|
OpIdx += 2) {
|
|
MachineOperand &OpV = MI.getOperand(OpIdx);
|
|
MachineOperand &OpMBB = MI.getOperand(OpIdx + 1);
|
|
assert(OpMBB.isMBB() && "Block operand to a PHI is not a block!");
|
|
if (OpMBB.getMBB() != &MBB)
|
|
continue;
|
|
|
|
// Replace the operand for unsplit successors
|
|
if (!IsEdgeSplit || Succ != &UnsplitSucc) {
|
|
OpMBB.setMBB(&NewMBB);
|
|
|
|
// We have to continue scanning as there may be multiple entries in
|
|
// the PHI.
|
|
continue;
|
|
}
|
|
|
|
// When we have split the edge append a new successor.
|
|
MI.addOperand(MF, OpV);
|
|
MI.addOperand(MF, MachineOperand::CreateMBB(&NewMBB));
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
return NewMBB;
|
|
}
|
|
|
|
bool X86FlagsCopyLoweringPass::runOnMachineFunction(MachineFunction &MF) {
|
|
LLVM_DEBUG(dbgs() << "********** " << getPassName() << " : " << MF.getName()
|
|
<< " **********\n");
|
|
|
|
Subtarget = &MF.getSubtarget<X86Subtarget>();
|
|
MRI = &MF.getRegInfo();
|
|
TII = Subtarget->getInstrInfo();
|
|
TRI = Subtarget->getRegisterInfo();
|
|
MDT = &getAnalysis<MachineDominatorTree>();
|
|
PromoteRC = &X86::GR8RegClass;
|
|
|
|
if (MF.begin() == MF.end())
|
|
// Nothing to do for a degenerate empty function...
|
|
return false;
|
|
|
|
// Collect the copies in RPO so that when there are chains where a copy is in
|
|
// turn copied again we visit the first one first. This ensures we can find
|
|
// viable locations for testing the original EFLAGS that dominate all the
|
|
// uses across complex CFGs.
|
|
SmallVector<MachineInstr *, 4> Copies;
|
|
ReversePostOrderTraversal<MachineFunction *> RPOT(&MF);
|
|
for (MachineBasicBlock *MBB : RPOT)
|
|
for (MachineInstr &MI : *MBB)
|
|
if (MI.getOpcode() == TargetOpcode::COPY &&
|
|
MI.getOperand(0).getReg() == X86::EFLAGS)
|
|
Copies.push_back(&MI);
|
|
|
|
for (MachineInstr *CopyI : Copies) {
|
|
MachineBasicBlock &MBB = *CopyI->getParent();
|
|
|
|
MachineOperand &VOp = CopyI->getOperand(1);
|
|
assert(VOp.isReg() &&
|
|
"The input to the copy for EFLAGS should always be a register!");
|
|
MachineInstr &CopyDefI = *MRI->getVRegDef(VOp.getReg());
|
|
if (CopyDefI.getOpcode() != TargetOpcode::COPY) {
|
|
// FIXME: The big likely candidate here are PHI nodes. We could in theory
|
|
// handle PHI nodes, but it gets really, really hard. Insanely hard. Hard
|
|
// enough that it is probably better to change every other part of LLVM
|
|
// to avoid creating them. The issue is that once we have PHIs we won't
|
|
// know which original EFLAGS value we need to capture with our setCCs
|
|
// below. The end result will be computing a complete set of setCCs that
|
|
// we *might* want, computing them in every place where we copy *out* of
|
|
// EFLAGS and then doing SSA formation on all of them to insert necessary
|
|
// PHI nodes and consume those here. Then hoping that somehow we DCE the
|
|
// unnecessary ones. This DCE seems very unlikely to be successful and so
|
|
// we will almost certainly end up with a glut of dead setCC
|
|
// instructions. Until we have a motivating test case and fail to avoid
|
|
// it by changing other parts of LLVM's lowering, we refuse to handle
|
|
// this complex case here.
|
|
LLVM_DEBUG(
|
|
dbgs() << "ERROR: Encountered unexpected def of an eflags copy: ";
|
|
CopyDefI.dump());
|
|
report_fatal_error(
|
|
"Cannot lower EFLAGS copy unless it is defined in turn by a copy!");
|
|
}
|
|
|
|
auto Cleanup = make_scope_exit([&] {
|
|
// All uses of the EFLAGS copy are now rewritten, kill the copy into
|
|
// eflags and if dead the copy from.
|
|
CopyI->eraseFromParent();
|
|
if (MRI->use_empty(CopyDefI.getOperand(0).getReg()))
|
|
CopyDefI.eraseFromParent();
|
|
++NumCopiesEliminated;
|
|
});
|
|
|
|
MachineOperand &DOp = CopyI->getOperand(0);
|
|
assert(DOp.isDef() && "Expected register def!");
|
|
assert(DOp.getReg() == X86::EFLAGS && "Unexpected copy def register!");
|
|
if (DOp.isDead())
|
|
continue;
|
|
|
|
MachineBasicBlock *TestMBB = CopyDefI.getParent();
|
|
auto TestPos = CopyDefI.getIterator();
|
|
DebugLoc TestLoc = CopyDefI.getDebugLoc();
|
|
|
|
LLVM_DEBUG(dbgs() << "Rewriting copy: "; CopyI->dump());
|
|
|
|
// Walk up across live-in EFLAGS to find where they were actually def'ed.
|
|
//
|
|
// This copy's def may just be part of a region of blocks covered by
|
|
// a single def of EFLAGS and we want to find the top of that region where
|
|
// possible.
|
|
//
|
|
// This is essentially a search for a *candidate* reaching definition
|
|
// location. We don't need to ever find the actual reaching definition here,
|
|
// but we want to walk up the dominator tree to find the highest point which
|
|
// would be viable for such a definition.
|
|
auto HasEFLAGSClobber = [&](MachineBasicBlock::iterator Begin,
|
|
MachineBasicBlock::iterator End) {
|
|
// Scan backwards as we expect these to be relatively short and often find
|
|
// a clobber near the end.
|
|
return llvm::any_of(
|
|
llvm::reverse(llvm::make_range(Begin, End)), [&](MachineInstr &MI) {
|
|
// Flag any instruction (other than the copy we are
|
|
// currently rewriting) that defs EFLAGS.
|
|
return &MI != CopyI && MI.findRegisterDefOperand(X86::EFLAGS);
|
|
});
|
|
};
|
|
auto HasEFLAGSClobberPath = [&](MachineBasicBlock *BeginMBB,
|
|
MachineBasicBlock *EndMBB) {
|
|
assert(MDT->dominates(BeginMBB, EndMBB) &&
|
|
"Only support paths down the dominator tree!");
|
|
SmallPtrSet<MachineBasicBlock *, 4> Visited;
|
|
SmallVector<MachineBasicBlock *, 4> Worklist;
|
|
// We terminate at the beginning. No need to scan it.
|
|
Visited.insert(BeginMBB);
|
|
Worklist.push_back(EndMBB);
|
|
do {
|
|
auto *MBB = Worklist.pop_back_val();
|
|
for (auto *PredMBB : MBB->predecessors()) {
|
|
if (!Visited.insert(PredMBB).second)
|
|
continue;
|
|
if (HasEFLAGSClobber(PredMBB->begin(), PredMBB->end()))
|
|
return true;
|
|
// Enqueue this block to walk its predecessors.
|
|
Worklist.push_back(PredMBB);
|
|
}
|
|
} while (!Worklist.empty());
|
|
// No clobber found along a path from the begin to end.
|
|
return false;
|
|
};
|
|
while (TestMBB->isLiveIn(X86::EFLAGS) && !TestMBB->pred_empty() &&
|
|
!HasEFLAGSClobber(TestMBB->begin(), TestPos)) {
|
|
// Find the nearest common dominator of the predecessors, as
|
|
// that will be the best candidate to hoist into.
|
|
MachineBasicBlock *HoistMBB =
|
|
std::accumulate(std::next(TestMBB->pred_begin()), TestMBB->pred_end(),
|
|
*TestMBB->pred_begin(),
|
|
[&](MachineBasicBlock *LHS, MachineBasicBlock *RHS) {
|
|
return MDT->findNearestCommonDominator(LHS, RHS);
|
|
});
|
|
|
|
// Now we need to scan all predecessors that may be reached along paths to
|
|
// the hoist block. A clobber anywhere in any of these blocks the hoist.
|
|
// Note that this even handles loops because we require *no* clobbers.
|
|
if (HasEFLAGSClobberPath(HoistMBB, TestMBB))
|
|
break;
|
|
|
|
// We also need the terminators to not sneakily clobber flags.
|
|
if (HasEFLAGSClobber(HoistMBB->getFirstTerminator()->getIterator(),
|
|
HoistMBB->instr_end()))
|
|
break;
|
|
|
|
// We found a viable location, hoist our test position to it.
|
|
TestMBB = HoistMBB;
|
|
TestPos = TestMBB->getFirstTerminator()->getIterator();
|
|
// Clear the debug location as it would just be confusing after hoisting.
|
|
TestLoc = DebugLoc();
|
|
}
|
|
LLVM_DEBUG({
|
|
auto DefIt = llvm::find_if(
|
|
llvm::reverse(llvm::make_range(TestMBB->instr_begin(), TestPos)),
|
|
[&](MachineInstr &MI) {
|
|
return MI.findRegisterDefOperand(X86::EFLAGS);
|
|
});
|
|
if (DefIt.base() != TestMBB->instr_begin()) {
|
|
dbgs() << " Using EFLAGS defined by: ";
|
|
DefIt->dump();
|
|
} else {
|
|
dbgs() << " Using live-in flags for BB:\n";
|
|
TestMBB->dump();
|
|
}
|
|
});
|
|
|
|
// While rewriting uses, we buffer jumps and rewrite them in a second pass
|
|
// because doing so will perturb the CFG that we are walking to find the
|
|
// uses in the first place.
|
|
SmallVector<MachineInstr *, 4> JmpIs;
|
|
|
|
// Gather the condition flags that have already been preserved in
|
|
// registers. We do this from scratch each time as we expect there to be
|
|
// very few of them and we expect to not revisit the same copy definition
|
|
// many times. If either of those change sufficiently we could build a map
|
|
// of these up front instead.
|
|
CondRegArray CondRegs = collectCondsInRegs(*TestMBB, TestPos);
|
|
|
|
// Collect the basic blocks we need to scan. Typically this will just be
|
|
// a single basic block but we may have to scan multiple blocks if the
|
|
// EFLAGS copy lives into successors.
|
|
SmallVector<MachineBasicBlock *, 2> Blocks;
|
|
SmallPtrSet<MachineBasicBlock *, 2> VisitedBlocks;
|
|
Blocks.push_back(&MBB);
|
|
|
|
do {
|
|
MachineBasicBlock &UseMBB = *Blocks.pop_back_val();
|
|
|
|
// Track when if/when we find a kill of the flags in this block.
|
|
bool FlagsKilled = false;
|
|
|
|
// In most cases, we walk from the beginning to the end of the block. But
|
|
// when the block is the same block as the copy is from, we will visit it
|
|
// twice. The first time we start from the copy and go to the end. The
|
|
// second time we start from the beginning and go to the copy. This lets
|
|
// us handle copies inside of cycles.
|
|
// FIXME: This loop is *super* confusing. This is at least in part
|
|
// a symptom of all of this routine needing to be refactored into
|
|
// documentable components. Once done, there may be a better way to write
|
|
// this loop.
|
|
for (auto MII = (&UseMBB == &MBB && !VisitedBlocks.count(&UseMBB))
|
|
? std::next(CopyI->getIterator())
|
|
: UseMBB.instr_begin(),
|
|
MIE = UseMBB.instr_end();
|
|
MII != MIE;) {
|
|
MachineInstr &MI = *MII++;
|
|
// If we are in the original copy block and encounter either the copy
|
|
// def or the copy itself, break so that we don't re-process any part of
|
|
// the block or process the instructions in the range that was copied
|
|
// over.
|
|
if (&MI == CopyI || &MI == &CopyDefI) {
|
|
assert(&UseMBB == &MBB && VisitedBlocks.count(&MBB) &&
|
|
"Should only encounter these on the second pass over the "
|
|
"original block.");
|
|
break;
|
|
}
|
|
|
|
MachineOperand *FlagUse = MI.findRegisterUseOperand(X86::EFLAGS);
|
|
if (!FlagUse) {
|
|
if (MI.findRegisterDefOperand(X86::EFLAGS)) {
|
|
// If EFLAGS are defined, it's as-if they were killed. We can stop
|
|
// scanning here.
|
|
//
|
|
// NB!!! Many instructions only modify some flags. LLVM currently
|
|
// models this as clobbering all flags, but if that ever changes
|
|
// this will need to be carefully updated to handle that more
|
|
// complex logic.
|
|
FlagsKilled = true;
|
|
break;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << " Rewriting use: "; MI.dump());
|
|
|
|
// Check the kill flag before we rewrite as that may change it.
|
|
if (FlagUse->isKill())
|
|
FlagsKilled = true;
|
|
|
|
// Once we encounter a branch, the rest of the instructions must also be
|
|
// branches. We can't rewrite in place here, so we handle them below.
|
|
//
|
|
// Note that we don't have to handle tail calls here, even conditional
|
|
// tail calls, as those are not introduced into the X86 MI until post-RA
|
|
// branch folding or black placement. As a consequence, we get to deal
|
|
// with the simpler formulation of conditional branches followed by tail
|
|
// calls.
|
|
if (X86::getCondFromBranch(MI) != X86::COND_INVALID) {
|
|
auto JmpIt = MI.getIterator();
|
|
do {
|
|
JmpIs.push_back(&*JmpIt);
|
|
++JmpIt;
|
|
} while (JmpIt != UseMBB.instr_end() &&
|
|
X86::getCondFromBranch(*JmpIt) !=
|
|
X86::COND_INVALID);
|
|
break;
|
|
}
|
|
|
|
// Otherwise we can just rewrite in-place.
|
|
if (X86::getCondFromCMov(MI) != X86::COND_INVALID) {
|
|
rewriteCMov(*TestMBB, TestPos, TestLoc, MI, *FlagUse, CondRegs);
|
|
} else if (X86::getCondFromSETCC(MI) != X86::COND_INVALID) {
|
|
rewriteSetCC(*TestMBB, TestPos, TestLoc, MI, *FlagUse, CondRegs);
|
|
} else if (MI.getOpcode() == TargetOpcode::COPY) {
|
|
rewriteCopy(MI, *FlagUse, CopyDefI);
|
|
} else {
|
|
// We assume all other instructions that use flags also def them.
|
|
assert(MI.findRegisterDefOperand(X86::EFLAGS) &&
|
|
"Expected a def of EFLAGS for this instruction!");
|
|
|
|
// NB!!! Several arithmetic instructions only *partially* update
|
|
// flags. Theoretically, we could generate MI code sequences that
|
|
// would rely on this fact and observe different flags independently.
|
|
// But currently LLVM models all of these instructions as clobbering
|
|
// all the flags in an undef way. We rely on that to simplify the
|
|
// logic.
|
|
FlagsKilled = true;
|
|
|
|
switch (MI.getOpcode()) {
|
|
case X86::SETB_C8r:
|
|
case X86::SETB_C16r:
|
|
case X86::SETB_C32r:
|
|
case X86::SETB_C64r:
|
|
// Use custom lowering for arithmetic that is merely extending the
|
|
// carry flag. We model this as the SETB_C* pseudo instructions.
|
|
rewriteSetCarryExtended(*TestMBB, TestPos, TestLoc, MI, *FlagUse,
|
|
CondRegs);
|
|
break;
|
|
|
|
default:
|
|
// Generically handle remaining uses as arithmetic instructions.
|
|
rewriteArithmetic(*TestMBB, TestPos, TestLoc, MI, *FlagUse,
|
|
CondRegs);
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
|
|
// If this was the last use of the flags, we're done.
|
|
if (FlagsKilled)
|
|
break;
|
|
}
|
|
|
|
// If the flags were killed, we're done with this block.
|
|
if (FlagsKilled)
|
|
continue;
|
|
|
|
// Otherwise we need to scan successors for ones where the flags live-in
|
|
// and queue those up for processing.
|
|
for (MachineBasicBlock *SuccMBB : UseMBB.successors())
|
|
if (SuccMBB->isLiveIn(X86::EFLAGS) &&
|
|
VisitedBlocks.insert(SuccMBB).second) {
|
|
// We currently don't do any PHI insertion and so we require that the
|
|
// test basic block dominates all of the use basic blocks. Further, we
|
|
// can't have a cycle from the test block back to itself as that would
|
|
// create a cycle requiring a PHI to break it.
|
|
//
|
|
// We could in theory do PHI insertion here if it becomes useful by
|
|
// just taking undef values in along every edge that we don't trace
|
|
// this EFLAGS copy along. This isn't as bad as fully general PHI
|
|
// insertion, but still seems like a great deal of complexity.
|
|
//
|
|
// Because it is theoretically possible that some earlier MI pass or
|
|
// other lowering transformation could induce this to happen, we do
|
|
// a hard check even in non-debug builds here.
|
|
if (SuccMBB == TestMBB || !MDT->dominates(TestMBB, SuccMBB)) {
|
|
LLVM_DEBUG({
|
|
dbgs()
|
|
<< "ERROR: Encountered use that is not dominated by our test "
|
|
"basic block! Rewriting this would require inserting PHI "
|
|
"nodes to track the flag state across the CFG.\n\nTest "
|
|
"block:\n";
|
|
TestMBB->dump();
|
|
dbgs() << "Use block:\n";
|
|
SuccMBB->dump();
|
|
});
|
|
report_fatal_error(
|
|
"Cannot lower EFLAGS copy when original copy def "
|
|
"does not dominate all uses.");
|
|
}
|
|
|
|
Blocks.push_back(SuccMBB);
|
|
}
|
|
} while (!Blocks.empty());
|
|
|
|
// Now rewrite the jumps that use the flags. These we handle specially
|
|
// because if there are multiple jumps in a single basic block we'll have
|
|
// to do surgery on the CFG.
|
|
MachineBasicBlock *LastJmpMBB = nullptr;
|
|
for (MachineInstr *JmpI : JmpIs) {
|
|
// Past the first jump within a basic block we need to split the blocks
|
|
// apart.
|
|
if (JmpI->getParent() == LastJmpMBB)
|
|
splitBlock(*JmpI->getParent(), *JmpI, *TII);
|
|
else
|
|
LastJmpMBB = JmpI->getParent();
|
|
|
|
rewriteCondJmp(*TestMBB, TestPos, TestLoc, *JmpI, CondRegs);
|
|
}
|
|
|
|
// FIXME: Mark the last use of EFLAGS before the copy's def as a kill if
|
|
// the copy's def operand is itself a kill.
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
for (MachineBasicBlock &MBB : MF)
|
|
for (MachineInstr &MI : MBB)
|
|
if (MI.getOpcode() == TargetOpcode::COPY &&
|
|
(MI.getOperand(0).getReg() == X86::EFLAGS ||
|
|
MI.getOperand(1).getReg() == X86::EFLAGS)) {
|
|
LLVM_DEBUG(dbgs() << "ERROR: Found a COPY involving EFLAGS: ";
|
|
MI.dump());
|
|
llvm_unreachable("Unlowered EFLAGS copy!");
|
|
}
|
|
#endif
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Collect any conditions that have already been set in registers so that we
|
|
/// can re-use them rather than adding duplicates.
|
|
CondRegArray X86FlagsCopyLoweringPass::collectCondsInRegs(
|
|
MachineBasicBlock &MBB, MachineBasicBlock::iterator TestPos) {
|
|
CondRegArray CondRegs = {};
|
|
|
|
// Scan backwards across the range of instructions with live EFLAGS.
|
|
for (MachineInstr &MI :
|
|
llvm::reverse(llvm::make_range(MBB.begin(), TestPos))) {
|
|
X86::CondCode Cond = X86::getCondFromSETCC(MI);
|
|
if (Cond != X86::COND_INVALID && !MI.mayStore() &&
|
|
MI.getOperand(0).isReg() &&
|
|
Register::isVirtualRegister(MI.getOperand(0).getReg())) {
|
|
assert(MI.getOperand(0).isDef() &&
|
|
"A non-storing SETcc should always define a register!");
|
|
CondRegs[Cond] = MI.getOperand(0).getReg();
|
|
}
|
|
|
|
// Stop scanning when we see the first definition of the EFLAGS as prior to
|
|
// this we would potentially capture the wrong flag state.
|
|
if (MI.findRegisterDefOperand(X86::EFLAGS))
|
|
break;
|
|
}
|
|
return CondRegs;
|
|
}
|
|
|
|
unsigned X86FlagsCopyLoweringPass::promoteCondToReg(
|
|
MachineBasicBlock &TestMBB, MachineBasicBlock::iterator TestPos,
|
|
DebugLoc TestLoc, X86::CondCode Cond) {
|
|
Register Reg = MRI->createVirtualRegister(PromoteRC);
|
|
auto SetI = BuildMI(TestMBB, TestPos, TestLoc,
|
|
TII->get(X86::SETCCr), Reg).addImm(Cond);
|
|
(void)SetI;
|
|
LLVM_DEBUG(dbgs() << " save cond: "; SetI->dump());
|
|
++NumSetCCsInserted;
|
|
return Reg;
|
|
}
|
|
|
|
std::pair<unsigned, bool> X86FlagsCopyLoweringPass::getCondOrInverseInReg(
|
|
MachineBasicBlock &TestMBB, MachineBasicBlock::iterator TestPos,
|
|
DebugLoc TestLoc, X86::CondCode Cond, CondRegArray &CondRegs) {
|
|
unsigned &CondReg = CondRegs[Cond];
|
|
unsigned &InvCondReg = CondRegs[X86::GetOppositeBranchCondition(Cond)];
|
|
if (!CondReg && !InvCondReg)
|
|
CondReg = promoteCondToReg(TestMBB, TestPos, TestLoc, Cond);
|
|
|
|
if (CondReg)
|
|
return {CondReg, false};
|
|
else
|
|
return {InvCondReg, true};
|
|
}
|
|
|
|
void X86FlagsCopyLoweringPass::insertTest(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator Pos,
|
|
DebugLoc Loc, unsigned Reg) {
|
|
auto TestI =
|
|
BuildMI(MBB, Pos, Loc, TII->get(X86::TEST8rr)).addReg(Reg).addReg(Reg);
|
|
(void)TestI;
|
|
LLVM_DEBUG(dbgs() << " test cond: "; TestI->dump());
|
|
++NumTestsInserted;
|
|
}
|
|
|
|
void X86FlagsCopyLoweringPass::rewriteArithmetic(
|
|
MachineBasicBlock &TestMBB, MachineBasicBlock::iterator TestPos,
|
|
DebugLoc TestLoc, MachineInstr &MI, MachineOperand &FlagUse,
|
|
CondRegArray &CondRegs) {
|
|
// Arithmetic is either reading CF or OF. Figure out which condition we need
|
|
// to preserve in a register.
|
|
X86::CondCode Cond = X86::COND_INVALID;
|
|
|
|
// The addend to use to reset CF or OF when added to the flag value.
|
|
int Addend = 0;
|
|
|
|
switch (getMnemonicFromOpcode(MI.getOpcode())) {
|
|
case FlagArithMnemonic::ADC:
|
|
case FlagArithMnemonic::ADCX:
|
|
case FlagArithMnemonic::RCL:
|
|
case FlagArithMnemonic::RCR:
|
|
case FlagArithMnemonic::SBB:
|
|
Cond = X86::COND_B; // CF == 1
|
|
// Set up an addend that when one is added will need a carry due to not
|
|
// having a higher bit available.
|
|
Addend = 255;
|
|
break;
|
|
|
|
case FlagArithMnemonic::ADOX:
|
|
Cond = X86::COND_O; // OF == 1
|
|
// Set up an addend that when one is added will turn from positive to
|
|
// negative and thus overflow in the signed domain.
|
|
Addend = 127;
|
|
break;
|
|
}
|
|
|
|
// Now get a register that contains the value of the flag input to the
|
|
// arithmetic. We require exactly this flag to simplify the arithmetic
|
|
// required to materialize it back into the flag.
|
|
unsigned &CondReg = CondRegs[Cond];
|
|
if (!CondReg)
|
|
CondReg = promoteCondToReg(TestMBB, TestPos, TestLoc, Cond);
|
|
|
|
MachineBasicBlock &MBB = *MI.getParent();
|
|
|
|
// Insert an instruction that will set the flag back to the desired value.
|
|
Register TmpReg = MRI->createVirtualRegister(PromoteRC);
|
|
auto AddI =
|
|
BuildMI(MBB, MI.getIterator(), MI.getDebugLoc(), TII->get(X86::ADD8ri))
|
|
.addDef(TmpReg, RegState::Dead)
|
|
.addReg(CondReg)
|
|
.addImm(Addend);
|
|
(void)AddI;
|
|
LLVM_DEBUG(dbgs() << " add cond: "; AddI->dump());
|
|
++NumAddsInserted;
|
|
FlagUse.setIsKill(true);
|
|
}
|
|
|
|
void X86FlagsCopyLoweringPass::rewriteCMov(MachineBasicBlock &TestMBB,
|
|
MachineBasicBlock::iterator TestPos,
|
|
DebugLoc TestLoc,
|
|
MachineInstr &CMovI,
|
|
MachineOperand &FlagUse,
|
|
CondRegArray &CondRegs) {
|
|
// First get the register containing this specific condition.
|
|
X86::CondCode Cond = X86::getCondFromCMov(CMovI);
|
|
unsigned CondReg;
|
|
bool Inverted;
|
|
std::tie(CondReg, Inverted) =
|
|
getCondOrInverseInReg(TestMBB, TestPos, TestLoc, Cond, CondRegs);
|
|
|
|
MachineBasicBlock &MBB = *CMovI.getParent();
|
|
|
|
// Insert a direct test of the saved register.
|
|
insertTest(MBB, CMovI.getIterator(), CMovI.getDebugLoc(), CondReg);
|
|
|
|
// Rewrite the CMov to use the !ZF flag from the test, and then kill its use
|
|
// of the flags afterward.
|
|
CMovI.getOperand(CMovI.getDesc().getNumOperands() - 1)
|
|
.setImm(Inverted ? X86::COND_E : X86::COND_NE);
|
|
FlagUse.setIsKill(true);
|
|
LLVM_DEBUG(dbgs() << " fixed cmov: "; CMovI.dump());
|
|
}
|
|
|
|
void X86FlagsCopyLoweringPass::rewriteCondJmp(
|
|
MachineBasicBlock &TestMBB, MachineBasicBlock::iterator TestPos,
|
|
DebugLoc TestLoc, MachineInstr &JmpI, CondRegArray &CondRegs) {
|
|
// First get the register containing this specific condition.
|
|
X86::CondCode Cond = X86::getCondFromBranch(JmpI);
|
|
unsigned CondReg;
|
|
bool Inverted;
|
|
std::tie(CondReg, Inverted) =
|
|
getCondOrInverseInReg(TestMBB, TestPos, TestLoc, Cond, CondRegs);
|
|
|
|
MachineBasicBlock &JmpMBB = *JmpI.getParent();
|
|
|
|
// Insert a direct test of the saved register.
|
|
insertTest(JmpMBB, JmpI.getIterator(), JmpI.getDebugLoc(), CondReg);
|
|
|
|
// Rewrite the jump to use the !ZF flag from the test, and kill its use of
|
|
// flags afterward.
|
|
JmpI.getOperand(1).setImm(Inverted ? X86::COND_E : X86::COND_NE);
|
|
JmpI.findRegisterUseOperand(X86::EFLAGS)->setIsKill(true);
|
|
LLVM_DEBUG(dbgs() << " fixed jCC: "; JmpI.dump());
|
|
}
|
|
|
|
void X86FlagsCopyLoweringPass::rewriteCopy(MachineInstr &MI,
|
|
MachineOperand &FlagUse,
|
|
MachineInstr &CopyDefI) {
|
|
// Just replace this copy with the original copy def.
|
|
MRI->replaceRegWith(MI.getOperand(0).getReg(),
|
|
CopyDefI.getOperand(0).getReg());
|
|
MI.eraseFromParent();
|
|
}
|
|
|
|
void X86FlagsCopyLoweringPass::rewriteSetCarryExtended(
|
|
MachineBasicBlock &TestMBB, MachineBasicBlock::iterator TestPos,
|
|
DebugLoc TestLoc, MachineInstr &SetBI, MachineOperand &FlagUse,
|
|
CondRegArray &CondRegs) {
|
|
// This routine is only used to handle pseudos for setting a register to zero
|
|
// or all ones based on CF. This is essentially the sign extended from 1-bit
|
|
// form of SETB and modeled with the SETB_C* pseudos. They require special
|
|
// handling as they aren't normal SETcc instructions and are lowered to an
|
|
// EFLAGS clobbering operation (SBB typically). One simplifying aspect is that
|
|
// they are only provided in reg-defining forms. A complicating factor is that
|
|
// they can define many different register widths.
|
|
assert(SetBI.getOperand(0).isReg() &&
|
|
"Cannot have a non-register defined operand to this variant of SETB!");
|
|
|
|
// Little helper to do the common final step of replacing the register def'ed
|
|
// by this SETB instruction with a new register and removing the SETB
|
|
// instruction.
|
|
auto RewriteToReg = [&](unsigned Reg) {
|
|
MRI->replaceRegWith(SetBI.getOperand(0).getReg(), Reg);
|
|
SetBI.eraseFromParent();
|
|
};
|
|
|
|
// Grab the register class used for this particular instruction.
|
|
auto &SetBRC = *MRI->getRegClass(SetBI.getOperand(0).getReg());
|
|
|
|
MachineBasicBlock &MBB = *SetBI.getParent();
|
|
auto SetPos = SetBI.getIterator();
|
|
auto SetLoc = SetBI.getDebugLoc();
|
|
|
|
auto AdjustReg = [&](unsigned Reg) {
|
|
auto &OrigRC = *MRI->getRegClass(Reg);
|
|
if (&OrigRC == &SetBRC)
|
|
return Reg;
|
|
|
|
unsigned NewReg;
|
|
|
|
int OrigRegSize = TRI->getRegSizeInBits(OrigRC) / 8;
|
|
int TargetRegSize = TRI->getRegSizeInBits(SetBRC) / 8;
|
|
assert(OrigRegSize <= 8 && "No GPRs larger than 64-bits!");
|
|
assert(TargetRegSize <= 8 && "No GPRs larger than 64-bits!");
|
|
int SubRegIdx[] = {X86::NoSubRegister, X86::sub_8bit, X86::sub_16bit,
|
|
X86::NoSubRegister, X86::sub_32bit};
|
|
|
|
// If the original size is smaller than the target *and* is smaller than 4
|
|
// bytes, we need to explicitly zero extend it. We always extend to 4-bytes
|
|
// to maximize the chance of being able to CSE that operation and to avoid
|
|
// partial dependency stalls extending to 2-bytes.
|
|
if (OrigRegSize < TargetRegSize && OrigRegSize < 4) {
|
|
NewReg = MRI->createVirtualRegister(&X86::GR32RegClass);
|
|
BuildMI(MBB, SetPos, SetLoc, TII->get(X86::MOVZX32rr8), NewReg)
|
|
.addReg(Reg);
|
|
if (&SetBRC == &X86::GR32RegClass)
|
|
return NewReg;
|
|
Reg = NewReg;
|
|
OrigRegSize = 4;
|
|
}
|
|
|
|
NewReg = MRI->createVirtualRegister(&SetBRC);
|
|
if (OrigRegSize < TargetRegSize) {
|
|
BuildMI(MBB, SetPos, SetLoc, TII->get(TargetOpcode::SUBREG_TO_REG),
|
|
NewReg)
|
|
.addImm(0)
|
|
.addReg(Reg)
|
|
.addImm(SubRegIdx[OrigRegSize]);
|
|
} else if (OrigRegSize > TargetRegSize) {
|
|
if (TargetRegSize == 1 && !Subtarget->is64Bit()) {
|
|
// Need to constrain the register class.
|
|
MRI->constrainRegClass(Reg, &X86::GR32_ABCDRegClass);
|
|
}
|
|
|
|
BuildMI(MBB, SetPos, SetLoc, TII->get(TargetOpcode::COPY),
|
|
NewReg)
|
|
.addReg(Reg, 0, SubRegIdx[TargetRegSize]);
|
|
} else {
|
|
BuildMI(MBB, SetPos, SetLoc, TII->get(TargetOpcode::COPY), NewReg)
|
|
.addReg(Reg);
|
|
}
|
|
return NewReg;
|
|
};
|
|
|
|
unsigned &CondReg = CondRegs[X86::COND_B];
|
|
if (!CondReg)
|
|
CondReg = promoteCondToReg(TestMBB, TestPos, TestLoc, X86::COND_B);
|
|
|
|
// Adjust the condition to have the desired register width by zero-extending
|
|
// as needed.
|
|
// FIXME: We should use a better API to avoid the local reference and using a
|
|
// different variable here.
|
|
unsigned ExtCondReg = AdjustReg(CondReg);
|
|
|
|
// Now we need to turn this into a bitmask. We do this by subtracting it from
|
|
// zero.
|
|
Register ZeroReg = MRI->createVirtualRegister(&X86::GR32RegClass);
|
|
BuildMI(MBB, SetPos, SetLoc, TII->get(X86::MOV32r0), ZeroReg);
|
|
ZeroReg = AdjustReg(ZeroReg);
|
|
|
|
unsigned Sub;
|
|
switch (SetBI.getOpcode()) {
|
|
case X86::SETB_C8r:
|
|
Sub = X86::SUB8rr;
|
|
break;
|
|
|
|
case X86::SETB_C16r:
|
|
Sub = X86::SUB16rr;
|
|
break;
|
|
|
|
case X86::SETB_C32r:
|
|
Sub = X86::SUB32rr;
|
|
break;
|
|
|
|
case X86::SETB_C64r:
|
|
Sub = X86::SUB64rr;
|
|
break;
|
|
|
|
default:
|
|
llvm_unreachable("Invalid SETB_C* opcode!");
|
|
}
|
|
Register ResultReg = MRI->createVirtualRegister(&SetBRC);
|
|
BuildMI(MBB, SetPos, SetLoc, TII->get(Sub), ResultReg)
|
|
.addReg(ZeroReg)
|
|
.addReg(ExtCondReg);
|
|
return RewriteToReg(ResultReg);
|
|
}
|
|
|
|
void X86FlagsCopyLoweringPass::rewriteSetCC(MachineBasicBlock &TestMBB,
|
|
MachineBasicBlock::iterator TestPos,
|
|
DebugLoc TestLoc,
|
|
MachineInstr &SetCCI,
|
|
MachineOperand &FlagUse,
|
|
CondRegArray &CondRegs) {
|
|
X86::CondCode Cond = X86::getCondFromSETCC(SetCCI);
|
|
// Note that we can't usefully rewrite this to the inverse without complex
|
|
// analysis of the users of the setCC. Largely we rely on duplicates which
|
|
// could have been avoided already being avoided here.
|
|
unsigned &CondReg = CondRegs[Cond];
|
|
if (!CondReg)
|
|
CondReg = promoteCondToReg(TestMBB, TestPos, TestLoc, Cond);
|
|
|
|
// Rewriting a register def is trivial: we just replace the register and
|
|
// remove the setcc.
|
|
if (!SetCCI.mayStore()) {
|
|
assert(SetCCI.getOperand(0).isReg() &&
|
|
"Cannot have a non-register defined operand to SETcc!");
|
|
MRI->replaceRegWith(SetCCI.getOperand(0).getReg(), CondReg);
|
|
SetCCI.eraseFromParent();
|
|
return;
|
|
}
|
|
|
|
// Otherwise, we need to emit a store.
|
|
auto MIB = BuildMI(*SetCCI.getParent(), SetCCI.getIterator(),
|
|
SetCCI.getDebugLoc(), TII->get(X86::MOV8mr));
|
|
// Copy the address operands.
|
|
for (int i = 0; i < X86::AddrNumOperands; ++i)
|
|
MIB.add(SetCCI.getOperand(i));
|
|
|
|
MIB.addReg(CondReg);
|
|
|
|
MIB.setMemRefs(SetCCI.memoperands());
|
|
|
|
SetCCI.eraseFromParent();
|
|
return;
|
|
}
|