llvm-project/lld/ELF/Target.cpp

704 lines
24 KiB
C++

//===- Target.cpp ---------------------------------------------------------===//
//
// The LLVM Linker
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Machine-specific things, such as applying relocations, creation of
// GOT or PLT entries, etc., are handled in this file.
//
// Refer the ELF spec for the single letter varaibles, S, A or P, used
// in this file. SA is S+A.
//
//===----------------------------------------------------------------------===//
#include "Target.h"
#include "Error.h"
#include "OutputSections.h"
#include "Symbols.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/Object/ELF.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/ELF.h"
using namespace llvm;
using namespace llvm::object;
using namespace llvm::support::endian;
using namespace llvm::ELF;
namespace lld {
namespace elf2 {
std::unique_ptr<TargetInfo> Target;
static void add32le(uint8_t *L, int32_t V) { write32le(L, read32le(L) + V); }
static void add32be(uint8_t *L, int32_t V) { write32be(L, read32be(L) + V); }
static void or32le(uint8_t *L, int32_t V) { write32le(L, read32le(L) | V); }
template <bool IsLE> static void add32(uint8_t *L, int32_t V);
template <> void add32<true>(uint8_t *L, int32_t V) { add32le(L, V); }
template <> void add32<false>(uint8_t *L, int32_t V) { add32be(L, V); }
namespace {
class X86TargetInfo final : public TargetInfo {
public:
X86TargetInfo();
void writeGotPltEntry(uint8_t *Buf, uint64_t Plt) const override;
void writePltZeroEntry(uint8_t *Buf, uint64_t GotEntryAddr,
uint64_t PltEntryAddr) const override;
void writePltEntry(uint8_t *Buf, uint64_t GotEntryAddr,
uint64_t PltEntryAddr, int32_t Index) const override;
bool relocNeedsGot(uint32_t Type, const SymbolBody &S) const override;
bool relocPointsToGot(uint32_t Type) const override;
bool relocNeedsPlt(uint32_t Type, const SymbolBody &S) const override;
void relocateOne(uint8_t *Loc, uint8_t *BufEnd, uint32_t Type, uint64_t P,
uint64_t SA) const override;
};
class X86_64TargetInfo final : public TargetInfo {
public:
X86_64TargetInfo();
unsigned getPLTRefReloc(unsigned Type) const override;
void writeGotPltEntry(uint8_t *Buf, uint64_t Plt) const override;
void writePltZeroEntry(uint8_t *Buf, uint64_t GotEntryAddr,
uint64_t PltEntryAddr) const override;
void writePltEntry(uint8_t *Buf, uint64_t GotEntryAddr,
uint64_t PltEntryAddr, int32_t Index) const override;
bool relocNeedsCopy(uint32_t Type, const SymbolBody &S) const override;
bool relocNeedsGot(uint32_t Type, const SymbolBody &S) const override;
bool relocNeedsPlt(uint32_t Type, const SymbolBody &S) const override;
void relocateOne(uint8_t *Loc, uint8_t *BufEnd, uint32_t Type, uint64_t P,
uint64_t SA) const override;
bool isRelRelative(uint32_t Type) const override;
};
class PPC64TargetInfo final : public TargetInfo {
public:
PPC64TargetInfo();
void writeGotPltEntry(uint8_t *Buf, uint64_t Plt) const override;
void writePltZeroEntry(uint8_t *Buf, uint64_t GotEntryAddr,
uint64_t PltEntryAddr) const override;
void writePltEntry(uint8_t *Buf, uint64_t GotEntryAddr,
uint64_t PltEntryAddr, int32_t Index) const override;
bool relocNeedsGot(uint32_t Type, const SymbolBody &S) const override;
bool relocNeedsPlt(uint32_t Type, const SymbolBody &S) const override;
void relocateOne(uint8_t *Loc, uint8_t *BufEnd, uint32_t Type, uint64_t P,
uint64_t SA) const override;
bool isRelRelative(uint32_t Type) const override;
};
class AArch64TargetInfo final : public TargetInfo {
public:
AArch64TargetInfo();
void writeGotPltEntry(uint8_t *Buf, uint64_t Plt) const override;
void writePltZeroEntry(uint8_t *Buf, uint64_t GotEntryAddr,
uint64_t PltEntryAddr) const override;
void writePltEntry(uint8_t *Buf, uint64_t GotEntryAddr,
uint64_t PltEntryAddr, int32_t Index) const override;
bool relocNeedsGot(uint32_t Type, const SymbolBody &S) const override;
bool relocNeedsPlt(uint32_t Type, const SymbolBody &S) const override;
void relocateOne(uint8_t *Loc, uint8_t *BufEnd, uint32_t Type, uint64_t P,
uint64_t SA) const override;
};
template <class ELFT> class MipsTargetInfo final : public TargetInfo {
public:
MipsTargetInfo();
void writeGotPltEntry(uint8_t *Buf, uint64_t Plt) const override;
void writePltZeroEntry(uint8_t *Buf, uint64_t GotEntryAddr,
uint64_t PltEntryAddr) const override;
void writePltEntry(uint8_t *Buf, uint64_t GotEntryAddr,
uint64_t PltEntryAddr, int32_t Index) const override;
bool relocNeedsGot(uint32_t Type, const SymbolBody &S) const override;
bool relocNeedsPlt(uint32_t Type, const SymbolBody &S) const override;
void relocateOne(uint8_t *Loc, uint8_t *BufEnd, uint32_t Type, uint64_t P,
uint64_t SA) const override;
};
} // anonymous namespace
TargetInfo *createTarget() {
switch (Config->EMachine) {
case EM_386:
return new X86TargetInfo();
case EM_AARCH64:
return new AArch64TargetInfo();
case EM_MIPS:
switch (Config->EKind) {
case ELF32LEKind:
return new MipsTargetInfo<ELF32LE>();
case ELF32BEKind:
return new MipsTargetInfo<ELF32BE>();
default:
error("Unsupported MIPS target");
}
case EM_PPC64:
return new PPC64TargetInfo();
case EM_X86_64:
return new X86_64TargetInfo();
}
error("Unknown target machine");
}
TargetInfo::~TargetInfo() {}
bool TargetInfo::relocNeedsCopy(uint32_t Type, const SymbolBody &S) const {
return false;
}
unsigned TargetInfo::getPLTRefReloc(unsigned Type) const { return PCRelReloc; }
bool TargetInfo::relocPointsToGot(uint32_t Type) const { return false; }
bool TargetInfo::isRelRelative(uint32_t Type) const { return true; }
X86TargetInfo::X86TargetInfo() {
PCRelReloc = R_386_PC32;
GotReloc = R_386_GLOB_DAT;
GotRefReloc = R_386_GOT32;
PltReloc = R_386_JUMP_SLOT;
}
void X86TargetInfo::writeGotPltEntry(uint8_t *Buf, uint64_t Plt) const {}
void X86TargetInfo::writePltZeroEntry(uint8_t *Buf, uint64_t GotEntryAddr,
uint64_t PltEntryAddr) const {}
void X86TargetInfo::writePltEntry(uint8_t *Buf, uint64_t GotEntryAddr,
uint64_t PltEntryAddr, int32_t Index) const {
// jmpl *val; nop; nop
const uint8_t Inst[] = {0xff, 0x25, 0, 0, 0, 0, 0x90, 0x90};
memcpy(Buf, Inst, sizeof(Inst));
assert(isUInt<32>(GotEntryAddr));
write32le(Buf + 2, GotEntryAddr);
}
bool X86TargetInfo::relocNeedsGot(uint32_t Type, const SymbolBody &S) const {
return Type == R_386_GOT32 || relocNeedsPlt(Type, S);
}
bool X86TargetInfo::relocPointsToGot(uint32_t Type) const {
return Type == R_386_GOTPC;
}
bool X86TargetInfo::relocNeedsPlt(uint32_t Type, const SymbolBody &S) const {
return Type == R_386_PLT32 || (Type == R_386_PC32 && S.isShared());
}
void X86TargetInfo::relocateOne(uint8_t *Loc, uint8_t *BufEnd, uint32_t Type,
uint64_t P, uint64_t SA) const {
switch (Type) {
case R_386_GOT32:
add32le(Loc, SA - Out<ELF32LE>::Got->getVA());
break;
case R_386_PC32:
add32le(Loc, SA - P);
break;
case R_386_32:
add32le(Loc, SA);
break;
default:
error("unrecognized reloc " + Twine(Type));
}
}
X86_64TargetInfo::X86_64TargetInfo() {
CopyReloc = R_X86_64_COPY;
PCRelReloc = R_X86_64_PC32;
GotReloc = R_X86_64_GLOB_DAT;
GotRefReloc = R_X86_64_PC32;
PltReloc = R_X86_64_JUMP_SLOT;
RelativeReloc = R_X86_64_RELATIVE;
LazyRelocations = true;
PltEntrySize = 16;
PltZeroEntrySize = 16;
}
void X86_64TargetInfo::writeGotPltEntry(uint8_t *Buf, uint64_t Plt) const {
// Skip 6 bytes of "jmpq *got(%rip)"
write32le(Buf, Plt + 6);
}
void X86_64TargetInfo::writePltZeroEntry(uint8_t *Buf, uint64_t GotEntryAddr,
uint64_t PltEntryAddr) const {
const uint8_t PltData[] = {
0xff, 0x35, 0x00, 0x00, 0x00, 0x00, // pushq GOT+8(%rip)
0xff, 0x25, 0x00, 0x00, 0x00, 0x00, // jmp *GOT+16(%rip)
0x0f, 0x1f, 0x40, 0x00 // nopl 0x0(rax)
};
memcpy(Buf, PltData, sizeof(PltData));
write32le(Buf + 2, GotEntryAddr - PltEntryAddr + 2); // GOT+8
write32le(Buf + 8, GotEntryAddr - PltEntryAddr + 4); // GOT+16
}
void X86_64TargetInfo::writePltEntry(uint8_t *Buf, uint64_t GotEntryAddr,
uint64_t PltEntryAddr,
int32_t Index) const {
const uint8_t Inst[] = {
0xff, 0x25, 0x00, 0x00, 0x00, 0x00, // jmpq *got(%rip)
0x68, 0x00, 0x00, 0x00, 0x00, // pushq <relocation index>
0xe9, 0x00, 0x00, 0x00, 0x00 // jmpq plt[0]
};
memcpy(Buf, Inst, sizeof(Inst));
write32le(Buf + 2, GotEntryAddr - PltEntryAddr - 6);
write32le(Buf + 7, Index);
write32le(Buf + 12, -Index * PltEntrySize - PltZeroEntrySize - 16);
}
bool X86_64TargetInfo::relocNeedsCopy(uint32_t Type,
const SymbolBody &S) const {
if (Type == R_X86_64_32S || Type == R_X86_64_32 || Type == R_X86_64_PC32 ||
Type == R_X86_64_64)
if (auto *SS = dyn_cast<SharedSymbol<ELF64LE>>(&S))
return SS->Sym.getType() == STT_OBJECT;
return false;
}
bool X86_64TargetInfo::relocNeedsGot(uint32_t Type, const SymbolBody &S) const {
return Type == R_X86_64_GOTPCREL || relocNeedsPlt(Type, S);
}
unsigned X86_64TargetInfo::getPLTRefReloc(unsigned Type) const {
if (Type == R_X86_64_PLT32)
return R_X86_64_PC32;
return Type;
}
bool X86_64TargetInfo::relocNeedsPlt(uint32_t Type, const SymbolBody &S) const {
if (relocNeedsCopy(Type, S))
return false;
switch (Type) {
default:
return false;
case R_X86_64_32:
case R_X86_64_64:
case R_X86_64_PC32:
// This relocation is defined to have a value of (S + A - P).
// The problems start when a non PIC program calls a function in a shared
// library.
// In an ideal world, we could just report an error saying the relocation
// can overflow at runtime.
// In the real world with glibc, crt1.o has a R_X86_64_PC32 pointing to
// libc.so.
//
// The general idea on how to handle such cases is to create a PLT entry
// and use that as the function value.
//
// For the static linking part, we just return true and everything else
// will use the the PLT entry as the address.
//
// The remaining (unimplemented) problem is making sure pointer equality
// still works. We need the help of the dynamic linker for that. We
// let it know that we have a direct reference to a so symbol by creating
// an undefined symbol with a non zero st_value. Seeing that, the
// dynamic linker resolves the symbol to the value of the symbol we created.
// This is true even for got entries, so pointer equality is maintained.
// To avoid an infinite loop, the only entry that points to the
// real function is a dedicated got entry used by the plt. That is
// identified by special relocation types (R_X86_64_JUMP_SLOT,
// R_386_JMP_SLOT, etc).
return S.isShared();
case R_X86_64_PLT32:
return canBePreempted(&S, true);
}
}
bool X86_64TargetInfo::isRelRelative(uint32_t Type) const {
switch (Type) {
default:
return false;
case R_X86_64_PC64:
case R_X86_64_PC32:
case R_X86_64_PC16:
case R_X86_64_PC8:
case R_X86_64_PLT32:
return true;
}
}
void X86_64TargetInfo::relocateOne(uint8_t *Loc, uint8_t *BufEnd, uint32_t Type,
uint64_t P, uint64_t SA) const {
switch (Type) {
case R_X86_64_PC32:
case R_X86_64_GOTPCREL:
case R_X86_64_PLT32:
write32le(Loc, SA - P);
break;
case R_X86_64_64:
write64le(Loc, SA);
break;
case R_X86_64_32:
case R_X86_64_32S:
if (Type == R_X86_64_32 && !isUInt<32>(SA))
error("R_X86_64_32 out of range");
else if (!isInt<32>(SA))
error("R_X86_64_32S out of range");
write32le(Loc, SA);
break;
default:
error("unrecognized reloc " + Twine(Type));
}
}
// Relocation masks following the #lo(value), #hi(value), #ha(value),
// #higher(value), #highera(value), #highest(value), and #highesta(value)
// macros defined in section 4.5.1. Relocation Types of the PPC-elf64abi
// document.
static uint16_t applyPPCLo(uint64_t V) { return V; }
static uint16_t applyPPCHi(uint64_t V) { return V >> 16; }
static uint16_t applyPPCHa(uint64_t V) { return (V + 0x8000) >> 16; }
static uint16_t applyPPCHigher(uint64_t V) { return V >> 32; }
static uint16_t applyPPCHighera(uint64_t V) { return (V + 0x8000) >> 32; }
static uint16_t applyPPCHighest(uint64_t V) { return V >> 48; }
static uint16_t applyPPCHighesta(uint64_t V) { return (V + 0x8000) >> 48; }
PPC64TargetInfo::PPC64TargetInfo() {
PCRelReloc = R_PPC64_REL24;
GotReloc = R_PPC64_GLOB_DAT;
GotRefReloc = R_PPC64_REL64;
RelativeReloc = R_PPC64_RELATIVE;
PltEntrySize = 32;
// We need 64K pages (at least under glibc/Linux, the loader won't
// set different permissions on a finer granularity than that).
PageSize = 65536;
// The PPC64 ELF ABI v1 spec, says:
//
// It is normally desirable to put segments with different characteristics
// in separate 256 Mbyte portions of the address space, to give the
// operating system full paging flexibility in the 64-bit address space.
//
// And because the lowest non-zero 256M boundary is 0x10000000, PPC64 linkers
// use 0x10000000 as the starting address.
VAStart = 0x10000000;
}
uint64_t getPPC64TocBase() {
// The TOC consists of sections .got, .toc, .tocbss, .plt in that
// order. The TOC starts where the first of these sections starts.
// FIXME: This obviously does not do the right thing when there is no .got
// section, but there is a .toc or .tocbss section.
uint64_t TocVA = Out<ELF64BE>::Got->getVA();
if (!TocVA)
TocVA = Out<ELF64BE>::Plt->getVA();
// Per the ppc64-elf-linux ABI, The TOC base is TOC value plus 0x8000
// thus permitting a full 64 Kbytes segment. Note that the glibc startup
// code (crt1.o) assumes that you can get from the TOC base to the
// start of the .toc section with only a single (signed) 16-bit relocation.
return TocVA + 0x8000;
}
void PPC64TargetInfo::writeGotPltEntry(uint8_t *Buf, uint64_t Plt) const {}
void PPC64TargetInfo::writePltZeroEntry(uint8_t *Buf, uint64_t GotEntryAddr,
uint64_t PltEntryAddr) const {}
void PPC64TargetInfo::writePltEntry(uint8_t *Buf, uint64_t GotEntryAddr,
uint64_t PltEntryAddr, int32_t Index) const {
uint64_t Off = GotEntryAddr - getPPC64TocBase();
// FIXME: What we should do, in theory, is get the offset of the function
// descriptor in the .opd section, and use that as the offset from %r2 (the
// TOC-base pointer). Instead, we have the GOT-entry offset, and that will
// be a pointer to the function descriptor in the .opd section. Using
// this scheme is simpler, but requires an extra indirection per PLT dispatch.
write32be(Buf, 0xf8410028); // std %r2, 40(%r1)
write32be(Buf + 4, 0x3d620000 | applyPPCHa(Off)); // addis %r11, %r2, X@ha
write32be(Buf + 8, 0xe98b0000 | applyPPCLo(Off)); // ld %r12, X@l(%r11)
write32be(Buf + 12, 0xe96c0000); // ld %r11,0(%r12)
write32be(Buf + 16, 0x7d6903a6); // mtctr %r11
write32be(Buf + 20, 0xe84c0008); // ld %r2,8(%r12)
write32be(Buf + 24, 0xe96c0010); // ld %r11,16(%r12)
write32be(Buf + 28, 0x4e800420); // bctr
}
bool PPC64TargetInfo::relocNeedsGot(uint32_t Type, const SymbolBody &S) const {
if (relocNeedsPlt(Type, S))
return true;
switch (Type) {
default: return false;
case R_PPC64_GOT16:
case R_PPC64_GOT16_LO:
case R_PPC64_GOT16_HI:
case R_PPC64_GOT16_HA:
case R_PPC64_GOT16_DS:
case R_PPC64_GOT16_LO_DS:
return true;
}
}
bool PPC64TargetInfo::relocNeedsPlt(uint32_t Type, const SymbolBody &S) const {
// These are function calls that need to be redirected through a PLT stub.
return Type == R_PPC64_REL24 && canBePreempted(&S, false);
}
bool PPC64TargetInfo::isRelRelative(uint32_t Type) const {
switch (Type) {
default:
return true;
case R_PPC64_TOC:
case R_PPC64_ADDR64:
return false;
}
}
void PPC64TargetInfo::relocateOne(uint8_t *Loc, uint8_t *BufEnd, uint32_t Type,
uint64_t P, uint64_t SA) const {
uint64_t TB = getPPC64TocBase();
// For a TOC-relative relocation, adjust the addend and proceed in terms of
// the corresponding ADDR16 relocation type.
switch (Type) {
case R_PPC64_TOC16: Type = R_PPC64_ADDR16; SA -= TB; break;
case R_PPC64_TOC16_DS: Type = R_PPC64_ADDR16_DS; SA -= TB; break;
case R_PPC64_TOC16_LO: Type = R_PPC64_ADDR16_LO; SA -= TB; break;
case R_PPC64_TOC16_LO_DS: Type = R_PPC64_ADDR16_LO_DS; SA -= TB; break;
case R_PPC64_TOC16_HI: Type = R_PPC64_ADDR16_HI; SA -= TB; break;
case R_PPC64_TOC16_HA: Type = R_PPC64_ADDR16_HA; SA -= TB; break;
default: break;
}
switch (Type) {
case R_PPC64_ADDR16:
if (!isInt<16>(SA))
error("Relocation R_PPC64_ADDR16 overflow");
write16be(Loc, SA);
break;
case R_PPC64_ADDR16_DS:
if (!isInt<16>(SA))
error("Relocation R_PPC64_ADDR16_DS overflow");
write16be(Loc, (read16be(Loc) & 3) | (SA & ~3));
break;
case R_PPC64_ADDR16_LO:
write16be(Loc, applyPPCLo(SA));
break;
case R_PPC64_ADDR16_LO_DS:
write16be(Loc, (read16be(Loc) & 3) | (applyPPCLo(SA) & ~3));
break;
case R_PPC64_ADDR16_HI:
write16be(Loc, applyPPCHi(SA));
break;
case R_PPC64_ADDR16_HA:
write16be(Loc, applyPPCHa(SA));
break;
case R_PPC64_ADDR16_HIGHER:
write16be(Loc, applyPPCHigher(SA));
break;
case R_PPC64_ADDR16_HIGHERA:
write16be(Loc, applyPPCHighera(SA));
break;
case R_PPC64_ADDR16_HIGHEST:
write16be(Loc, applyPPCHighest(SA));
break;
case R_PPC64_ADDR16_HIGHESTA:
write16be(Loc, applyPPCHighesta(SA));
break;
case R_PPC64_ADDR14: {
if ((SA & 3) != 0)
error("Improper alignment for relocation R_PPC64_ADDR14");
// Preserve the AA/LK bits in the branch instruction
uint8_t AALK = Loc[3];
write16be(Loc + 2, (AALK & 3) | (SA & 0xfffc));
break;
}
case R_PPC64_REL16_LO:
write16be(Loc, applyPPCLo(SA - P));
break;
case R_PPC64_REL16_HI:
write16be(Loc, applyPPCHi(SA - P));
break;
case R_PPC64_REL16_HA:
write16be(Loc, applyPPCHa(SA - P));
break;
case R_PPC64_ADDR32:
if (!isInt<32>(SA))
error("Relocation R_PPC64_ADDR32 overflow");
write32be(Loc, SA);
break;
case R_PPC64_REL24: {
// If we have an undefined weak symbol, we might get here with a symbol
// address of zero. That could overflow, but the code must be unreachable,
// so don't bother doing anything at all.
if (!SA)
break;
uint64_t PltStart = Out<ELF64BE>::Plt->getVA();
uint64_t PltEnd = PltStart + Out<ELF64BE>::Plt->getSize();
bool InPlt = PltStart <= SA && SA < PltEnd;
if (!InPlt && Out<ELF64BE>::Opd) {
// If this is a local call, and we currently have the address of a
// function-descriptor, get the underlying code address instead.
uint64_t OpdStart = Out<ELF64BE>::Opd->getVA();
uint64_t OpdEnd = OpdStart + Out<ELF64BE>::Opd->getSize();
bool InOpd = OpdStart <= SA && SA < OpdEnd;
if (InOpd)
SA = read64be(&Out<ELF64BE>::OpdBuf[SA - OpdStart]);
}
uint32_t Mask = 0x03FFFFFC;
if (!isInt<24>(SA - P))
error("Relocation R_PPC64_REL24 overflow");
write32be(Loc, (read32be(Loc) & ~Mask) | ((SA - P) & Mask));
uint32_t Nop = 0x60000000;
if (InPlt && Loc + 8 <= BufEnd && read32be(Loc + 4) == Nop)
write32be(Loc + 4, 0xe8410028); // ld %r2, 40(%r1)
break;
}
case R_PPC64_REL32:
if (!isInt<32>(SA - P))
error("Relocation R_PPC64_REL32 overflow");
write32be(Loc, SA - P);
break;
case R_PPC64_REL64:
write64be(Loc, SA - P);
break;
case R_PPC64_ADDR64:
case R_PPC64_TOC:
write64be(Loc, SA);
break;
default:
error("unrecognized reloc " + Twine(Type));
}
}
AArch64TargetInfo::AArch64TargetInfo() {}
void AArch64TargetInfo::writeGotPltEntry(uint8_t *Buf, uint64_t Plt) const {}
void AArch64TargetInfo::writePltZeroEntry(uint8_t *Buf, uint64_t GotEntryAddr,
uint64_t PltEntryAddr) const {}
void AArch64TargetInfo::writePltEntry(uint8_t *Buf, uint64_t GotEntryAddr,
uint64_t PltEntryAddr, int32_t Index) const {}
bool AArch64TargetInfo::relocNeedsGot(uint32_t Type,
const SymbolBody &S) const {
return false;
}
bool AArch64TargetInfo::relocNeedsPlt(uint32_t Type,
const SymbolBody &S) const {
return false;
}
static void updateAArch64Adr(uint8_t *L, uint64_t Imm) {
uint32_t ImmLo = (Imm & 0x3) << 29;
uint32_t ImmHi = ((Imm & 0x1FFFFC) >> 2) << 5;
uint64_t Mask = (0x3 << 29) | (0x7FFFF << 5);
write32le(L, (read32le(L) & ~Mask) | ImmLo | ImmHi);
}
// Page(Expr) is the page address of the expression Expr, defined
// as (Expr & ~0xFFF). (This applies even if the machine page size
// supported by the platform has a different value.)
static uint64_t getAArch64Page(uint64_t Expr) {
return Expr & (~static_cast<uint64_t>(0xFFF));
}
void AArch64TargetInfo::relocateOne(uint8_t *Loc, uint8_t *BufEnd,
uint32_t Type, uint64_t P,
uint64_t SA) const {
switch (Type) {
case R_AARCH64_ABS16:
if (!isInt<16>(SA))
error("Relocation R_AARCH64_ABS16 out of range");
write16le(Loc, SA);
break;
case R_AARCH64_ABS32:
if (!isInt<32>(SA))
error("Relocation R_AARCH64_ABS32 out of range");
write32le(Loc, SA);
break;
case R_AARCH64_ABS64:
// No overflow check needed.
write64le(Loc, SA);
break;
case R_AARCH64_ADD_ABS_LO12_NC:
// No overflow check needed.
// This relocation stores 12 bits and there's no instruction
// to do it. Instead, we do a 32 bits store of the value
// of r_addend bitwise-or'ed Loc. This assumes that the addend
// bits in Loc are zero.
or32le(Loc, (SA & 0xFFF) << 10);
break;
case R_AARCH64_ADR_PREL_LO21: {
uint64_t X = SA - P;
if (!isInt<21>(X))
error("Relocation R_AARCH64_ADR_PREL_LO21 out of range");
updateAArch64Adr(Loc, X & 0x1FFFFF);
break;
}
case R_AARCH64_ADR_PREL_PG_HI21: {
uint64_t X = getAArch64Page(SA) - getAArch64Page(P);
if (!isInt<33>(X))
error("Relocation R_AARCH64_ADR_PREL_PG_HI21 out of range");
updateAArch64Adr(Loc, (X >> 12) & 0x1FFFFF); // X[32:12]
break;
}
case R_AARCH64_PREL16:
if (!isInt<16>(SA))
error("Relocation R_AARCH64_PREL16 out of range");
write16le(Loc, SA - P);
break;
case R_AARCH64_PREL32:
if (!isInt<32>(SA))
error("Relocation R_AARCH64_PREL32 out of range");
write32le(Loc, SA - P);
break;
case R_AARCH64_PREL64:
// No overflow check needed.
write64le(Loc, SA - P);
break;
default:
error("unrecognized reloc " + Twine(Type));
}
}
template <class ELFT> MipsTargetInfo<ELFT>::MipsTargetInfo() {
PageSize = 65536;
}
template <class ELFT>
void MipsTargetInfo<ELFT>::writeGotPltEntry(uint8_t *Buf, uint64_t Plt) const {}
template <class ELFT>
void MipsTargetInfo<ELFT>::writePltZeroEntry(uint8_t *Buf, uint64_t GotEntryAddr,
uint64_t PltEntryAddr) const {}
template <class ELFT>
void MipsTargetInfo<ELFT>::writePltEntry(uint8_t *Buf, uint64_t GotEntryAddr,
uint64_t PltEntryAddr, int32_t Index) const {}
template <class ELFT>
bool MipsTargetInfo<ELFT>::relocNeedsGot(uint32_t Type,
const SymbolBody &S) const {
return false;
}
template <class ELFT>
bool MipsTargetInfo<ELFT>::relocNeedsPlt(uint32_t Type,
const SymbolBody &S) const {
return false;
}
template <class ELFT>
void MipsTargetInfo<ELFT>::relocateOne(uint8_t *Loc, uint8_t *BufEnd,
uint32_t Type, uint64_t P,
uint64_t SA) const {
const bool IsLE = ELFT::TargetEndianness == support::little;
switch (Type) {
case R_MIPS_32:
add32<IsLE>(Loc, SA);
break;
default:
error("unrecognized reloc " + Twine(Type));
}
}
}
}