llvm-project/clang/lib/AST/Stmt.cpp

2172 lines
84 KiB
C++

//===--- Stmt.cpp - Statement AST Node Implementation ---------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the Stmt class and statement subclasses.
//
//===----------------------------------------------------------------------===//
#include "clang/AST/ASTContext.h"
#include "clang/AST/ASTDiagnostic.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/ExprObjC.h"
#include "clang/AST/Stmt.h"
#include "clang/AST/StmtCXX.h"
#include "clang/AST/StmtObjC.h"
#include "clang/AST/StmtOpenMP.h"
#include "clang/AST/Type.h"
#include "clang/Basic/CharInfo.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/Lex/Token.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/raw_ostream.h"
using namespace clang;
static struct StmtClassNameTable {
const char *Name;
unsigned Counter;
unsigned Size;
} StmtClassInfo[Stmt::lastStmtConstant+1];
static StmtClassNameTable &getStmtInfoTableEntry(Stmt::StmtClass E) {
static bool Initialized = false;
if (Initialized)
return StmtClassInfo[E];
// Intialize the table on the first use.
Initialized = true;
#define ABSTRACT_STMT(STMT)
#define STMT(CLASS, PARENT) \
StmtClassInfo[(unsigned)Stmt::CLASS##Class].Name = #CLASS; \
StmtClassInfo[(unsigned)Stmt::CLASS##Class].Size = sizeof(CLASS);
#include "clang/AST/StmtNodes.inc"
return StmtClassInfo[E];
}
void *Stmt::operator new(size_t bytes, const ASTContext& C,
unsigned alignment) {
return ::operator new(bytes, C, alignment);
}
const char *Stmt::getStmtClassName() const {
return getStmtInfoTableEntry((StmtClass) StmtBits.sClass).Name;
}
void Stmt::PrintStats() {
// Ensure the table is primed.
getStmtInfoTableEntry(Stmt::NullStmtClass);
unsigned sum = 0;
llvm::errs() << "\n*** Stmt/Expr Stats:\n";
for (int i = 0; i != Stmt::lastStmtConstant+1; i++) {
if (StmtClassInfo[i].Name == nullptr) continue;
sum += StmtClassInfo[i].Counter;
}
llvm::errs() << " " << sum << " stmts/exprs total.\n";
sum = 0;
for (int i = 0; i != Stmt::lastStmtConstant+1; i++) {
if (StmtClassInfo[i].Name == nullptr) continue;
if (StmtClassInfo[i].Counter == 0) continue;
llvm::errs() << " " << StmtClassInfo[i].Counter << " "
<< StmtClassInfo[i].Name << ", " << StmtClassInfo[i].Size
<< " each (" << StmtClassInfo[i].Counter*StmtClassInfo[i].Size
<< " bytes)\n";
sum += StmtClassInfo[i].Counter*StmtClassInfo[i].Size;
}
llvm::errs() << "Total bytes = " << sum << "\n";
}
void Stmt::addStmtClass(StmtClass s) {
++getStmtInfoTableEntry(s).Counter;
}
bool Stmt::StatisticsEnabled = false;
void Stmt::EnableStatistics() {
StatisticsEnabled = true;
}
Stmt *Stmt::IgnoreImplicit() {
Stmt *s = this;
if (auto *ewc = dyn_cast<ExprWithCleanups>(s))
s = ewc->getSubExpr();
if (auto *mte = dyn_cast<MaterializeTemporaryExpr>(s))
s = mte->GetTemporaryExpr();
if (auto *bte = dyn_cast<CXXBindTemporaryExpr>(s))
s = bte->getSubExpr();
while (auto *ice = dyn_cast<ImplicitCastExpr>(s))
s = ice->getSubExpr();
return s;
}
/// \brief Skip no-op (attributed, compound) container stmts and skip captured
/// stmt at the top, if \a IgnoreCaptured is true.
Stmt *Stmt::IgnoreContainers(bool IgnoreCaptured) {
Stmt *S = this;
if (IgnoreCaptured)
if (auto CapS = dyn_cast_or_null<CapturedStmt>(S))
S = CapS->getCapturedStmt();
while (true) {
if (auto AS = dyn_cast_or_null<AttributedStmt>(S))
S = AS->getSubStmt();
else if (auto CS = dyn_cast_or_null<CompoundStmt>(S)) {
if (CS->size() != 1)
break;
S = CS->body_back();
} else
break;
}
return S;
}
/// \brief Strip off all label-like statements.
///
/// This will strip off label statements, case statements, attributed
/// statements and default statements recursively.
const Stmt *Stmt::stripLabelLikeStatements() const {
const Stmt *S = this;
while (true) {
if (const LabelStmt *LS = dyn_cast<LabelStmt>(S))
S = LS->getSubStmt();
else if (const SwitchCase *SC = dyn_cast<SwitchCase>(S))
S = SC->getSubStmt();
else if (const AttributedStmt *AS = dyn_cast<AttributedStmt>(S))
S = AS->getSubStmt();
else
return S;
}
}
namespace {
struct good {};
struct bad {};
// These silly little functions have to be static inline to suppress
// unused warnings, and they have to be defined to suppress other
// warnings.
static inline good is_good(good) { return good(); }
typedef Stmt::child_range children_t();
template <class T> good implements_children(children_t T::*) {
return good();
}
LLVM_ATTRIBUTE_UNUSED
static inline bad implements_children(children_t Stmt::*) {
return bad();
}
typedef SourceLocation getLocStart_t() const;
template <class T> good implements_getLocStart(getLocStart_t T::*) {
return good();
}
LLVM_ATTRIBUTE_UNUSED
static inline bad implements_getLocStart(getLocStart_t Stmt::*) {
return bad();
}
typedef SourceLocation getLocEnd_t() const;
template <class T> good implements_getLocEnd(getLocEnd_t T::*) {
return good();
}
LLVM_ATTRIBUTE_UNUSED
static inline bad implements_getLocEnd(getLocEnd_t Stmt::*) {
return bad();
}
#define ASSERT_IMPLEMENTS_children(type) \
(void) is_good(implements_children(&type::children))
#define ASSERT_IMPLEMENTS_getLocStart(type) \
(void) is_good(implements_getLocStart(&type::getLocStart))
#define ASSERT_IMPLEMENTS_getLocEnd(type) \
(void) is_good(implements_getLocEnd(&type::getLocEnd))
}
/// Check whether the various Stmt classes implement their member
/// functions.
LLVM_ATTRIBUTE_UNUSED
static inline void check_implementations() {
#define ABSTRACT_STMT(type)
#define STMT(type, base) \
ASSERT_IMPLEMENTS_children(type); \
ASSERT_IMPLEMENTS_getLocStart(type); \
ASSERT_IMPLEMENTS_getLocEnd(type);
#include "clang/AST/StmtNodes.inc"
}
Stmt::child_range Stmt::children() {
switch (getStmtClass()) {
case Stmt::NoStmtClass: llvm_unreachable("statement without class");
#define ABSTRACT_STMT(type)
#define STMT(type, base) \
case Stmt::type##Class: \
return static_cast<type*>(this)->children();
#include "clang/AST/StmtNodes.inc"
}
llvm_unreachable("unknown statement kind!");
}
// Amusing macro metaprogramming hack: check whether a class provides
// a more specific implementation of getSourceRange.
//
// See also Expr.cpp:getExprLoc().
namespace {
/// This implementation is used when a class provides a custom
/// implementation of getSourceRange.
template <class S, class T>
SourceRange getSourceRangeImpl(const Stmt *stmt,
SourceRange (T::*v)() const) {
return static_cast<const S*>(stmt)->getSourceRange();
}
/// This implementation is used when a class doesn't provide a custom
/// implementation of getSourceRange. Overload resolution should pick it over
/// the implementation above because it's more specialized according to
/// function template partial ordering.
template <class S>
SourceRange getSourceRangeImpl(const Stmt *stmt,
SourceRange (Stmt::*v)() const) {
return SourceRange(static_cast<const S*>(stmt)->getLocStart(),
static_cast<const S*>(stmt)->getLocEnd());
}
}
SourceRange Stmt::getSourceRange() const {
switch (getStmtClass()) {
case Stmt::NoStmtClass: llvm_unreachable("statement without class");
#define ABSTRACT_STMT(type)
#define STMT(type, base) \
case Stmt::type##Class: \
return getSourceRangeImpl<type>(this, &type::getSourceRange);
#include "clang/AST/StmtNodes.inc"
}
llvm_unreachable("unknown statement kind!");
}
SourceLocation Stmt::getLocStart() const {
// llvm::errs() << "getLocStart() for " << getStmtClassName() << "\n";
switch (getStmtClass()) {
case Stmt::NoStmtClass: llvm_unreachable("statement without class");
#define ABSTRACT_STMT(type)
#define STMT(type, base) \
case Stmt::type##Class: \
return static_cast<const type*>(this)->getLocStart();
#include "clang/AST/StmtNodes.inc"
}
llvm_unreachable("unknown statement kind");
}
SourceLocation Stmt::getLocEnd() const {
switch (getStmtClass()) {
case Stmt::NoStmtClass: llvm_unreachable("statement without class");
#define ABSTRACT_STMT(type)
#define STMT(type, base) \
case Stmt::type##Class: \
return static_cast<const type*>(this)->getLocEnd();
#include "clang/AST/StmtNodes.inc"
}
llvm_unreachable("unknown statement kind");
}
CompoundStmt::CompoundStmt(const ASTContext &C, ArrayRef<Stmt*> Stmts,
SourceLocation LB, SourceLocation RB)
: Stmt(CompoundStmtClass), LBraceLoc(LB), RBraceLoc(RB) {
CompoundStmtBits.NumStmts = Stmts.size();
assert(CompoundStmtBits.NumStmts == Stmts.size() &&
"NumStmts doesn't fit in bits of CompoundStmtBits.NumStmts!");
if (Stmts.size() == 0) {
Body = nullptr;
return;
}
Body = new (C) Stmt*[Stmts.size()];
std::copy(Stmts.begin(), Stmts.end(), Body);
}
void CompoundStmt::setStmts(const ASTContext &C, Stmt **Stmts,
unsigned NumStmts) {
if (this->Body)
C.Deallocate(Body);
this->CompoundStmtBits.NumStmts = NumStmts;
Body = new (C) Stmt*[NumStmts];
memcpy(Body, Stmts, sizeof(Stmt *) * NumStmts);
}
const char *LabelStmt::getName() const {
return getDecl()->getIdentifier()->getNameStart();
}
AttributedStmt *AttributedStmt::Create(const ASTContext &C, SourceLocation Loc,
ArrayRef<const Attr*> Attrs,
Stmt *SubStmt) {
assert(!Attrs.empty() && "Attrs should not be empty");
void *Mem = C.Allocate(sizeof(AttributedStmt) + sizeof(Attr *) * Attrs.size(),
llvm::alignOf<AttributedStmt>());
return new (Mem) AttributedStmt(Loc, Attrs, SubStmt);
}
AttributedStmt *AttributedStmt::CreateEmpty(const ASTContext &C,
unsigned NumAttrs) {
assert(NumAttrs > 0 && "NumAttrs should be greater than zero");
void *Mem = C.Allocate(sizeof(AttributedStmt) + sizeof(Attr *) * NumAttrs,
llvm::alignOf<AttributedStmt>());
return new (Mem) AttributedStmt(EmptyShell(), NumAttrs);
}
std::string AsmStmt::generateAsmString(const ASTContext &C) const {
if (const GCCAsmStmt *gccAsmStmt = dyn_cast<GCCAsmStmt>(this))
return gccAsmStmt->generateAsmString(C);
if (const MSAsmStmt *msAsmStmt = dyn_cast<MSAsmStmt>(this))
return msAsmStmt->generateAsmString(C);
llvm_unreachable("unknown asm statement kind!");
}
StringRef AsmStmt::getOutputConstraint(unsigned i) const {
if (const GCCAsmStmt *gccAsmStmt = dyn_cast<GCCAsmStmt>(this))
return gccAsmStmt->getOutputConstraint(i);
if (const MSAsmStmt *msAsmStmt = dyn_cast<MSAsmStmt>(this))
return msAsmStmt->getOutputConstraint(i);
llvm_unreachable("unknown asm statement kind!");
}
const Expr *AsmStmt::getOutputExpr(unsigned i) const {
if (const GCCAsmStmt *gccAsmStmt = dyn_cast<GCCAsmStmt>(this))
return gccAsmStmt->getOutputExpr(i);
if (const MSAsmStmt *msAsmStmt = dyn_cast<MSAsmStmt>(this))
return msAsmStmt->getOutputExpr(i);
llvm_unreachable("unknown asm statement kind!");
}
StringRef AsmStmt::getInputConstraint(unsigned i) const {
if (const GCCAsmStmt *gccAsmStmt = dyn_cast<GCCAsmStmt>(this))
return gccAsmStmt->getInputConstraint(i);
if (const MSAsmStmt *msAsmStmt = dyn_cast<MSAsmStmt>(this))
return msAsmStmt->getInputConstraint(i);
llvm_unreachable("unknown asm statement kind!");
}
const Expr *AsmStmt::getInputExpr(unsigned i) const {
if (const GCCAsmStmt *gccAsmStmt = dyn_cast<GCCAsmStmt>(this))
return gccAsmStmt->getInputExpr(i);
if (const MSAsmStmt *msAsmStmt = dyn_cast<MSAsmStmt>(this))
return msAsmStmt->getInputExpr(i);
llvm_unreachable("unknown asm statement kind!");
}
StringRef AsmStmt::getClobber(unsigned i) const {
if (const GCCAsmStmt *gccAsmStmt = dyn_cast<GCCAsmStmt>(this))
return gccAsmStmt->getClobber(i);
if (const MSAsmStmt *msAsmStmt = dyn_cast<MSAsmStmt>(this))
return msAsmStmt->getClobber(i);
llvm_unreachable("unknown asm statement kind!");
}
/// getNumPlusOperands - Return the number of output operands that have a "+"
/// constraint.
unsigned AsmStmt::getNumPlusOperands() const {
unsigned Res = 0;
for (unsigned i = 0, e = getNumOutputs(); i != e; ++i)
if (isOutputPlusConstraint(i))
++Res;
return Res;
}
char GCCAsmStmt::AsmStringPiece::getModifier() const {
assert(isOperand() && "Only Operands can have modifiers.");
return isLetter(Str[0]) ? Str[0] : '\0';
}
StringRef GCCAsmStmt::getClobber(unsigned i) const {
return getClobberStringLiteral(i)->getString();
}
Expr *GCCAsmStmt::getOutputExpr(unsigned i) {
return cast<Expr>(Exprs[i]);
}
/// getOutputConstraint - Return the constraint string for the specified
/// output operand. All output constraints are known to be non-empty (either
/// '=' or '+').
StringRef GCCAsmStmt::getOutputConstraint(unsigned i) const {
return getOutputConstraintLiteral(i)->getString();
}
Expr *GCCAsmStmt::getInputExpr(unsigned i) {
return cast<Expr>(Exprs[i + NumOutputs]);
}
void GCCAsmStmt::setInputExpr(unsigned i, Expr *E) {
Exprs[i + NumOutputs] = E;
}
/// getInputConstraint - Return the specified input constraint. Unlike output
/// constraints, these can be empty.
StringRef GCCAsmStmt::getInputConstraint(unsigned i) const {
return getInputConstraintLiteral(i)->getString();
}
void GCCAsmStmt::setOutputsAndInputsAndClobbers(const ASTContext &C,
IdentifierInfo **Names,
StringLiteral **Constraints,
Stmt **Exprs,
unsigned NumOutputs,
unsigned NumInputs,
StringLiteral **Clobbers,
unsigned NumClobbers) {
this->NumOutputs = NumOutputs;
this->NumInputs = NumInputs;
this->NumClobbers = NumClobbers;
unsigned NumExprs = NumOutputs + NumInputs;
C.Deallocate(this->Names);
this->Names = new (C) IdentifierInfo*[NumExprs];
std::copy(Names, Names + NumExprs, this->Names);
C.Deallocate(this->Exprs);
this->Exprs = new (C) Stmt*[NumExprs];
std::copy(Exprs, Exprs + NumExprs, this->Exprs);
C.Deallocate(this->Constraints);
this->Constraints = new (C) StringLiteral*[NumExprs];
std::copy(Constraints, Constraints + NumExprs, this->Constraints);
C.Deallocate(this->Clobbers);
this->Clobbers = new (C) StringLiteral*[NumClobbers];
std::copy(Clobbers, Clobbers + NumClobbers, this->Clobbers);
}
/// getNamedOperand - Given a symbolic operand reference like %[foo],
/// translate this into a numeric value needed to reference the same operand.
/// This returns -1 if the operand name is invalid.
int GCCAsmStmt::getNamedOperand(StringRef SymbolicName) const {
unsigned NumPlusOperands = 0;
// Check if this is an output operand.
for (unsigned i = 0, e = getNumOutputs(); i != e; ++i) {
if (getOutputName(i) == SymbolicName)
return i;
}
for (unsigned i = 0, e = getNumInputs(); i != e; ++i)
if (getInputName(i) == SymbolicName)
return getNumOutputs() + NumPlusOperands + i;
// Not found.
return -1;
}
/// AnalyzeAsmString - Analyze the asm string of the current asm, decomposing
/// it into pieces. If the asm string is erroneous, emit errors and return
/// true, otherwise return false.
unsigned GCCAsmStmt::AnalyzeAsmString(SmallVectorImpl<AsmStringPiece>&Pieces,
const ASTContext &C, unsigned &DiagOffs) const {
StringRef Str = getAsmString()->getString();
const char *StrStart = Str.begin();
const char *StrEnd = Str.end();
const char *CurPtr = StrStart;
// "Simple" inline asms have no constraints or operands, just convert the asm
// string to escape $'s.
if (isSimple()) {
std::string Result;
for (; CurPtr != StrEnd; ++CurPtr) {
switch (*CurPtr) {
case '$':
Result += "$$";
break;
default:
Result += *CurPtr;
break;
}
}
Pieces.push_back(AsmStringPiece(Result));
return 0;
}
// CurStringPiece - The current string that we are building up as we scan the
// asm string.
std::string CurStringPiece;
bool HasVariants = !C.getTargetInfo().hasNoAsmVariants();
while (1) {
// Done with the string?
if (CurPtr == StrEnd) {
if (!CurStringPiece.empty())
Pieces.push_back(AsmStringPiece(CurStringPiece));
return 0;
}
char CurChar = *CurPtr++;
switch (CurChar) {
case '$': CurStringPiece += "$$"; continue;
case '{': CurStringPiece += (HasVariants ? "$(" : "{"); continue;
case '|': CurStringPiece += (HasVariants ? "$|" : "|"); continue;
case '}': CurStringPiece += (HasVariants ? "$)" : "}"); continue;
case '%':
break;
default:
CurStringPiece += CurChar;
continue;
}
// Escaped "%" character in asm string.
if (CurPtr == StrEnd) {
// % at end of string is invalid (no escape).
DiagOffs = CurPtr-StrStart-1;
return diag::err_asm_invalid_escape;
}
char EscapedChar = *CurPtr++;
if (EscapedChar == '%') { // %% -> %
// Escaped percentage sign.
CurStringPiece += '%';
continue;
}
if (EscapedChar == '=') { // %= -> Generate an unique ID.
CurStringPiece += "${:uid}";
continue;
}
// Otherwise, we have an operand. If we have accumulated a string so far,
// add it to the Pieces list.
if (!CurStringPiece.empty()) {
Pieces.push_back(AsmStringPiece(CurStringPiece));
CurStringPiece.clear();
}
// Handle operands that have asmSymbolicName (e.g., %x[foo]) and those that
// don't (e.g., %x4). 'x' following the '%' is the constraint modifier.
const char *Begin = CurPtr - 1; // Points to the character following '%'.
const char *Percent = Begin - 1; // Points to '%'.
if (isLetter(EscapedChar)) {
if (CurPtr == StrEnd) { // Premature end.
DiagOffs = CurPtr-StrStart-1;
return diag::err_asm_invalid_escape;
}
EscapedChar = *CurPtr++;
}
const TargetInfo &TI = C.getTargetInfo();
const SourceManager &SM = C.getSourceManager();
const LangOptions &LO = C.getLangOpts();
// Handle operands that don't have asmSymbolicName (e.g., %x4).
if (isDigit(EscapedChar)) {
// %n - Assembler operand n
unsigned N = 0;
--CurPtr;
while (CurPtr != StrEnd && isDigit(*CurPtr))
N = N*10 + ((*CurPtr++)-'0');
unsigned NumOperands =
getNumOutputs() + getNumPlusOperands() + getNumInputs();
if (N >= NumOperands) {
DiagOffs = CurPtr-StrStart-1;
return diag::err_asm_invalid_operand_number;
}
// Str contains "x4" (Operand without the leading %).
std::string Str(Begin, CurPtr - Begin);
// (BeginLoc, EndLoc) represents the range of the operand we are currently
// processing. Unlike Str, the range includes the leading '%'.
SourceLocation BeginLoc =
getAsmString()->getLocationOfByte(Percent - StrStart, SM, LO, TI);
SourceLocation EndLoc =
getAsmString()->getLocationOfByte(CurPtr - StrStart, SM, LO, TI);
Pieces.push_back(AsmStringPiece(N, Str, BeginLoc, EndLoc));
continue;
}
// Handle operands that have asmSymbolicName (e.g., %x[foo]).
if (EscapedChar == '[') {
DiagOffs = CurPtr-StrStart-1;
// Find the ']'.
const char *NameEnd = (const char*)memchr(CurPtr, ']', StrEnd-CurPtr);
if (NameEnd == nullptr)
return diag::err_asm_unterminated_symbolic_operand_name;
if (NameEnd == CurPtr)
return diag::err_asm_empty_symbolic_operand_name;
StringRef SymbolicName(CurPtr, NameEnd - CurPtr);
int N = getNamedOperand(SymbolicName);
if (N == -1) {
// Verify that an operand with that name exists.
DiagOffs = CurPtr-StrStart;
return diag::err_asm_unknown_symbolic_operand_name;
}
// Str contains "x[foo]" (Operand without the leading %).
std::string Str(Begin, NameEnd + 1 - Begin);
// (BeginLoc, EndLoc) represents the range of the operand we are currently
// processing. Unlike Str, the range includes the leading '%'.
SourceLocation BeginLoc =
getAsmString()->getLocationOfByte(Percent - StrStart, SM, LO, TI);
SourceLocation EndLoc =
getAsmString()->getLocationOfByte(NameEnd + 1 - StrStart, SM, LO, TI);
Pieces.push_back(AsmStringPiece(N, Str, BeginLoc, EndLoc));
CurPtr = NameEnd+1;
continue;
}
DiagOffs = CurPtr-StrStart-1;
return diag::err_asm_invalid_escape;
}
}
/// Assemble final IR asm string (GCC-style).
std::string GCCAsmStmt::generateAsmString(const ASTContext &C) const {
// Analyze the asm string to decompose it into its pieces. We know that Sema
// has already done this, so it is guaranteed to be successful.
SmallVector<GCCAsmStmt::AsmStringPiece, 4> Pieces;
unsigned DiagOffs;
AnalyzeAsmString(Pieces, C, DiagOffs);
std::string AsmString;
for (unsigned i = 0, e = Pieces.size(); i != e; ++i) {
if (Pieces[i].isString())
AsmString += Pieces[i].getString();
else if (Pieces[i].getModifier() == '\0')
AsmString += '$' + llvm::utostr(Pieces[i].getOperandNo());
else
AsmString += "${" + llvm::utostr(Pieces[i].getOperandNo()) + ':' +
Pieces[i].getModifier() + '}';
}
return AsmString;
}
/// Assemble final IR asm string (MS-style).
std::string MSAsmStmt::generateAsmString(const ASTContext &C) const {
// FIXME: This needs to be translated into the IR string representation.
return AsmStr;
}
Expr *MSAsmStmt::getOutputExpr(unsigned i) {
return cast<Expr>(Exprs[i]);
}
Expr *MSAsmStmt::getInputExpr(unsigned i) {
return cast<Expr>(Exprs[i + NumOutputs]);
}
void MSAsmStmt::setInputExpr(unsigned i, Expr *E) {
Exprs[i + NumOutputs] = E;
}
QualType CXXCatchStmt::getCaughtType() const {
if (ExceptionDecl)
return ExceptionDecl->getType();
return QualType();
}
//===----------------------------------------------------------------------===//
// Constructors
//===----------------------------------------------------------------------===//
GCCAsmStmt::GCCAsmStmt(const ASTContext &C, SourceLocation asmloc,
bool issimple, bool isvolatile, unsigned numoutputs,
unsigned numinputs, IdentifierInfo **names,
StringLiteral **constraints, Expr **exprs,
StringLiteral *asmstr, unsigned numclobbers,
StringLiteral **clobbers, SourceLocation rparenloc)
: AsmStmt(GCCAsmStmtClass, asmloc, issimple, isvolatile, numoutputs,
numinputs, numclobbers), RParenLoc(rparenloc), AsmStr(asmstr) {
unsigned NumExprs = NumOutputs + NumInputs;
Names = new (C) IdentifierInfo*[NumExprs];
std::copy(names, names + NumExprs, Names);
Exprs = new (C) Stmt*[NumExprs];
std::copy(exprs, exprs + NumExprs, Exprs);
Constraints = new (C) StringLiteral*[NumExprs];
std::copy(constraints, constraints + NumExprs, Constraints);
Clobbers = new (C) StringLiteral*[NumClobbers];
std::copy(clobbers, clobbers + NumClobbers, Clobbers);
}
MSAsmStmt::MSAsmStmt(const ASTContext &C, SourceLocation asmloc,
SourceLocation lbraceloc, bool issimple, bool isvolatile,
ArrayRef<Token> asmtoks, unsigned numoutputs,
unsigned numinputs,
ArrayRef<StringRef> constraints, ArrayRef<Expr*> exprs,
StringRef asmstr, ArrayRef<StringRef> clobbers,
SourceLocation endloc)
: AsmStmt(MSAsmStmtClass, asmloc, issimple, isvolatile, numoutputs,
numinputs, clobbers.size()), LBraceLoc(lbraceloc),
EndLoc(endloc), NumAsmToks(asmtoks.size()) {
initialize(C, asmstr, asmtoks, constraints, exprs, clobbers);
}
static StringRef copyIntoContext(const ASTContext &C, StringRef str) {
size_t size = str.size();
char *buffer = new (C) char[size];
memcpy(buffer, str.data(), size);
return StringRef(buffer, size);
}
void MSAsmStmt::initialize(const ASTContext &C, StringRef asmstr,
ArrayRef<Token> asmtoks,
ArrayRef<StringRef> constraints,
ArrayRef<Expr*> exprs,
ArrayRef<StringRef> clobbers) {
assert(NumAsmToks == asmtoks.size());
assert(NumClobbers == clobbers.size());
unsigned NumExprs = exprs.size();
assert(NumExprs == NumOutputs + NumInputs);
assert(NumExprs == constraints.size());
AsmStr = copyIntoContext(C, asmstr);
Exprs = new (C) Stmt*[NumExprs];
for (unsigned i = 0, e = NumExprs; i != e; ++i)
Exprs[i] = exprs[i];
AsmToks = new (C) Token[NumAsmToks];
for (unsigned i = 0, e = NumAsmToks; i != e; ++i)
AsmToks[i] = asmtoks[i];
Constraints = new (C) StringRef[NumExprs];
for (unsigned i = 0, e = NumExprs; i != e; ++i) {
Constraints[i] = copyIntoContext(C, constraints[i]);
}
Clobbers = new (C) StringRef[NumClobbers];
for (unsigned i = 0, e = NumClobbers; i != e; ++i) {
// FIXME: Avoid the allocation/copy if at all possible.
Clobbers[i] = copyIntoContext(C, clobbers[i]);
}
}
ObjCForCollectionStmt::ObjCForCollectionStmt(Stmt *Elem, Expr *Collect,
Stmt *Body, SourceLocation FCL,
SourceLocation RPL)
: Stmt(ObjCForCollectionStmtClass) {
SubExprs[ELEM] = Elem;
SubExprs[COLLECTION] = Collect;
SubExprs[BODY] = Body;
ForLoc = FCL;
RParenLoc = RPL;
}
ObjCAtTryStmt::ObjCAtTryStmt(SourceLocation atTryLoc, Stmt *atTryStmt,
Stmt **CatchStmts, unsigned NumCatchStmts,
Stmt *atFinallyStmt)
: Stmt(ObjCAtTryStmtClass), AtTryLoc(atTryLoc),
NumCatchStmts(NumCatchStmts), HasFinally(atFinallyStmt != nullptr) {
Stmt **Stmts = getStmts();
Stmts[0] = atTryStmt;
for (unsigned I = 0; I != NumCatchStmts; ++I)
Stmts[I + 1] = CatchStmts[I];
if (HasFinally)
Stmts[NumCatchStmts + 1] = atFinallyStmt;
}
ObjCAtTryStmt *ObjCAtTryStmt::Create(const ASTContext &Context,
SourceLocation atTryLoc,
Stmt *atTryStmt,
Stmt **CatchStmts,
unsigned NumCatchStmts,
Stmt *atFinallyStmt) {
unsigned Size = sizeof(ObjCAtTryStmt) +
(1 + NumCatchStmts + (atFinallyStmt != nullptr)) * sizeof(Stmt *);
void *Mem = Context.Allocate(Size, llvm::alignOf<ObjCAtTryStmt>());
return new (Mem) ObjCAtTryStmt(atTryLoc, atTryStmt, CatchStmts, NumCatchStmts,
atFinallyStmt);
}
ObjCAtTryStmt *ObjCAtTryStmt::CreateEmpty(const ASTContext &Context,
unsigned NumCatchStmts,
bool HasFinally) {
unsigned Size = sizeof(ObjCAtTryStmt) +
(1 + NumCatchStmts + HasFinally) * sizeof(Stmt *);
void *Mem = Context.Allocate(Size, llvm::alignOf<ObjCAtTryStmt>());
return new (Mem) ObjCAtTryStmt(EmptyShell(), NumCatchStmts, HasFinally);
}
SourceLocation ObjCAtTryStmt::getLocEnd() const {
if (HasFinally)
return getFinallyStmt()->getLocEnd();
if (NumCatchStmts)
return getCatchStmt(NumCatchStmts - 1)->getLocEnd();
return getTryBody()->getLocEnd();
}
CXXTryStmt *CXXTryStmt::Create(const ASTContext &C, SourceLocation tryLoc,
Stmt *tryBlock, ArrayRef<Stmt*> handlers) {
std::size_t Size = sizeof(CXXTryStmt);
Size += ((handlers.size() + 1) * sizeof(Stmt));
void *Mem = C.Allocate(Size, llvm::alignOf<CXXTryStmt>());
return new (Mem) CXXTryStmt(tryLoc, tryBlock, handlers);
}
CXXTryStmt *CXXTryStmt::Create(const ASTContext &C, EmptyShell Empty,
unsigned numHandlers) {
std::size_t Size = sizeof(CXXTryStmt);
Size += ((numHandlers + 1) * sizeof(Stmt));
void *Mem = C.Allocate(Size, llvm::alignOf<CXXTryStmt>());
return new (Mem) CXXTryStmt(Empty, numHandlers);
}
CXXTryStmt::CXXTryStmt(SourceLocation tryLoc, Stmt *tryBlock,
ArrayRef<Stmt*> handlers)
: Stmt(CXXTryStmtClass), TryLoc(tryLoc), NumHandlers(handlers.size()) {
Stmt **Stmts = reinterpret_cast<Stmt **>(this + 1);
Stmts[0] = tryBlock;
std::copy(handlers.begin(), handlers.end(), Stmts + 1);
}
CXXForRangeStmt::CXXForRangeStmt(DeclStmt *Range, DeclStmt *BeginEndStmt,
Expr *Cond, Expr *Inc, DeclStmt *LoopVar,
Stmt *Body, SourceLocation FL,
SourceLocation CL, SourceLocation RPL)
: Stmt(CXXForRangeStmtClass), ForLoc(FL), ColonLoc(CL), RParenLoc(RPL) {
SubExprs[RANGE] = Range;
SubExprs[BEGINEND] = BeginEndStmt;
SubExprs[COND] = Cond;
SubExprs[INC] = Inc;
SubExprs[LOOPVAR] = LoopVar;
SubExprs[BODY] = Body;
}
Expr *CXXForRangeStmt::getRangeInit() {
DeclStmt *RangeStmt = getRangeStmt();
VarDecl *RangeDecl = dyn_cast_or_null<VarDecl>(RangeStmt->getSingleDecl());
assert(RangeDecl && "for-range should have a single var decl");
return RangeDecl->getInit();
}
const Expr *CXXForRangeStmt::getRangeInit() const {
return const_cast<CXXForRangeStmt*>(this)->getRangeInit();
}
VarDecl *CXXForRangeStmt::getLoopVariable() {
Decl *LV = cast<DeclStmt>(getLoopVarStmt())->getSingleDecl();
assert(LV && "No loop variable in CXXForRangeStmt");
return cast<VarDecl>(LV);
}
const VarDecl *CXXForRangeStmt::getLoopVariable() const {
return const_cast<CXXForRangeStmt*>(this)->getLoopVariable();
}
IfStmt::IfStmt(const ASTContext &C, SourceLocation IL, VarDecl *var, Expr *cond,
Stmt *then, SourceLocation EL, Stmt *elsev)
: Stmt(IfStmtClass), IfLoc(IL), ElseLoc(EL)
{
setConditionVariable(C, var);
SubExprs[COND] = cond;
SubExprs[THEN] = then;
SubExprs[ELSE] = elsev;
}
VarDecl *IfStmt::getConditionVariable() const {
if (!SubExprs[VAR])
return nullptr;
DeclStmt *DS = cast<DeclStmt>(SubExprs[VAR]);
return cast<VarDecl>(DS->getSingleDecl());
}
void IfStmt::setConditionVariable(const ASTContext &C, VarDecl *V) {
if (!V) {
SubExprs[VAR] = nullptr;
return;
}
SourceRange VarRange = V->getSourceRange();
SubExprs[VAR] = new (C) DeclStmt(DeclGroupRef(V), VarRange.getBegin(),
VarRange.getEnd());
}
ForStmt::ForStmt(const ASTContext &C, Stmt *Init, Expr *Cond, VarDecl *condVar,
Expr *Inc, Stmt *Body, SourceLocation FL, SourceLocation LP,
SourceLocation RP)
: Stmt(ForStmtClass), ForLoc(FL), LParenLoc(LP), RParenLoc(RP)
{
SubExprs[INIT] = Init;
setConditionVariable(C, condVar);
SubExprs[COND] = Cond;
SubExprs[INC] = Inc;
SubExprs[BODY] = Body;
}
VarDecl *ForStmt::getConditionVariable() const {
if (!SubExprs[CONDVAR])
return nullptr;
DeclStmt *DS = cast<DeclStmt>(SubExprs[CONDVAR]);
return cast<VarDecl>(DS->getSingleDecl());
}
void ForStmt::setConditionVariable(const ASTContext &C, VarDecl *V) {
if (!V) {
SubExprs[CONDVAR] = nullptr;
return;
}
SourceRange VarRange = V->getSourceRange();
SubExprs[CONDVAR] = new (C) DeclStmt(DeclGroupRef(V), VarRange.getBegin(),
VarRange.getEnd());
}
SwitchStmt::SwitchStmt(const ASTContext &C, VarDecl *Var, Expr *cond)
: Stmt(SwitchStmtClass), FirstCase(nullptr, false) {
setConditionVariable(C, Var);
SubExprs[COND] = cond;
SubExprs[BODY] = nullptr;
}
VarDecl *SwitchStmt::getConditionVariable() const {
if (!SubExprs[VAR])
return nullptr;
DeclStmt *DS = cast<DeclStmt>(SubExprs[VAR]);
return cast<VarDecl>(DS->getSingleDecl());
}
void SwitchStmt::setConditionVariable(const ASTContext &C, VarDecl *V) {
if (!V) {
SubExprs[VAR] = nullptr;
return;
}
SourceRange VarRange = V->getSourceRange();
SubExprs[VAR] = new (C) DeclStmt(DeclGroupRef(V), VarRange.getBegin(),
VarRange.getEnd());
}
Stmt *SwitchCase::getSubStmt() {
if (isa<CaseStmt>(this))
return cast<CaseStmt>(this)->getSubStmt();
return cast<DefaultStmt>(this)->getSubStmt();
}
WhileStmt::WhileStmt(const ASTContext &C, VarDecl *Var, Expr *cond, Stmt *body,
SourceLocation WL)
: Stmt(WhileStmtClass) {
setConditionVariable(C, Var);
SubExprs[COND] = cond;
SubExprs[BODY] = body;
WhileLoc = WL;
}
VarDecl *WhileStmt::getConditionVariable() const {
if (!SubExprs[VAR])
return nullptr;
DeclStmt *DS = cast<DeclStmt>(SubExprs[VAR]);
return cast<VarDecl>(DS->getSingleDecl());
}
void WhileStmt::setConditionVariable(const ASTContext &C, VarDecl *V) {
if (!V) {
SubExprs[VAR] = nullptr;
return;
}
SourceRange VarRange = V->getSourceRange();
SubExprs[VAR] = new (C) DeclStmt(DeclGroupRef(V), VarRange.getBegin(),
VarRange.getEnd());
}
// IndirectGotoStmt
LabelDecl *IndirectGotoStmt::getConstantTarget() {
if (AddrLabelExpr *E =
dyn_cast<AddrLabelExpr>(getTarget()->IgnoreParenImpCasts()))
return E->getLabel();
return nullptr;
}
// ReturnStmt
const Expr* ReturnStmt::getRetValue() const {
return cast_or_null<Expr>(RetExpr);
}
Expr* ReturnStmt::getRetValue() {
return cast_or_null<Expr>(RetExpr);
}
SEHTryStmt::SEHTryStmt(bool IsCXXTry,
SourceLocation TryLoc,
Stmt *TryBlock,
Stmt *Handler)
: Stmt(SEHTryStmtClass),
IsCXXTry(IsCXXTry),
TryLoc(TryLoc)
{
Children[TRY] = TryBlock;
Children[HANDLER] = Handler;
}
SEHTryStmt* SEHTryStmt::Create(const ASTContext &C, bool IsCXXTry,
SourceLocation TryLoc, Stmt *TryBlock,
Stmt *Handler) {
return new(C) SEHTryStmt(IsCXXTry,TryLoc,TryBlock,Handler);
}
SEHExceptStmt* SEHTryStmt::getExceptHandler() const {
return dyn_cast<SEHExceptStmt>(getHandler());
}
SEHFinallyStmt* SEHTryStmt::getFinallyHandler() const {
return dyn_cast<SEHFinallyStmt>(getHandler());
}
SEHExceptStmt::SEHExceptStmt(SourceLocation Loc,
Expr *FilterExpr,
Stmt *Block)
: Stmt(SEHExceptStmtClass),
Loc(Loc)
{
Children[FILTER_EXPR] = FilterExpr;
Children[BLOCK] = Block;
}
SEHExceptStmt* SEHExceptStmt::Create(const ASTContext &C, SourceLocation Loc,
Expr *FilterExpr, Stmt *Block) {
return new(C) SEHExceptStmt(Loc,FilterExpr,Block);
}
SEHFinallyStmt::SEHFinallyStmt(SourceLocation Loc,
Stmt *Block)
: Stmt(SEHFinallyStmtClass),
Loc(Loc),
Block(Block)
{}
SEHFinallyStmt* SEHFinallyStmt::Create(const ASTContext &C, SourceLocation Loc,
Stmt *Block) {
return new(C)SEHFinallyStmt(Loc,Block);
}
CapturedStmt::Capture *CapturedStmt::getStoredCaptures() const {
unsigned Size = sizeof(CapturedStmt) + sizeof(Stmt *) * (NumCaptures + 1);
// Offset of the first Capture object.
unsigned FirstCaptureOffset =
llvm::RoundUpToAlignment(Size, llvm::alignOf<Capture>());
return reinterpret_cast<Capture *>(
reinterpret_cast<char *>(const_cast<CapturedStmt *>(this))
+ FirstCaptureOffset);
}
CapturedStmt::CapturedStmt(Stmt *S, CapturedRegionKind Kind,
ArrayRef<Capture> Captures,
ArrayRef<Expr *> CaptureInits,
CapturedDecl *CD,
RecordDecl *RD)
: Stmt(CapturedStmtClass), NumCaptures(Captures.size()),
CapDeclAndKind(CD, Kind), TheRecordDecl(RD) {
assert( S && "null captured statement");
assert(CD && "null captured declaration for captured statement");
assert(RD && "null record declaration for captured statement");
// Copy initialization expressions.
Stmt **Stored = getStoredStmts();
for (unsigned I = 0, N = NumCaptures; I != N; ++I)
*Stored++ = CaptureInits[I];
// Copy the statement being captured.
*Stored = S;
// Copy all Capture objects.
Capture *Buffer = getStoredCaptures();
std::copy(Captures.begin(), Captures.end(), Buffer);
}
CapturedStmt::CapturedStmt(EmptyShell Empty, unsigned NumCaptures)
: Stmt(CapturedStmtClass, Empty), NumCaptures(NumCaptures),
CapDeclAndKind(nullptr, CR_Default), TheRecordDecl(nullptr) {
getStoredStmts()[NumCaptures] = nullptr;
}
CapturedStmt *CapturedStmt::Create(const ASTContext &Context, Stmt *S,
CapturedRegionKind Kind,
ArrayRef<Capture> Captures,
ArrayRef<Expr *> CaptureInits,
CapturedDecl *CD,
RecordDecl *RD) {
// The layout is
//
// -----------------------------------------------------------
// | CapturedStmt, Init, ..., Init, S, Capture, ..., Capture |
// ----------------^-------------------^----------------------
// getStoredStmts() getStoredCaptures()
//
// where S is the statement being captured.
//
assert(CaptureInits.size() == Captures.size() && "wrong number of arguments");
unsigned Size = sizeof(CapturedStmt) + sizeof(Stmt *) * (Captures.size() + 1);
if (!Captures.empty()) {
// Realign for the following Capture array.
Size = llvm::RoundUpToAlignment(Size, llvm::alignOf<Capture>());
Size += sizeof(Capture) * Captures.size();
}
void *Mem = Context.Allocate(Size);
return new (Mem) CapturedStmt(S, Kind, Captures, CaptureInits, CD, RD);
}
CapturedStmt *CapturedStmt::CreateDeserialized(const ASTContext &Context,
unsigned NumCaptures) {
unsigned Size = sizeof(CapturedStmt) + sizeof(Stmt *) * (NumCaptures + 1);
if (NumCaptures > 0) {
// Realign for the following Capture array.
Size = llvm::RoundUpToAlignment(Size, llvm::alignOf<Capture>());
Size += sizeof(Capture) * NumCaptures;
}
void *Mem = Context.Allocate(Size);
return new (Mem) CapturedStmt(EmptyShell(), NumCaptures);
}
Stmt::child_range CapturedStmt::children() {
// Children are captured field initilizers.
return child_range(getStoredStmts(), getStoredStmts() + NumCaptures);
}
bool CapturedStmt::capturesVariable(const VarDecl *Var) const {
for (const auto &I : captures()) {
if (!I.capturesVariable())
continue;
// This does not handle variable redeclarations. This should be
// extended to capture variables with redeclarations, for example
// a thread-private variable in OpenMP.
if (I.getCapturedVar() == Var)
return true;
}
return false;
}
StmtRange OMPClause::children() {
switch(getClauseKind()) {
default : break;
#define OPENMP_CLAUSE(Name, Class) \
case OMPC_ ## Name : return static_cast<Class *>(this)->children();
#include "clang/Basic/OpenMPKinds.def"
}
llvm_unreachable("unknown OMPClause");
}
void OMPPrivateClause::setPrivateCopies(ArrayRef<Expr *> VL) {
assert(VL.size() == varlist_size() &&
"Number of private copies is not the same as the preallocated buffer");
std::copy(VL.begin(), VL.end(), varlist_end());
}
OMPPrivateClause *
OMPPrivateClause::Create(const ASTContext &C, SourceLocation StartLoc,
SourceLocation LParenLoc, SourceLocation EndLoc,
ArrayRef<Expr *> VL, ArrayRef<Expr *> PrivateVL) {
// Allocate space for private variables and initializer expressions.
void *Mem = C.Allocate(llvm::RoundUpToAlignment(sizeof(OMPPrivateClause),
llvm::alignOf<Expr *>()) +
2 * sizeof(Expr *) * VL.size());
OMPPrivateClause *Clause =
new (Mem) OMPPrivateClause(StartLoc, LParenLoc, EndLoc, VL.size());
Clause->setVarRefs(VL);
Clause->setPrivateCopies(PrivateVL);
return Clause;
}
OMPPrivateClause *OMPPrivateClause::CreateEmpty(const ASTContext &C,
unsigned N) {
void *Mem = C.Allocate(llvm::RoundUpToAlignment(sizeof(OMPPrivateClause),
llvm::alignOf<Expr *>()) +
2 * sizeof(Expr *) * N);
return new (Mem) OMPPrivateClause(N);
}
void OMPFirstprivateClause::setPrivateCopies(ArrayRef<Expr *> VL) {
assert(VL.size() == varlist_size() &&
"Number of private copies is not the same as the preallocated buffer");
std::copy(VL.begin(), VL.end(), varlist_end());
}
void OMPFirstprivateClause::setInits(ArrayRef<Expr *> VL) {
assert(VL.size() == varlist_size() &&
"Number of inits is not the same as the preallocated buffer");
std::copy(VL.begin(), VL.end(), getPrivateCopies().end());
}
OMPFirstprivateClause *
OMPFirstprivateClause::Create(const ASTContext &C, SourceLocation StartLoc,
SourceLocation LParenLoc, SourceLocation EndLoc,
ArrayRef<Expr *> VL, ArrayRef<Expr *> PrivateVL,
ArrayRef<Expr *> InitVL) {
void *Mem = C.Allocate(llvm::RoundUpToAlignment(sizeof(OMPFirstprivateClause),
llvm::alignOf<Expr *>()) +
3 * sizeof(Expr *) * VL.size());
OMPFirstprivateClause *Clause =
new (Mem) OMPFirstprivateClause(StartLoc, LParenLoc, EndLoc, VL.size());
Clause->setVarRefs(VL);
Clause->setPrivateCopies(PrivateVL);
Clause->setInits(InitVL);
return Clause;
}
OMPFirstprivateClause *OMPFirstprivateClause::CreateEmpty(const ASTContext &C,
unsigned N) {
void *Mem = C.Allocate(llvm::RoundUpToAlignment(sizeof(OMPFirstprivateClause),
llvm::alignOf<Expr *>()) +
3 * sizeof(Expr *) * N);
return new (Mem) OMPFirstprivateClause(N);
}
void OMPLastprivateClause::setPrivateCopies(ArrayRef<Expr *> PrivateCopies) {
assert(PrivateCopies.size() == varlist_size() &&
"Number of private copies is not the same as the preallocated buffer");
std::copy(PrivateCopies.begin(), PrivateCopies.end(), varlist_end());
}
void OMPLastprivateClause::setSourceExprs(ArrayRef<Expr *> SrcExprs) {
assert(SrcExprs.size() == varlist_size() && "Number of source expressions is "
"not the same as the "
"preallocated buffer");
std::copy(SrcExprs.begin(), SrcExprs.end(), getPrivateCopies().end());
}
void OMPLastprivateClause::setDestinationExprs(ArrayRef<Expr *> DstExprs) {
assert(DstExprs.size() == varlist_size() && "Number of destination "
"expressions is not the same as "
"the preallocated buffer");
std::copy(DstExprs.begin(), DstExprs.end(), getSourceExprs().end());
}
void OMPLastprivateClause::setAssignmentOps(ArrayRef<Expr *> AssignmentOps) {
assert(AssignmentOps.size() == varlist_size() &&
"Number of assignment expressions is not the same as the preallocated "
"buffer");
std::copy(AssignmentOps.begin(), AssignmentOps.end(),
getDestinationExprs().end());
}
OMPLastprivateClause *OMPLastprivateClause::Create(
const ASTContext &C, SourceLocation StartLoc, SourceLocation LParenLoc,
SourceLocation EndLoc, ArrayRef<Expr *> VL, ArrayRef<Expr *> SrcExprs,
ArrayRef<Expr *> DstExprs, ArrayRef<Expr *> AssignmentOps) {
void *Mem = C.Allocate(llvm::RoundUpToAlignment(sizeof(OMPLastprivateClause),
llvm::alignOf<Expr *>()) +
5 * sizeof(Expr *) * VL.size());
OMPLastprivateClause *Clause =
new (Mem) OMPLastprivateClause(StartLoc, LParenLoc, EndLoc, VL.size());
Clause->setVarRefs(VL);
Clause->setSourceExprs(SrcExprs);
Clause->setDestinationExprs(DstExprs);
Clause->setAssignmentOps(AssignmentOps);
return Clause;
}
OMPLastprivateClause *OMPLastprivateClause::CreateEmpty(const ASTContext &C,
unsigned N) {
void *Mem = C.Allocate(llvm::RoundUpToAlignment(sizeof(OMPLastprivateClause),
llvm::alignOf<Expr *>()) +
5 * sizeof(Expr *) * N);
return new (Mem) OMPLastprivateClause(N);
}
OMPSharedClause *OMPSharedClause::Create(const ASTContext &C,
SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation EndLoc,
ArrayRef<Expr *> VL) {
void *Mem = C.Allocate(llvm::RoundUpToAlignment(sizeof(OMPSharedClause),
llvm::alignOf<Expr *>()) +
sizeof(Expr *) * VL.size());
OMPSharedClause *Clause = new (Mem) OMPSharedClause(StartLoc, LParenLoc,
EndLoc, VL.size());
Clause->setVarRefs(VL);
return Clause;
}
OMPSharedClause *OMPSharedClause::CreateEmpty(const ASTContext &C,
unsigned N) {
void *Mem = C.Allocate(llvm::RoundUpToAlignment(sizeof(OMPSharedClause),
llvm::alignOf<Expr *>()) +
sizeof(Expr *) * N);
return new (Mem) OMPSharedClause(N);
}
void OMPLinearClause::setInits(ArrayRef<Expr *> IL) {
assert(IL.size() == varlist_size() &&
"Number of inits is not the same as the preallocated buffer");
std::copy(IL.begin(), IL.end(), varlist_end());
}
void OMPLinearClause::setUpdates(ArrayRef<Expr *> UL) {
assert(UL.size() == varlist_size() &&
"Number of updates is not the same as the preallocated buffer");
std::copy(UL.begin(), UL.end(), getInits().end());
}
void OMPLinearClause::setFinals(ArrayRef<Expr *> FL) {
assert(FL.size() == varlist_size() &&
"Number of final updates is not the same as the preallocated buffer");
std::copy(FL.begin(), FL.end(), getUpdates().end());
}
OMPLinearClause *
OMPLinearClause::Create(const ASTContext &C, SourceLocation StartLoc,
SourceLocation LParenLoc, SourceLocation ColonLoc,
SourceLocation EndLoc, ArrayRef<Expr *> VL,
ArrayRef<Expr *> IL, Expr *Step, Expr *CalcStep) {
// Allocate space for 4 lists (Vars, Inits, Updates, Finals) and 2 expressions
// (Step and CalcStep).
void *Mem = C.Allocate(llvm::RoundUpToAlignment(sizeof(OMPLinearClause),
llvm::alignOf<Expr *>()) +
(4 * VL.size() + 2) * sizeof(Expr *));
OMPLinearClause *Clause = new (Mem)
OMPLinearClause(StartLoc, LParenLoc, ColonLoc, EndLoc, VL.size());
Clause->setVarRefs(VL);
Clause->setInits(IL);
// Fill update and final expressions with zeroes, they are provided later,
// after the directive construction.
std::fill(Clause->getInits().end(), Clause->getInits().end() + VL.size(),
nullptr);
std::fill(Clause->getUpdates().end(), Clause->getUpdates().end() + VL.size(),
nullptr);
Clause->setStep(Step);
Clause->setCalcStep(CalcStep);
return Clause;
}
OMPLinearClause *OMPLinearClause::CreateEmpty(const ASTContext &C,
unsigned NumVars) {
// Allocate space for 4 lists (Vars, Inits, Updates, Finals) and 2 expressions
// (Step and CalcStep).
void *Mem = C.Allocate(llvm::RoundUpToAlignment(sizeof(OMPLinearClause),
llvm::alignOf<Expr *>()) +
(4 * NumVars + 2) * sizeof(Expr *));
return new (Mem) OMPLinearClause(NumVars);
}
OMPAlignedClause *
OMPAlignedClause::Create(const ASTContext &C, SourceLocation StartLoc,
SourceLocation LParenLoc, SourceLocation ColonLoc,
SourceLocation EndLoc, ArrayRef<Expr *> VL, Expr *A) {
void *Mem = C.Allocate(llvm::RoundUpToAlignment(sizeof(OMPAlignedClause),
llvm::alignOf<Expr *>()) +
sizeof(Expr *) * (VL.size() + 1));
OMPAlignedClause *Clause = new (Mem)
OMPAlignedClause(StartLoc, LParenLoc, ColonLoc, EndLoc, VL.size());
Clause->setVarRefs(VL);
Clause->setAlignment(A);
return Clause;
}
OMPAlignedClause *OMPAlignedClause::CreateEmpty(const ASTContext &C,
unsigned NumVars) {
void *Mem = C.Allocate(llvm::RoundUpToAlignment(sizeof(OMPAlignedClause),
llvm::alignOf<Expr *>()) +
sizeof(Expr *) * (NumVars + 1));
return new (Mem) OMPAlignedClause(NumVars);
}
void OMPCopyinClause::setSourceExprs(ArrayRef<Expr *> SrcExprs) {
assert(SrcExprs.size() == varlist_size() && "Number of source expressions is "
"not the same as the "
"preallocated buffer");
std::copy(SrcExprs.begin(), SrcExprs.end(), varlist_end());
}
void OMPCopyinClause::setDestinationExprs(ArrayRef<Expr *> DstExprs) {
assert(DstExprs.size() == varlist_size() && "Number of destination "
"expressions is not the same as "
"the preallocated buffer");
std::copy(DstExprs.begin(), DstExprs.end(), getSourceExprs().end());
}
void OMPCopyinClause::setAssignmentOps(ArrayRef<Expr *> AssignmentOps) {
assert(AssignmentOps.size() == varlist_size() &&
"Number of assignment expressions is not the same as the preallocated "
"buffer");
std::copy(AssignmentOps.begin(), AssignmentOps.end(),
getDestinationExprs().end());
}
OMPCopyinClause *OMPCopyinClause::Create(
const ASTContext &C, SourceLocation StartLoc, SourceLocation LParenLoc,
SourceLocation EndLoc, ArrayRef<Expr *> VL, ArrayRef<Expr *> SrcExprs,
ArrayRef<Expr *> DstExprs, ArrayRef<Expr *> AssignmentOps) {
void *Mem = C.Allocate(llvm::RoundUpToAlignment(sizeof(OMPCopyinClause),
llvm::alignOf<Expr *>()) +
4 * sizeof(Expr *) * VL.size());
OMPCopyinClause *Clause = new (Mem) OMPCopyinClause(StartLoc, LParenLoc,
EndLoc, VL.size());
Clause->setVarRefs(VL);
Clause->setSourceExprs(SrcExprs);
Clause->setDestinationExprs(DstExprs);
Clause->setAssignmentOps(AssignmentOps);
return Clause;
}
OMPCopyinClause *OMPCopyinClause::CreateEmpty(const ASTContext &C,
unsigned N) {
void *Mem = C.Allocate(llvm::RoundUpToAlignment(sizeof(OMPCopyinClause),
llvm::alignOf<Expr *>()) +
4 * sizeof(Expr *) * N);
return new (Mem) OMPCopyinClause(N);
}
void OMPCopyprivateClause::setSourceExprs(ArrayRef<Expr *> SrcExprs) {
assert(SrcExprs.size() == varlist_size() && "Number of source expressions is "
"not the same as the "
"preallocated buffer");
std::copy(SrcExprs.begin(), SrcExprs.end(), varlist_end());
}
void OMPCopyprivateClause::setDestinationExprs(ArrayRef<Expr *> DstExprs) {
assert(DstExprs.size() == varlist_size() && "Number of destination "
"expressions is not the same as "
"the preallocated buffer");
std::copy(DstExprs.begin(), DstExprs.end(), getSourceExprs().end());
}
void OMPCopyprivateClause::setAssignmentOps(ArrayRef<Expr *> AssignmentOps) {
assert(AssignmentOps.size() == varlist_size() &&
"Number of assignment expressions is not the same as the preallocated "
"buffer");
std::copy(AssignmentOps.begin(), AssignmentOps.end(),
getDestinationExprs().end());
}
OMPCopyprivateClause *OMPCopyprivateClause::Create(
const ASTContext &C, SourceLocation StartLoc, SourceLocation LParenLoc,
SourceLocation EndLoc, ArrayRef<Expr *> VL, ArrayRef<Expr *> SrcExprs,
ArrayRef<Expr *> DstExprs, ArrayRef<Expr *> AssignmentOps) {
void *Mem = C.Allocate(llvm::RoundUpToAlignment(sizeof(OMPCopyprivateClause),
llvm::alignOf<Expr *>()) +
4 * sizeof(Expr *) * VL.size());
OMPCopyprivateClause *Clause =
new (Mem) OMPCopyprivateClause(StartLoc, LParenLoc, EndLoc, VL.size());
Clause->setVarRefs(VL);
Clause->setSourceExprs(SrcExprs);
Clause->setDestinationExprs(DstExprs);
Clause->setAssignmentOps(AssignmentOps);
return Clause;
}
OMPCopyprivateClause *OMPCopyprivateClause::CreateEmpty(const ASTContext &C,
unsigned N) {
void *Mem = C.Allocate(llvm::RoundUpToAlignment(sizeof(OMPCopyprivateClause),
llvm::alignOf<Expr *>()) +
4 * sizeof(Expr *) * N);
return new (Mem) OMPCopyprivateClause(N);
}
void OMPExecutableDirective::setClauses(ArrayRef<OMPClause *> Clauses) {
assert(Clauses.size() == getNumClauses() &&
"Number of clauses is not the same as the preallocated buffer");
std::copy(Clauses.begin(), Clauses.end(), getClauses().begin());
}
void OMPLoopDirective::setCounters(ArrayRef<Expr *> A) {
assert(A.size() == getCollapsedNumber() &&
"Number of loop counters is not the same as the collapsed number");
std::copy(A.begin(), A.end(), getCounters().begin());
}
void OMPLoopDirective::setUpdates(ArrayRef<Expr *> A) {
assert(A.size() == getCollapsedNumber() &&
"Number of counter updates is not the same as the collapsed number");
std::copy(A.begin(), A.end(), getUpdates().begin());
}
void OMPLoopDirective::setFinals(ArrayRef<Expr *> A) {
assert(A.size() == getCollapsedNumber() &&
"Number of counter finals is not the same as the collapsed number");
std::copy(A.begin(), A.end(), getFinals().begin());
}
void OMPReductionClause::setLHSExprs(ArrayRef<Expr *> LHSExprs) {
assert(
LHSExprs.size() == varlist_size() &&
"Number of LHS expressions is not the same as the preallocated buffer");
std::copy(LHSExprs.begin(), LHSExprs.end(), varlist_end());
}
void OMPReductionClause::setRHSExprs(ArrayRef<Expr *> RHSExprs) {
assert(
RHSExprs.size() == varlist_size() &&
"Number of RHS expressions is not the same as the preallocated buffer");
std::copy(RHSExprs.begin(), RHSExprs.end(), getLHSExprs().end());
}
void OMPReductionClause::setReductionOps(ArrayRef<Expr *> ReductionOps) {
assert(ReductionOps.size() == varlist_size() && "Number of reduction "
"expressions is not the same "
"as the preallocated buffer");
std::copy(ReductionOps.begin(), ReductionOps.end(), getRHSExprs().end());
}
OMPReductionClause *OMPReductionClause::Create(
const ASTContext &C, SourceLocation StartLoc, SourceLocation LParenLoc,
SourceLocation EndLoc, SourceLocation ColonLoc, ArrayRef<Expr *> VL,
NestedNameSpecifierLoc QualifierLoc, const DeclarationNameInfo &NameInfo,
ArrayRef<Expr *> LHSExprs, ArrayRef<Expr *> RHSExprs,
ArrayRef<Expr *> ReductionOps) {
void *Mem = C.Allocate(llvm::RoundUpToAlignment(sizeof(OMPReductionClause),
llvm::alignOf<Expr *>()) +
4 * sizeof(Expr *) * VL.size());
OMPReductionClause *Clause = new (Mem) OMPReductionClause(
StartLoc, LParenLoc, EndLoc, ColonLoc, VL.size(), QualifierLoc, NameInfo);
Clause->setVarRefs(VL);
Clause->setLHSExprs(LHSExprs);
Clause->setRHSExprs(RHSExprs);
Clause->setReductionOps(ReductionOps);
return Clause;
}
OMPReductionClause *OMPReductionClause::CreateEmpty(const ASTContext &C,
unsigned N) {
void *Mem = C.Allocate(llvm::RoundUpToAlignment(sizeof(OMPReductionClause),
llvm::alignOf<Expr *>()) +
4 * sizeof(Expr *) * N);
return new (Mem) OMPReductionClause(N);
}
OMPFlushClause *OMPFlushClause::Create(const ASTContext &C,
SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation EndLoc,
ArrayRef<Expr *> VL) {
void *Mem = C.Allocate(llvm::RoundUpToAlignment(sizeof(OMPFlushClause),
llvm::alignOf<Expr *>()) +
sizeof(Expr *) * VL.size());
OMPFlushClause *Clause =
new (Mem) OMPFlushClause(StartLoc, LParenLoc, EndLoc, VL.size());
Clause->setVarRefs(VL);
return Clause;
}
OMPFlushClause *OMPFlushClause::CreateEmpty(const ASTContext &C, unsigned N) {
void *Mem = C.Allocate(llvm::RoundUpToAlignment(sizeof(OMPFlushClause),
llvm::alignOf<Expr *>()) +
sizeof(Expr *) * N);
return new (Mem) OMPFlushClause(N);
}
const OMPClause *
OMPExecutableDirective::getSingleClause(OpenMPClauseKind K) const {
auto ClauseFilter =
[=](const OMPClause *C) -> bool { return C->getClauseKind() == K; };
OMPExecutableDirective::filtered_clause_iterator<decltype(ClauseFilter)> I(
clauses(), ClauseFilter);
if (I) {
auto *Clause = *I;
assert(!++I && "There are at least 2 clauses of the specified kind");
return Clause;
}
return nullptr;
}
OMPParallelDirective *OMPParallelDirective::Create(
const ASTContext &C,
SourceLocation StartLoc,
SourceLocation EndLoc,
ArrayRef<OMPClause *> Clauses,
Stmt *AssociatedStmt) {
unsigned Size = llvm::RoundUpToAlignment(sizeof(OMPParallelDirective),
llvm::alignOf<OMPClause *>());
void *Mem = C.Allocate(Size + sizeof(OMPClause *) * Clauses.size() +
sizeof(Stmt *));
OMPParallelDirective *Dir = new (Mem) OMPParallelDirective(StartLoc, EndLoc,
Clauses.size());
Dir->setClauses(Clauses);
Dir->setAssociatedStmt(AssociatedStmt);
return Dir;
}
OMPParallelDirective *OMPParallelDirective::CreateEmpty(const ASTContext &C,
unsigned NumClauses,
EmptyShell) {
unsigned Size = llvm::RoundUpToAlignment(sizeof(OMPParallelDirective),
llvm::alignOf<OMPClause *>());
void *Mem = C.Allocate(Size + sizeof(OMPClause *) * NumClauses +
sizeof(Stmt *));
return new (Mem) OMPParallelDirective(NumClauses);
}
OMPSimdDirective *
OMPSimdDirective::Create(const ASTContext &C, SourceLocation StartLoc,
SourceLocation EndLoc, unsigned CollapsedNum,
ArrayRef<OMPClause *> Clauses, Stmt *AssociatedStmt,
const HelperExprs &Exprs) {
unsigned Size = llvm::RoundUpToAlignment(sizeof(OMPSimdDirective),
llvm::alignOf<OMPClause *>());
void *Mem =
C.Allocate(Size + sizeof(OMPClause *) * Clauses.size() +
sizeof(Stmt *) * numLoopChildren(CollapsedNum, OMPD_simd));
OMPSimdDirective *Dir = new (Mem)
OMPSimdDirective(StartLoc, EndLoc, CollapsedNum, Clauses.size());
Dir->setClauses(Clauses);
Dir->setAssociatedStmt(AssociatedStmt);
Dir->setIterationVariable(Exprs.IterationVarRef);
Dir->setLastIteration(Exprs.LastIteration);
Dir->setCalcLastIteration(Exprs.CalcLastIteration);
Dir->setPreCond(Exprs.PreCond);
Dir->setCond(Exprs.Cond, Exprs.SeparatedCond);
Dir->setInit(Exprs.Init);
Dir->setInc(Exprs.Inc);
Dir->setCounters(Exprs.Counters);
Dir->setUpdates(Exprs.Updates);
Dir->setFinals(Exprs.Finals);
return Dir;
}
OMPSimdDirective *OMPSimdDirective::CreateEmpty(const ASTContext &C,
unsigned NumClauses,
unsigned CollapsedNum,
EmptyShell) {
unsigned Size = llvm::RoundUpToAlignment(sizeof(OMPSimdDirective),
llvm::alignOf<OMPClause *>());
void *Mem =
C.Allocate(Size + sizeof(OMPClause *) * NumClauses +
sizeof(Stmt *) * numLoopChildren(CollapsedNum, OMPD_simd));
return new (Mem) OMPSimdDirective(CollapsedNum, NumClauses);
}
OMPForDirective *
OMPForDirective::Create(const ASTContext &C, SourceLocation StartLoc,
SourceLocation EndLoc, unsigned CollapsedNum,
ArrayRef<OMPClause *> Clauses, Stmt *AssociatedStmt,
const HelperExprs &Exprs) {
unsigned Size = llvm::RoundUpToAlignment(sizeof(OMPForDirective),
llvm::alignOf<OMPClause *>());
void *Mem =
C.Allocate(Size + sizeof(OMPClause *) * Clauses.size() +
sizeof(Stmt *) * numLoopChildren(CollapsedNum, OMPD_for));
OMPForDirective *Dir =
new (Mem) OMPForDirective(StartLoc, EndLoc, CollapsedNum, Clauses.size());
Dir->setClauses(Clauses);
Dir->setAssociatedStmt(AssociatedStmt);
Dir->setIterationVariable(Exprs.IterationVarRef);
Dir->setLastIteration(Exprs.LastIteration);
Dir->setCalcLastIteration(Exprs.CalcLastIteration);
Dir->setPreCond(Exprs.PreCond);
Dir->setCond(Exprs.Cond, Exprs.SeparatedCond);
Dir->setInit(Exprs.Init);
Dir->setInc(Exprs.Inc);
Dir->setIsLastIterVariable(Exprs.IL);
Dir->setLowerBoundVariable(Exprs.LB);
Dir->setUpperBoundVariable(Exprs.UB);
Dir->setStrideVariable(Exprs.ST);
Dir->setEnsureUpperBound(Exprs.EUB);
Dir->setNextLowerBound(Exprs.NLB);
Dir->setNextUpperBound(Exprs.NUB);
Dir->setCounters(Exprs.Counters);
Dir->setUpdates(Exprs.Updates);
Dir->setFinals(Exprs.Finals);
return Dir;
}
OMPForDirective *OMPForDirective::CreateEmpty(const ASTContext &C,
unsigned NumClauses,
unsigned CollapsedNum,
EmptyShell) {
unsigned Size = llvm::RoundUpToAlignment(sizeof(OMPForDirective),
llvm::alignOf<OMPClause *>());
void *Mem =
C.Allocate(Size + sizeof(OMPClause *) * NumClauses +
sizeof(Stmt *) * numLoopChildren(CollapsedNum, OMPD_for));
return new (Mem) OMPForDirective(CollapsedNum, NumClauses);
}
OMPForSimdDirective *
OMPForSimdDirective::Create(const ASTContext &C, SourceLocation StartLoc,
SourceLocation EndLoc, unsigned CollapsedNum,
ArrayRef<OMPClause *> Clauses, Stmt *AssociatedStmt,
const HelperExprs &Exprs) {
unsigned Size = llvm::RoundUpToAlignment(sizeof(OMPForSimdDirective),
llvm::alignOf<OMPClause *>());
void *Mem =
C.Allocate(Size + sizeof(OMPClause *) * Clauses.size() +
sizeof(Stmt *) * numLoopChildren(CollapsedNum, OMPD_for_simd));
OMPForSimdDirective *Dir = new (Mem)
OMPForSimdDirective(StartLoc, EndLoc, CollapsedNum, Clauses.size());
Dir->setClauses(Clauses);
Dir->setAssociatedStmt(AssociatedStmt);
Dir->setIterationVariable(Exprs.IterationVarRef);
Dir->setLastIteration(Exprs.LastIteration);
Dir->setCalcLastIteration(Exprs.CalcLastIteration);
Dir->setPreCond(Exprs.PreCond);
Dir->setCond(Exprs.Cond, Exprs.SeparatedCond);
Dir->setInit(Exprs.Init);
Dir->setInc(Exprs.Inc);
Dir->setIsLastIterVariable(Exprs.IL);
Dir->setLowerBoundVariable(Exprs.LB);
Dir->setUpperBoundVariable(Exprs.UB);
Dir->setStrideVariable(Exprs.ST);
Dir->setEnsureUpperBound(Exprs.EUB);
Dir->setNextLowerBound(Exprs.NLB);
Dir->setNextUpperBound(Exprs.NUB);
Dir->setCounters(Exprs.Counters);
Dir->setUpdates(Exprs.Updates);
Dir->setFinals(Exprs.Finals);
return Dir;
}
OMPForSimdDirective *OMPForSimdDirective::CreateEmpty(const ASTContext &C,
unsigned NumClauses,
unsigned CollapsedNum,
EmptyShell) {
unsigned Size = llvm::RoundUpToAlignment(sizeof(OMPForSimdDirective),
llvm::alignOf<OMPClause *>());
void *Mem =
C.Allocate(Size + sizeof(OMPClause *) * NumClauses +
sizeof(Stmt *) * numLoopChildren(CollapsedNum, OMPD_for_simd));
return new (Mem) OMPForSimdDirective(CollapsedNum, NumClauses);
}
OMPSectionsDirective *OMPSectionsDirective::Create(
const ASTContext &C, SourceLocation StartLoc, SourceLocation EndLoc,
ArrayRef<OMPClause *> Clauses, Stmt *AssociatedStmt) {
unsigned Size = llvm::RoundUpToAlignment(sizeof(OMPSectionsDirective),
llvm::alignOf<OMPClause *>());
void *Mem =
C.Allocate(Size + sizeof(OMPClause *) * Clauses.size() + sizeof(Stmt *));
OMPSectionsDirective *Dir =
new (Mem) OMPSectionsDirective(StartLoc, EndLoc, Clauses.size());
Dir->setClauses(Clauses);
Dir->setAssociatedStmt(AssociatedStmt);
return Dir;
}
OMPSectionsDirective *OMPSectionsDirective::CreateEmpty(const ASTContext &C,
unsigned NumClauses,
EmptyShell) {
unsigned Size = llvm::RoundUpToAlignment(sizeof(OMPSectionsDirective),
llvm::alignOf<OMPClause *>());
void *Mem =
C.Allocate(Size + sizeof(OMPClause *) * NumClauses + sizeof(Stmt *));
return new (Mem) OMPSectionsDirective(NumClauses);
}
OMPSectionDirective *OMPSectionDirective::Create(const ASTContext &C,
SourceLocation StartLoc,
SourceLocation EndLoc,
Stmt *AssociatedStmt) {
unsigned Size = llvm::RoundUpToAlignment(sizeof(OMPSectionsDirective),
llvm::alignOf<Stmt *>());
void *Mem = C.Allocate(Size + sizeof(Stmt *));
OMPSectionDirective *Dir = new (Mem) OMPSectionDirective(StartLoc, EndLoc);
Dir->setAssociatedStmt(AssociatedStmt);
return Dir;
}
OMPSectionDirective *OMPSectionDirective::CreateEmpty(const ASTContext &C,
EmptyShell) {
unsigned Size = llvm::RoundUpToAlignment(sizeof(OMPSectionDirective),
llvm::alignOf<Stmt *>());
void *Mem = C.Allocate(Size + sizeof(Stmt *));
return new (Mem) OMPSectionDirective();
}
OMPSingleDirective *OMPSingleDirective::Create(const ASTContext &C,
SourceLocation StartLoc,
SourceLocation EndLoc,
ArrayRef<OMPClause *> Clauses,
Stmt *AssociatedStmt) {
unsigned Size = llvm::RoundUpToAlignment(sizeof(OMPSingleDirective),
llvm::alignOf<OMPClause *>());
void *Mem =
C.Allocate(Size + sizeof(OMPClause *) * Clauses.size() + sizeof(Stmt *));
OMPSingleDirective *Dir =
new (Mem) OMPSingleDirective(StartLoc, EndLoc, Clauses.size());
Dir->setClauses(Clauses);
Dir->setAssociatedStmt(AssociatedStmt);
return Dir;
}
OMPSingleDirective *OMPSingleDirective::CreateEmpty(const ASTContext &C,
unsigned NumClauses,
EmptyShell) {
unsigned Size = llvm::RoundUpToAlignment(sizeof(OMPSingleDirective),
llvm::alignOf<OMPClause *>());
void *Mem =
C.Allocate(Size + sizeof(OMPClause *) * NumClauses + sizeof(Stmt *));
return new (Mem) OMPSingleDirective(NumClauses);
}
OMPMasterDirective *OMPMasterDirective::Create(const ASTContext &C,
SourceLocation StartLoc,
SourceLocation EndLoc,
Stmt *AssociatedStmt) {
unsigned Size = llvm::RoundUpToAlignment(sizeof(OMPMasterDirective),
llvm::alignOf<Stmt *>());
void *Mem = C.Allocate(Size + sizeof(Stmt *));
OMPMasterDirective *Dir = new (Mem) OMPMasterDirective(StartLoc, EndLoc);
Dir->setAssociatedStmt(AssociatedStmt);
return Dir;
}
OMPMasterDirective *OMPMasterDirective::CreateEmpty(const ASTContext &C,
EmptyShell) {
unsigned Size = llvm::RoundUpToAlignment(sizeof(OMPMasterDirective),
llvm::alignOf<Stmt *>());
void *Mem = C.Allocate(Size + sizeof(Stmt *));
return new (Mem) OMPMasterDirective();
}
OMPCriticalDirective *OMPCriticalDirective::Create(
const ASTContext &C, const DeclarationNameInfo &Name,
SourceLocation StartLoc, SourceLocation EndLoc, Stmt *AssociatedStmt) {
unsigned Size = llvm::RoundUpToAlignment(sizeof(OMPCriticalDirective),
llvm::alignOf<Stmt *>());
void *Mem = C.Allocate(Size + sizeof(Stmt *));
OMPCriticalDirective *Dir =
new (Mem) OMPCriticalDirective(Name, StartLoc, EndLoc);
Dir->setAssociatedStmt(AssociatedStmt);
return Dir;
}
OMPCriticalDirective *OMPCriticalDirective::CreateEmpty(const ASTContext &C,
EmptyShell) {
unsigned Size = llvm::RoundUpToAlignment(sizeof(OMPCriticalDirective),
llvm::alignOf<Stmt *>());
void *Mem = C.Allocate(Size + sizeof(Stmt *));
return new (Mem) OMPCriticalDirective();
}
OMPParallelForDirective *OMPParallelForDirective::Create(
const ASTContext &C, SourceLocation StartLoc, SourceLocation EndLoc,
unsigned CollapsedNum, ArrayRef<OMPClause *> Clauses, Stmt *AssociatedStmt,
const HelperExprs &Exprs) {
unsigned Size = llvm::RoundUpToAlignment(sizeof(OMPParallelForDirective),
llvm::alignOf<OMPClause *>());
void *Mem = C.Allocate(Size + sizeof(OMPClause *) * Clauses.size() +
sizeof(Stmt *) *
numLoopChildren(CollapsedNum, OMPD_parallel_for));
OMPParallelForDirective *Dir = new (Mem)
OMPParallelForDirective(StartLoc, EndLoc, CollapsedNum, Clauses.size());
Dir->setClauses(Clauses);
Dir->setAssociatedStmt(AssociatedStmt);
Dir->setIterationVariable(Exprs.IterationVarRef);
Dir->setLastIteration(Exprs.LastIteration);
Dir->setCalcLastIteration(Exprs.CalcLastIteration);
Dir->setPreCond(Exprs.PreCond);
Dir->setCond(Exprs.Cond, Exprs.SeparatedCond);
Dir->setInit(Exprs.Init);
Dir->setInc(Exprs.Inc);
Dir->setIsLastIterVariable(Exprs.IL);
Dir->setLowerBoundVariable(Exprs.LB);
Dir->setUpperBoundVariable(Exprs.UB);
Dir->setStrideVariable(Exprs.ST);
Dir->setEnsureUpperBound(Exprs.EUB);
Dir->setNextLowerBound(Exprs.NLB);
Dir->setNextUpperBound(Exprs.NUB);
Dir->setCounters(Exprs.Counters);
Dir->setUpdates(Exprs.Updates);
Dir->setFinals(Exprs.Finals);
return Dir;
}
OMPParallelForDirective *
OMPParallelForDirective::CreateEmpty(const ASTContext &C, unsigned NumClauses,
unsigned CollapsedNum, EmptyShell) {
unsigned Size = llvm::RoundUpToAlignment(sizeof(OMPParallelForDirective),
llvm::alignOf<OMPClause *>());
void *Mem = C.Allocate(Size + sizeof(OMPClause *) * NumClauses +
sizeof(Stmt *) *
numLoopChildren(CollapsedNum, OMPD_parallel_for));
return new (Mem) OMPParallelForDirective(CollapsedNum, NumClauses);
}
OMPParallelForSimdDirective *OMPParallelForSimdDirective::Create(
const ASTContext &C, SourceLocation StartLoc, SourceLocation EndLoc,
unsigned CollapsedNum, ArrayRef<OMPClause *> Clauses, Stmt *AssociatedStmt,
const HelperExprs &Exprs) {
unsigned Size = llvm::RoundUpToAlignment(sizeof(OMPParallelForSimdDirective),
llvm::alignOf<OMPClause *>());
void *Mem = C.Allocate(
Size + sizeof(OMPClause *) * Clauses.size() +
sizeof(Stmt *) * numLoopChildren(CollapsedNum, OMPD_parallel_for_simd));
OMPParallelForSimdDirective *Dir = new (Mem) OMPParallelForSimdDirective(
StartLoc, EndLoc, CollapsedNum, Clauses.size());
Dir->setClauses(Clauses);
Dir->setAssociatedStmt(AssociatedStmt);
Dir->setIterationVariable(Exprs.IterationVarRef);
Dir->setLastIteration(Exprs.LastIteration);
Dir->setCalcLastIteration(Exprs.CalcLastIteration);
Dir->setPreCond(Exprs.PreCond);
Dir->setCond(Exprs.Cond, Exprs.SeparatedCond);
Dir->setInit(Exprs.Init);
Dir->setInc(Exprs.Inc);
Dir->setIsLastIterVariable(Exprs.IL);
Dir->setLowerBoundVariable(Exprs.LB);
Dir->setUpperBoundVariable(Exprs.UB);
Dir->setStrideVariable(Exprs.ST);
Dir->setEnsureUpperBound(Exprs.EUB);
Dir->setNextLowerBound(Exprs.NLB);
Dir->setNextUpperBound(Exprs.NUB);
Dir->setCounters(Exprs.Counters);
Dir->setUpdates(Exprs.Updates);
Dir->setFinals(Exprs.Finals);
return Dir;
}
OMPParallelForSimdDirective *
OMPParallelForSimdDirective::CreateEmpty(const ASTContext &C,
unsigned NumClauses,
unsigned CollapsedNum, EmptyShell) {
unsigned Size = llvm::RoundUpToAlignment(sizeof(OMPParallelForSimdDirective),
llvm::alignOf<OMPClause *>());
void *Mem = C.Allocate(
Size + sizeof(OMPClause *) * NumClauses +
sizeof(Stmt *) * numLoopChildren(CollapsedNum, OMPD_parallel_for_simd));
return new (Mem) OMPParallelForSimdDirective(CollapsedNum, NumClauses);
}
OMPParallelSectionsDirective *OMPParallelSectionsDirective::Create(
const ASTContext &C, SourceLocation StartLoc, SourceLocation EndLoc,
ArrayRef<OMPClause *> Clauses, Stmt *AssociatedStmt) {
unsigned Size = llvm::RoundUpToAlignment(sizeof(OMPParallelSectionsDirective),
llvm::alignOf<OMPClause *>());
void *Mem =
C.Allocate(Size + sizeof(OMPClause *) * Clauses.size() + sizeof(Stmt *));
OMPParallelSectionsDirective *Dir =
new (Mem) OMPParallelSectionsDirective(StartLoc, EndLoc, Clauses.size());
Dir->setClauses(Clauses);
Dir->setAssociatedStmt(AssociatedStmt);
return Dir;
}
OMPParallelSectionsDirective *
OMPParallelSectionsDirective::CreateEmpty(const ASTContext &C,
unsigned NumClauses, EmptyShell) {
unsigned Size = llvm::RoundUpToAlignment(sizeof(OMPParallelSectionsDirective),
llvm::alignOf<OMPClause *>());
void *Mem =
C.Allocate(Size + sizeof(OMPClause *) * NumClauses + sizeof(Stmt *));
return new (Mem) OMPParallelSectionsDirective(NumClauses);
}
OMPTaskDirective *OMPTaskDirective::Create(const ASTContext &C,
SourceLocation StartLoc,
SourceLocation EndLoc,
ArrayRef<OMPClause *> Clauses,
Stmt *AssociatedStmt) {
unsigned Size = llvm::RoundUpToAlignment(sizeof(OMPTaskDirective),
llvm::alignOf<OMPClause *>());
void *Mem =
C.Allocate(Size + sizeof(OMPClause *) * Clauses.size() + sizeof(Stmt *));
OMPTaskDirective *Dir =
new (Mem) OMPTaskDirective(StartLoc, EndLoc, Clauses.size());
Dir->setClauses(Clauses);
Dir->setAssociatedStmt(AssociatedStmt);
return Dir;
}
OMPTaskDirective *OMPTaskDirective::CreateEmpty(const ASTContext &C,
unsigned NumClauses,
EmptyShell) {
unsigned Size = llvm::RoundUpToAlignment(sizeof(OMPTaskDirective),
llvm::alignOf<OMPClause *>());
void *Mem =
C.Allocate(Size + sizeof(OMPClause *) * NumClauses + sizeof(Stmt *));
return new (Mem) OMPTaskDirective(NumClauses);
}
OMPTaskyieldDirective *OMPTaskyieldDirective::Create(const ASTContext &C,
SourceLocation StartLoc,
SourceLocation EndLoc) {
void *Mem = C.Allocate(sizeof(OMPTaskyieldDirective));
OMPTaskyieldDirective *Dir =
new (Mem) OMPTaskyieldDirective(StartLoc, EndLoc);
return Dir;
}
OMPTaskyieldDirective *OMPTaskyieldDirective::CreateEmpty(const ASTContext &C,
EmptyShell) {
void *Mem = C.Allocate(sizeof(OMPTaskyieldDirective));
return new (Mem) OMPTaskyieldDirective();
}
OMPBarrierDirective *OMPBarrierDirective::Create(const ASTContext &C,
SourceLocation StartLoc,
SourceLocation EndLoc) {
void *Mem = C.Allocate(sizeof(OMPBarrierDirective));
OMPBarrierDirective *Dir = new (Mem) OMPBarrierDirective(StartLoc, EndLoc);
return Dir;
}
OMPBarrierDirective *OMPBarrierDirective::CreateEmpty(const ASTContext &C,
EmptyShell) {
void *Mem = C.Allocate(sizeof(OMPBarrierDirective));
return new (Mem) OMPBarrierDirective();
}
OMPTaskwaitDirective *OMPTaskwaitDirective::Create(const ASTContext &C,
SourceLocation StartLoc,
SourceLocation EndLoc) {
void *Mem = C.Allocate(sizeof(OMPTaskwaitDirective));
OMPTaskwaitDirective *Dir = new (Mem) OMPTaskwaitDirective(StartLoc, EndLoc);
return Dir;
}
OMPTaskwaitDirective *OMPTaskwaitDirective::CreateEmpty(const ASTContext &C,
EmptyShell) {
void *Mem = C.Allocate(sizeof(OMPTaskwaitDirective));
return new (Mem) OMPTaskwaitDirective();
}
OMPFlushDirective *OMPFlushDirective::Create(const ASTContext &C,
SourceLocation StartLoc,
SourceLocation EndLoc,
ArrayRef<OMPClause *> Clauses) {
unsigned Size = llvm::RoundUpToAlignment(sizeof(OMPFlushDirective),
llvm::alignOf<OMPClause *>());
void *Mem = C.Allocate(Size + sizeof(OMPClause *) * Clauses.size());
OMPFlushDirective *Dir =
new (Mem) OMPFlushDirective(StartLoc, EndLoc, Clauses.size());
Dir->setClauses(Clauses);
return Dir;
}
OMPFlushDirective *OMPFlushDirective::CreateEmpty(const ASTContext &C,
unsigned NumClauses,
EmptyShell) {
unsigned Size = llvm::RoundUpToAlignment(sizeof(OMPFlushDirective),
llvm::alignOf<OMPClause *>());
void *Mem = C.Allocate(Size + sizeof(OMPClause *) * NumClauses);
return new (Mem) OMPFlushDirective(NumClauses);
}
OMPOrderedDirective *OMPOrderedDirective::Create(const ASTContext &C,
SourceLocation StartLoc,
SourceLocation EndLoc,
Stmt *AssociatedStmt) {
unsigned Size = llvm::RoundUpToAlignment(sizeof(OMPOrderedDirective),
llvm::alignOf<Stmt *>());
void *Mem = C.Allocate(Size + sizeof(Stmt *));
OMPOrderedDirective *Dir = new (Mem) OMPOrderedDirective(StartLoc, EndLoc);
Dir->setAssociatedStmt(AssociatedStmt);
return Dir;
}
OMPOrderedDirective *OMPOrderedDirective::CreateEmpty(const ASTContext &C,
EmptyShell) {
unsigned Size = llvm::RoundUpToAlignment(sizeof(OMPOrderedDirective),
llvm::alignOf<Stmt *>());
void *Mem = C.Allocate(Size + sizeof(Stmt *));
return new (Mem) OMPOrderedDirective();
}
OMPAtomicDirective *OMPAtomicDirective::Create(
const ASTContext &C, SourceLocation StartLoc, SourceLocation EndLoc,
ArrayRef<OMPClause *> Clauses, Stmt *AssociatedStmt, Expr *X, Expr *V,
Expr *E, Expr *UE, bool IsXLHSInRHSPart, bool IsPostfixUpdate) {
unsigned Size = llvm::RoundUpToAlignment(sizeof(OMPAtomicDirective),
llvm::alignOf<OMPClause *>());
void *Mem = C.Allocate(Size + sizeof(OMPClause *) * Clauses.size() +
5 * sizeof(Stmt *));
OMPAtomicDirective *Dir =
new (Mem) OMPAtomicDirective(StartLoc, EndLoc, Clauses.size());
Dir->setClauses(Clauses);
Dir->setAssociatedStmt(AssociatedStmt);
Dir->setX(X);
Dir->setV(V);
Dir->setExpr(E);
Dir->setUpdateExpr(UE);
Dir->IsXLHSInRHSPart = IsXLHSInRHSPart;
Dir->IsPostfixUpdate = IsPostfixUpdate;
return Dir;
}
OMPAtomicDirective *OMPAtomicDirective::CreateEmpty(const ASTContext &C,
unsigned NumClauses,
EmptyShell) {
unsigned Size = llvm::RoundUpToAlignment(sizeof(OMPAtomicDirective),
llvm::alignOf<OMPClause *>());
void *Mem =
C.Allocate(Size + sizeof(OMPClause *) * NumClauses + 5 * sizeof(Stmt *));
return new (Mem) OMPAtomicDirective(NumClauses);
}
OMPTargetDirective *OMPTargetDirective::Create(const ASTContext &C,
SourceLocation StartLoc,
SourceLocation EndLoc,
ArrayRef<OMPClause *> Clauses,
Stmt *AssociatedStmt) {
unsigned Size = llvm::RoundUpToAlignment(sizeof(OMPTargetDirective),
llvm::alignOf<OMPClause *>());
void *Mem =
C.Allocate(Size + sizeof(OMPClause *) * Clauses.size() + sizeof(Stmt *));
OMPTargetDirective *Dir =
new (Mem) OMPTargetDirective(StartLoc, EndLoc, Clauses.size());
Dir->setClauses(Clauses);
Dir->setAssociatedStmt(AssociatedStmt);
return Dir;
}
OMPTargetDirective *OMPTargetDirective::CreateEmpty(const ASTContext &C,
unsigned NumClauses,
EmptyShell) {
unsigned Size = llvm::RoundUpToAlignment(sizeof(OMPTargetDirective),
llvm::alignOf<OMPClause *>());
void *Mem =
C.Allocate(Size + sizeof(OMPClause *) * NumClauses + sizeof(Stmt *));
return new (Mem) OMPTargetDirective(NumClauses);
}
OMPTeamsDirective *OMPTeamsDirective::Create(const ASTContext &C,
SourceLocation StartLoc,
SourceLocation EndLoc,
ArrayRef<OMPClause *> Clauses,
Stmt *AssociatedStmt) {
unsigned Size = llvm::RoundUpToAlignment(sizeof(OMPTeamsDirective),
llvm::alignOf<OMPClause *>());
void *Mem =
C.Allocate(Size + sizeof(OMPClause *) * Clauses.size() + sizeof(Stmt *));
OMPTeamsDirective *Dir =
new (Mem) OMPTeamsDirective(StartLoc, EndLoc, Clauses.size());
Dir->setClauses(Clauses);
Dir->setAssociatedStmt(AssociatedStmt);
return Dir;
}
OMPTeamsDirective *OMPTeamsDirective::CreateEmpty(const ASTContext &C,
unsigned NumClauses,
EmptyShell) {
unsigned Size = llvm::RoundUpToAlignment(sizeof(OMPTeamsDirective),
llvm::alignOf<OMPClause *>());
void *Mem =
C.Allocate(Size + sizeof(OMPClause *) * NumClauses + sizeof(Stmt *));
return new (Mem) OMPTeamsDirective(NumClauses);
}