llvm-project/mlir/lib/Support/JitRunner.cpp

281 lines
10 KiB
C++

//===- jit-runner.cpp - MLIR CPU Execution Driver Library -----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This is a library that provides a shared implementation for command line
// utilities that execute an MLIR file on the CPU by translating MLIR to LLVM
// IR before JIT-compiling and executing the latter.
//
// The translation can be customized by providing an MLIR to MLIR
// transformation.
//===----------------------------------------------------------------------===//
#include "mlir/Support/JitRunner.h"
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
#include "mlir/ExecutionEngine/ExecutionEngine.h"
#include "mlir/ExecutionEngine/OptUtils.h"
#include "mlir/IR/MLIRContext.h"
#include "mlir/IR/Module.h"
#include "mlir/IR/StandardTypes.h"
#include "mlir/Parser.h"
#include "mlir/Support/FileUtilities.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ExecutionEngine/Orc/JITTargetMachineBuilder.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/LegacyPassNameParser.h"
#include "llvm/IR/Module.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/FileUtilities.h"
#include "llvm/Support/SourceMgr.h"
#include "llvm/Support/StringSaver.h"
#include "llvm/Support/ToolOutputFile.h"
#include <numeric>
using namespace mlir;
using llvm::Error;
static llvm::cl::opt<std::string> inputFilename(llvm::cl::Positional,
llvm::cl::desc("<input file>"),
llvm::cl::init("-"));
static llvm::cl::opt<std::string>
mainFuncName("e", llvm::cl::desc("The function to be called"),
llvm::cl::value_desc("<function name>"),
llvm::cl::init("main"));
static llvm::cl::opt<std::string> mainFuncType(
"entry-point-result",
llvm::cl::desc("Textual description of the function type to be called"),
llvm::cl::value_desc("f32 | void"), llvm::cl::init("f32"));
static llvm::cl::OptionCategory optFlags("opt-like flags");
// CLI list of pass information
static llvm::cl::list<const llvm::PassInfo *, bool, llvm::PassNameParser>
llvmPasses(llvm::cl::desc("LLVM optimizing passes to run"),
llvm::cl::cat(optFlags));
// CLI variables for -On options.
static llvm::cl::opt<bool>
optO0("O0", llvm::cl::desc("Run opt passes and codegen at O0"),
llvm::cl::cat(optFlags));
static llvm::cl::opt<bool>
optO1("O1", llvm::cl::desc("Run opt passes and codegen at O1"),
llvm::cl::cat(optFlags));
static llvm::cl::opt<bool>
optO2("O2", llvm::cl::desc("Run opt passes and codegen at O2"),
llvm::cl::cat(optFlags));
static llvm::cl::opt<bool>
optO3("O3", llvm::cl::desc("Run opt passes and codegen at O3"),
llvm::cl::cat(optFlags));
static llvm::cl::OptionCategory clOptionsCategory("linking options");
static llvm::cl::list<std::string>
clSharedLibs("shared-libs", llvm::cl::desc("Libraries to link dynamically"),
llvm::cl::ZeroOrMore, llvm::cl::MiscFlags::CommaSeparated,
llvm::cl::cat(clOptionsCategory));
// CLI variables for debugging.
static llvm::cl::opt<bool> dumpObjectFile(
"dump-object-file",
llvm::cl::desc("Dump JITted-compiled object to file specified with "
"-object-filename (<input file>.o by default)."));
static llvm::cl::opt<std::string> objectFilename(
"object-filename",
llvm::cl::desc("Dump JITted-compiled object to file <input file>.o"));
static OwningModuleRef parseMLIRInput(StringRef inputFilename,
MLIRContext *context) {
// Set up the input file.
std::string errorMessage;
auto file = openInputFile(inputFilename, &errorMessage);
if (!file) {
llvm::errs() << errorMessage << "\n";
return nullptr;
}
llvm::SourceMgr sourceMgr;
sourceMgr.AddNewSourceBuffer(std::move(file), llvm::SMLoc());
return OwningModuleRef(parseSourceFile(sourceMgr, context));
}
static inline Error make_string_error(const Twine &message) {
return llvm::make_error<llvm::StringError>(message.str(),
llvm::inconvertibleErrorCode());
}
static Optional<unsigned> getCommandLineOptLevel() {
Optional<unsigned> optLevel;
SmallVector<std::reference_wrapper<llvm::cl::opt<bool>>, 4> optFlags{
optO0, optO1, optO2, optO3};
// Determine if there is an optimization flag present.
for (unsigned j = 0; j < 4; ++j) {
auto &flag = optFlags[j].get();
if (flag) {
optLevel = j;
break;
}
}
return optLevel;
}
// JIT-compile the given module and run "entryPoint" with "args" as arguments.
static Error
compileAndExecute(ModuleOp module, StringRef entryPoint,
std::function<llvm::Error(llvm::Module *)> transformer,
void **args) {
Optional<llvm::CodeGenOpt::Level> jitCodeGenOptLevel;
if (auto clOptLevel = getCommandLineOptLevel())
jitCodeGenOptLevel =
static_cast<llvm::CodeGenOpt::Level>(clOptLevel.getValue());
SmallVector<StringRef, 4> libs(clSharedLibs.begin(), clSharedLibs.end());
auto expectedEngine = mlir::ExecutionEngine::create(module, transformer,
jitCodeGenOptLevel, libs);
if (!expectedEngine)
return expectedEngine.takeError();
auto engine = std::move(*expectedEngine);
auto expectedFPtr = engine->lookup(entryPoint);
if (!expectedFPtr)
return expectedFPtr.takeError();
if (dumpObjectFile)
engine->dumpToObjectFile(objectFilename.empty() ? inputFilename + ".o"
: objectFilename);
void (*fptr)(void **) = *expectedFPtr;
(*fptr)(args);
return Error::success();
}
static Error compileAndExecuteVoidFunction(
ModuleOp module, StringRef entryPoint,
std::function<llvm::Error(llvm::Module *)> transformer) {
auto mainFunction = module.lookupSymbol<LLVM::LLVMFuncOp>(entryPoint);
if (!mainFunction || mainFunction.getBlocks().empty())
return make_string_error("entry point not found");
void *empty = nullptr;
return compileAndExecute(module, entryPoint, transformer, &empty);
}
static Error compileAndExecuteSingleFloatReturnFunction(
ModuleOp module, StringRef entryPoint,
std::function<llvm::Error(llvm::Module *)> transformer) {
auto mainFunction = module.lookupSymbol<LLVM::LLVMFuncOp>(entryPoint);
if (!mainFunction || mainFunction.isExternal())
return make_string_error("entry point not found");
if (mainFunction.getType().getFunctionNumParams() != 0)
return make_string_error("function inputs not supported");
if (!mainFunction.getType().getFunctionResultType().isFloatTy())
return make_string_error("only single llvm.f32 function result supported");
float res;
struct {
void *data;
} data;
data.data = &res;
if (auto error =
compileAndExecute(module, entryPoint, transformer, (void **)&data))
return error;
// Intentional printing of the output so we can test.
llvm::outs() << res << '\n';
return Error::success();
}
// Entry point for all CPU runners. Expects the common argc/argv arguments for
// standard C++ main functions and an mlirTransformer.
// The latter is applied after parsing the input into MLIR IR and before passing
// the MLIR module to the ExecutionEngine.
int mlir::JitRunnerMain(
int argc, char **argv,
function_ref<LogicalResult(mlir::ModuleOp)> mlirTransformer) {
llvm::cl::ParseCommandLineOptions(argc, argv, "MLIR CPU execution driver\n");
Optional<unsigned> optLevel = getCommandLineOptLevel();
SmallVector<std::reference_wrapper<llvm::cl::opt<bool>>, 4> optFlags{
optO0, optO1, optO2, optO3};
unsigned optCLIPosition = 0;
// Determine if there is an optimization flag present, and its CLI position
// (optCLIPosition).
for (unsigned j = 0; j < 4; ++j) {
auto &flag = optFlags[j].get();
if (flag) {
optCLIPosition = flag.getPosition();
break;
}
}
// Generate vector of pass information, plus the index at which we should
// insert any optimization passes in that vector (optPosition).
SmallVector<const llvm::PassInfo *, 4> passes;
unsigned optPosition = 0;
for (unsigned i = 0, e = llvmPasses.size(); i < e; ++i) {
passes.push_back(llvmPasses[i]);
if (optCLIPosition < llvmPasses.getPosition(i)) {
optPosition = i;
optCLIPosition = UINT_MAX; // To ensure we never insert again
}
}
MLIRContext context;
auto m = parseMLIRInput(inputFilename, &context);
if (!m) {
llvm::errs() << "could not parse the input IR\n";
return 1;
}
if (mlirTransformer)
if (failed(mlirTransformer(m.get())))
return EXIT_FAILURE;
auto tmBuilderOrError = llvm::orc::JITTargetMachineBuilder::detectHost();
if (!tmBuilderOrError) {
llvm::errs() << "Failed to create a JITTargetMachineBuilder for the host\n";
return EXIT_FAILURE;
}
auto tmOrError = tmBuilderOrError->createTargetMachine();
if (!tmOrError) {
llvm::errs() << "Failed to create a TargetMachine for the host\n";
return EXIT_FAILURE;
}
auto transformer = mlir::makeLLVMPassesTransformer(
passes, optLevel, /*targetMachine=*/tmOrError->get(), optPosition);
// Get the function used to compile and execute the module.
using CompileAndExecuteFnT = Error (*)(
ModuleOp, StringRef, std::function<llvm::Error(llvm::Module *)>);
auto compileAndExecuteFn =
llvm::StringSwitch<CompileAndExecuteFnT>(mainFuncType.getValue())
.Case("f32", compileAndExecuteSingleFloatReturnFunction)
.Case("void", compileAndExecuteVoidFunction)
.Default(nullptr);
Error error =
compileAndExecuteFn
? compileAndExecuteFn(m.get(), mainFuncName.getValue(), transformer)
: make_string_error("unsupported function type");
int exitCode = EXIT_SUCCESS;
llvm::handleAllErrors(std::move(error),
[&exitCode](const llvm::ErrorInfoBase &info) {
llvm::errs() << "Error: ";
info.log(llvm::errs());
llvm::errs() << '\n';
exitCode = EXIT_FAILURE;
});
return exitCode;
}