llvm-project/flang/lib/Optimizer/Builder/Character.cpp

786 lines
33 KiB
C++

//===-- Character.cpp -----------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Coding style: https://mlir.llvm.org/getting_started/DeveloperGuide/
//
//===----------------------------------------------------------------------===//
#include "flang/Optimizer/Builder/Character.h"
#include "flang/Lower/Todo.h"
#include "flang/Optimizer/Builder/DoLoopHelper.h"
#include "llvm/Support/Debug.h"
#include <optional>
#define DEBUG_TYPE "flang-lower-character"
using namespace mlir;
//===----------------------------------------------------------------------===//
// CharacterExprHelper implementation
//===----------------------------------------------------------------------===//
/// Unwrap base fir.char<kind,len> type.
static fir::CharacterType recoverCharacterType(mlir::Type type) {
if (auto boxType = type.dyn_cast<fir::BoxCharType>())
return boxType.getEleTy();
while (true) {
type = fir::unwrapRefType(type);
if (auto boxTy = type.dyn_cast<fir::BoxType>())
type = boxTy.getEleTy();
else
break;
}
return fir::unwrapSequenceType(type).cast<fir::CharacterType>();
}
/// Get fir.char<kind> type with the same kind as inside str.
fir::CharacterType
fir::factory::CharacterExprHelper::getCharacterType(mlir::Type type) {
assert(isCharacterScalar(type) && "expected scalar character");
return recoverCharacterType(type);
}
fir::CharacterType
fir::factory::CharacterExprHelper::getCharType(mlir::Type type) {
return recoverCharacterType(type);
}
fir::CharacterType fir::factory::CharacterExprHelper::getCharacterType(
const fir::CharBoxValue &box) {
return getCharacterType(box.getBuffer().getType());
}
fir::CharacterType
fir::factory::CharacterExprHelper::getCharacterType(mlir::Value str) {
return getCharacterType(str.getType());
}
/// Determine the static size of the character. Returns the computed size, not
/// an IR Value.
static std::optional<fir::CharacterType::LenType>
getCompileTimeLength(const fir::CharBoxValue &box) {
auto len = recoverCharacterType(box.getBuffer().getType()).getLen();
if (len == fir::CharacterType::unknownLen())
return {};
return len;
}
/// Detect the precondition that the value `str` does not reside in memory. Such
/// values will have a type `!fir.array<...x!fir.char<N>>` or `!fir.char<N>`.
LLVM_ATTRIBUTE_UNUSED static bool needToMaterialize(mlir::Value str) {
return str.getType().isa<fir::SequenceType>() || fir::isa_char(str.getType());
}
/// Unwrap integer constant from mlir::Value.
static llvm::Optional<std::int64_t> getIntIfConstant(mlir::Value value) {
if (auto *definingOp = value.getDefiningOp())
if (auto cst = mlir::dyn_cast<mlir::arith::ConstantOp>(definingOp))
if (auto intAttr = cst.getValue().dyn_cast<mlir::IntegerAttr>())
return intAttr.getInt();
return {};
}
/// This is called only if `str` does not reside in memory. Such a bare string
/// value will be converted into a memory-based temporary and an extended
/// boxchar value returned.
fir::CharBoxValue
fir::factory::CharacterExprHelper::materializeValue(mlir::Value str) {
assert(needToMaterialize(str));
auto ty = str.getType();
assert(isCharacterScalar(ty) && "expected scalar character");
auto charTy = ty.dyn_cast<fir::CharacterType>();
if (!charTy || charTy.getLen() == fir::CharacterType::unknownLen()) {
LLVM_DEBUG(llvm::dbgs() << "cannot materialize: " << str << '\n');
llvm_unreachable("must be a !fir.char<N> type");
}
auto len = builder.createIntegerConstant(
loc, builder.getCharacterLengthType(), charTy.getLen());
auto temp = builder.create<fir::AllocaOp>(loc, charTy);
builder.create<fir::StoreOp>(loc, str, temp);
LLVM_DEBUG(llvm::dbgs() << "materialized as local: " << str << " -> (" << temp
<< ", " << len << ")\n");
return {temp, len};
}
fir::ExtendedValue
fir::factory::CharacterExprHelper::toExtendedValue(mlir::Value character,
mlir::Value len) {
auto lenType = builder.getCharacterLengthType();
auto type = character.getType();
auto base = fir::isa_passbyref_type(type) ? character : mlir::Value{};
auto resultLen = len;
llvm::SmallVector<mlir::Value> extents;
if (auto eleType = fir::dyn_cast_ptrEleTy(type))
type = eleType;
if (auto arrayType = type.dyn_cast<fir::SequenceType>()) {
type = arrayType.getEleTy();
auto indexType = builder.getIndexType();
for (auto extent : arrayType.getShape()) {
if (extent == fir::SequenceType::getUnknownExtent())
break;
extents.emplace_back(
builder.createIntegerConstant(loc, indexType, extent));
}
// Last extent might be missing in case of assumed-size. If more extents
// could not be deduced from type, that's an error (a fir.box should
// have been used in the interface).
if (extents.size() + 1 < arrayType.getShape().size())
mlir::emitError(loc, "cannot retrieve array extents from type");
}
if (auto charTy = type.dyn_cast<fir::CharacterType>()) {
if (!resultLen && charTy.getLen() != fir::CharacterType::unknownLen())
resultLen = builder.createIntegerConstant(loc, lenType, charTy.getLen());
} else if (auto boxCharType = type.dyn_cast<fir::BoxCharType>()) {
auto refType = builder.getRefType(boxCharType.getEleTy());
// If the embox is accessible, use its operand to avoid filling
// the generated fir with embox/unbox.
mlir::Value boxCharLen;
if (auto *definingOp = character.getDefiningOp()) {
if (auto box = dyn_cast<fir::EmboxCharOp>(definingOp)) {
base = box.getMemref();
boxCharLen = box.getLen();
}
}
if (!boxCharLen) {
auto unboxed =
builder.create<fir::UnboxCharOp>(loc, refType, lenType, character);
base = builder.createConvert(loc, refType, unboxed.getResult(0));
boxCharLen = unboxed.getResult(1);
}
if (!resultLen) {
resultLen = boxCharLen;
}
} else if (type.isa<fir::BoxType>()) {
mlir::emitError(loc, "descriptor or derived type not yet handled");
} else {
llvm_unreachable("Cannot translate mlir::Value to character ExtendedValue");
}
if (!base) {
if (auto load =
mlir::dyn_cast_or_null<fir::LoadOp>(character.getDefiningOp())) {
base = load.getOperand();
} else {
return materializeValue(fir::getBase(character));
}
}
if (!resultLen)
llvm::report_fatal_error("no dynamic length found for character");
if (!extents.empty())
return fir::CharArrayBoxValue{base, resultLen, extents};
return fir::CharBoxValue{base, resultLen};
}
static mlir::Type getSingletonCharType(mlir::MLIRContext *ctxt, int kind) {
return fir::CharacterType::getSingleton(ctxt, kind);
}
mlir::Value
fir::factory::CharacterExprHelper::createEmbox(const fir::CharBoxValue &box) {
// Base CharBoxValue of CharArrayBoxValue are ok here (do not require a scalar
// type)
auto charTy = recoverCharacterType(box.getBuffer().getType());
auto boxCharType =
fir::BoxCharType::get(builder.getContext(), charTy.getFKind());
auto refType = fir::ReferenceType::get(boxCharType.getEleTy());
mlir::Value buff = box.getBuffer();
// fir.boxchar requires a memory reference. Allocate temp if the character is
// not in memory.
if (!fir::isa_ref_type(buff.getType())) {
auto temp = builder.createTemporary(loc, buff.getType());
builder.create<fir::StoreOp>(loc, buff, temp);
buff = temp;
}
buff = builder.createConvert(loc, refType, buff);
// Convert in case the provided length is not of the integer type that must
// be used in boxchar.
auto len = builder.createConvert(loc, builder.getCharacterLengthType(),
box.getLen());
return builder.create<fir::EmboxCharOp>(loc, boxCharType, buff, len);
}
fir::CharBoxValue fir::factory::CharacterExprHelper::toScalarCharacter(
const fir::CharArrayBoxValue &box) {
if (box.getBuffer().getType().isa<fir::PointerType>())
TODO(loc, "concatenating non contiguous character array into a scalar");
// TODO: add a fast path multiplying new length at compile time if the info is
// in the array type.
auto lenType = builder.getCharacterLengthType();
auto len = builder.createConvert(loc, lenType, box.getLen());
for (auto extent : box.getExtents())
len = builder.create<arith::MulIOp>(
loc, len, builder.createConvert(loc, lenType, extent));
// TODO: typeLen can be improved in compiled constant cases
// TODO: allow bare fir.array<> (no ref) conversion here ?
auto typeLen = fir::CharacterType::unknownLen();
auto kind = recoverCharacterType(box.getBuffer().getType()).getFKind();
auto charTy = fir::CharacterType::get(builder.getContext(), kind, typeLen);
auto type = fir::ReferenceType::get(charTy);
auto buffer = builder.createConvert(loc, type, box.getBuffer());
return {buffer, len};
}
mlir::Value fir::factory::CharacterExprHelper::createEmbox(
const fir::CharArrayBoxValue &box) {
// Use same embox as for scalar. It's losing the actual data size information
// (We do not multiply the length by the array size), but that is what Fortran
// call interfaces using boxchar expect.
return createEmbox(static_cast<const fir::CharBoxValue &>(box));
}
/// Get the address of the element at position \p index of the scalar character
/// \p buffer.
/// \p buffer must be of type !fir.ref<fir.char<k, len>>. The length may be
/// unknown. \p index must have any integer type, and is zero based. The return
/// value is a singleton address (!fir.ref<!fir.char<kind>>)
mlir::Value
fir::factory::CharacterExprHelper::createElementAddr(mlir::Value buffer,
mlir::Value index) {
// The only way to address an element of a fir.ref<char<kind, len>> is to cast
// it to a fir.array<len x fir.char<kind>> and use fir.coordinate_of.
auto bufferType = buffer.getType();
assert(fir::isa_ref_type(bufferType));
assert(isCharacterScalar(bufferType));
auto charTy = recoverCharacterType(bufferType);
auto singleTy = getSingletonCharType(builder.getContext(), charTy.getFKind());
auto singleRefTy = builder.getRefType(singleTy);
auto extent = fir::SequenceType::getUnknownExtent();
if (charTy.getLen() != fir::CharacterType::unknownLen())
extent = charTy.getLen();
auto coorTy = builder.getRefType(fir::SequenceType::get({extent}, singleTy));
auto coor = builder.createConvert(loc, coorTy, buffer);
auto i = builder.createConvert(loc, builder.getIndexType(), index);
return builder.create<fir::CoordinateOp>(loc, singleRefTy, coor, i);
}
/// Load a character out of `buff` from offset `index`.
/// `buff` must be a reference to memory.
mlir::Value
fir::factory::CharacterExprHelper::createLoadCharAt(mlir::Value buff,
mlir::Value index) {
LLVM_DEBUG(llvm::dbgs() << "load a char: " << buff << " type: "
<< buff.getType() << " at: " << index << '\n');
return builder.create<fir::LoadOp>(loc, createElementAddr(buff, index));
}
/// Store the singleton character `c` to `str` at offset `index`.
/// `str` must be a reference to memory.
void fir::factory::CharacterExprHelper::createStoreCharAt(mlir::Value str,
mlir::Value index,
mlir::Value c) {
LLVM_DEBUG(llvm::dbgs() << "store the char: " << c << " into: " << str
<< " type: " << str.getType() << " at: " << index
<< '\n');
auto addr = createElementAddr(str, index);
builder.create<fir::StoreOp>(loc, c, addr);
}
// FIXME: this temp is useless... either fir.coordinate_of needs to
// work on "loaded" characters (!fir.array<len x fir.char<kind>>) or
// character should never be loaded.
// If this is a fir.array<>, allocate and store the value so that
// fir.cooridnate_of can be use on the value.
mlir::Value fir::factory::CharacterExprHelper::getCharBoxBuffer(
const fir::CharBoxValue &box) {
auto buff = box.getBuffer();
if (fir::isa_char(buff.getType())) {
auto newBuff = builder.create<fir::AllocaOp>(loc, buff.getType());
builder.create<fir::StoreOp>(loc, buff, newBuff);
return newBuff;
}
return buff;
}
/// Get the LLVM intrinsic for `memcpy`. Use the 64 bit version.
mlir::FuncOp fir::factory::getLlvmMemcpy(fir::FirOpBuilder &builder) {
auto ptrTy = builder.getRefType(builder.getIntegerType(8));
llvm::SmallVector<mlir::Type> args = {ptrTy, ptrTy, builder.getI64Type(),
builder.getI1Type()};
auto memcpyTy =
mlir::FunctionType::get(builder.getContext(), args, llvm::None);
return builder.addNamedFunction(builder.getUnknownLoc(),
"llvm.memcpy.p0i8.p0i8.i64", memcpyTy);
}
/// Get the LLVM intrinsic for `memmove`. Use the 64 bit version.
mlir::FuncOp fir::factory::getLlvmMemmove(fir::FirOpBuilder &builder) {
auto ptrTy = builder.getRefType(builder.getIntegerType(8));
llvm::SmallVector<mlir::Type> args = {ptrTy, ptrTy, builder.getI64Type(),
builder.getI1Type()};
auto memmoveTy =
mlir::FunctionType::get(builder.getContext(), args, llvm::None);
return builder.addNamedFunction(builder.getUnknownLoc(),
"llvm.memmove.p0i8.p0i8.i64", memmoveTy);
}
/// Get the LLVM intrinsic for `memset`. Use the 64 bit version.
mlir::FuncOp fir::factory::getLlvmMemset(fir::FirOpBuilder &builder) {
auto ptrTy = builder.getRefType(builder.getIntegerType(8));
llvm::SmallVector<mlir::Type> args = {ptrTy, ptrTy, builder.getI64Type(),
builder.getI1Type()};
auto memsetTy =
mlir::FunctionType::get(builder.getContext(), args, llvm::None);
return builder.addNamedFunction(builder.getUnknownLoc(),
"llvm.memset.p0i8.p0i8.i64", memsetTy);
}
/// Get the standard `realloc` function.
mlir::FuncOp fir::factory::getRealloc(fir::FirOpBuilder &builder) {
auto ptrTy = builder.getRefType(builder.getIntegerType(8));
llvm::SmallVector<mlir::Type> args = {ptrTy, builder.getI64Type()};
auto reallocTy = mlir::FunctionType::get(builder.getContext(), args, {ptrTy});
return builder.addNamedFunction(builder.getUnknownLoc(), "realloc",
reallocTy);
}
/// Create a loop to copy `count` characters from `src` to `dest`. Note that the
/// KIND indicates the number of bits in a code point. (ASCII, UCS-2, or UCS-4.)
void fir::factory::CharacterExprHelper::createCopy(
const fir::CharBoxValue &dest, const fir::CharBoxValue &src,
mlir::Value count) {
auto fromBuff = getCharBoxBuffer(src);
auto toBuff = getCharBoxBuffer(dest);
LLVM_DEBUG(llvm::dbgs() << "create char copy from: "; src.dump();
llvm::dbgs() << " to: "; dest.dump();
llvm::dbgs() << " count: " << count << '\n');
auto kind = getCharacterKind(src.getBuffer().getType());
// If the src and dest are the same KIND, then use memmove to move the bits.
// We don't have to worry about overlapping ranges with memmove.
if (getCharacterKind(dest.getBuffer().getType()) == kind) {
auto bytes = builder.getKindMap().getCharacterBitsize(kind) / 8;
auto i64Ty = builder.getI64Type();
auto kindBytes = builder.createIntegerConstant(loc, i64Ty, bytes);
auto castCount = builder.createConvert(loc, i64Ty, count);
auto totalBytes = builder.create<arith::MulIOp>(loc, kindBytes, castCount);
auto notVolatile = builder.createBool(loc, false);
auto memmv = getLlvmMemmove(builder);
auto argTys = memmv.getFunctionType().getInputs();
auto toPtr = builder.createConvert(loc, argTys[0], toBuff);
auto fromPtr = builder.createConvert(loc, argTys[1], fromBuff);
builder.create<fir::CallOp>(
loc, memmv, mlir::ValueRange{toPtr, fromPtr, totalBytes, notVolatile});
return;
}
// Convert a CHARACTER of one KIND into a CHARACTER of another KIND.
builder.create<fir::CharConvertOp>(loc, src.getBuffer(), count,
dest.getBuffer());
}
void fir::factory::CharacterExprHelper::createPadding(
const fir::CharBoxValue &str, mlir::Value lower, mlir::Value upper) {
auto blank = createBlankConstant(getCharacterType(str));
// Always create the loop, if upper < lower, no iteration will be
// executed.
auto toBuff = getCharBoxBuffer(str);
fir::factory::DoLoopHelper{builder, loc}.createLoop(
lower, upper, [&](fir::FirOpBuilder &, mlir::Value index) {
createStoreCharAt(toBuff, index, blank);
});
}
fir::CharBoxValue
fir::factory::CharacterExprHelper::createCharacterTemp(mlir::Type type,
mlir::Value len) {
auto kind = recoverCharacterType(type).getFKind();
auto typeLen = fir::CharacterType::unknownLen();
// If len is a constant, reflect the length in the type.
if (auto cstLen = getIntIfConstant(len))
typeLen = *cstLen;
auto *ctxt = builder.getContext();
auto charTy = fir::CharacterType::get(ctxt, kind, typeLen);
llvm::SmallVector<mlir::Value> lenParams;
if (typeLen == fir::CharacterType::unknownLen())
lenParams.push_back(len);
auto ref = builder.allocateLocal(loc, charTy, "", ".chrtmp",
/*shape=*/llvm::None, lenParams);
return {ref, len};
}
fir::CharBoxValue fir::factory::CharacterExprHelper::createTempFrom(
const fir::ExtendedValue &source) {
const auto *charBox = source.getCharBox();
if (!charBox)
fir::emitFatalError(loc, "source must be a fir::CharBoxValue");
auto len = charBox->getLen();
auto sourceTy = charBox->getBuffer().getType();
auto temp = createCharacterTemp(sourceTy, len);
if (fir::isa_ref_type(sourceTy)) {
createCopy(temp, *charBox, len);
} else {
auto ref = builder.createConvert(loc, builder.getRefType(sourceTy),
temp.getBuffer());
builder.create<fir::StoreOp>(loc, charBox->getBuffer(), ref);
}
return temp;
}
// Simple length one character assignment without loops.
void fir::factory::CharacterExprHelper::createLengthOneAssign(
const fir::CharBoxValue &lhs, const fir::CharBoxValue &rhs) {
auto addr = lhs.getBuffer();
auto toTy = fir::unwrapRefType(addr.getType());
mlir::Value val = rhs.getBuffer();
if (fir::isa_ref_type(val.getType()))
val = builder.create<fir::LoadOp>(loc, val);
val = builder.createConvert(loc, toTy, val);
builder.create<fir::StoreOp>(loc, val, addr);
}
/// Returns the minimum of integer mlir::Value \p a and \b.
mlir::Value genMin(fir::FirOpBuilder &builder, mlir::Location loc,
mlir::Value a, mlir::Value b) {
auto cmp =
builder.create<arith::CmpIOp>(loc, arith::CmpIPredicate::slt, a, b);
return builder.create<mlir::arith::SelectOp>(loc, cmp, a, b);
}
void fir::factory::CharacterExprHelper::createAssign(
const fir::CharBoxValue &lhs, const fir::CharBoxValue &rhs) {
auto rhsCstLen = getCompileTimeLength(rhs);
auto lhsCstLen = getCompileTimeLength(lhs);
bool compileTimeSameLength =
lhsCstLen && rhsCstLen && *lhsCstLen == *rhsCstLen;
if (compileTimeSameLength && *lhsCstLen == 1) {
createLengthOneAssign(lhs, rhs);
return;
}
// Copy the minimum of the lhs and rhs lengths and pad the lhs remainder
// if needed.
auto copyCount = lhs.getLen();
auto idxTy = builder.getIndexType();
if (!compileTimeSameLength) {
auto lhsLen = builder.createConvert(loc, idxTy, lhs.getLen());
auto rhsLen = builder.createConvert(loc, idxTy, rhs.getLen());
copyCount = genMin(builder, loc, lhsLen, rhsLen);
}
// Actual copy
createCopy(lhs, rhs, copyCount);
// Pad if needed.
if (!compileTimeSameLength) {
auto one = builder.createIntegerConstant(loc, lhs.getLen().getType(), 1);
auto maxPadding = builder.create<arith::SubIOp>(loc, lhs.getLen(), one);
createPadding(lhs, copyCount, maxPadding);
}
}
fir::CharBoxValue fir::factory::CharacterExprHelper::createConcatenate(
const fir::CharBoxValue &lhs, const fir::CharBoxValue &rhs) {
auto lhsLen = builder.createConvert(loc, builder.getCharacterLengthType(),
lhs.getLen());
auto rhsLen = builder.createConvert(loc, builder.getCharacterLengthType(),
rhs.getLen());
mlir::Value len = builder.create<arith::AddIOp>(loc, lhsLen, rhsLen);
auto temp = createCharacterTemp(getCharacterType(rhs), len);
createCopy(temp, lhs, lhsLen);
auto one = builder.createIntegerConstant(loc, len.getType(), 1);
auto upperBound = builder.create<arith::SubIOp>(loc, len, one);
auto lhsLenIdx = builder.createConvert(loc, builder.getIndexType(), lhsLen);
auto fromBuff = getCharBoxBuffer(rhs);
auto toBuff = getCharBoxBuffer(temp);
fir::factory::DoLoopHelper{builder, loc}.createLoop(
lhsLenIdx, upperBound, one,
[&](fir::FirOpBuilder &bldr, mlir::Value index) {
auto rhsIndex = bldr.create<arith::SubIOp>(loc, index, lhsLenIdx);
auto charVal = createLoadCharAt(fromBuff, rhsIndex);
createStoreCharAt(toBuff, index, charVal);
});
return temp;
}
fir::CharBoxValue fir::factory::CharacterExprHelper::createSubstring(
const fir::CharBoxValue &box, llvm::ArrayRef<mlir::Value> bounds) {
// Constant need to be materialize in memory to use fir.coordinate_of.
auto nbounds = bounds.size();
if (nbounds < 1 || nbounds > 2) {
mlir::emitError(loc, "Incorrect number of bounds in substring");
return {mlir::Value{}, mlir::Value{}};
}
mlir::SmallVector<mlir::Value> castBounds;
// Convert bounds to length type to do safe arithmetic on it.
for (auto bound : bounds)
castBounds.push_back(
builder.createConvert(loc, builder.getCharacterLengthType(), bound));
auto lowerBound = castBounds[0];
// FIR CoordinateOp is zero based but Fortran substring are one based.
auto one = builder.createIntegerConstant(loc, lowerBound.getType(), 1);
auto offset = builder.create<arith::SubIOp>(loc, lowerBound, one).getResult();
auto addr = createElementAddr(box.getBuffer(), offset);
auto kind = getCharacterKind(box.getBuffer().getType());
auto charTy = fir::CharacterType::getUnknownLen(builder.getContext(), kind);
auto resultType = builder.getRefType(charTy);
auto substringRef = builder.createConvert(loc, resultType, addr);
// Compute the length.
mlir::Value substringLen;
if (nbounds < 2) {
substringLen =
builder.create<arith::SubIOp>(loc, box.getLen(), castBounds[0]);
} else {
substringLen =
builder.create<arith::SubIOp>(loc, castBounds[1], castBounds[0]);
}
substringLen = builder.create<arith::AddIOp>(loc, substringLen, one);
// Set length to zero if bounds were reversed (Fortran 2018 9.4.1)
auto zero = builder.createIntegerConstant(loc, substringLen.getType(), 0);
auto cdt = builder.create<arith::CmpIOp>(loc, arith::CmpIPredicate::slt,
substringLen, zero);
substringLen =
builder.create<mlir::arith::SelectOp>(loc, cdt, zero, substringLen);
return {substringRef, substringLen};
}
mlir::Value
fir::factory::CharacterExprHelper::createLenTrim(const fir::CharBoxValue &str) {
// Note: Runtime for LEN_TRIM should also be available at some
// point. For now use an inlined implementation.
auto indexType = builder.getIndexType();
auto len = builder.createConvert(loc, indexType, str.getLen());
auto one = builder.createIntegerConstant(loc, indexType, 1);
auto minusOne = builder.createIntegerConstant(loc, indexType, -1);
auto zero = builder.createIntegerConstant(loc, indexType, 0);
auto trueVal = builder.createIntegerConstant(loc, builder.getI1Type(), 1);
auto blank = createBlankConstantCode(getCharacterType(str));
mlir::Value lastChar = builder.create<arith::SubIOp>(loc, len, one);
auto iterWhile =
builder.create<fir::IterWhileOp>(loc, lastChar, zero, minusOne, trueVal,
/*returnFinalCount=*/false, lastChar);
auto insPt = builder.saveInsertionPoint();
builder.setInsertionPointToStart(iterWhile.getBody());
auto index = iterWhile.getInductionVar();
// Look for first non-blank from the right of the character.
auto fromBuff = getCharBoxBuffer(str);
auto elemAddr = createElementAddr(fromBuff, index);
auto codeAddr =
builder.createConvert(loc, builder.getRefType(blank.getType()), elemAddr);
auto c = builder.create<fir::LoadOp>(loc, codeAddr);
auto isBlank =
builder.create<arith::CmpIOp>(loc, arith::CmpIPredicate::eq, blank, c);
llvm::SmallVector<mlir::Value> results = {isBlank, index};
builder.create<fir::ResultOp>(loc, results);
builder.restoreInsertionPoint(insPt);
// Compute length after iteration (zero if all blanks)
mlir::Value newLen =
builder.create<arith::AddIOp>(loc, iterWhile.getResult(1), one);
auto result = builder.create<mlir::arith::SelectOp>(
loc, iterWhile.getResult(0), zero, newLen);
return builder.createConvert(loc, builder.getCharacterLengthType(), result);
}
fir::CharBoxValue
fir::factory::CharacterExprHelper::createCharacterTemp(mlir::Type type,
int len) {
assert(len >= 0 && "expected positive length");
auto kind = recoverCharacterType(type).getFKind();
auto charType = fir::CharacterType::get(builder.getContext(), kind, len);
auto addr = builder.create<fir::AllocaOp>(loc, charType);
auto mlirLen =
builder.createIntegerConstant(loc, builder.getCharacterLengthType(), len);
return {addr, mlirLen};
}
// Returns integer with code for blank. The integer has the same
// size as the character. Blank has ascii space code for all kinds.
mlir::Value fir::factory::CharacterExprHelper::createBlankConstantCode(
fir::CharacterType type) {
auto bits = builder.getKindMap().getCharacterBitsize(type.getFKind());
auto intType = builder.getIntegerType(bits);
return builder.createIntegerConstant(loc, intType, ' ');
}
mlir::Value fir::factory::CharacterExprHelper::createBlankConstant(
fir::CharacterType type) {
return createSingletonFromCode(createBlankConstantCode(type),
type.getFKind());
}
void fir::factory::CharacterExprHelper::createAssign(
const fir::ExtendedValue &lhs, const fir::ExtendedValue &rhs) {
if (auto *str = rhs.getBoxOf<fir::CharBoxValue>()) {
if (auto *to = lhs.getBoxOf<fir::CharBoxValue>()) {
createAssign(*to, *str);
return;
}
}
TODO(loc, "character array assignment");
// Note that it is not sure the array aspect should be handled
// by this utility.
}
mlir::Value
fir::factory::CharacterExprHelper::createEmboxChar(mlir::Value addr,
mlir::Value len) {
return createEmbox(fir::CharBoxValue{addr, len});
}
std::pair<mlir::Value, mlir::Value>
fir::factory::CharacterExprHelper::createUnboxChar(mlir::Value boxChar) {
using T = std::pair<mlir::Value, mlir::Value>;
return toExtendedValue(boxChar).match(
[](const fir::CharBoxValue &b) -> T {
return {b.getBuffer(), b.getLen()};
},
[](const fir::CharArrayBoxValue &b) -> T {
return {b.getBuffer(), b.getLen()};
},
[](const auto &) -> T { llvm::report_fatal_error("not a character"); });
}
bool fir::factory::CharacterExprHelper::isCharacterLiteral(mlir::Type type) {
if (auto seqType = type.dyn_cast<fir::SequenceType>())
return (seqType.getShape().size() == 1) &&
fir::isa_char(seqType.getEleTy());
return false;
}
bool fir::factory::CharacterExprHelper::isCharacterScalar(mlir::Type type) {
if (type.isa<fir::BoxCharType>())
return true;
type = fir::unwrapRefType(type);
if (auto boxTy = type.dyn_cast<fir::BoxType>())
type = boxTy.getEleTy();
type = fir::unwrapRefType(type);
return !type.isa<fir::SequenceType>() && fir::isa_char(type);
}
fir::KindTy
fir::factory::CharacterExprHelper::getCharacterKind(mlir::Type type) {
assert(isCharacterScalar(type) && "expected scalar character");
return recoverCharacterType(type).getFKind();
}
fir::KindTy
fir::factory::CharacterExprHelper::getCharacterOrSequenceKind(mlir::Type type) {
return recoverCharacterType(type).getFKind();
}
bool fir::factory::CharacterExprHelper::isArray(mlir::Type type) {
return !isCharacterScalar(type);
}
bool fir::factory::CharacterExprHelper::hasConstantLengthInType(
const fir::ExtendedValue &exv) {
auto charTy = recoverCharacterType(fir::getBase(exv).getType());
return charTy.hasConstantLen();
}
mlir::Value
fir::factory::CharacterExprHelper::createSingletonFromCode(mlir::Value code,
int kind) {
auto charType = fir::CharacterType::get(builder.getContext(), kind, 1);
auto bits = builder.getKindMap().getCharacterBitsize(kind);
auto intType = builder.getIntegerType(bits);
auto cast = builder.createConvert(loc, intType, code);
auto undef = builder.create<fir::UndefOp>(loc, charType);
auto zero = builder.getIntegerAttr(builder.getIndexType(), 0);
return builder.create<fir::InsertValueOp>(loc, charType, undef, cast,
builder.getArrayAttr(zero));
}
mlir::Value fir::factory::CharacterExprHelper::extractCodeFromSingleton(
mlir::Value singleton) {
auto type = getCharacterType(singleton);
assert(type.getLen() == 1);
auto bits = builder.getKindMap().getCharacterBitsize(type.getFKind());
auto intType = builder.getIntegerType(bits);
auto zero = builder.getIntegerAttr(builder.getIndexType(), 0);
return builder.create<fir::ExtractValueOp>(loc, intType, singleton,
builder.getArrayAttr(zero));
}
mlir::Value
fir::factory::CharacterExprHelper::readLengthFromBox(mlir::Value box) {
auto lenTy = builder.getCharacterLengthType();
auto size = builder.create<fir::BoxEleSizeOp>(loc, lenTy, box);
auto charTy = recoverCharacterType(box.getType());
auto bits = builder.getKindMap().getCharacterBitsize(charTy.getFKind());
auto width = bits / 8;
if (width > 1) {
auto widthVal = builder.createIntegerConstant(loc, lenTy, width);
return builder.create<arith::DivSIOp>(loc, size, widthVal);
}
return size;
}
mlir::Value fir::factory::CharacterExprHelper::getLength(mlir::Value memref) {
auto memrefType = memref.getType();
auto charType = recoverCharacterType(memrefType);
assert(charType && "must be a character type");
if (charType.hasConstantLen())
return builder.createIntegerConstant(loc, builder.getCharacterLengthType(),
charType.getLen());
if (memrefType.isa<fir::BoxType>())
return readLengthFromBox(memref);
if (memrefType.isa<fir::BoxCharType>())
return createUnboxChar(memref).second;
// Length cannot be deduced from memref.
return {};
}
std::pair<mlir::Value, mlir::Value>
fir::factory::extractCharacterProcedureTuple(fir::FirOpBuilder &builder,
mlir::Location loc,
mlir::Value tuple) {
mlir::TupleType tupleType = tuple.getType().cast<mlir::TupleType>();
mlir::Value addr = builder.create<fir::ExtractValueOp>(
loc, tupleType.getType(0), tuple,
builder.getArrayAttr(
{builder.getIntegerAttr(builder.getIndexType(), 0)}));
mlir::Value len = builder.create<fir::ExtractValueOp>(
loc, tupleType.getType(1), tuple,
builder.getArrayAttr(
{builder.getIntegerAttr(builder.getIndexType(), 1)}));
return {addr, len};
}
mlir::Value fir::factory::createCharacterProcedureTuple(
fir::FirOpBuilder &builder, mlir::Location loc, mlir::Type argTy,
mlir::Value addr, mlir::Value len) {
mlir::TupleType tupleType = argTy.cast<mlir::TupleType>();
addr = builder.createConvert(loc, tupleType.getType(0), addr);
len = builder.createConvert(loc, tupleType.getType(1), len);
mlir::Value tuple = builder.create<fir::UndefOp>(loc, tupleType);
tuple = builder.create<fir::InsertValueOp>(
loc, tupleType, tuple, addr,
builder.getArrayAttr(
{builder.getIntegerAttr(builder.getIndexType(), 0)}));
tuple = builder.create<fir::InsertValueOp>(
loc, tupleType, tuple, len,
builder.getArrayAttr(
{builder.getIntegerAttr(builder.getIndexType(), 1)}));
return tuple;
}
bool fir::factory::isCharacterProcedureTuple(mlir::Type ty) {
mlir::TupleType tuple = ty.dyn_cast<mlir::TupleType>();
return tuple && tuple.size() == 2 &&
tuple.getType(0).isa<mlir::FunctionType>() &&
fir::isa_integer(tuple.getType(1));
}
mlir::Type
fir::factory::getCharacterProcedureTupleType(mlir::Type funcPointerType) {
mlir::MLIRContext *context = funcPointerType.getContext();
mlir::Type lenType = mlir::IntegerType::get(context, 64);
return mlir::TupleType::get(context, {funcPointerType, lenType});
}