llvm-project/lld/MachO/ICF.cpp

279 lines
10 KiB
C++

//===- ICF.cpp ------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "ICF.h"
#include "ConcatOutputSection.h"
#include "InputSection.h"
#include "Symbols.h"
#include "llvm/Support/Parallel.h"
#include <atomic>
using namespace llvm;
using namespace lld;
using namespace lld::macho;
ICF::ICF(std::vector<ConcatInputSection *> &inputs) {
icfInputs.assign(inputs.begin(), inputs.end());
}
// ICF = Identical Code Folding
//
// We only fold __TEXT,__text, so this is really "code" folding, and not
// "COMDAT" folding. String and scalar constant literals are deduplicated
// elsewhere.
//
// Summary of segments & sections:
//
// Since folding never occurs across output-section boundaries,
// ConcatOutputSection is the natural input for ICF.
//
// The __TEXT segment is readonly at the MMU. Some sections are already
// deduplicated elsewhere (__TEXT,__cstring & __TEXT,__literal*) and some are
// synthetic and inherently free of duplicates (__TEXT,__stubs &
// __TEXT,__unwind_info). We only run ICF on __TEXT,__text. One might hope ICF
// could work on __TEXT,__concat, but doing so induces many test failures.
//
// The __LINKEDIT segment is readonly at the MMU, yet entirely synthetic, and
// thus ineligible for ICF.
//
// The __DATA_CONST segment is read/write at the MMU, but is logically const to
// the application after dyld applies fixups to pointer data. Some sections are
// deduplicated elsewhere (__DATA_CONST,__cfstring), and some are synthetic
// (__DATA_CONST,__got). There are no ICF opportunities here.
//
// The __DATA segment is read/write at the MMU, and as application-writeable
// data, none of its sections are eligible for ICF.
//
// Please see the large block comment in lld/ELF/ICF.cpp for an explanation
// of the segregation algorithm.
//
// FIXME(gkm): implement keep-unique attributes
// FIXME(gkm): implement address-significance tables for MachO object files
static unsigned icfPass = 0;
static std::atomic<bool> icfRepeat{false};
// Compare everything except the relocation referents
static bool equalsConstant(const ConcatInputSection *ia,
const ConcatInputSection *ib) {
if (ia->data.size() != ib->data.size())
return false;
if (ia->data != ib->data)
return false;
if (ia->flags != ib->flags)
return false;
if (ia->relocs.size() != ib->relocs.size())
return false;
auto f = [&](const Reloc &ra, const Reloc &rb) {
if (ra.type != rb.type)
return false;
if (ra.pcrel != rb.pcrel)
return false;
if (ra.length != rb.length)
return false;
if (ra.offset != rb.offset)
return false;
if (ra.addend != rb.addend)
return false;
if (ra.referent.is<Symbol *>() != rb.referent.is<Symbol *>())
return false; // a nice place to breakpoint
return true;
};
return std::equal(ia->relocs.begin(), ia->relocs.end(), ib->relocs.begin(),
f);
}
// Compare only the relocation referents
static bool equalsVariable(const ConcatInputSection *ia,
const ConcatInputSection *ib) {
assert(ia->relocs.size() == ib->relocs.size());
auto f = [&](const Reloc &ra, const Reloc &rb) {
if (ra.referent == rb.referent)
return true;
if (ra.referent.is<Symbol *>()) {
const auto *sa = ra.referent.get<Symbol *>();
const auto *sb = rb.referent.get<Symbol *>();
if (sa->kind() != sb->kind())
return false;
if (isa<Defined>(sa)) {
const auto *da = dyn_cast<Defined>(sa);
const auto *db = dyn_cast<Defined>(sb);
if (da->isec && db->isec) {
if (da->isec->kind() != db->isec->kind())
return false;
if (const auto *isecA = dyn_cast<ConcatInputSection>(da->isec)) {
const auto *isecB = cast<ConcatInputSection>(db->isec);
return da->value == db->value && isecA->icfEqClass[icfPass % 2] ==
isecB->icfEqClass[icfPass % 2];
}
// Else we have two literal sections. References to them are
// constant-equal if their offsets in the output section are equal.
return da->isec->parent == db->isec->parent &&
da->isec->getOffset(da->value) ==
db->isec->getOffset(db->value);
}
assert(da->isAbsolute() && db->isAbsolute());
return da->value == db->value;
} else if (isa<DylibSymbol>(sa)) {
// There is one DylibSymbol per gotIndex and we already checked for
// symbol equality, thus we know that these must be different.
return false;
} else {
llvm_unreachable("equalsVariable symbol kind");
}
} else {
const auto *sa = ra.referent.get<InputSection *>();
const auto *sb = rb.referent.get<InputSection *>();
if (sa->kind() != sb->kind())
return false;
if (const auto *isecA = dyn_cast<ConcatInputSection>(sa)) {
const auto *isecB = cast<ConcatInputSection>(sb);
return isecA->icfEqClass[icfPass % 2] == isecB->icfEqClass[icfPass % 2];
} else {
assert(isa<CStringInputSection>(sa) ||
isa<WordLiteralInputSection>(sa));
return sa->getOffset(ra.addend) == sb->getOffset(rb.addend);
}
}
};
return std::equal(ia->relocs.begin(), ia->relocs.end(), ib->relocs.begin(),
f);
}
// Find the first InputSection after BEGIN whose equivalence class differs
size_t ICF::findBoundary(size_t begin, size_t end) {
uint64_t beginHash = icfInputs[begin]->icfEqClass[icfPass % 2];
for (size_t i = begin + 1; i < end; ++i)
if (beginHash != icfInputs[i]->icfEqClass[icfPass % 2])
return i;
return end;
}
// Invoke FUNC on subranges with matching equivalence class
void ICF::forEachClassRange(size_t begin, size_t end,
std::function<void(size_t, size_t)> func) {
while (begin < end) {
size_t mid = findBoundary(begin, end);
func(begin, mid);
begin = mid;
}
}
// Split icfInputs into shards, then parallelize invocation of FUNC on subranges
// with matching equivalence class
void ICF::forEachClass(std::function<void(size_t, size_t)> func) {
// Only use threads when the benefits outweigh the overhead.
const size_t threadingThreshold = 1024;
if (icfInputs.size() < threadingThreshold) {
forEachClassRange(0, icfInputs.size(), func);
++icfPass;
return;
}
// Shard into non-overlapping intervals, and call FUNC in parallel. The
// sharding must be completed before any calls to FUNC are made so that FUNC
// can modify the InputSection in its shard without causing data races.
const size_t shards = 256;
size_t step = icfInputs.size() / shards;
size_t boundaries[shards + 1];
boundaries[0] = 0;
boundaries[shards] = icfInputs.size();
parallelForEachN(1, shards, [&](size_t i) {
boundaries[i] = findBoundary((i - 1) * step, icfInputs.size());
});
parallelForEachN(1, shards + 1, [&](size_t i) {
if (boundaries[i - 1] < boundaries[i]) {
forEachClassRange(boundaries[i - 1], boundaries[i], func);
}
});
++icfPass;
}
void ICF::run() {
// Into each origin-section hash, combine all reloc referent section hashes.
for (icfPass = 0; icfPass < 2; ++icfPass) {
parallelForEach(icfInputs, [&](ConcatInputSection *isec) {
uint64_t hash = isec->icfEqClass[icfPass % 2];
for (const Reloc &r : isec->relocs) {
if (auto *sym = r.referent.dyn_cast<Symbol *>()) {
if (auto *dylibSym = dyn_cast<DylibSymbol>(sym))
hash += dylibSym->stubsHelperIndex;
else if (auto *defined = dyn_cast<Defined>(sym)) {
if (defined->isec) {
if (auto isec = dyn_cast<ConcatInputSection>(defined->isec))
hash += defined->value + isec->icfEqClass[icfPass % 2];
else
hash += defined->isec->kind() +
defined->isec->getOffset(defined->value);
} else {
hash += defined->value;
}
} else
llvm_unreachable("foldIdenticalSections symbol kind");
}
}
// Set MSB to 1 to avoid collisions with non-hashed classes.
isec->icfEqClass[(icfPass + 1) % 2] = hash | (1ull << 63);
});
}
llvm::stable_sort(
icfInputs, [](const ConcatInputSection *a, const ConcatInputSection *b) {
return a->icfEqClass[0] < b->icfEqClass[0];
});
forEachClass(
[&](size_t begin, size_t end) { segregate(begin, end, equalsConstant); });
// Split equivalence groups by comparing relocations until convergence
do {
icfRepeat = false;
forEachClass([&](size_t begin, size_t end) {
segregate(begin, end, equalsVariable);
});
} while (icfRepeat);
log("ICF needed " + Twine(icfPass) + " iterations");
// Fold sections within equivalence classes
forEachClass([&](size_t begin, size_t end) {
if (end - begin < 2)
return;
ConcatInputSection *beginIsec = icfInputs[begin];
for (size_t i = begin + 1; i < end; ++i)
beginIsec->foldIdentical(icfInputs[i]);
});
}
// Split an equivalence class into smaller classes.
void ICF::segregate(
size_t begin, size_t end,
std::function<bool(const ConcatInputSection *, const ConcatInputSection *)>
equals) {
while (begin < end) {
// Divide [begin, end) into two. Let mid be the start index of the
// second group.
auto bound = std::stable_partition(icfInputs.begin() + begin + 1,
icfInputs.begin() + end,
[&](ConcatInputSection *isec) {
return equals(icfInputs[begin], isec);
});
size_t mid = bound - icfInputs.begin();
// Split [begin, end) into [begin, mid) and [mid, end). We use mid as an
// equivalence class ID because every group ends with a unique index.
for (size_t i = begin; i < mid; ++i)
icfInputs[i]->icfEqClass[(icfPass + 1) % 2] = mid;
// If we created a group, we need to iterate the main loop again.
if (mid != end)
icfRepeat = true;
begin = mid;
}
}